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Abstract. We show that the Dyson Brownian Motion exhibits local universality after a very short time assuming that local rigidity
and level repulsion of the eigenvalues hold. These conditions are verified, hence bulk spectral universality is proven, for a large
class of Wigner-like matrices, including deformed Wigner ensembles and ensembles with non-stochastic variance matrices whose
limiting densities differ from Wigner’s semicircle law.

Résumé. Nous démontrons que le mouvement Brownien de Dyson établit l’universalité des statistiques spectrales locales après
un temps très court, en supposant la rigidité locale et la répulsion de valeurs propres. Ces conditions sont satisfaites, et donc
l’universalité spectrale est démontrée au centre du spectre, pour une large classe des matrices aléatoires du type Wigner, y com-
pris les ensembles de Wigner deformés et des ensembles dont la matrice des variances est non-stochastique, dont les densités
asymptotiques diffèrent de la loi du demi-cercle de Wigner.
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1. Introduction and motivation

In his groundbreaking paper [56], Wigner conjectured that the eigenvalue gap distribution of large random matrices
is universal and that it serves as a ubiquitous model for the local spectral statistics of many quantum systems. The
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Gaussian case was fully understood in the subsequent works of Dyson, Gaudin and Mehta; see [43] for a summary.
This simplest case can be generalized in two directions. For invariant ensembles, the joint density function of the
eigenvalues can be explicitly expressed in terms of a Vandermonde determinant; a formula that can also be interpreted
as the Gibbs measure of a gas of one-dimensional particles with a logarithmic interaction. For specific values of
the inverse temperature β = 1,2,4, the correlation functions may be expressed and analyzed using asymptotics of
orthogonal polynomials [31] and universality was proved under various conditions on the potential in [17,18,48,49],
with many consecutive works following. This method, however, is not applicable for other values of β even in the
Gaussian case, where the correlation functions were described in [53]. Universality for general β-ensembles was first
established recently in [12,13] for β ≥ 1, with different proofs given later in [6,51] that also hold for β > 0 albeit with
more restrictions on the potential.

Among the non-invariant ensembles, the most prominent case is the N ×N symmetric or hermitian Wigner ma-
trix characterized by the independence of the entries (up to the constraint imposed by the symmetry class). Beyond
the Gaussian case there is no explicit formula for the eigenvalue distribution in general, but in the hermitian case
(β = 2) and for distributions with a Gaussian component, the correlation functions can still be expressed using an
algebraic identity (Harish–Chandra–Itzykson–Zuber integral). A rigorous analysis of this approach yielded universal-
ity for hermitian Wigner matrices with a substantial Gaussian component, [7,33]. The first proof of hermitian Wigner
universality for an arbitrary smooth distribution was given in [22], the smoothness condition was later removed in
[23,52]. Lacking the algebraic identity, the symmetric case (β = 1) required a completely different approach based
on the analysis of the Dyson Brownian motion. The basic observation of Dyson [19] was that the eigenvalues of
a matrix ensemble, embedded in a simple stochastic flow (Dyson matrix flow), evolve autonomously and satisfy a
system of N stochastic differential equations, called the Dyson Brownian Motion (DBM). The universal eigenvalue
statistics emerge in the bulk spectrum as a consequence of the invariant measure of the DBM. Local statistics require
to understand only the local equilibration mechanism which occurs on a very small time scale that can be bridged by
perturbative methods. The rigorous theory of this idea was initiated in [25] and developed in a series of papers [26,30]
leading to the complete proof of the Wigner–Dyson–Mehta universality conjecture for Wigner matrices in all symme-
try classes; see [27] for a summary. More recently two stronger versions of the bulk universality have been proved.
In contrast to the previous results that required a local averaging, the universality of each single gap was shown to
be universal in [28], while the universality of correlation functions at each fixed energy was obtained in [14]. These
papers heavily relied on a new tool from [28], the concept of Hölder regularity theory for the parabolic equation with
random coefficients given by the DBM.

In all these works on the spectral universality for Wigner matrices, the global limiting density was the semicircle
law; in particular it did not change in time under the DBM. The same Gaussian measure and its localized versions
could be used as equilibrium reference measures for all times. The main idea was to artificially speed up the global
convergence by considering the local relaxation flow [25] and then to prove that the additional local relaxation terms
do not substantially modify the local statistics thanks to a-priori bounds on the location of the particles. These bounds
are called rigidity estimates and they directly follow from short scale versions of the Wigner semicircle law that are
called local laws.

The method of local relaxation flow has two main limitations that are related. First, it operates with global measures,
in particular, quite precise rigidity information is needed for all eigenvalues. This is clearly unnecessary (and in
some cases hard to obtain); far away eigenvalues should not influence local statistics too much. Second, if the initial
matrix of the Dyson matrix flow does not obey the semicircle law, then the density changes with time following the
semicircular flow, related to the complex Burgers equation for its Stieltjes transform. The time dependence of the
density was originally not incorporated in the method of the local relaxation flow. This second limitation was tackled
very recently in [40], where universality for deformed Wigner matrices with large diagonal elements was proved.
Using ideas from hydrodynamic limits [57], a global reference measure was constructed as an invariant β-ensemble
with a “time” parameter so that its equilibrium density trails the semicircular flow. This equilibrium measure was then
used as a basis to construct the local relaxation flow. Once the fast convergence to the reference measure is established
one can infer to the universality of the β-ensemble [12,13], or, alternatively, one can use the uniqueness of the local
Gibbs measure established in [28] to conclude universality with a tiny Gaussian component. This result is then easily
complemented by a standard Green function comparison method to remove the Gaussian component entirely.

As a technical input for the analysis in [40], the global rigidity for the reference β-ensemble is required, which
is not available for the case when the equilibrium density is supported on several intervals. In particular, the result
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of [40] is limited to the deformed Wigner ensembles with a single interval support that excludes the case when the
diagonal has a strongly bimodal distribution.

We remark that bulk universality for special classes of deformed Wigner matrices in the hermitian symmetry class
has also been proven with different methods. The local sine kernel statistics for the sum of a GUE and a diagonal
matrix with two eigenvalues ±a of equal multiplicity has been obtained with Riemann–Hilbert method [4,11,16]. In
particular, the density in this model is supported on two disjoint intervals if a is sufficiently large. The GUE matrix
can be replaced with an arbitrary Hermitian matrix if the first four moments of its single entry distribution matches
those of the Gaussian [45]. A much more general class of deformations of the GUE has been tackled in [50] relying
on a version of the Harish–Chandra–Itzykson–Zuber integral. Using Green function comparison techniques [29] and
the local laws from [35,36,39], one can replace the GUE with any hermitian Wigner matrix under the four moment
matching condition.

Random matrices whose limiting densities are supported on several intervals arise in other prominent contexts as
well. We call symmetric or hermitian matrix ensembles, H = (hij ), Wigner-like if their entries are independent (up
to the symmetry constraint). If, in addition, the matrix elements are centered, Ehij = 0, and the sum of the variances
Sij = E|hij |2 in each row is constant, say one, i.e.,

N∑
j=1

Sij = const = 1, ∀i, (1.1)

then the limiting density is the semicircle law. If either condition is violated, the limiting density is generally not the
semicircle law and typically it may be supported on several intervals. The case of H =W +A, where W is a standard
Wigner matrix with i.i.d. centered entries and A is a deterministic matrix (representing the nonzero expectations Ehij ),
was considered in [35,36], where local laws and rigidity were established. If condition (1.1) is dropped, then an even
richer class of possible limiting densities arise. These were extensively analyzed in [1,2], where all possible density
shapes are classified, local laws and rigidity are proven.

In the current paper, we prove bulk universality for all these models. As in the previous papers using DBM, the key
part is to show universality for matrices with a tiny Gaussian component.

Beyond these applications, our main result is formulated on a more conceptual level. Dyson argued in [19] that
the local equilibrium of the DBM is attained after a very short time irrespective of the global density. In fact, the
global density equilibrates on a time scale of order one, while the local equilibration time is of order 1/N . The local
equilibration is solely due to the logarithmic interaction in the DBM, while the evolution of the global density is given
by the semicircular flow. In this paper we fully decouple the effects of these two processes. In the main Theorem 2.1
we prove bulk local universality for the DBM assuming that it satisfies rigidity and level repulsion, but only locally.
On the global scale only a very weak version of rigidity is required, in particular the condition is insensitive to outliers
or to the behavior at the edges. These assumptions can then easily be verified from local laws in each model.

After completing this manuscript, we learned that similar results were obtained independently in [38].
Notational conventions: We use the symbol O(·) and o(·) for the standard big-O and little-o notation. The notations

O , o, �, �, refer to the limit N → ∞. Here a � b means |a| ≤ N−ξ |b|, for some small ξ > 0. We use c and C,
C′ to denote positive constants that do not depend on N . Sometimes we use subscripts or superscripts to distinguish
N -independent constants, e.g., c0, c1, c

′ etc. Their value may change from line to line. Similarly, we will use ξ > 0
for a small, respectively D > 0 for a large positive exponent, mainly appearing in various rigidity bounds. Their
precise values are immaterial; at the end of the proof it may be chosen sufficiently small, respectively sufficiently
large, depending on all other exponents along the proof. Finally, we use double brackets to denote index sets, i.e., for
n1, n2 ∈R,

�n1, n2 � := [n1, n2] ∩Z, NN := �1,N�.

2. Main results

In this section, we give a detailed description of our model, including all assumptions, and state our main results. We
start with introducing basic concepts such as the Stieltjes transform, the semicircular flow and the Dyson Brownian
motion (DBM).
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2.1. Stieltjes transform

Given a probability measure, ν, on R, define its Stieltjes transform, mν , by

mν(z) :=
∫
R

dν(v)

v − z
, z ∈C

+ := {z ∈C, Im z > 0}. (2.1)

Note that mν is an analytic function in upper half plane. In the following we usually write z=E + iη, E ∈R, η > 0,
and we refer to E as an “energy” and to z as the spectral parameter. For given η > 0, we let Pη denote the Poisson
kernel defined by

Pη(E) := 1

π

η

E2 + η2
, E ∈R, (2.2)

and we note that
∫
R
Pη(E)dE = 1 and Pη1+η2(E)= (Pη1 ∗Pη2)(E), for all η,η1, η2 > 0, E ∈R, where ∗ denotes the

convolution on R. We further remark that

1

π
Immν(E + iη)= (Pη ∗ ν)(E). (2.3)

Assuming that ν admits a density, which we also denote by ν, we can recover ν from mν through the Stieltjes inversion
formula

ν(E)= 1

π
lim
η↘0

Immν(E + iη)= lim
η↘0

(Pη ∗ ν)(E), E ∈R. (2.4)

The Hilbert transform, (Tν), of ν is defined by as the principal value integral

(Tν)(E) :=
∫
R

dν(v)

v−E
, E ∈R. (2.5)

2.2. Semicircular flow

We next introduce the semicircular or classical flow. Let M(R) denote the set of probability measures on R. Then the
semicircular flow is the process R+×M(R)→M(R), (t, �) �→Ft [�] obtained via its Stieltjes transform as follows.
For t = 0, set F0[�] := �. For t > 0, let mt(z) satisfy

mt(z)=
∫
R

d�(y)

e−t/2y − z− (1 − e−t )mt (z)
, Immt(z) > 0, z ∈C

+. (2.6)

It is straightforward to check [47] that (2.6) has indeed a unique solution such that lim infη↘0 Immt(E+ iη) <∞, for
any E ∈R, t > 0. In fact, for t > 0, mt has a continuous extension to C+ ∪R [8] that we also denote by mt . Set then

Ft [�](E) := 1

π
lim
η↘0

Immt(E + iη), t > 0,E ∈R, (2.7)

so that Ft [�] is defined through its density Ft [�](E), E ∈R. In particular, for t > 0, Ft [�] is an absolutely continuous
measure. (For simplicity we use the same symbol for absolutely continuous measures and their densities.)

Further, it is easy to check that mt(z) converges pointwise to

m0(z)=
∫
R

d�0(y)

y − z
, (2.8)

for all z ∈C+, as t ↘ 0. It follows that Ft [�] converges weakly to � as t ↘ 0. Starting from (2.6) and (2.7), one also
checks that

Ft+s[�] =Ft ◦Fs[�] ≡Ft

[
Fs[�]

]
, t ≥ s, � ∈M(R).
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In fact, using the additive free convolution, the flow t �→ Ft can be endowed with a (w∗-continuous) semigroup
structure [42,44,54]; see also [32,55] for reviews. Yet, we will not pursue this point of view in the present paper.

In the following, we often write �t := Ft [�] with �0 = � and we call t �→ �t the semicircular flow started at �.
Recalling (2.1) it is clear that mt is the Stieltjes transform of �t and we simply write mt ≡ m�t . We remark that
the standard semicircle law, �sc, is invariant under the semicircular flow, i.e., Ft [�sc] = �sc, for all t ≥ 0, and that
�t = Ft [�] converges weakly to �sc, as t ↗∞, for any � ∈M(R). This follows directly from (2.6) and the fact that
the Stieltjes transform, m�sc ≡msc, of �sc satisfies msc(z)=−(msc(z)+ z)−1, z ∈C+.

For N ∈N and fixed t ≥ 0, let γ (t)≡ (γk(t)) denote the set of N -quantiles with respect the density �t , where γk(t)

is the smallest number satisfying∫ γk(t)

−∞
�t (x)dx = k

N
, �t =Ft [�], (2.9)

for all t ≥ 0. It is straightforward to check that γk(t) inside the “bulk,” i.e., where �t is strictly positive, is a continuous
function of t . This follows from the (weak) continuity of the flow t �→ �t . Moreover, the points γ (t) in the bulk
approximately satisfy a gradient flow of a classical particle system with a logarithmic two-body interaction potential
between the particles (see Lemma 4.3 below). We refer to Appendix A for a more detailed discussion.

2.3. Dyson Brownian motion

Fix N ∈N and let
◦
�(N) ⊂RN denote the set

◦
�

(N) := {
λ = (λ1, λ2, . . . , λN)⊂R

N : λ1 < λ2 < · · ·< λN
}
, (2.10)

and denote its closure by �(N).
Dyson Brownian motion (DBM) is given by the following stochastic differential equation (SDE)

dλi(t)=
√

2

βN
dBi(t)− 1

N

∑
j �=i

1

λj (t)− λi(t)
dt − λi(t)

2
dt, i ∈NN,β ≥ 1, (2.11)

with fixed initial condition λ(t = 0) ∈ �(N), where β ≥ 1 is a fixed parameter with the interpretation of inverse
temperature, and where (Bi)

N
i=1 are a collection of independent standard Brownian motions in some probability space

(
,P). We denote by E the expectation with respect to P.
It is well known, see Section 4.3.1 of [3], that (2.11) with β ≥ 1 has a unique strong solution, λ(t), for any initial

condition λ(0) ∈�(N). Further, for any t > 0, we have λ(t) ∈ ◦
�(N) almost surely.

The equilibrium measure for the DBM is the Gaussian invariant ensemble explicitly given by

μG(λ)dλ ≡ μ
(N)
β,G(λ)dλ = 1

Z
(N)
β,G

e−βNHG dλ, HG :=
N∑
i=1

1

4
λ2
i −

1

N

∑
1≤i<j≤N

log(λj − λi), (2.12)

where dλ := 1(λ ∈ �(N))dλ1 dλ2 · · · dλN and where Z
(N)
β,G is a normalization. For fixed β , we denote by EG the

expectation with respect the measure μG in (2.12).
Consider next a sequence of vectors λ(N)(0)= (λ

(N)
1 (0), . . . , λ(N)

N (0)) ∈�(N), N ∈N. Let λ(N)(t)= (λ
(N)
1 (t), . . . ,

λ
(N)
N (t)) ∈ �(N) denote the sequence of vectors such that, for each N ∈ N, λ(N)(t) ∈ �(N) is the solution to (2.11)

with initial condition λ(N)(0). For simplicity we abbreviate λ(t) ≡ λ(N)(t), respectively λi(t) = λ
(N)
i (t), i ∈ NN , in

the following.
Assume that there is a probability measure, �∞

0 , on R such that

�
(N)
0 := 1

N

N∑
i=1

δλi(0)
w−→ �∞

0 ,
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as N →∞, i.e., the empirical distribution of the initial data λ(N)(0) converges weakly to �∞
0 . Then, under some mild

technical assumptions on λ(N)(0), Proposition 4.3.10 of [3] states that

�
(N)
t := 1

N

N∑
i=1

δλi(t)
w−→ �∞

t , t ≥ 0, (2.13)

as N →∞, where �∞
t :=Ft [�∞

0 ] denotes the semicircular flow started from �∞
0 , cf., Section 2.2.

2.4. Main result

In this subsection, we state our main result. We need one more definition: A labeling � is a random variable � :R→ Z,
x �→ �(x) such that �(x + 1)− �(x)= 1 and �(x)= �(�x�).
Theorem 2.1. Let λ(t), t ≥ 0, be the solution to the DBM in (2.11) with deterministic initial condition λ(0). Given any
small positive ε > 0 and any small δ ∈ [0,1/20], with ε ≥ 2δ, consider times t1, t2 ∈R+ with N−1+ε ≤ t2 − t1 ≤N−ε .
Let � be a probability measure on R. Denote by �t ≡Ft [�] the semicircular flow started from �. Choose E∗ ∈R such
that �t1(E∗) > c, for some small c > 0.

Assume that λ(t) and � are such that the following conditions are satisfied.

(1) At time t1, the density �t1 ≡Ft1[�] is regular in the following sense. There is a constant � > 0, independent of N ,
such that the Stieltjes transform m�t1

of �t1 , i.e.,

m�t1
(z)=

∫
R

�t1(y)dy

y − z
, z ∈C

+, (2.14)

extends to a continuous function on D� := {z=E + iη ∈C :E ∈ [E∗ −�,E∗ +�], η ≥ 0}, and satisfies∣∣m�t1
(z)

∣∣≤ C,
∣∣∂nz m�t1

(z)
∣∣≤ C

(
Nδ

)n
, n= 1,2, (2.15)

uniformly on D� , for some constant C. Moreover, �t1 has finite second moment and satisfies

�t1(E)≥ c, E ∈ [E∗ −�,E∗ +�], (2.16)

for some c > 0.
(2) The process λ(t) is rigid and is related to �t in the sense that there is a small σ ≡ σ(�) > 0, independent of N ,

such that the following holds.
(a) Strong rigidity inside Iσ : There is a time-independent labeling � such that γ�(i)(t1) ∈ [E∗ −�/4,E∗ +�/4],

for all i ∈ Iσ = �L− σN,L+ σN�, where L ∈NN is the largest integer such that γ�(L)(t1)≤E∗. Moreover,
for any (small) ξ > 0 and any (large) D > 0 we have

P

(∣∣λi(t)− γ�(i)(t)
∣∣≤ Nξ

N
,∀t ∈ [t1, t2]

)
≥ 1 −N−D, ∀i ∈ Iσ , (2.17)

for large enough N ≥N0(ξ,D), where (γi(t)) are N -quantiles with respect to the measure �t ; see (2.9).
(b) Weak rigidity outside Iσ : For any ξ ∈ (0, δ) and any (large) D > 0, we have

P

(∣∣∣∣ 1

N

∑
k:|L−k|≥σN

1

λk(t)−E∗
−
∫
R\I (t)

�t (x)dx

x −E∗

∣∣∣∣≤ Nξ

Nδ
,∀t ∈ [t1, t2]

)
≥ 1 −N−D, (2.18)

for large enough N ≥N0(ξ,D), where I (t) := [γ�(L−σN)(t), γ�(L+σN)(t)].
(3) Level repulsion inside Iσ : For any i ∈ Iσ and t ∈ [t1, t2],

P

(∣∣λi(t)− λi±1(t)
∣∣≤ u

N
,
∣∣λi(t)− γ�(i)(t)

∣∣≤ Nξ

N

)
≤Nδuβ+1, u > 0, (2.19)

for large enough N .
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(4) Hölder continuity of DBM: For any (small) ξ > 0 and any (large) D > 0, we have

P
(∣∣λk(t)− λk(s)

∣∣≤Nξ
√
t − s,∀t, s ∈ [t1, t2], t ≥ s

)≥ 1 −N−D, ∀k ∈NN \ Iσ , (2.20)

for large enough N ≥N0(ξ,D).

Then, there are small constants f, χ,α > 0, such that the following holds. Fix n ∈ N and let O : Rn −→ R be
smooth and compactly supported. Fix any T ∈ [t1 +N2δ/N, t2]. Set �∗ := �T (γL(T )). Then

E
[
O
((
(N�∗)

(
λi0(T )− λi0+j (T )

))n
j=1

)]= E
G[O((

(N�#)(λi′0 − λi′0+j )
)n
j=1

)]+O
(
N−f

)
, (2.21)

for N sufficiently large, for any i0, i
′
0 ∈ NN satisfying |i0 −L| ≤Nχ , |i′0 −L′| ≤Nχ with any L′ ∈ [αN, (1 − α)N ],

and where �# := �sc(γL′,sc) denotes the density of the semicircle law �sc at the location of the L′th N -quantile of �sc.

Remark 2.2. The formula (2.21) expresses the single gap universality, i.e., that the joint distribution of n consecutive
gaps coincides with that of a Gaussian invariant ensemble for any fixed n. Single gap universality clearly implies
the weaker averaged gap universality, where (2.21) is averaged over Nb consecutive i0’s, for some 0 < b < 1. It is
well known that averaged gap universality implies the averaged energy universality, i.e., the universality of the local
correlation functions around an energy E, averaged over E near the reference energy E∗; see e.g., Section 7 of [26].

Remark 2.3. The measure � in Theorem 2.1 is assumed to be deterministic, but it may depend on N in contrast to the
measure �(∞)

0 of (2.13) which is indeed the limiting object as N →∞. Consequently, the semicircular flow �t =Ft [�]
will also be N -dependent. Typically one expects that �t converges weakly to �∞

t , yet the speed of convergence
may be very slow and hence not be compatible with Assumption (2) of Theorem 2.1. In Section A.2, we discuss
Assumption (1) in more detail.

Notice that the initial condition λ(0) of the DBM and the initial data � of the semicircular flow do not have to
be related; this will allow us for an additional freedom in the applications. We only require that λ(t) is close to the
quantiles of �t in a short time interval t ∈ [t1, t2] and only locally near the reference energy E∗. We also allow for a
possible relabeling � that can be used to accommodate outliers in applications. At first reading the reader may ignore
� and consider �(i)= i for simplicity.

2.5. Random matrix flow and universality

In this subsection, we briefly explain how Theorem 2.1 can be used to prove bulk universality for many random matrix
ensembles H . We will follow the three-step strategy initiated in a series of works [24,26,29]; see [27] for a concise
summary.

Step 1 is to prove a local law, which includes rigidity for the eigenvalues and bounds on the resolvent matrix
elements G(z)= (H − z)−1 down almost to the scale of the eigenvalue spacing, i.e., for η = Im z�N−1. This step
is typically model dependent, mainly because the limiting density of the eigenvalues varies from model to model.
The key tool is the self-consistent equation for the Stieltjes transform of the density (and its vector version for the
individual matrix elements Gii ); its solvability and stability properties need to be investigated for each model.

Step 2 is to prove universality for matrices with a small Gaussian component that can conveniently be generated
by running a matrix valued Ornstein–Uhlenbeck process. Theorem 2.1 is used in this step and it replaces the previous
argument that relied on a global equilibrium measure and its version with relaxation. As advertised in the introduction,
Theorem 2.1 requires rigidity information only locally, in particular it also applies to models where the limiting density
is supported on several intervals. Step 2 is model independent once the input conditions of Theorem 2.1 are verified.

Finally, Step 3 is a perturbation argument which is also very general. Using the Green function comparison strategy
[29] and the moment matching (introduced first in [52] in the context of random matrices), one can remove the tiny
Gaussian component. The main input here is the a priori bound on the resolvent matrix elements obtained in Step 1.

More concretely, consider a random N ×N hermitian or symmetric matrix Ht =H ∗
t with matrix elements (hij ).

Suppose the matrix elements are time-dependent and they satisfy the Ornstein–Uhlenbeck (OU) process

dhij = dBij√
N

− 1

2
hij dt, i, j ∈NN, i ≤ j, (2.22)
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where (Bij : i < j) are independent complex Brownian motions with variance t and (Bii) are independent real Brow-
nian with variance t for β = 2; while for β = 1, (Bij : i < j) are independent real Brownian motions with variance
t and Bii are real Brownian motion with variance 2t . It is easy to check that the solution to (2.22), Ht , with initial
condition H0, satisfies the distributional equality

Ht ∼ e−t/2H0 + (
1 − e−t

)1/2
U, (2.23)

where U is Gaussian, i.e., belongs to the GUE (β = 2), respectively to the GOE (β = 1), and U is independent of H0.
The eigenvalues of Ht , here denoted by λ(t), satisfy [19] the SDE (2.11), with β = 1 or β = 2, where the initial

condition λ(0) is given by the eigenvalues of the initial matrix H0. We will run the OU process until time t2 = o(1).
Let � denote the limiting density of H0. We fix an energy E∗ in the bulk spectrum of H0, i.e., �(E∗) ≥ c > 0; it is
easy to see that E∗ stays in the bulk of Ht as well for any t ≤ t2. The assumptions of Theorem 2.1 can then, via the
identification (2.23), be checked from the matrix flow Ht in the time slice t ∈ [t1, t2]. The typical choice is t2 =N−ε

and t1 = t2 −N−1+2δ , with some small positive exponents ε � δ.
Assumption (2) can be checked from a local law for the random matrix Ht . We need such information not only

for the original matrix H0, but along the whole OU flow. Typically, however, when the local law is proven for some
matrix H0, it also holds for Ht , i.e., for H0 with a Gaussian convolution. Notice that the strong form of rigidity, an
almost optimal bound on λi(t)− γi(t) expressed in (2.17), is needed only for eigenvalues near E∗ in the bulk. Much
weaker information is needed for far away eigenvalues; the condition (2.18) involves controlling the density only
on the macroscopic scale. In terms of the Stieltjes transform, m(N)

t (z) := 1
N

Tr(Ht − z)−1, z ∈ C+, of the empirical
density, Assumption (2) follows if the bounds

∣∣m(N)
t (z)−mt(z)

∣∣≤ Nξ

Nη
, for z=E + iη, η ∈ [

N−1+ξ , c�
]
, |E −E∗| ≤�, (2.24)

∣∣m(N)
t (E∗ + iη)−mt(E∗ + iη)

∣∣≤ Nξ

Nδ
, for η ∈ [c�,1], (2.25)

hold with high probability, for any t ∈ [t1, t2]. Indeed, (2.25) directly implies (2.18). By a simple application of the
Helffer–Sjöstrand formula (e.g., following the proof of Lemma 8.1 in [21]), we see from (2.24) that

∣∣#{λj (t) ∈ [E1,E2]
}− #

{
γj (t) ∈ [E1,E2]

}∣∣≤ CNξ , ∀E1,E2 ∈
[
E − 1

2
�,E + 1

2
�

]
. (2.26)

In particular, rigidity between the λ(t) and γ (t) sequences holds on scale N−1+ξ within [E − 1
2�,E + 1

2�]. This
implies |λi(t)− γ�(i)(t)| ≤N−1+ξ , for any i ∈ Iσ , up to an overall shift in the labeling that is encoded in the labeling
function �(i). We only need to show that the labeling �(i) is time-independent, i.e., that along the whole time interval
t ∈ [t1, t2] it is the same element of the γ (t) sequence that stays close to a given element of λ(t) within the rigidity
precision N−1+ξ . We call this property the persistent trailing of DBM by the flow of the quantiles. Given (2.26),
it is sufficient to check this for one element of the sequence; e.g., that if |λL(t1) − γ�(L)(t1)| ≤ N−1+ξ with some
shifted index �(L), then |λL(t)− γ�(L)(t)| ≤ N−1+ξ , for all t ∈ [t1, t2]. Notice that persistent trailing is a nontrivial
feature of the DBM since the length of the time interval t2 − t1 = N−1+2δ is much bigger than the rigidity scale
N−1+ξ . Nevertheless, in Proposition B.1 in Appendix B we show that there is an event �0 in the probability space of
the Brownian motions with P(�0) ≥ 1 −N−ξ/2 such that γ�(L)(t) persistently trails λL(t). It is easy to see that the
universality in Theorem 2.1 also holds if Assumptions (2)–(3) are valid only on the event �0.

Level repulsion estimates of the form of Assumption (3) for random matrix ensembles can be obtained using the
method of [24]. This approach requires two inputs: strong local rigidity as in (2.17) and smoothness of the distribution
of the matrix elements of H . The former is already verified by Assumption (2), the latter needs a slight extension of
[24] to “almost-smooth” distributions, where smoothing may be provided by the OU process. Indeed, in Appendix B
of [14] it was shown that Ht satisfies level repulsion in the form (2.19), if t =N−cδ with some small constant c > 0
(another merit of the proof in [14] is that it also presents the necessary modifications to cover symmetric matrices as
well, while [24] was written for hermitian matrices only). So we will choose ε = c

2δ in the definition t2 = N−ε to
guarantee that (2.19) holds for any t ∈ [t1, t2]. Notice that the only reason to run the DBM up to a relatively large time
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t2 =N−ε is to guarantee that the smoothing effect is substantial to yield level repulsion. If the distribution of H0 were
smooth initially, so level repulsion in its original form [24] applied, we could have chosen t1 = 0, t2 =N−1+2δ with
some small δ > 0.

Finally, Assumption (4) can easily checked as follows. For any two N × N matrices A = A∗, B = B∗, we have
dist{Sp(A),Sp(B)} ≤ ‖A − B‖∞, where Sp(A), Sp(B) denote the spectra of A,B and where ‖ · ‖∞ denotes the
operator norm. Also recall that the operator norm of U is bounded by a constant with overwhelming probability; see,
e.g., Exercise 2.1.30 of [3]. Thus, choosing A = Ht , B = H0, we see that Assumption (4) is satisfied provided that
‖H0‖∞ ≤ Nξ/2 with overwhelming probability. This bound can be easily proven for all matrix models we have in
mind.

Having checked the assumptions, the conclusion of Theorem 2.1 is that gap universality holds for any matrix with
a substantial Gaussian component of size t2 ∼ N−ε . The rest is a standard moment matching and Green function
comparison argument that we sketch for completeness.

Given an initial Wigner-like matrix Ĥ for which we eventually wish to prove universality, we choose t2 = N−ε

with a sufficiently small ε > 0. By moment matching (see, e.g., Lemma 6.5 of [29]), we construct another matrix
H0 such that the solution Ht2 at time t2 of the matrix Ornstein–Uhlenbeck process (2.22) with initial condition H0 is
close to Ĥ in the four moment sense. Choosing T = t2 in Theorem 2.1, we obtain gap universality for HT which also
implies universality of local correlation functions at E with a small averaging in the energy parameter E around E∗.
The local eigenvalue statistics of Ĥ and HT coincide by the Green function comparison theorem introduced in [29].
More precisely, the method of [29] gives coincidence in the sense of correlation functions while Theorem 1.10 of [34]
extends the Green function comparison method to individual eigenvalues, hence to gaps as well. This completes our
sketch on how to apply Theorem 2.1 for random matrix models.

2.6. Strategy of the proof of Theorem 2.1

Our proof of Theorem 2.1 is divided into five parts.
Part (i), carried out in Section 4.1, is to localize the problem: we choose an integer K � 1 such that

NδK10 ≤N, K ≤Nδ. (2.27)

We consider the conditional measure on K = 2K + 1 consecutive internal points x = (λL−K, . . . , λL+K), labeled
by I := �L − K,L + K�, conditioned on the remaining N − K external points y = (λi : |i − L| > K). The index
L is chosen so that γ�(L) is close to E∗, where γk is the kth N -quantile of the density at t1. In the equilibrium
setup this corresponds to the local Gibbs measure with boundary conditions given by y (this idea was first intro-
duced in [13] in the β-ensemble context). In our non-equilibrium setup, we work in the path space and condition on
the whole trajectory Y = {y(t) : t ∈ [T1, t2]}, starting at some time T1 ≥ t1 chosen later. The configuration interval
J (t)= [yL−K−1(t), yL+K+1(t)] for the conditional measure is time-dependent, but by rigidity it is quite close to the
corresponding interval [γ�(L−K−1)(t), γ�(L+K+1)(t)] given by the quantiles that remains practically constant owing to
the removal of the mean velocity. Still, J (t) may wiggle on the rigidity scale Nξ/N which is much bigger than our
target scale, 1/N , the size of the gap, so that we cannot tolerate this imprecision. Furthermore, similarly to the basic
idea of the local relaxation flow [24,26] we want to achieve universality by showing that the measure converges to a
(local) reference equilibrium measure. The local Gibbs measures with boundary condition y(t) change too quickly to
serve as useful reference measures.

Part (ii) of the proof is to understand the dynamics on a macroscopic scale, i.e., to control the semicircular flow
and the induced dynamics on the time-dependent quantiles γi(t). This analysis is of interest itself and it is deferred to
the Appendix A since it requires quite different tools than the main part of the proof. The key information (collected
in Section 4.2) is that the quantiles in the bulk move coherently with a local mean velocity that varies in time on the
macroscopic scale. Since we concentrate on the vicinity of a fixed energy E∗ and on a small time window, by a simple
linear shift we can achieve that the mean velocity is negligible near E∗.

Therefore, in Part (iii), carried out in Section 4.3, we define a time-independent local measure, ωT1 with exterior
points γ̃k , k ∈ I c. These exterior points coincide with yk(T1) for k far away from L while they are given by a typical
configuration z of an auxiliary quadratic β-ensemble for k near the boundary of I (with a smooth interpolation in
between). The auxiliary ensemble is chosen in such a way that the local density around E∗ matches. Using the rigidity
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bounds for both y and z, we establish that ωT1 satisfies the logarithmic Sobolev inequality (LSI) and the corresponding
dynamics approaches to equilibrium on a time scale of order K/N . Furthermore, we show that the measure ωT1 is
rigid by using a general criterion for rigidity of local measures given in Theorem 4.2 of [28] together with the careful
choice of the auxiliary ensemble. Moreover, we notice that ωT1 satisfies a level repulsion bound due to Theorem 4.3
of [28]. Finally, Theorem 4.1 of [28] implies that the gap statistics of ωT1 are universal.

Part (iv), carried out in Section 4.4, is to consider x̃i (t), i ∈ I , t ≥ T1, the solution of the local DBM with exterior
points γ̃k , k ∈ I c, and with initial condition x̃i (T1) = xi(T1). Writing the distribution of x̃(t) as gtωT1 , we derive
fast convergence to equilibrium, i.e., for times t ≥ T ′

1 := T1 +K(K/N) the measure gtωT1 is exponentially close to
equilibrium in the relative entropy sense. This information can be used to transfer rigidity and level repulsion from
ωT1 to gtωT1 , furthermore it shows that the gap statistics of x̃(t) are the same as those of ωT1 , hence are universal.

The next idea, Part (v), is to couple the evolution of x̃ to x by using the same Brownian motions in the DBMs. This
basic coupling idea first appeared in [14] in this context; its main advantage is that taking the difference of the original
DBM and the DBM for x̃, we see that the difference vector v := x − x̃ satisfies a system of ordinary differential
equations (ODEs); the stochastic differentials drop out. Roughly speaking, these ODEs have the form (see (5.7))

dvi
dt

=−(Bv)i + Fi, (Bv)i :=
∑
j∈I

Bij (vi − vj )+Wivi, (2.28)

with time-dependent coefficients Bij , Wi and a “forcing term” Fi that all depend on the paths x(t), x̃(t). These coef-
ficients are crudely given by

Bij = 1

N(xi − xj )(̃xi − x̃j )
, Wi = 1

N

∑
k /∈I

1

(xi − yk)(̃xi − γ̃k)
, Fi = 1

N

∑
k /∈I

yk − γ̃k

(xi − yk)(̃xi − γ̃k)
.

The equation (2.28) is very similar to the basic equation studied in [28] but the forcing term is new. The key result of
[28] is a Hölder regularity theory for (2.28) without forcing, under suitable conditions on the coefficients. We extend
this statement to include the forcing term; here we rely on the finite speed of propagation, proved also in [28]. Hölder
regularity in this context yields that, after some time of order Kc/N , c ∼ 1/100, the discrete derivative vi+1 − vi is
much smaller than its naive size 1/N . Since vi+1 − vi = xi+1 − xi − (̃xi+1 − x̃i ), we see that the gaps of x and x̃
coincide to leading order. Since the gaps of x̃ were shown to be universal in the previous step, we obtain that the gaps
of x(T ), T := T ′

1 +KcN−1, are universal.
There are several technical complications behind this scheme, most importantly we need to regularize the local

singularity in the kernel Bij when xi ≈ xi±1. In fact, two different regularizations are used; the regularization of the
dynamics in Section 5.1 is borrowed from Section 3.1 of [14], while the regularization of the equilibrium measure
ωT1 explained at the end of Section 4.5 is similar to the one in Section 9.3 of [28] but with a different choice of
regularization scale.

3. Concepts

In this section we recall essential concepts that will be used in the proof of Theorem 2.1.

3.1. Definition of general β-ensembles

We first recall the notion of β-ensembles or log-gases. Let N ∈ N and recall the definition of the set �(N) ⊂ RN in
(2.10). Consider the probability distribution on �(N) given by

μ
(N)
β,V (dλ)≡ μV (dλ) := 1

ZV

e−βNH dλ, H≡H(λ) :=
N∑
i=1

1

2
V (λi)− 1

N

∑
1≤i<j≤N

log(λj − λi), (3.1)

where β > 0, dλ := 1(λ ∈ �(N))dλ1 dλ2 · · · dλN , and ZV ≡ Z
(N)
β,V is a normalization. Here V is a N -independent

potential, i.e., a real-valued, sufficiently regular function on R to be specified in each case. In the following, we often
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omit the parameters N and β from the notation. We use PμV and EμV to denote the probability and the expectation
with respect to μV . We view μV as a Gibbs measure of N particles on R with a logarithmic interaction, where the
parameter β > 0 may be interpreted as the inverse temperature. We refer to the variables (λi) as particles or points
and we call the system a β-log-gas or a β-ensemble. We assume that the potential V is a C4 function on R such that
its second derivative is bounded below, i.e., we have

inf
x∈RV

′′(x)≥−2CV , (3.2)

for some constant CV ≥ 0, and we further assume that

V (x) > (2 + c) log
(
1 + |x|), x ∈R, (3.3)

for some c > 0, for large enough |x|. It is also well known, see, e.g., [15], that under these conditions the measure is
normalizable, ZV <∞. Further, the averaged density of the empirical spectral measure, �(N)

V , defined as

�
(N)
V

:= E
μV

1

N

N∑
i=1

δλi , (3.4)

converges weakly in the limit N →∞ to a continuous function, �V , the equilibrium density, of compact support. It is
well known that �V satisfies

V ′(x)=−2
∫
R

�V (y)dy

y − x
, x ∈ supp�V . (3.5)

In fact, equality in (3.5) holds if and only if x ∈ supp�V .
Viewing the points λ = (λi) as points or particles on R, we define the quantile of the kth particle, γk , under the

β-ensemble μV by∫ γk

−∞
�V (x)dx = k

N
. (3.6)

For a detailed discussion of general β-ensemble and the proof of the properties mentioned above we refer, e.g., to
[3,13].

Assume for the moment that the minimizer �V is supported on a single interval [a, b], and that V is “regular” in
the sense of [37], i.e., the equilibrium density of V is positive on (a, b) and vanishes like a square root at each of the
endpoints of [a, b]. From [12,13] we then have the following rigidity result.

Proposition 3.1. Let V ∈C4(R) be a “regular” potential and assume that �V is supported on a single interval. Then,
for any ξ > 0 there are constants c0, c1 > 0, such that

P
(|λk − γk| ≥NξN− 2

3 ǩ
− 1

3
)≤ e−c0N

c1
, 1 ≤ k ≤N, (3.7)

where ǩ := min{k,N − k+ 1}, for N sufficiently large.

Proposition 3.1 will only be used as an auxiliary result (see Section 4.3.2 below), since, for most potentials of
interests in the present paper, the equilibrium density �V is not supported on a single interval. The extension of
Proposition 3.1 to that settings has not been established.

Finally, for the Gaussian case, V (x)= x2/2, we write μG instead of μV , since μG is the equilibrium measure for
the DBM. More precisely, the Gaussian distribution on �(N) is given by

μG(dλ)= 1

ZG
e−βNHG dλ, HG(λ) :=

N∑
i=1

1

4
λ2
i −

1

N

∑
1≤i<j≤N

log(λj − λi), (3.8)

where ZG ≡Z
(N)
β,G is the normalization.
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3.2. Dyson Brownian motion

Consider the DBM, λ(t), t ≥ 0, on �(N) of (2.11) with initial condition λ(0) ∈�(N). Denote by f0μG, the distribution
of λ(0)3 and let ftμG denote the distribution of λ(t). Then ft ≡ ft,N satisfies the forward equation

∂tft = Lft , (3.9)

where

L = LN :=
N∑
i=1

1

βN
∂2
i +

N∑
i=1

(
−1

2
λi − 1

N

∑
j �=i

1

λj − λi

)
∂i, ∂i = ∂

∂λi
, (3.10)

or in short L = 1
βN

�− (∇HG) · ∇ , with HG as in (3.8).

3.3. Relative entropy, Bakry–Émery criterion and the logarithmic Sobolev inequality

A cornerstone in our proof is the analysis of the relaxation of the dynamics (3.9). Such an approach was first introduced
in Section 5.1 of [25]. The presentation here follows [26].

Let μ be a probability measure on �(N) be given by a general Hamiltonian H:

dμ(x)= 1

Z
e−βNH(x) dx, (3.11)

and let L be the generator, symmetric with respect to the measure dμ, defined by the Dirichlet form

D(f )=Dμ(f )=−
∫

fLf dμ := 1

βN

∑
j

∫
(∂jf )

2 dμ, ∂j = ∂xj . (3.12)

The relative entropy of two absolutely continuous probability measures on RN is given by

S(̃ν|ν) :=
∫

d̃ν

dν
log

(
d̃ν

dν

)
dν.

If d̃ν = f dν, then we use the notation Sν(f ) := S(f ν|ν). The entropy can be used to control the total variation norm
via the well-known inequalities∫

|f − 1|dν ≤√
2Sν(f ), P

f ν(A)≤ P
ν(A)+√

2Sν(f ), (3.13)

for any ν-measurable event A.
Let ft be the solution to the evolution equation ∂tft = Lft , t > 0, with a given initial condition f0. Assuming that

the Hamiltonian H satisfies

∇2H(λ)= HessH(λ)≥ ϑ, λ ∈�
(N), (3.14)

the Bakry–Émery criterion [5] yields the logarithmic Sobolev inequality (LSI)

Sμ(f )≤ 2

ϑ
Dμ(

√
f ), f = f0 ∈ L∞(

R
N,dλ

)
, (3.15)

and the exponential relaxation of the entropy and Dirichlet form

Sμ(ft )≤ e−2ϑtSμ(f0), Dμ(
√
ft )≤ e−2ϑtDμ(

√
f0), t > 0.

3Strictly speaking, the distribution of λ(0) may not allow a density f0 with respect to μG, but for t > 0, λ(t) admits such a density. Our proofs are
not affected by this technicality.
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We assume from now on that H is given by HG (see (3.8)), L is given by L (see (3.10)) and that the equilibrium
measure is the Gaussian one, μ= μG. We then have the convexity inequality

〈
v,∇2HG(x)v

〉≥ 1

2
‖v‖2 + 1

N

∑
i<j

(vi − vj )
2

(xi − xj )2
≥ 1

2
‖v‖2, v ∈R

N. (3.16)

This guarantees that μG satisfies the LSI with ϑ = 1/2 and the relaxation time is of order one.

3.4. Localized measures

Following [28], we choose K ∈ �N�,N1/10 �, for some small 0 <� < 1/10 and pick L ∈ �K,N −K�. We denote by
I = �L−K,L+K� a set of K := 2K + 1 consecutive indices around L. Recall the definition of the set �(N) ⊂RN

in (2.10). For λ ∈�(N), we rename the points as

λ = (λ1, λ2, . . . , λN)= (y1, . . . , yL−K−1, xL−K, . . . , xL+K,yL+K+1, . . . , yN), (3.17)

and we call λ a configuration (of N particles or points on the real line). Note that on the right side of (3.17) the points
retain their original indices and are in increasing order,

x = (xL−K, . . . , xK+L) ∈�
(K), y = (y1, . . . , yL−K−1, yL+K+1, . . . , yN) ∈�

(N−K). (3.18)

We refer to x as the internal points or particles and to y as the external points or particles. In the following, we often
fix the external points and consider the conditional measures on the internal points: Let ν be a measure with density
on �(N). Then we denote by νy the measure obtained by conditioning on y, i.e., for λ of the form (3.17),

νy(dx)≡ νy(x)dx := ν(λ)dx∫
ν(λ)dx

= ν(x,y)dx∫
ν(x,y)dx

,

where, with slight abuse of notation, ν(x,y) stands for ν(λ). We refer to the fixed external points y as boundary
conditions of the measure νy. For fixed y ∈�(N−K), all (xi) lie in the configuration interval

J y := [yL−K−1, yL+K+1]. (3.19)

Thus νy is supported on (J y)
K ∩�(K), but with a slight abuse of terminology we often say that νy is supported on

J y. In case ν = fμ, we define the conditioned density by f yμy = (fμ)y.
For a potential V , we consider the β-ensemble μV of (3.1). For K,L and y fixed, we can write μ

y
V as

μ
y
V (dx)= 1

Z
y
V

e−βNHy(x) dx, Hy(x)=
∑
i∈I

1

2
V y(xi)− 1

N

∑
i,j∈I
i<j

log |xj − xi |, (3.20)

xi ∈ J y, with Z
y
V ≡Z

y
β,V a normalization and with the external potential

V y(x)= V (x)− 2

N

∑
i /∈I

log |x − yi |. (3.21)

4. Localizing the measures

Having introduced the basic concepts in Section 3, we now start with the actual proof of Theorem 2.1. In this section,
we establish Parts (i)–(iv) outlined in Section 2.6. In Section 4.1, we prepare the definition of the local equilibrium
measure by introducing the precise definition of internal and external points. We also show that for most external
trajectories we have rigidity for the internal points; see Lemma 4.1. In Section 4.2, we discuss regularity properties of
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the semicircular flow and its quantiles. We further convert the problem into a stationary frame by removing the mean
velocity. The regularity properties of the semicircular flow are used in Section 4.3 to define the reference points γ̃ that
smoothly interpolate between the quantiles of an appropriately chosen β-ensemble and the external points at time T1.
Using γ̃ as new external points we introduce a reference measure ωT1 on the internal points. This measure will serve
as equilibrium measure of the reference local DBM x̃(t) defined in Section 4.4. To complete Part (iv) we also show
the fast relaxation of x̃(t).

As a preparation of Part (v) in Section 5, we establish in Section 4.5 a few technical properties such as level
repulsion and rigidity for x̃(t) and for its equilibrium measure ωT1 . We close Section 4 by stating the universality of
the local statistics of the reference measure ωT1 . In fact, for the level repulsion we need to introduce a regularization
of the logarithmic potential on a tiny scale.

4.1. Localization at time T1

Let K ∈NN satisfy (2.27), with K ≥ �N� �, 0 <� < 1/10, i.e.,

K10Nδ ≤N, K ≥N� .

Recall the constant σ > 0 from the assumptions of Theorem 2.1. Let χ ∈ (0,�) be a small constant, to be chosen
later on. Note that Nχ �K . Then introduce the intervals of integers

I := �L−K,L+K�, I0 := �L−K5 −NχK4,L+K5 +NχK4 �, Iσ := �L− σN,L+ σN�, (4.1)

and we denote by I c, I c0 , I cσ the complements of I , I0, Iσ in NN . Note that I ⊂ I0 ⊂ Iσ . For a configuration λ ∈�(N),
we introduce x and y as in (3.18).

Fix a small ξ > 0. Let

G1
s := {

y ∈�
(N−K) : ∣∣yk − γ�(k)(s)

∣∣≤Nξ/N,∀k ∈ Iσ
}
, (4.2)

respectively,

G2
s :=

{
y ∈�

(N−K) :
∣∣∣∣ 1

N

∑
k∈I cσ

1

yk − x
−
∫
y∈[yL−σN ,yL+σN ]c

�s(y)dy

y − x

∣∣∣∣≤ Nξ

Nδ
,

∀x ∈ [yL−K5, yL+K5 ]
}
, (4.3)

where K = 2K + 1. Note that for each s ≥ 0, we choose the labeling in G1
s to be the one of Assumption (2) of

Theorem 2.1. We then set

Gs := G1
s ∩ G2

s . (4.4)

For any Y := {y(s) ∈�(N−K) : s ∈ [t1, t2]} trajectory, we define the conditional measure PY on the X := {x(s) ∈
�(N−K) : s ∈ [t1, t2]} trajectories in the usual way. We use PY to denote the conditional measure on the whole X
trajectories, while for any fixed time s, we use Py(s) for the conditional measure (on the x(s) configurations, for any
fixed s). We set

G :=
{

Y = {
y(s) : s ∈ [t1, t2]

} :
y(s) ∈ Gs ,∀s : PY(∣∣xi(s)− γ�(i)(s)

∣∣≤Nξ/N,∀i ∈ I
)≥ 1 −N−D,

and sup
t,s∈[t1,t2]

max
k∈I c

∣∣yk(t)− yk(s)
∣∣≤Nξ

√
t − s

}
, (4.5)

for small ξ > 0 and large D > 0.
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Lemma 4.1. Let λ(t), t ≥ 0 be the DBM on �(N) of (2.11) with fixed initial condition λ(0). Let xi(t)≡ λi(t), i ∈ I ,
respectively yk(t)≡ λk(t), k /∈ I , for all t ≥ 0. Under the assumptions of Theorem 2.1, for any (small) ξ > 0 and any
(large) D > 0, we have

P
(
y(s) ∈ Gs , s ∈ [t1, t2]

)≥ 1 −N−D, (4.6)

and

P(G)≥ 1 −N−D, (4.7)

for large enough N ≥N0(ξ,D), where P is with respect the Brownian motions (Bi) in (2.11).

Proof. Both estimates (4.6) and (4.7) follow directly from the assumptions (1)–(4) in Theorem 2.1. �

Throughout the rest of this section we will consider the trajectory Y ∈ G as fixed. Nevertheless, all estimates will be
uniform on G. In particular, all constants only depend on the constants in (4.5), the constants δ, ε and σ of Theorem 2.1
as well as the parameter ξ > 0.

4.2. Regularity of the semicircular flow and removal of mean drift

Consider the DBM, λ(t) of (2.11) with initial condition λ(0) and the semicircular flow �t = Ft [�]. We first study
some regularity properties of �t for t ∈ [t1, t2]. The following result is proven in Section A.1.2 of the Appendix A.

Lemma 4.2. Under the assumptions of Theorem 2.1, the semicircular flow �t satisfies

C−1 ≤ �t (E)≤ C,
∣∣∂E�t (E)

∣∣≤ CNδ, (4.8)

for all E ∈ [E∗ −�/2,E∗ +�/2] and all t ∈ [t1, t2].
Let L ∈NN be as in Theorem 2.1. In particular, we have �t1(γL(t1))≥ c > 0. Then, we have

∣∣xi(t)− γ�(i)(t)
∣∣≤ Nξ

N
, i ∈ I,y(t) ∈ Gt , (4.9)

with high probability for N sufficiently large, uniformly in t ∈ [t1, t2], for some labeling � that will be fixed throughout
the paper. Recall from (2.9) that the quantiles γ are determined by∫ γk(t)

−∞
�t (x)dx = k

N
. (4.10)

The evolution of γ is studied in the Appendix A where the following result is proved.

Lemma 4.3. Under the assumptions of Theorem 2.1, the quantiles (γk) defined through (4.10), satisfy

γ̇�(i)(t)=−
∫
R

�t (y)dy

y − γ�(i)(t)
− γ�(i)(t)

2
, �(i) ∈ Iσ , (4.11)

for all t > 0, where γ̇�(i)(t)≡ d
dt γ�(i)(t). In particular, we have |γ̇�(L)| ≤ C. Further, we have

γ̇�(i)(t)=− 1

N

N∑
k=1

1

γk(t)− γ�(i)(t)
− γ�(i)(t)

2
+O

(
Nδ

N

)
, �(i) ∈ Iσ , (4.12)

uniformly in t ∈ [T1, t2]. Moreover, we have the estimates∣∣γ̇�(i)(t)− γ̇�(L)(t)
∣∣≤ CN−1+δ|i −L|, ∣∣γ̇�(i)(t)− γ̇�(i)(T1)

∣∣≤ CNδ(t − T1), (4.13)

uniformly in t ∈ [T1, t2] and �(i) ∈ Iσ .
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Equation (4.11) shows that the points (γ�(i)(t)) approximately satisfy a gradient flow evolution of particles with
quadratic confinement and interacting via the mean field potential 1

N
log |x − y|.

Lemma 4.3 is proved in Section A.1.2 of Appendix A. Let us briefly mention how the constant � in Assumption (1)
and the constant σ in Assumption (2) can be related. For given � > 0, we can choose σ > 0 such that γ�(i)(t1),
for any i ∈ Iσ = �L − σN,L + σN�, all lie inside [E∗ − �/4,E∗ + �/4]. Then we know from Lemma 4.3 that
γ�(i)(t) ∈ [E∗ −�/2,E∗+�/2] for all t ∈ [t1, t2]. By Lemma 4.2, we have control over �t on [E∗ −�/2,E∗+�/2].

For simplicity of notation, we henceforth drop the labeling � and simply write, with some abuse of notation,
γi(t)≡ γ�(i)(t). From (4.13) and (4.9), we conclude that

∣∣λL(t)− λL(T1)
∣∣≤ υL(t − T1)+ o(t − T1)+O

(
Nξ

N

)
, t ∈ [T1, t2],

with high probability, where we have set υL := γ̇L(T1). We denote by λ(t), t ≥ T1 the process obtained from λ(t) by
setting

λ(t) := λ(t)− υL(t − T1), t ≥ T1. (4.14)

Thus λ(t) satisfies the SDE

dλ(t)=
√

2

βN
dBi(t)− υL dt − 1

N

∑
j �=i

1

λj (t)− λi(t)
dt − λi(t)+ υL(t − T1)

2
dt, i ∈NN,β ≥ 1,

for t ≥ T1. In the following we write xi ≡ λi , i ∈ I , respectively yk ≡ λk , k /∈ I , so that Y = {y(t) ∈ �(N−K) : t ∈
[T1, t2]}. Having shifted the original process (λ(t)) as in (4.14), we also shift the distribution �t and the quantiles γ ,
for t ≥ T1, accordingly:

�t (x) := �t
(
x + υL(t − T1)

)
, γ i(t) := γi(t)− υL(t − T1), t ∈ [T1, t2],

x ∈ R, i ∈ NN . In a similar way, we introduce the events G1
s , G2

s , Gs and G by replacing the quantities without bars
with bars in (4.2), (4.3), (4.4) and (4.5).

4.3. The reference measure ωT1

In this section, we introduce the reference measure ωT1 that will serve as local equilibrium measure.

4.3.1. The reference points γ̃j
Once Y ∈ G, thus also Y ∈ G, is fixed, we introduce time-independent “reference points,” γ̃ ≡ (γ̃k), as follows: For
k ∈NN , let

ιk :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k−(L−K5−NχK4)

NχK4 if L−K5 −NχK4 ≤ k ≤ L−K5,

L+K5+NχK4−k

NχK4 if L+K5 ≤ k ≤ L+K5 +NχK4,

1 if L−K5 ≤ k ≤ L+K5,
0 else,

with χ > 0 as in (4.1), i.e., ιk is a linearly mollified cutoff of the indicator function 1(k ∈ Iσ ). Set

γ̃k := ιkzk + (1 − ιk)yk(T1), k ∈ I c, (4.15)

where the external points z ≡ (zk) ∈ �(N−K) in (4.15) will be chosen in Section 4.3.2 below. Note that γ̃k = zk ,
for|L − k| ≤ K5;γ̃k = yk(T1) = yk(T1), for |L − k| ≥ K5 + NχK4. Thus the sequence γ̃ smoothly interpolates
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between the external points y(T1) from the DBM and z. The external points z are constructed from an appropriate
β-ensemble whose equilibrium density has a single interval support. This will guarantee rigidity; in particular,

|zk+1 − zk| ≤ C
Nξ

N2/3ǩ1/3
, (4.16)

with ǩ = min{k,N − k + 1}, for all k ∈ �1,N − 1�; see (4.21) below.
Anticipating the precise choice of z, we mention that they are chosen such that

zL−K−1 = yL−K−1(T1), zL+K+1 = yL+K+1(T1). (4.17)

In fact, this choice will assure that the configuration interval of the localized measures, both with y(T1) and with γ̃ as
external points, will have the same (and time-independent) support

J y(T1) = J z = [z−, z+] = [
yL−K−1(T1), yL+K+1(T1)

]
, (4.18)

where z− ≡ zL−K−1, z+ ≡ zL+K+1. We next estimate the size of the interval J z.

Lemma 4.4. Let J z be as in (4.18) and assume that K satisfies (2.27). Then, we have

|J z| = K
N�T1(z◦)

+O

(
Nξ

N

)
, (4.19)

on G1
T1

, where z◦ := (zL+K+1 − zL−K−1)/2.

Proof. We mainly follow the proof of Lemma 4.5 in [28]. First, we write, by (4.18),

|J z| = z+ − z− = yL+K+1(T1)− yL−K−1(T1)= γL+K+1(T1)− γL−K−1(T1)+O
(
N−1+ξ

)
,

where we used that y(T1) ∈ G1
T1

. Next, we note that by Assumption (1) of Theorem 2.1 we have �T1(x) = �T1(z)+
O(Nδ|x − z|). Thus from (2.9),

K=N

∫ γL+K+1(T1)

γL−K−1(T1)

�T1(x)dx =N�T1(y)|J z| +O
(
N1+δ|J z|2

)+O
(
Nξ

)
,

where we used that �T1 ∼ 1. Since KNδ �N , by (2.27), we get (4.19). �

4.3.2. Construction of an auxiliary β-ensemble
We now turn to the choice of the reference points z introduced first at the beginning of Section 4.3.1. We construct a
global β-ensemble, μAUX, with potential VAUX and equilibrium density �AUX such that it has a single interval support
and such that the density matches with �T1 at γL(T1). The main properties of μAUX are summarized in the next lemma.

Lemma 4.5. There exists a β-ensemble μAUX ≡ μ
(N)
AUX, with quadratic potential VAUX and equilibrium density �AUX,

and a set of external configurations z ∈�(N−K), with zL−K−1 = yL−K−1(T1), zL+K+1 = yL+K+1(T1), such that the
following holds for N sufficiently large.

(1) The limiting equilibrium density �AUX of μAUX is a shifted semicircle law with finite variance satisfying, for any
ξ > 0,

�AUX(y)= �T1(y)+O
(
Nξ/K

)+O
(
Nδ|y − zL−K−1|

)
, y ∈R. (4.20)

(2) The external points z satisfy, for any ξ > 0,

|zk − γAUX,k| ≤ C
Nξ

N2/3ǩ
, k ∈ I c, (4.21)
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where (γAUX,k) are the quantiles of the equilibrium density �AUX, i.e.,
∫ γAUX,k

−∞ d�AUX = k/N , and ǩ = min{k,N−
k + 1}. In particular, since VAUX is “regular,” the rigidity estimate (4.16) holds.

(3) The localized measure μz
AUX satisfies, for any ξ > 0,

P
μz

AUX
(|xi − αi | ≥Nξ/N,∀i ∈ I

)≤ CNξ K

N
, (4.22)

where (αi) are K equidistant points in J z = [zL−K−1, zL+K+1] = J y(T1), i.e.,

αi = z◦ + i −L

2K + 1
|J z|, z◦ = 1

2
(zL−K−1 + zL+K+1). (4.23)

Proof. The proof is split into three steps. Step 1: We introduce the quadratic potential VG(ς)(x) := x2/2ς2, with some
ς > 0, and consider the β-ensemble, μG(ς), with Hamiltonian

HG(ς) := 1

2

N∑
i=1

VG(ς)(λi)− 1

N

N∑
i,j=1
i<j

log |λj − λi |.

It is easy to check that the limiting equilibrium density, �G(ς), of μG(ς) satisfies �G(ς)(x)= �sc(x/ς)/ς , with �sc(x)=
2
π

√
(4 − x2)+ the standard semicircle law. Similarly, the quantiles, (γG(ς),i ), of �G(ς) satisfy γG(ς),i = ςγsc,i , where

γsc,i denote the quantiles with respect the standard semicircle law, i.e.,
∫ γsc,i
−∞ d�sc = i/N . Thus �G(ς)(γG(ς),i ) =

�sc(γsc,i )/ς . In particular, we can fix ς such that �T1(γL(T1))= �G(ς)(γG(ς),L), i.e., we set

ς := �sc(γsc,L)

�T1(γL(T1))
.

We next choose boundary conditions ỹ with the following properties: (1) For any ξ > 0,

|ỹk − γsc,k| ≥Nξ/N, ∀k ∈ I c, (4.24)

for N ≥N0(ξ) (i.e., ỹ are rigid in the sense of sense of (3.7) with V = VG(ς)); (2) for any ξ > 0, there are c′0, c′1 > 0
such that

P
μ

ỹ
G(ς)

(|xi − α̃i | ≥Nξ/N,∀i ∈ I
)≤ e−c′0N

c′1
, (4.25)

where α̃i are the K equidistant points in the configuration interval J ỹ = [ỹL−K−1, ỹL+K+1]. The precise choice of ỹ
is unimportant for our argument, as long as ỹ satisfy (4.24) and (4.25). That we can choose a ỹ such that (4.24) and
(4.25) are satisfied follows from Proposition 3.1 and an application of Markov’s inequality.

Step 2: The length of the configuration intervals J y(T1) and J ỹ may differ slightly. Using the scale invariance of the
Gaussian measure, we now adjust ς and ỹ to guarantee that the lengths of the configuration intervals agree: Following
the proof of Lemma 4.4 or the proof of Lemma 4.5 in [28], we get from the rigidity estimates for μG(ς) that

|J ỹ| = |ỹL−K−1 − ỹL+K+1| = K
N�G(ς)(γG(ς),L)

+O
(
N−1Nξ

)
,

and from Lemma 4.4 that

|J y(T1)| =
∣∣yL−K−1(T1)− yL+K+1(T1)

∣∣= K
N�T1(γL)

+O
(
N−1Nξ

)
.

Using that �T1(γL)= �G(ς)(γG(ς),L), by our choice of ς , we hence conclude that

s := |J ỹ|
|J y(T1)|

= 1 +O
(
NξK−1). (4.26)
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Setting z̃ := ỹ/s we have |J z̃| = |J y(T1)| and

P
μz̃

G(ς)
(|xi − α̃i/s| ≥Nξ/N,∀i ∈ I

)= P
μ

ỹ
G(ς ′)

(|xi − α̃i | ≥ sNξ/N,∀i ∈ I
)
, (4.27)

where we have set ς ′ := sς . Using the rigidity of ỹ we get, similarly to (4.38), that ∇2
xHỹ(x) ≥ cN

K
, for all x ∈

(J ỹ)
K ∩�K. Thus the logarithmic Sobolev inequality

S
(
μ

ỹ
G(ς ′)|μỹ

G(ς)

)≤ CK

N
D
(
μ

ỹ
G(ς ′)|μỹ

G(ς)

)
,

with the local Dirichlet form

D
(
μ

ỹ
G(ς ′)|μỹ

G(ς)

) := 1

βN

∑
i∈I

∫ (
∂i

(dμỹ
G(ς ′)

dμỹ
G(ς)

)
(x)

)2

dμỹ
G(ς)(x)

holds. A straightforward calculation together with (4.26) then shows that

S
(
μ

ỹ
G(ς ′)|μỹ

G(ς)

) ≤ CK

N2

∑
i∈I

∫ ∣∣∂ie−βN
∑

j∈I (VG(ς ′)(xj )−VG(ς)(xj ))
∣∣2 dμỹ

G(ς) ≤ C
N2ξK2

N2
.

Thus, using first (4.27) and then the entropy inequality (3.13), we get

P
μz̃

G(ς)
(|xi − α̃i/s| ≥Nξ/N,∀i ∈ I

) = P
μ

ỹ
G(ς ′)

(|xi − α̃i | ≥ sNξ/N,∀i ∈ I
)

≤ P
μ

ỹ
G(ς)

(|xi − α̃i | ≥ sNξ/N,∀i ∈ I
)+√

2S
(
μ

ỹ
G(ς ′)|μỹ

G(ς)

)
≤ Ce−Nξ +C

NξK

N
, (4.28)

where we used (4.25) (with an additional factor s) to get the last line.
Step 3: Finally, we achieve that J z̃ = J y(T1) by a simple shift in the energy: we replace VG(ς ′)(x) by VG(ς ′)(x −

b), b := yL−K−1(T1) − ỹL−K−1, x ∈ R. We now choose μAUX as the Gaussian measure defined by the potential
VG(ς ′)(· − b) and we set zi := z̃i − b, for i ∈ �1,N�. With these choices, (4.28) asserts that

P
μz

AUX
(|xi − αi | ≥Nξ/N,∀i ∈ I

)≤C
NξK

N
, (4.29)

where αi are the K equidistant points in the interval J z = J y(T1) = [yL−K−1(T1), yL+K+1(T1)].
In sum, we have established the following. We consider the β-ensemble μAUX with quadratic potential, whose

equilibrium density �AUX is a semicircle law with radius
√

2ς ′ which is centered at b. Taylor expanding the densities
�T1 and �AUX around yL−K−1(T1) and recalling (4.26) as well as (4.8), we obtain (4.20). This proves statement (1) of
Lemma 4.5. The points z = (zi) are rigid as follows from (4.24) and the choices zi = ỹi/s, zi = z̃i − b, i ∈NN . This
immediately implies statement (2) of Lemma 4.5. Finally, the rigidity statement (3) of Lemma 4.5 for the localized
measure μ

y
AUX was obtained in (4.29). This concludes the proof of Lemma 4.5. �

We conclude this subsection with a straightforward technical result that will be used in the next section. Recall the
definition of the interval of integers I, I0 and Iσ in (4.1).

Corollary 4.6. Let z be as in Lemma 4.5 and let γ̃ be defined as in (4.15). Then, for any ξ > 0,

∣∣γ̃k − γk(T1)
∣∣≤ C

Nξ

N
+C · 1(k ∈ I0)

(
Nξ |γ̃k − γ̃L|

K
+Nδ|γ̃k − γ̃L|2

)
, k ∈ Iσ \ I, (4.30)
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for N sufficiently large. Moreover, we have, for any ξ > 0,

γ̃k − γ̃k−1 ≤Nξ/N, k ∈ Iσ \ I, (4.31)

for N sufficiently large.

Proof. Recall that γ̃k = yk(T1) for k /∈ I0. Since y(T1) ∈ G1
T1

we immediately get

∣∣γ̃k − γk(T1)
∣∣≤ C

Nξ

N
, (4.32)

for k ∈ Iσ \ I0. Next, assume first that K + 1 ≤ L− k ≤K5. Then we have γ̃k = zk , and we can write∫ yK−L−1(T1)

γ̃k

�AUX(y)dy = |L−K − 1 − k|
N

+O

(
Nξ

N

)
,

where we used yK−L−1(T1)= zK−L−1, the rigidity estimate in (4.21) and the fact that (γAUX,k) are the quantiles of
�AUX. Using (4.20), we hence can write∫ yK−L−1(T1)

γ̃k

�T1(y)dy = |L−K − 1 − k|
N

+O

(
Nξ

N

)

+O

(
Nξ |γ̃k − yL−K−1(T1)|

K

)
+O

(
Nδ

∣∣γ̃k − yL−K−1(T1)
∣∣2).

On the other hand, since y(T1) ∈ G1
T1

, i.e., |yL−K−1(T1) − γL−K−1(T1)| ≤ CNξ/N , and using that γk(T1) are the
quantiles with respect to �T1 , we have∫ yK−L−1(T1)

γk(T1)

�T1(y)dy = |L−K − 1 − k|
N

+O

(
Nξ

N

)
.

Comparing these last two equations and using the lower bound on the density �T1 , we conclude that

∣∣zk − γk(T1)
∣∣≤ C

Nξ

N
+C

Nξ |γ̃k − γ̃L|
K

+CNδ|γ̃k − γ̃L|2, (4.33)

for k such that K+1 ≤ L− k ≤K5. Here, we also used that γ̃L−yL−K−1(T1)≤ CK/N . The same argument applies
to the case K + 1 ≤ k−L≤K5.

It remains to consider the transition regime K5 ≤ |L− k| ≤K5 +NχK4. Using the definition of γ̃ in (4.15), we
can estimate∣∣γ̃k − γk(T1)

∣∣ ≤ ιk
∣∣zk − γk(T1)

∣∣+ (1 − ιk)
∣∣yk(T1)− γk(T1)

∣∣
≤ C

Nξ

N
+C

Nξ |γ̃k − γ̃L|
K

+CNδ|γ̃k − γ̃L|2,

for such k, where we used (4.32), (4.33) and the rigidity of y(T1) ∈ G1
T1

. This proves (4.30).
The estimate (4.31) follows directly from the rigidity of y(T1), z and (4.30). �

4.3.3. Definition of the reference measure ωT1

Given the γ̃j , we define the local “reference” measure

ωT1(x)dx := 1

ZT1

e−βNHT1 (x) dx, HT1(x) :=
∑
i∈I

V γ̃ (xi)− 1

N

∑
i,j∈I
i<j

log(xj − xi), (4.34)
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where the external potential is given by

V γ̃ (x) := 1

2
V (x)− 1

N

∑
k /∈I

log |x − γ̃k|, V (x)= x2

2
+ 2υLx. (4.35)

The subscript T1 in ωT1 indicates that the external points γ̃ in the construction of this measure were obtained in (4.15)
by matching the external points y(T1) of the original DBM at time T1. Note that this measure as well as the measure
P̃Y are supported on the fixed configuration interval

J y(T1) =
[
yL−K−1(T1), yL+K+1(T1)

]
.

4.4. Local DBM and relaxation

Having Y ∈ G fixed, we consider the DBM on the x-variables given by the stochastic differential equation (SDE)

dxi(t) =
√

2

βN
dBi(t)− υL dt − 1

N

∑
j∈I
j �=i

1

xj (t)− xi(t)
dt

− 1

N

∑
k /∈I

1

yk(t)− xi(t)
dt − xi(t)+ υL(t − T1)

2
dt, (4.36)

i ∈ I , t ≥ T1, with (Bi)i∈I a collection of independent standard Brownian motions. We let PY denote the associated
path space measure.

For t ≥ T1, we define an approximate coupled dynamics, x̃(t) by letting

dx̃i (t) =
√

2

βN
dBi(t)− υL dt − 1

N

∑
j∈I
j �=i

1

x̃j (t)− x̃i (t)
dt − 1

N

∑
k /∈I

1

γ̃k − x̃i (t)
dt − x̃i (t)

2
dt, (4.37)

i ∈ I , with initial condition x̃(T1) = x(T1). The corresponding path space measure is denoted by P̃Y. Going from
(4.36) to (4.37) we replaced the time-dependent external points y(t) by the time-independent reference points γ̃ and
we neglected the drift term υL(t − T1)dt/2. Note that the Brownian motions in (4.36) and (4.37) are the same. We
remark that the measure ωT1 defined in (4.34) is the equilibrium measure of the SDE (4.37).

We write the distribution of x̃(t) as gtωT1 (for t ≥ T1). Since they are supported on the same configuration interval,
the measures gtωT1 (for t > T1) and ωT1 are both absolutely continuous with respect to the Lebesgue measure, hence
also to each other.

We next compare the measures ωT1 and gtωT1 for t ≥ T1. We show that the process (̃x(t)) equilibrates on a time
scale ∼ K/N , i.e., the local statistics of gtωT1 and ωT1 are very close beyond times t ≥ T ′

1 := T1 +K(K/N), with
t ≤ t2.

Since ωT1 is supported on an interval of size O(K/N) (see Lemma 4.4), the Hessian of its Hamiltonian HT1 from
(4.34) satisfies

H′′
T1
(x) ≥ min

i∈I
1

N

∑
k /∈I

1

(xi − γ̃k)2
≥ min

i∈I
1

N

∑
k:K<|k−L|≤K5

1

(xi − zk)2
≥ cN

K
, (4.38)

for all x ∈ (J y(T1))
K ∩ �(K), where we used (4.16). Thus, recalling the discussion in Section 3.3, ωT1 satisfies the

logarithmic Sobolev inequality

SωT1
(f )≤ CK

N
DωT1

(
√
f ); (4.39)
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cf., (3.15). Further, for t ≥ T1 + 1
2K(K/N) the process (̃x(t)) has become absolutely continuous with respect to

Lebesgue measure, and one can easily prove that

S(gtωT1 |ωT1)≤NC, t ≥ T1 + 1

2
K(K/N); (4.40)

for some large C; see, e.g., Lemma 4.7 in [20]. Therefore, running the Bakry–Émery argument of Section 3.3 from
time T1 + 1

2K(K/N) to time T ′
1 = T1 +K(K/N) and using the initial entropy estimate (4.40), we immediately get

the following result.

Lemma 4.7. For any t ≥ T ′
1 = T1 +K(K/N), we have

DωT1
(
√
gt )+ SωT1

(gt )≤ e−cK, t ∈ [
T ′

1, t2
]
, (4.41)

for some c > 0. In particular, the statistics of x̃(t) for any t ∈ [T ′
1, t2] are the same as the statistics of the local

equilibrium measure ωT1 as follows from∣∣∣∣∫ O(gt − 1)dωT1

∣∣∣∣≤ ‖O‖∞
√

2SωT1
(gt )≤Ce−cK/2, (4.42)

for any bounded observable O .

4.5. Three measures and their properties

Having Y ∈ G fixed and having constructed the external points z, we have, up to this point, introduced three distinct
measures on the internal particles:

(1) ωT1 is given by an explicit formula in (4.34). It is a local β-ensemble on J z which we refer to as the “reference”
measure.

(2) gtωT1 is the distribution of x̃(t) from the dynamics (4.37) on J z.

(3) Py(t) is the measure of the x(t) dynamics (4.36) at time t , it is also the conditional measure PY of the original
measure P, conditioned on the Y-trajectory at time t ≥ t1. This measure is also on K particles, but now the
configuration interval is time-dependent J y(t) := [yL−K−1(t), yL+K+1(t)].

In the remainder of this subsection, we establish level repulsion and rigidity for the measures ωT1 and gtωT1 :

Definition 4.8. We say that the measure ν (on K-point configurations labeled with I , |I | =K, in a fixed interval J )
is rigid with exponent ξ if

ν
(|xi − αi |>Nξ/N,∀i ∈ I

)≤ Ce−cNξ

, (4.43)

where αi are the K equidistant points in J and where c > 0. The path-space measure Q for times [T1, t2] on the same
configuration interval J is rigid with exponent ξ if

Q
(

sup
s∈[T1,t2]

∣∣xi (s)− αi
∣∣>Nξ/N,∀i ∈ I

)
≤ Ce−cNξ

. (4.44)

Note that if for all t the fixed-time marginals Qt of a space time measure Q satisfy rigidity, then Q satisfies rigidity
(since the trajectories typically have some mild continuity; see Section 9.3 of [28]).

We will establish the following main technical input. Recall that T ′
1 = T1 +K(K/N).

Proposition 4.9. Let ξ > 0 be sufficiently small and let K satisfy (2.27). Then, for any Y ∈ G and any t ∈ [T1, t2] the
following holds.
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(1) ωT1 (i.e., the local “reference” measure) is rigid with exponent ξ and satisfies

max
i∈I E

ωT1
1

[N |xi − xi±1|]p ≤ Cp (4.45)

(with xi±1(t)= yL±(K+1)(T1) if i = L±K), for any p < 2.
(2) gtωT1 (i.e., the time marginals of the process X̃ = {̃x(s) : s ∈ [T ′

1, t2]}) is rigid with exponent ξ , moreover, the

whole process {̃x(s) : s ∈ [T ′
1, t2]} with measure P̃Y is rigid with exponents ξ . Furthermore,

max
i∈I E

gtωT1
1

[N |̃xi(t)− x̃i±1(t)|]p ≤Cp (4.46)

(with x̃i±1(t)= yL±(K+1)(T1) if i = L±L), for any p < 2 and t ≥ T ′
1.

To simplify the exposition, we split the proof of Proposition 4.9 according to its statements.

4.5.1. Proof of statement (1) of Proposition 4.9
We start with the rigidity of the reference measure ωT1 . For notational simplicity, we write in the following

γk ≡ γ�(k)(T1), k ∈ Iσ ,

where the labeling � is chosen according to (4.2).

Proof of rigidity of ωT1 . We first recall the following general result of Theorem 4.2 (see also the remark after
Lemma 4.5) of [28]. For any local equilibrium measure μy on K points with potential V y on an interval J of size
|J | ∼ K/N rigidity (with exponent ξ > 0) in the sense of Definition 4.8 holds if the following two conditions are
satisfied:

(
V y)′(x)= �(y◦) log

d+(x)
d−(x)

+O

(
Ncξ

Nd(x)

)
, (4.47)

and ∣∣Eμy
xi − αi

∣∣≤Ncξ/N, ∀i ∈ I, (4.48)

where y◦ is the midpoint of the interval J , d(x) is the distance of x to the boundary of J ,

d−(x) := d(x)+ �(y◦)Nξ/N, d+(x) := max
{|x − yL−K−1|, |x − yL+K+1|

}+ �(y◦)Nξ/N, (4.49)

and αi are the K equidistant points in J .
We now apply this result with the choices y = γ̃ and J = J z = J y(T1) to the reference measure ωT1 . The condition

(4.47) will follow from the global condition (4.52) below and from the fact that the reference points γ̃ are rigid in the
sense of Corollary 4.6. The details are as follows.

To check condition (4.47), we introduce the supplemental potential Ṽ γ̃ by setting

Ṽ γ̃ (x) := 1

2
x2 + 2υLx − 1

N

∑
k:|k−L|≥K+Nξ

log |x − γ̃k|. (4.50)

We then have

∣∣(V γ̃
)′
(x)− (

Ṽ γ̃
)′
(x)

∣∣≤ 1

N

∑
k:K<|k−L|<K+Nξ

1

|γ̃k − x| ≤
Nξ

Nd(x)
, x ∈ J z. (4.51)
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To control Ṽ γ̃ , we can follow Appendix A of [28]. First, recall from Lemma 4.3 that υL satisfies

υL = γ̇L =−
∫
R

�T1(y)dy

y − γL
− γL

2
, γL ≡ γL(T1). (4.52)

Thus, ∣∣∣∣υL + x

2
+
∫
R

�T1(y)dy

y − x

∣∣∣∣ = ∣∣∣∣υL + γL

2
+
∫
R

�T1(y)dy

y − γL

∣∣∣∣+O
(∣∣RemT1(γL)− RemT1(x)

∣∣)+O
(|x − γL|

)
≤ C

NδK

N
+C

K

N
, x ∈ J z, (4.53)

where we used (4.52). To bound the second and third term on the right we used Assumptions (1) of Theorem 2.1 and
the estimate on |J z| in (4.19). We may thus split

(
Ṽ γ̃

)′ =
1 +
2 +
3 +O

(
Nδ K

N

)
,

with


1(x) := −
∫ γ

L+K+Nξ

γ
L−K−Nξ

�T1(y)dy

y − x
,


2(x) := −
∫ γ

L−K−Nξ

γ̃1

�T1(y)dy

y − x
+ 1

N

L−K−Nξ∑
k=1

1

γ̃k − x
,


3(x) := −
∫ γ̃N

γ
L+K+Nξ

�T1(y)dy

y − x
+ 1

N

N∑
k=L+K+Nξ

1

γ̃k − x
.

To estimate 
1 we use that �T1(y)= �T1(x)+O(Nδ|y − x|) (cf., (4.8) and (4.19)) to get


1(x)=−�T1(y◦) log
d+(x)
d−(x)

+O
(
NδK/N

)+O

(
N2ξ

N2d(x)

)
, x ∈ J z. (4.54)

To obtain the third line, we used

γL+K+Nξ − x = (γL+K+Nξ − γL+K+1)+ (γL+K+1 − x)= d+(x)+O
(
NξN−1),

respectively x − γL+K+Nξ = d−(x)+O(NξN−1), where we used the definition of γ̃ in (4.15) and the definition of
d± in (4.49).

We next estimate 
2 (
3 is estimated in the very same way): We split

1

N

L−K−Nξ∑
k=1

1

γ̃k − x
= 1

N

M−1∑
k=1

1

yk(T1)− x
+ 1

N

L−K−Nξ∑
k=M

1

γ̃k − x
, (4.55)

with M = L− σN , such that we can estimate on one hand

1

N

M−1∑
k=1

1

yk(T1)− x
=
∫ γM−1

γ̃1

�T1(y)dy

y − x
+O

(
Nξ

Nδ

)
, (4.56)
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since y(T1) ∈ GT1 ; cf., (4.3). On the other hand, we estimate

1

N

L−K−Nξ∑
k=M

1

γ̃k − x
=

L−K−Nξ∑
k=M

∫ γk

γk−1

�T1(y)dy

γ̃k − x

=
∫ γ

L−K−Nξ

γM−1

�T1(y)dy

y − x
+O

(
L−K−Nξ∑

k=M

∫ γk

γk−1

|γ̃k − y|�T1(y)dy

(y − x)2

)
. (4.57)

Using Corollary 4.6 and recalling the definition of I from (4.1), we can bound the remainder in the above equation as

L−K−Nξ∑
k=M

∫ γk

γk−1

|γ̃k − y|�T1(y)dy

(y − x)2
≤ C

Nξ

N

∫ γ
L−K−Nξ

γM−1

dy

(y − x)2

+C

∫ γ
L−K−Nξ

γ
L−K5−NχK4−1

(Nξ/K)(y − x)+Nδ(y − x)2

(y − x)2
dy

≤ C
Nξ

Nd(x)
+C

Nξ

K
log

(
x − γL−K5−NχK4−1

x − γL−K−Nξ

)
+CNδ K

5

N
. (4.58)

Thus, using that d(x)≤ |J y(T1)| ≤CK/N , i.e., K ≥ cNd(x), and that K satisfies (2.27), we have

L−K−Nξ∑
k=M

∫ γk

γk−1

|γ̃k − y|�T1(y)dy

(y − x)2
≤ C

N2ξ

Nd(x)
,

where we bounded the logarithmic term on the right side of (4.58) by Nξ . Hence, combining this last estimate with
(4.56), we find

∣∣
2(x)
∣∣ ≤ C

N2ξ

Nd(x)
+C

Nξ

Nδ
≤ C

N2ξ

Nd(x)
, (4.59)

where we used that K ≥ cNd(x) and that K satisfies (2.27). The same bounds holds for 
3.
Combining (4.59), (4.54) and (4.51), we get (4.47) for (V γ̃ )′ (with c= 2).
It remains to check (4.48) with the external points y = γ̃ , i.e., |EωT1xi − αi | ≤ Ncξ/N , i ∈ I . First, we note that

from (4.29) we have |Eμz
AUXxi − αi | ≤ CNξ/N . Then, using the logarithmic Sobolev inequality (4.39), we bound the

relative entropy

S
(
μz

AUX|ωT1

) ≤ C
K

N

1

N

∑
i∈I

E
ωT1

∣∣∂ie−βN
∑

i [V z(xi )−V γ̃ (xi )]∣∣2
≤ CKE

μAUX
∑
i∈I

∣∣∣∣12V ′
AUX(xi)−

1

2
xi − υL − 1

N

∑
k:|k−L|≥K5

[
1

γ̃k − xi
− 1

zk − xi

]∣∣∣∣2. (4.60)

Note that when k is close to the interval I in the summation above, i.e., when |k − L| ≤K5, then the corresponding
terms exactly cancel by the choice of γ̃ in (4.15).

To bound the right side of (4.60), we first recall that we have from (3.5) the equilibrium relation

V ′
AUX(x)=−2

∫
R

�AUX(y)

y − x
dy, x ∈ supp�AUX, (4.61)

for the auxiliary β-ensemble μAUX. We denote by (γAUX,i )
N
i=1 the quantiles of the measure �AUX and let γAUX,0 =

aAUX, γAUX,N = bAUX, where aAUX, bAUX are the endpoints of the support of �AUX.
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We then bound the summation in (4.60) for all k ≤ L−K5 as follows (the case k ≥ L+K5 is treated in the very
same way),∣∣∣∣∣

L−K5∑
k=1

∫ γAUX,k

γAUX,k−1

(
�AUX(y)dy

zk − xi
− �AUX(y)dy

y − xi

)∣∣∣∣∣ ≤ C

L−K5∑
k=1

∫ γAUX,k

γAUX,k−1

|y − zk|�AUX(y)dy

(y − xi)2

≤ C

L−K5∑
k=1

Nξ

N2/3k1/3

∫ γAUX,k

γAUX,k−1

�AUX(y)dy

(y − xi)2
≤ C

Nξ

K5
, (4.62)

for all i ∈ I , where we used the rigidity of z (see (4.21)) and that �AUX vanishes like a square root at the endpoints
aAUX, bAUX of its support (recall that �AUX is a rescaled and re-centered semicircle).

On the other hand, reasoning exactly as in (4.54), we find that∫ γAUX,L+K5

γAUX,L−K5

�AUX(y)

y − xi
dy =

∫ γAUX,L+K5

γAUX,L−K5

�AUX(xi)+O(|y − xi |)
y − xi

dy =O
(
K−4)+O

(
K5/N

)
, (4.63)

for i ∈ I . We therefore get, combining (4.61), (4.62) and (4.63),∣∣∣∣12V ′
AUX(xi)+

1

N

∑
k:|L−k|≥K5

1

zk − xi

∣∣∣∣≤ C

K4
, i ∈ I. (4.64)

Second, using the definition γ̃ in (4.15), we obtain similarly to (4.55) and (4.56),∣∣∣∣∣ 1

N

L−K5∑
k=1

1

γ̃k − xi
−
∫ γ

L−K5

γ̃1

�T1(y)dy

y − xi

∣∣∣∣∣≤
∣∣∣∣∣ 1

N

L−K5∑
k=M

1

γ̃k − xi
−
∫ γ

L−K5

γM

�T1(y)dy

y − xi

∣∣∣∣∣+C
Nξ

Nδ
, (4.65)

with M = L− σN . The first term on the right side of (4.65) can be controlled, similarly to (4.57) and (4.58), as∣∣∣∣∣ 1

N

L−K5∑
k=M

1

γ̃k − xi
−
∫ γ

L−K5

γM

�T1(y)dy

y − xi

∣∣∣∣∣ ≤ C
Nξ

K5
+CNδ K

5

N
+C

Nξ+χ

K2
,

where we used |γ̃L−K5 −xi | ∼K5/N and the assumption on K in (2.27). A similar estimate holds for the summations
over �L+K5,N�. Further, repeating the arguments of (4.54), we get∫ γ

L+K5

γ
L−K5

�T1(y)

y − xi
dy = O

(
K−4)+O

(
Nδ K

5

N

)
.

Thus, combining the last two estimates and recalling (4.53) as well as (2.27) we find∣∣∣∣12xi + υL + 1

N

∑
k:|k−L|≥K5

1

γ̃k − xi

∣∣∣∣≤ C

K4
+C

Nξ+χ

K2
. (4.66)

Plugging (4.66) and (4.64) into (4.60) we get S(μz
AUX|ωT1)≤ CN2ξ+2χK−2, which finally leads, in combination

with (4.29), to

P
ωT1

(|xi − αi | ≥NξN−1,∀i ∈ I
) ≤ P

μz
AUX

(|xi − αi | ≥NξN−1,∀i ∈ I
)+√

2S
(
μz

AUX|ωT1

)
≤ C

NξK

N
+C

Nξ+χ

K
, (4.67)
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where we used (3.13). Together with the a priori bound |xi − αi | ≤ C(K/N), this implies

∣∣EωT1xi − αi
∣∣≤ C

Nξ

N
+C

K

N

Nξ+χ

K
≤ C

Nξ+χ

N
, i ∈ I. (4.68)

Thus, choosing, e.g., χ = ξ , we get the bound (4.48) for the measure ωT1 .
Applying Theorem 4.2 of [28] as mentioned at the beginning of the proof, we see that the measure ωT1 satisfies

rigidity with exponent ξ . �

The level repulsion estimate (4.45) in statement (2) of Proposition 4.9 is proved using the explicit Vandermonde
structure of ωT1 . The proof is essentially identical to the proof of Theorem 4.3 in [28] given Section 7.2 of [28]. We
therefore leave the details aside.

4.5.2. Proof of statement (2) of Proposition 4.9
The rigidity for gtωT1 , with fixed t ≥ T ′

1 in the sense of Definition 4.8 immediately follows from the rigidity for ωT1

and the entropy estimate (4.41). Using the stochastic continuity of (̃x(t)) and the rigidity of gtωT1 a sufficiently large
set of discrete times, we can conclude that P̃Y itself is rigid; see Section 9.3 of [28] for details.

It remains to prove the level repulsion for gtω given in (4.46).

Proof of (4.46). The level repulsion bound (4.46) follows from (4.45) and the entropy bound (4.41). More precisely,
we have to introduce ω

ε∗
T1

, an ε∗-regularization in the ωT1 measure in the same way as in Section 9.3 of [28]. The
parameter ε∗ = e−Kc

will be chosen tiny with a small c > 0. This regularization modifies the interaction terms in
(4.37) and in the Hamiltonian HT1 . In the latter the log becomes logε∗ defined as

logε∗(x) := 1(x ≥ ε∗) log(x)+ 1(x ≤ ε∗)
{

log ε∗ + x − ε∗
ε∗

− 1

2ε2∗
(x − ε∗)2

}
. (4.69)

This has the property that ∂2
x logε∗(x) is the same, −x−2, as before if x > ε∗, but it remains bounded by ε−2∗ for

all x. The Hamiltonian is still convex. The support of the measure ω
ε∗
T1

is not J z but the whole R, but it is still
overwhelmingly supported on J z. In particular, ωT1 and ω

ε∗
T1

are close in entropy sense, see (9.57) from [28],

S
(
ωT1 |ωε∗

T1

)≤ CKCε2∗. (4.70)

As a consequence, by the entropy inequality (3.13) we may transfer the rigidity bounds from the measure ωT1 to the
measure ω

ε∗
T1

, i.e., we have

P
ω
ε∗
T1
(|xi − αi | ≥Nξ/N

)≤ e−Kc

. (4.71)

Similar modifications occur in the SDE (4.37); the (̃xi − x̃j )
−1 and also the (̃xi − γ̃k)

−1 terms get regularized to

(̃xi − x̃j )
−1
ε∗ := ∂x logε∗ (̃xi − x̃j ),

and they will be uniformly bounded by ε−1∗ . Now we can prove (4.46) with the regularization, since we can use the
entropy inequality (3.13) to get

E
gtω

ε∗
T1

1

[N |xi − xi+1|ε∗ ]p
≤ E

ω
ε∗
T1

1

[N |xi − xi+1|ε∗ ]p
+ ε

−p∗
√

2Sωε∗
T1
(gt )≤ CpK

ξ , (4.72)

Here in estimating the first term we used that the level repulsion bounds hold for the regularized measure

P
ω
ε∗
T1 (xi+1 − xi ≤ s/N)≤ CKξs2, s ≥Kξε∗,
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see (9.58) of [28], i.e., we have

E
ω
ε∗
T1

1

[N |xi − xi+1|ε∗ ]p
≤CpK

ξ . (4.73)

The exponential smallness of the entropy Sωε∗
T1
(gt ) is proven exactly the same way as the proof of (4.41), since

the Bakry–Émery type convexity argument remains valid for the equilibrium measure ω
ε∗
T1

as well. This exponential
smallness wins over ε−p∗ if the constant c in the definition of ε∗ = exp(−Kc) is small.

Since the only purpose of this regularization is to prove (4.46), we will not carry the ε∗ superscript throughout
the proof, i.e., we continue to write ωT1 everywhere, although we really mean ω

ε∗
T1

. As we have seen, the key input
information on ωT1 for our whole analysis, the rigidity (4.71), holds for the regularized measure. The other input, the
level repulsion in the form (4.45) holds with an additional factor Kξ , see (4.73), that plays no role in the applications
of this estimate. �

4.6. Local statistics of ωT1

In this subsection, we show that the gap statistics of the localized reference measure ωT1 are universal, i.e., are given by
the statistics of the Gaussian invariant ensemble up to negligible errors for large N . The precise universality statement
for ωT1 is as follows.

Theorem 4.10. There is a small universal constants e, χ,α > 0, such that for any y ∈ GT1 (see (4.4)), for any fixed j

and for any smooth compactly supported function O of n variables, we have

E
ωT1O

(((
N�T1(γL)

)
(xi0 − xi0+j )

)n
j=1

) = E
GO

((
(N�#)(xi′0 − xi′0+j )

)n
j=1

)
+O

(∥∥O ′∥∥∞N−e
)
, (4.74)

for N sufficiently large, for any i0, i
′
0 ∈ NN satisfying |i0 −L| ≤Nχ , |i′0 −L′| ≤Nχ with any L′ ∈ [αN, (1 − α)N ],

and where �# := �sc(γL′,sc) denotes the density of the semicircle law �sc at the location of the L′th N -quantile of �sc.

In short, Theorem 4.10 assures that the gap statistics of the localized measure ωT1 in the bulk is determined by the
Gaussian invariant ensemble in the limit of large N . This result follows from Theorem 4.1 of [28] and the properties
of ωT1 established in this section so far.

Proof of Theorem 4.10. Theorem 4.1 of [28], as stated, directly compares two local measures, but together with
Proposition 5.3 in [28] it can also be stated as a direct universality result: if the conditions of Theorem 4.1 of [28] hold
for a local measure, then it has universal local gap statistics.

Theorem 4.1 (see also remark after Lemma 4.5) in [28] has two types of conditions.
(1) Regularity of the external potential in the sense of Definition 4.4 of [28]. For the case at hand, the external

potential V γ̃ defined in (4.35) is regular if

(
V γ̃

)′
(x)= �T1(z◦) log

d+(x)
d−(x)

+O

(
Ncξ

Nd(x)

)
, (4.75)

(
V γ̃

)′′
(x)≥ c

d(x)
, x ∈ J z = [z−, z+], (4.76)

hold, with some fixed constant c, where z◦ = (z+ + z−)/2, d(x)= min{|x − z+|, |x − z−|} and d±(x) as in (4.49).
Here we used the notation z− = zL−K−1, z+ = zL+K+1.

In proving (4.47) with external points γ̃ , we already established (4.75). The convexity estimate (4.76) follows from
the rigidity of γ̃ : there is a constant c > 0 such that

(
V γ̃

)′′
(x)= V ′′(x)+ 2

N

∑
j /∈I

1

(γ̃j − x)2
≥ 1

2
+ c

d(x)
.
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(2) The second input for Theorem 4.1 of [28] is

∣∣EωT1xi − αi
∣∣≤ C

Ncξ

N
, i ∈ I, (4.77)

where (αi) denote the K equidistant points in J z. We have already established (4.77) in (4.68).
Based upon these two inputs, Theorem 4.1 of [28] implies (4.74). �

5. Universal gap statistics for small times

In Section 4, we showed that the equilibrium measure ωT1 of the dynamics (4.37) has universal gap statistics, i.e.,
the distribution of the rescaled eigenvalue gaps in the bulk of the spectrum under ωT1 coincide with those of the
corresponding Gaussian invariant ensemble up to negligible errors for sufficiently large N . In the present section, we
compare the gaps of the two dynamics (4.37) and (4.36). We proceed in three steps that are outlined in the Sections
5.1, 5.2 and 5.3. In Section 5.4, we then complete the proof of Theorem 2.1.

As in Section 4, we will fix a Y ∈ G, or equivalently Y ∈ G, but do not always indicate this choice in the notation.
All estimates obtained will be uniform on G, so that we can integrate out Y at the very end of Section 5.4.

5.1. Step 1: Small scale regularization

First we introduce a small regularization in (4.36) starting from the time T1. This regularization is only needed for
the critical case β = 1, where the level repulsion, cf., Assumptions (3) of Theorem 2.1, is weakest. Level repulsion
and the regularization introduced below will allow use to bound the kernel Bij defined below in (5.8) as E|Bij | � N ;
see (5.14). For β > 1, a similar bound may be obtained without any regularization. In the following we carry the
regularization along since the case β = 1 is the hardest.

This regularization procedure is the same as in Section 3.1 of [14], but it is different from the regularization in
the ωT1 measure and in the x̃ dynamics explained in part (2) of the proof of Proposition 4.9 (where the regularization
parameter was called ε∗). Choose

εjk :=
{
ε · 1(j, k ∈ Iσ ) if j ≥ k,
−ε · 1(j, k ∈ Iσ ) if j < k,

with ε :=N−10C1 , (5.1)

for a large C1 > 1. (Note that by the above choice ε∗ � ε.)
Define the regularized version of (4.36) as

dx̂i (t) =
√

2

βN
dBi(t)− υL dt + 1

N

∑
j∈I

1

xi(t)− xj (t)+ εij
dt

+ 1

N

∑
k /∈I

1

xi(t)− yk(t)+ εik
− x̂i (t)+ υLt

2
dt, i ∈ I, t ∈ [T1, t2], (5.2)

with initial condition x̂(T1)= x(T1), where the Brownian motions (Bi) are the same as in (4.36) and (4.37). Note that
x̂ may not preserve the ordering of the particles, but we will not need this property.

Lemma 5.1. Define the event

�1 :=
⋂

t∈[T1,t2]

{
max
i∈I

∣∣xi(t)− x̂i (t)
∣∣≤N−5C1

}
. (5.3)

Under the conditions of Theorem 2.1, especially the level repulsion assumption (2.19), there is a set G∗ ⊂ G with
P(G∗

) ≥ 1 −N−C1 such that PY(�1) ≥ 1 − CN−C1 holds for any Y ∈ G∗
. In particular, the local statistics of x(t)

and x̂(t) are asymptotically the same for any t ∈ [T1, t2].
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Proof. Let R be the rigidity set

R := {∣∣xi(t)− γ i(t)
∣∣≤Nξ/N : t ∈ [T1, t2], i ∈ I

}
.

First we claim that P(R ∩�1) ≥ 1 −N−2C1 . This estimate can be proved following the argument in Section 3.1 of
[14] for υL = 0. Mutatis mutandis the same proof applies for υL �= 0. As an input, we need a level repulsion estimate
of the form

E1(R)
1

[N |xi+1(t)− xi(t)+ ε|]2 ≤Nδ+ξ | log ε|, ∀t ∈ [T1, t2], i ∈ I, (5.4)

that follows from (2.19). Therefore, by conditioning, there is an event G∗
such that P(G∗

)≥ 1 −N−C1 and

P
Y(R∩�1)≥ 1 −N−C1, ∀Y ∈ G∗

.

Since P(G)≥ 1 −N−D for any D > 0, see (4.7), without loss of generality we can assume that G∗ ⊂ G. Note that for
Y ∈ G we have PY(R)≥ 1−N−D , for any large D > 0; cf., (4.5). Choosing D larger than C1, completes the proof. �

5.2. Step 2: Hölder regularity

To compare the gaps of x̂ and x̃, we introduce

v ≡ v(t) := e(t−T ′
1)/2(̂x(t)− x̃(t)

)
, t ≥ T ′

1. (5.5)

Subtracting (5.2) from (4.37) and dropping the t argument for brevity, we have

dvi
dt

= − 1

N

∑
j∈I
j �=i

vi − vj

(xi − xj + εij )(̃xi − x̃j )
− vi

1

N

∑
k /∈I

1

(xi − yk + εik)(̃xi − γ̃k)
− 1

2
e(t−T ′

1)/2υL(t − T1)

+ 1

N

∑
j∈I
j �=i

(̂xi − xi)− (̂xj − xj )+ εij

(xi − xj + εij )(̃xi − x̃j )
+ 1

N

∑
k /∈I

(yk − γ̃k)+ (̂xi − xi)+ εik

(xi − yk + εik)(̃xi − γ̃k)
, t ≥ T ′

1, (5.6)

i ∈ I . We rewrite (5.6) in the form

dvi
dt

=−(Bv)i + F
(1)
i + F

(2)
i , (Bv)i :=

∑
j∈I

Bij (vi − vj )+Wivi, (5.7)

with time-dependent (symmetric) coefficients,4 i, j ∈ I ,

Bij := 1

N(xi − xj + εij )(̃xi − x̃j )
, Wi := 1

N

∑
k /∈I

1

(xi − yk + εik)(̃xi − γ̃k)
, (5.8)

and with the “forcing terms”

F
(1)
i

:= 1

N

∑
j∈I
j �=i

(̂xi − xi)− (̂xj − xj )+ εij

(xi − xj + εij )(̃xi − x̃j )
− 1

2
e(t−T ′

1)/2υL(t − T1), (5.9)

F
(2)
i

:= 1

N

∑
k /∈I

x̂i − xi + εik

(xi − yk + εik)(̃xi − γ̃k)
+ 1

N

∑
k /∈I

yk − γ̃k

(xi − yk + εik)(̃xi − γ̃k)
. (5.10)

4Sometimes we write Bi,j instead of Bij to clarify the notation.
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(Since xi, x̃i , x̂i and yk depend on time, we have Bij ≡ Bij (t), Wi ≡Wi(t), etc.)
We first study in Section 5.2.1 the “free dynamics” generated by B, show that it is Hölder continuous, and then

deal with the forcing terms (F (1)
i ), (F

(2)
i ) via a perturbative argument in Section 5.3 to establish Hölder continuity for

the full dynamics.

5.2.1. Hölder regularity of the free dynamics
Let ṽ solve (5.7) without the forcing terms, i.e.,

d̃vi
dt

=−(Bṽ)i =−
∑
j

Bij (̃vi − ṽj )−Wiṽi, t ≥ T ′
1, (5.11)

with initial condition ṽ(T ′
1) = v(T ′

1). We will view equation (5.11) as a discrete heat equation with a long-range
hopping described by (Bij ) instead of the customary discrete Laplacian. It turns out that the celebrated De Giorgi–
Nash–Moser regularity theory extends to this setup [28]. Hölder continuity in this setting means that ṽi+1 − ṽi is
small. Adding back the forcing terms this will imply that

(vi+1 − vi)(t)= e(t−T ′
1)/2[(̂xi+1 − x̂i )− (̃xi+1 − x̃i )

]
(t)

is also small, for times slightly beyond T ′
1. The original De Giorgi–Nash–Moser regularity theory requires uniformly

bounded coefficients, however Bi+1,i defined in (5.8) is unbounded if x̃i+1 is close to x̃i . Nevertheless level repulsion
guarantees that in a certain space–time average sense Bi+1,i is bounded with high probability. This motivates the
following definitions.

Let T := [T ′
1, T

′′
1 ], where T ′′

1 is defined in Lemma 5.2 below. Mimicking Definition 9.7 in [28], we say that the
equation (5.11) is regular at a space–time point (Z, θ) ∈ I × T with exponent ρ > 0 if

sup
t∈T

sup
1≤M≤K

1

N−1 + |t − θ |
∫ θ

t

1

M

∑
i∈I :|i−Z|≤M

∑
j∈I :|j−Z|≤M

∣∣Bij (s)
∣∣ds ≤N1+ρ. (5.12)

Furthermore, we say that the equation is strongly regular at a space–time point (Z, θ) ∈ I ×T with exponent ρ > 0
if it is regular at all points {Z} × {θ +
}, where the set 
 is defined as


 :=
{
−K

N
· 2−m

(
1 + 2−k

) : 0 ≤m,k ≤C logK

}
.

From Theorem 10.1 of [28] and Lemma 5.1 we obtain the following result.

Lemma 5.2. Let c1 ∼ 1/100 and choose T ′′
1 = T ′

1 +Kc1/N . Then, there is an event �2 and constants C and ρ ≡
ρ(ξ) > 0 such that on the event �2 the equation (5.11) is strongly regular at (L,T ′′

1 ), and

1
(
�1 ∩�2)∣∣̃vi+1

(
T ′′

1

)− ṽi
(
T ′′

1

)∣∣≤ CN−1+ξK−q/4, |i −L| ≤ C, (5.13)

where q > 0 is a universal constant. Moreover, we have the estimate PY(�1 ∩�2) ≥ 1 − N−ρ/8, for N sufficiently
large.

Proof. We apply the Hölder regularity result, Theorem 10.1 of [28], to the evolution equation (5.11). Thanks to the
regularization introduced in Step 1, cf., Section 5.1, we have, for any i, j ∈ I and t ∈ [T ′

1, t2], that

EBij ≤ N

(
max
i∈I E

1

[N |xi − xi−1 + ε|]p
)1/p(

max
i∈I E

1

[N |̃xi − x̃i−1|]q
)1/q

≤ N

(
max
i∈I

1

(Nε)φ
E

1

[N |xi − xi−1 + ε|]2
)1/p(

max
i∈I E

1

[N |̃xi − x̃i−1|]q
)1/q
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≤ N
(
ε−φNδ+ξ+φ | log ε|)1/p

Cq(φ)

≤ CN1+δ+2ξ , (5.14)

where we first applied Hölder’s inequality with conjugate exponents p,q , with p = 2 + φ, φ > 0, then used (5.4) and
(4.46), and finally chose φ sufficiently small depending on C1 in (5.1).

Notice that to guarantee regularity in the sense of (5.12) (modulo a constant factor), instead of taking suprema
over all s ∈ T , M ∈ �1,K�, it suffices to take suprema over a dyadic sequence of times sk = θ ± 2−k and parameters
Ml = 2l , k, l ∈ �1,C logN�, since space–time averages on comparable scales are comparable. Using (5.14), setting
ρ := δ + 3ξ and applying Markov inequality, for any fixed values of s and M , the space–time average in (5.12) is
bounded by N1+ρ with probability at least 1 −N−ρ/2. Taking the union bound for not more than C(logN)2 times,
we can guarantee regularity at any space–time point with probability at least 1−N−ρ/3. Since the definition of strong
regularity requires regularity at not more than C(logN)2 space–time points, an additional union bound guarantees
strong regularity at any fixed space–time point with probability at least 1 −N−ρ/4. Defining

�̃2 := {
equation (5.11) is strongly regular at

(
L,T ′′

1

)}
,

this proves that PY(�̃2)≥ 1 −N−ρ/4 and verifies condition (C1)ρ in Theorem 10.1 of [28] on �̃2.
The other condition (C2)ξ in Theorem 10.1 of [28] concerns large distance estimates of Bij . More precisely,

condition (C2)ξ requires that

Bij (t)≥ N1−ξ

|i − j |2 , t ∈ [
T ′

1, T
′′
1

]
, (5.15)

for any i, j with |L− i| ≤K/C, |L− j | ≤K/C, and that

N1(min{|L− i|, |L− j |} ≥K/C)

C|i − j |2 ≤ Bij (t)≤ CN

|i − j |2 , t ∈ [
T ′

1, T
′′

1

]
, (5.16)

for any |i − j | ≥ C′Nξ , with some constants C,C′ > 10. Further, Wi is required to satisfy

CN1−ξ

�i

≤Wi(s)≤ CN1+ξ

�i

, t ∈ [
T ′

1, T
′′
1

]
, (5.17)

where �i := min{L+K + 1 − i,L−K − 1 − i}. Using the rigidity estimates for x, x̃ of Lemma 4.9, it is easy to
check that, for any ξ > 0, there is an event �̂2 and constants c, with PY(�̂2)≥ 1− e−cNξ

, such that (5.17), (5.16) and
(5.15) hold. Set �2 = �̃2 ∩ �̂2. Then for all sufficiently small ξ > 0, we have P(�2)≥ 1 −CN−ρ/4.

Let ‖A‖∞ := supi∈I |Ai |, A ∈CN . Then the conclusion of Theorem 10.1 of [28] for the equation (5.11) is that

1
(
�2)∣∣̃vi+1

(
T ′′

1

)− ṽi
(
T ′′

1

)∣∣≤CK−q/4
∥∥ṽ
(
T ′

1

)∥∥∞, |i −L| ≤ C, (5.18)

where q> 0 is a universal exponent and where T ′′
1 = T ′

1 +Kc1/N . More precisely, (5.18) follows from (10.6) of [28]
after rescaling space and time by setting the constant α equal to 1/4 (this α is different from the α used in the present
paper).

Next, recalling from (5.11) that ṽi (T ′
1)= vi(T

′
1) and that vi(T ′

1)= x̂i (T
′

1)− x̃i (T
′

1), we get∥∥v
(
T ′

1

)∥∥∞ ≤ ∥∥̂x
(
T ′

1

)− x
(
T ′

1

)∥∥∞ + ∥∥x
(
T ′

1

)− x̃
(
T ′

1

)∥∥∞ ≤CN−5C0 +CN−1+ξ , (5.19)

on �1∩�2, where we used Lemma 5.1 and that the processes (̃x(t)), (x(t)), are both rigid in the sense of Definition 4.8
for t ∈ [T1, t2]. Thus, combining (5.18) with (5.19) we get

1
(
�1 ∩�2)∣∣̃vi+1

(
T ′′

1

)− ṽi
(
T ′′

1

)∣∣≤ CN−1+ξK−q/4, |i −L| ≤ C, (5.20)

where the event �1 ∩�2 satisfies PY(�1 ∩�2)≥ 1 −N−ρ/8, ρ ≡ ρ(ξ) > 0, for sufficiently small ξ > 0. �
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5.3. Step 3: Removing the forcing terms

Having established the Hölder regularity of the free dynamics of (5.11), we now deal with the “full dynamics” (5.6).
The main result is as follows.

Proposition 5.3. Let c1 ∼ 1/100 and choose T ′′
1 = T ′

1 + Kc1/N . Then there is an event � and constants C and
c2, c3 > 0 such that, for any y ∈ G,

1(�)max
i∈ 1

4 I

∣∣vi(T ′′
1

)− ṽi
(
T ′′

1

)∣∣≤ N−c2

N
, (5.21)

for N sufficiently large, where 1
4I := �L−K/4,L+K/4�. Moreover the event � is such that �⊂�1 and satisfies

P(�∩ G)≥ 1 −N−c3 , for N sufficiently large.

The proof of Proposition 5.3 is given in the following subsections.

5.3.1. Removing the forcing terms F (1)
i

Subtracting (5.11) from (5.7) we have

d(vi − ṽi )

dt
=−[B(v − ṽ)

]
i
+ Fi, i ∈ I, t ∈ [

T ′
1, T

′′
1

]
.

Eventually, we will choose i ∈ 1
4I := �L−K/4,L+K/4�, yet here we can take i ∈ I .

Let UB(t, s) denote the time-dependent propagator of the equation (5.11) from time s to t , with s ≤ t . From the
Duhamel formula we have

vi(t)− ṽi (t)=
∫ t

T ′
1

(
UB(t, s)F (s)

)
i
ds, i ∈ I, t ≥ T ′

1.

Note that UB is a contraction in the sup norm by the maximum principle (recall that Wi ≥ 0). Thus

∣∣vi(t)− ṽi (t)
∣∣≤ ∫ t

T ′
1

max
i∈I

∣∣F (1)
i (s)

∣∣ds +
∫ t

T ′
1

∣∣(UB(t, s)F (2)(s)
)
i

∣∣ds, t ≥ T ′
1. (5.22)

Fixing t = T ′′
1 , using Lemma 5.1 and the choice of ε in (5.1), we estimate

1
(
�1 ∩�2)∫ T ′′

1

T ′
1

max
i∈I

∣∣F (1)
i (s)

∣∣ds ≤ 1
(
�2)CN−5C1

∫ T ′′
1

T ′
1

∑
i∈I

∑
j∈I

∣∣Bij (s)
∣∣ds +CυL

(
T ′′

1 − T1
)2
, (5.23)

where we estimated the maximum by the sum. Thus recalling (5.12) and using (5.23), (5.22) we get

1
(
�1 ∩�2)∫ T ′′

1

T ′
1

max
i∈I

∣∣F (1)
i (s)

∣∣ds ≤ CN−5C1K
(
T ′′

1 − T ′
1

)
N1+ρ +CυL

(
T ′′

1 − T1
)2

≤ CK1+c1N−5C1+ρ +C
K1+c1

N2
.

Since C1 > 1, we conclude that the effect due to F (1) is below the precision we are interested in, i.e., there is c > 0
such that, for any i ∈ I ,

1
(
�1 ∩�2)∣∣vi(T ′′

1

)− ṽi
(
T ′′

1

)∣∣≤ CN−1−c + 1
(
�1 ∩�2)∫ T ′′

1

T ′
1

∣∣(UB
(
T ′′

1 , s
)
F (2)(s)

)
i

∣∣ds. (5.24)
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5.3.2. Removing the forcing terms F (2,in)
i

To estimate the influences of the forcing terms (F (2)
i ), we write

F
(2)
i = F

(2,in)
i + F

(2,out)
i ,

with

F
(2,in)
i

:= F
(2)
i 1

(
i ∈ 1

2
I

)
, F

(2,out)
i

:= F
(2)
i 1

(
i ∈ I, i /∈ 1

2
I

)
,

where we introduced 1
2I := �L−K/2,L+K/2�.

To control the inside part F (2,in)
i , we use the following lemma. Recall the definition of the event G in (4.5) and the

definitions of the intervals of consecutive integers I0 and Iσ in (4.1).

Lemma 5.4. Let K satisfy (2.27) and fix Y ∈ G. Then we have the following estimates.

(1) For all k ∈ Iσ \ I , we have

∣∣yk(t)− yk(T1)
∣∣≤ C

Nξ

N
+CNδ(t − T1)

|L− k|
N

+CNδ(t − T1)
2, t ∈ [T1, t2]. (5.25)

(2) For all k ∈ I0 \ I , we have

∣∣yk(t)− γ̃k
∣∣≤ C

Nξ

N
+C

Nξ

K

|L− k|
N

, t ∈ [T1, t2]. (5.26)

We complement Lemma 5.4 with the estimate∣∣yk(t)− γ̃k
∣∣≤ CNξ

√
t, t ≥ T1, k ∈ I cσ , (5.27)

on G, as follows immediately from the definition of G in (4.5); cf., Assumption (4) of Theorem 2.1.

Proof of Lemma 5.4. To prove (5.25), we estimate∣∣yk(t)− yk(T1)
∣∣ ≤ ∣∣yk(t)− γ k(t)

∣∣+ ∣∣γ k(t)− γ k(T1)
∣∣+ ∣∣yk(T1)− γ k(T1)

∣∣
≤ C

Nξ

N
+ ∣∣γ k(t)− γk(T1)

∣∣, (5.28)

on the event G, where we used the rigidity bound in (4.2) for k ∈ Iσ . Next, we write

γ k(t)− γk(T1)= γk(t)− υL(t − T1)− γk(T1)=
∫ t

T1

γ̇k(s)ds − υL(t − T1).

Then by Lemma 4.3 we have∫ t

T1

γ̇k(s)ds =
∫ t

T1

γ̇L(s)ds +O
(
N−1+δ(t − T1)|k −L|)

= γ̇L(T1)(t − T1)+O
(
N−1+δ(t − T1)

2)+O
(
N−1+δ(t − T1)|k −L|).

Thus recalling that υL = γ̇L(T1) by definition, we conclude that∣∣γ k(t)− γk(T1)
∣∣≤CN−1+δ(t − T1)

2 +CN−1+δ(t − T1)|k −L|. (5.29)

Together with (5.28) this implies (5.25).
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To bound the left side of (5.26), we split∣∣yk(t)− γ̃k
∣∣≤ ∣∣yk(t)− γ k(t)

∣∣+ ∣∣γ k(t)− γk(T1)
∣∣+ ∣∣γk(T1)− γ̃k

∣∣. (5.30)

Then, using the rigidity from the definition of G1
t in (4.2), the first term on the right side can be bounded by CNξ/N .

The second term on the right side is controlled by (5.29). To bound the third term on the right side we apply Corol-
lary 4.6 to find

∣∣γk(T1)− γ̃k
∣∣≤ C

Nξ

N
+C

Nξ |γ̃k − γ̃L|
K

+CNδ|γ̃k − γ̃L|2.

Recalling that |γ̃k − γ̃L| ≤ CK5/N , for k ∈ I0 \ I , and using that K satisfies (2.27), we get (5.26). �

We now bound the term F
(2,in)
i . Abbreviate

B̃ik := 1

N(xi − yk + εik)(̃xi − γ̃k)
, i ∈ I, k ∈ I c. (5.31)

Recall the bound on 1(�1)|xi − x̂i | from Lemma 5.1 and the definition of (εik) in (5.1). Using Lemma 5.4 and
recalling that t − T1 ≤ CK2/N , we obtain

1
(
�1)∣∣F (2,in)

i (s)
∣∣ ≤ C

∑
k∈I0\I

(
1

N5C1
+ Nξ

N
+ Nξ

K

|k −L|
N

)∣∣B̃ik(s)
∣∣

+C
∑

k∈Iσ \I0

(
Nξ

N
+Nδ K

2

N

|L− k|
N

)∣∣B̃ik(s)
∣∣

+C
∑
k /∈Iσ

(
Nξ K√

N

)∣∣B̃ik(s)
∣∣, i ∈ 1

2
I, s ∈ [

T ′
1, T

′′
1

]
, (5.32)

where we also used (5.27) together with T ′′
1 − T1 ≤ CK2/N to get the last term on the right of (5.32).

To perform the sums over k in the first two terms on the right, we recall (5.31) and we note that there are two
constants c, c′ > 0, such that

|yk − xi | ≥ c|L− k|/N, |γ̃k − x̃i | ≥ c′|L− k|/N, k ∈ Iσ \ I, (5.33)

where we used the rigidity estimate for y (embodied in G; see (4.5)), the rigidity estimate for γ̃ obtained in Corol-
lary 4.6 and the rigidity estimate for x, x̃ obtained in Proposition 4.9, as well as the choice i ∈ 1

2I = �L−K/2,L+
K/2�. The summation over k /∈ Iσ in the third term is estimated using that |yk − xi ||γ̃k − x̃i | ≥ c′′(σ ) > 0, k /∈ Iσ .
Hence, after summing up the right side of (5.32), we get

1
(
�1)∣∣F (2,in)

i (s)
∣∣ ≤ 1

N5C1−1K
+ Nξ

K
+ N2ξ

K
+CNδ Nξ

NK3
+C

NξK√
N

≤ C
N2ξ

K
, i ∈ 1

2
I, s ∈ [

T ′
1, t2

]
, (5.34)

where we used 5C1 − 1 > 1 and that K satisfies (2.27). Thus by (5.34) we have

1
(
�1)∫ T ′′

1

T ′
1

∣∣F (2,in)
i (s)

∣∣ds ≤ (
T ′′

1 − T ′
1

)Nξ

K
= Kc1

N

N2ξ

K
,
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for all i ∈ 1
2I , so this error is below the precision we are interested in: For some c > 0 we have that

1
(
�1)∣∣vi(T ′′

1

)− ṽi
(
T ′′

1

)∣∣ ≤ C
N−c

N
+ 1

(
�1)∫ T ′′

1

T ′
1

∣∣(UB
(
T ′′

1 , s
)
F (2,out)(s)

)
i

∣∣ds, i ∈ 1

2
I. (5.35)

The outside part F (2,out) is treated with a finite speed of propagation estimate.

5.3.3. Removing the forcing term F (2,out)

We first recall the finite of propagation estimate for the propagator UB . Abbreviate for simplicity U(t, s)≡ UB(t, s)

and denote its kernel by Uij (t, s), i, j ∈ I . By Lemma 9.6 of [28] there is C such that

∣∣Uij (t, s)
∣∣≤ C

K1/2√N(t − s)+ 1

|i − j | , i, j ∈ I, t ≥ s ≥ T1. (5.36)

on �2. We refer to (5.36) as a finite speed of propagation estimate.
Next recall that we want to control

max
i∈ 1

4 I

∑
j∈I

Uij (t, s)F
(2,out)
j = max

i∈ 1
4 I

1

N

∑
j∈I\ 1

2 I

∑
k∈I c

Uij (t, s)F
(2)
jk (s),

where T ′
1 ≤ s ≤ t ≤ T ′′

1 , and where we have introduced

F
(2)
jk (s) :=

(
x̂j − xj + εjk

(xj − yk + εjk)(̃xj − γ̃k)
+ yk − γ̃k

(xj − yk + εjk)(̃xj − γ̃k)

)
(s).

With some large C, we next split the summations over k and j as

∑
j∈I

Uij (t, s)F
(2,out)
j = 1

N

∑
j∈I\ 1

2 I

∑
k∈I c

1
(|j − k| ≥CNξ

)
Uij (t, s)F

(2)
jk (s)

+ 1

N

∑
j∈I\ 1

2 I

∑
k∈I c

1
(|j − k|<CNξ

)
Uij (t, s)F

(2)
jk (s), i ∈ 1

4
I. (5.37)

We start with bounding the first term on the right side of (5.37). On the event �1, we can bound

1

N

∑
k∈I c

∣∣1(|j − k| ≥ CNξ
)
F

(2)
jk (s)

∣∣ ≤ C
∑

k∈I0\I
1
(|j − k| ≥CNξ

)( 1

N5C1
+ Nξ

N
+ Nξ

K

|k −L|
N

)∣∣B̃jk(s)
∣∣

+C
∑

k∈Iσ \I0

1
(|j − k| ≥ CNξ

)(Nξ

N
+Nδ K

2

N

|k −L|
N

)∣∣B̃jk(s)
∣∣

+C
∑
k /∈Iσ

1
(|j − k| ≥ CNξ

)NξK√
N

∣∣B̃jk(s)
∣∣, (5.38)

here we used (5.36) and the Lemmas 5.1 and 5.4. We further used that s ≤ t , t − T1 ≤ CK2/N by assumption. Thus,
summing over k, we get

1
(
�1) 1

N

∑
k∈I c

∣∣1(|j − k| ≥CNξ
)
F

(2)
jk (s)

∣∣≤ C
N2ξ

|j −L+K +Nξ | , j ∈ I \ 1

2
I,
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where we used the estimates in (5.33). See (5.32) and (5.34) for a similar estimate. Returning to (5.37) we see that the
first term on the right side is bounded as

1

N

∑
j∈I\ 1

2 I

∑
k /∈I

1
(|j − k| ≥ CNξ

)∣∣Uij (t, s)F
(2)
jk (s)

∣∣ ≤ C
∑

j :K/2≤|j−L|≤K

N2ξK1/2√N(t − s)+ 1

|j −L+K/4||j −L+K +Nξ |

≤ CN2ξK−1/2+c1/2, (5.39)

on �1 ∩�2, where we used that t − s ≤Kc1/N .
It remains to control the second term in (5.37). Similar to (5.38), we have on �1, for j ∈ I \ 1

2I , that

1

N

∑
k∈I c

∣∣1(|j − k|<CNξ
)
F

(2)
jk (s)

∣∣ ≤ C
∑

k∈I0\I
1
(|j − k|<CNξ

)( 1

N5C1
+ Nξ

N
+ N2ξ

K

1

N

)∣∣B̃jk(s)
∣∣

≤ CNξ

N

∑
k∈I0\I

1
(|j − k|<CNξ

)∣∣B̃jk(s)
∣∣.

We thus have, for i ∈ 1
4I ,

1

N

∑
k∈I c

∣∣∣∣∫ T ′′
1

T ′
1

ds1
(|j − k|<CNξ

)
Uij

(
T ′′

1 , s
)
F

(2)
jk (s)

∣∣∣∣
≤ C

Nξ

N

∫ T ′′
1

T ′
1

ds
∑
k∈I c

∑
j∈I

1
(|j − k|<CNξ

)K1/2
√
N(T ′′

1 − s)+ 1

|i − j |
∣∣B̃jk(s)

∣∣
≤ C

N2ξK1/2

√
NK

√
T ′′

1 − T ′
1

∫ T ′′
1

T ′
1

ds
L+K∑

j=L+K−�CNξ �

∣∣Bj,j+1(s)
∣∣

+C
N2ξK1/2

√
NK

√
T ′′

1 − T ′
1

∫ T ′′
1

T ′
1

ds
L−K+�CNξ  ∑

j=L−K

∣∣Bj,j−1(s)
∣∣, (5.40)

where we used that |B̃jk| ≤ |Bj,j+1|, k > j , respectively |B̃jk| ≤ |Bj,j−1|, k < j , for all k ∈ I c, j ∈ I . (Here and
below we use the convention that, for j ∈ I , Bj,L±(K+1) = B̃j,L±(K+1), respectively Bj,k = 0 if |k|>L+K + 1.) To
bound the two terms on the right side of (5.40), we use that the evolution equation (5.11) is “regular” at the space–time
points (L+K,T ′′

1 ) and (L−K,T ′′
1 ).

Lemma 5.5. There is an event �3 such that evolution equation (5.11) is regular at the space–time points (L+K,T ′′
1 )

and (L−K,T ′′
1 ) in the sense that

1
(
�3) sup

s∈T
sup

1≤M≤K
1

N−1 + |s − T ′′
1 |

∫ T ′′
1

s

1

M

∑
i∈I :|i−L±K|≤M

∣∣Bi,i±1(s)
∣∣ds ≤N1+ρ. (5.41)

Moreover, we have the estimate PY(�1 ∩�2 ∩�3)≥ 1 −N−ρ/10.

Proof. We can follow almost verbatim the first part of the proof of Lemma 5.2. Using (5.4) and (4.46), we can
bound E|Bi,i±1| as in (5.14). Then dyadic decompositions around the space–time points (L±K,T ′′

1 ) combined with
applications of Markov inequality yield the claim. �
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Next, returning to the estimate in (5.40), we conclude from Lemma 5.5 that the first term on the right can be
bounded as

1
(
�1 ∩�3)N2ξK1/2

√
NK

√
T ′′

1 − T ′
1

∫ T ′′
1

T ′
1

ds
L+K∑

j=L+K−�CNξ �

∣∣Bj,j+1(s)
∣∣ ≤ C

N3ξ

√
KN

(
T ′′

1 − T ′
1

)3/2
N1+ρ

≤ CN3ξK3c1/2N−1+ρ.

Using the same argument to bound the second term on the right side of (5.40), we conclude that

1
(
�1 ∩�3) 1

N

∑
k∈I c

∣∣∣∣∫ T ′′
1

T ′
1

ds1
(|j − k|<CNξ

)
Uij

(
T ′′

1 , s
)
F

(2)
jk (s)

∣∣∣∣≤ C
N3ξ+ρK3c1/2

N
, i ∈ 1

4
I. (5.42)

Summarizing the estimates above, we can now state the proof of Proposition 5.3.

Proof of Proposition 5.3. Let � :=�1 ∩�2 ∩�3. Note that P(�)≥ 1−N−c2 , for any 0 < c2 ≤ ρ (with ρ = δ+3ξ ).
Adding up the estimates (5.42), (5.35) and (5.24), and recalling that K satisfies (2.27) and that c1 ∼ 1/100, we
conclude that there is c3 ≡ c3(ξ) > 0 such that (5.21) holds, for ξ > 0 sufficiently small and N large enough. �

5.4. Conclusion of the proof of Theorem 2.1

Recall from (5.5) the definition of (vi(t)). Combining (5.21) and (5.13) we obtain

1(�)
∣∣vi+1(t2)− vi(t2)

∣∣≤N−1−c4, |i −L| ≤ C, (5.43)

with some small c4 > 0. Moreover, we have P(�∩G)≥ 1−N−c5 , for some c5 > 0. This exactly proves the following
result.

Lemma 5.6. The gap statistics of x̂(T ′′
1 ) and x̃(T ′′

1 ) for indices near L coincide in the limit of large N .

Combining this with Lemma 5.1, we need only to understand the local statistics of x̃. But by Lemma 4.7, this is the
same as the gap statistics of the local equilibrium measure ωt0 . The latter one is universal as we showed in Section 4.6.
To conclude the proof of Theorem 2.1, we note that we can integrate over G, as follows from Lemma 4.1 and the
assumption that the observable O is compactly supported. Finally, choosing T1 ≥ t1 such that T ′′

1 = T , we obtain
(2.21). This completes the proof of Theorem 2.1.

Appendix A: Semicircular flow

In this appendix we study the semicircular flow in more detail. In Section A.1 we prove Lemma 4.2 and Lemma 4.3.
In Section A.2 we discuss the Assumption (1) of Theorem 2.1 in more detail by arguing that it is satisfied for a large
number of random matrix models.

A.1. Classical flow of the density

Recall from (2.6) that mt satisfies

mt(z)=
∫
R

�(y)dy

e−t/2y − (1 − e−t )mt (z)− z
, Immt(z) > 0, Im z > 0, (A.1)

for all t ≥ 0, and that mt determines a density �t via the Stieltjes inversion formula, i.e., �t (x)= 1
π

limη↘0 Immt(x+
iη), x ∈R. We call the map t �→ �t the semicircular flow started from �.
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It was shown in [8] that the density �t is a real analytic function inside support for fixed t > 0. Yet, without any
further assumptions on �, estimates on the derivatives of �t deteriorate for small t , since the equation (A.1) may
lose its stability properties (i.e., the denominator on the right side can become singular). This can, for example, be
remedied by imposing the conditions in Assumption (1) of Theorem 2.1. Consider for � > 0 the domain

D� := {
z= x + iη ∈C : x ∈ [E −�,E +�], η ≥ 0

}
.

Denote by m0 the Stieltjes transform of �. In accordance with the Assumption (1) of Theorem 2.1, we assume here
that m0 extends to a continuous function on D� and that there is a small δ ≥ 0 and a constant C such that

sup
z∈D

∣∣m0(z)
∣∣≤ C, sup

z∈D

∣∣∂nz m0(z)
∣∣≤ C

(
Nδ

)n
, n= 1,2. (A.2)

Lemma A.1. Consider the semicircular flow �t started from �. Let � satisfy Assumption (A.2) with exponent δ > 0
and � > 0. Then there is C′ > 0, such that mt(z) is uniformly bounded on D� , for all 0 ≤ t ≤ CN−2δ . Moreover,
there are constants C,C′, depending only on �, such that

sup
z∈D�/2

∣∣mt(z)−m0(z)
∣∣≤ CtNδ, (A.3)

for all 0 ≤ t ≤ C′N−2δ . Further, there are constants C,C′, depending only on �, such that we have the bounds

sup
z∈D�/2

∣∣∂nz mt (z)
∣∣≤ C

(
Nδ

)n
, n= 1,2,0 ≤ t ≤ C′N−2δ. (A.4)

Proof. Set σt := 1 − e−t . Starting from (A.1) we obtain, for t > 0,

∣∣mt(z)
∣∣2 ≤

(∫
R

�(y)dy

|e−t/2y − z− σtmt (z)|2
)
= Immt(z)

η+ σt Immt(z)
, z ∈C

+,

where we first used Schwarz inequality for the probability measure � to get the second line. Then we used once more
(A.1). We thus obtain the rough a priori bound∣∣mt(z)

∣∣≤ σ
−1/2
t , t > 0, (A.5)

for z ∈C+ ∪R. Next, we introduce

m̃t (z) :=
∫
R

�(et/2v)et/2 dv

v− z
. (A.6)

Note that m̃t is uniformly bounded on, say, D�/2 for, say, t ≤ 1. This may be seen by writing m̃t (z)= et/2m0(et/2z).
Then we can write

mt(z)= m̃t

(
z+ σtmt (z)

)
.

Thus, using the estimates on m0 in (A.2), we have∣∣mt(z)− m̃t (z)
∣∣ = ∣∣m̃t

(
z+ σtmt (z)

)− m̃t (z))
∣∣≤ CNδσt

∣∣mt(z)
∣∣≤ CNδσ

1/2
t , (A.7)

0 < t ≤ 1, on D�/2, where we used the a priori bound (A.5). It follows that∣∣mt(z)
∣∣≤ ∣∣m̃t (z)

∣∣+CNδσ
1/2
t ≤ C, 0 < t ≤ CN−2δ.

But then reasoning once more as in (A.7), we must have∣∣mt(z)− m̃t (z)
∣∣ ≤ ∣∣m̃t

(
z+ σtmt (z)

)− m̃t (z))
∣∣≤CσtN

δ
∣∣mt(z)

∣∣≤CσtN
δ, (A.8)
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0 < t ≤ CN−2δ , for all z ∈ D�/2. We hence obtain that |mt(z)| ≤ C on D� and 0 < t ≤ CN−2δ . Next, we observe
that ∣∣m̃t (z)−m0(z)

∣∣ = ∣∣et/2m0
(
e−t/2z

)−m0(z)
∣∣≤ C

(
et/2 − 1

)+CNδ
(
et/2 − 1

)
. (A.9)

Combining (A.8) and (A.9), (A.3) follows since t ≤ C′N−2δ by assumption.
To deal with the derivatives of mt(z), we first note that we for z ∈ D�/2, we have et/2(z + σtmt (z)) ∈ D� , for

t ≤ 1. Thus we can bound, for z ∈D�/2 and t ≤N−2δ ,∣∣∣∣σt ∫
R

�(v)dv

(e−t/2v − z− σtmt (z))2

∣∣∣∣= σt
∣∣(∂zm̃)

(
z+ σtmt (z)

)∣∣≤ CNδσt ≤CN−δ, (A.10)

where we used the definition of m̃(z) in (A.6) and the assumptions in (A.2).
Next, differentiating (A.1) with respect to z, we obtain

(
∂zmt (z)

)(
1 − σt

∫
R

�(v)dv

(e−t/2v− z− σtmt (z))2

)
=
∫
R

�(v)dv

(e−t/2v − z− σtmt (z))2
.

Hence, using twice (A.10), we get |∂zmt (z)| ≤ CNδ , for z ∈D�/2 and 0 ≤ t ≤ CN−2δ . Repeating the argument, we
see that there is another constant C such that |∂2

z mt (z)| ≤ CN2δ , 0 ≤ t ≤N−2δ , for all z ∈D�/2. This proves (A.4). �

A.1.1. Quantiles
From (A.4), we see that the derivatives of mt(z) are bounded inside D�/2 for t � 1. Without further assumptions on
� we have little control on mt(z) outside D�/2. Yet, we can circumvent this problem, by introducing a regularization
of mt(z), respectively the measure �t , as follows. Throughout the rest of this appendix, let η∗ > 0 satisfy

η∗Nδ � 1

N
. (A.11)

Recall the definition of the Poisson kernel P· in (2.2). We then set

�
η∗
t (x) := (Pη∗ ∗ �t )(x)=

1

π
Immt(x + iη∗). (A.12)

We claim that∫
R

�
η∗
t (y)dy

y − z
=mt(z+ iη∗), z ∈C

+. (A.13)

Indeed, using (2.3) and (A.12), we have

1

π
Im

∫
R

�
η∗
t (y)dy

y −E − iη
= (

Pη ∗ �η∗t
)
(E)= (Pη+η∗ ∗ �t )(E)= 1

π
Immt(E + iη+ iη∗),

where we used Pη ∗Pη∗ = Pη+η∗ . Since z=E+ iη and since the Stieltjes transform is analytic in the upper half plane,
we get (A.13). In the following we write m

η∗
t (z) := mt(z + iη∗). Note that �η∗t is a probability measure. It follows

from basic properties of the Poisson kernel that �η∗t converges uniformly on compact sets to �t as η∗ ↘ 0. Using (A.2)
it is then easy to check that |�η∗0 (x)− �0(x)| ≤ CNδη∗ �N−1, for all x ∈ [E∗ −�,E∗ +�]. Since the semicircular
flow preserve regularity (for short times see Lemma A.1), we also get |�η∗t (x) − �t (x)| ≤ CNδη∗ � N−1, for all
x ∈ [E∗ −�/2,E∗ +�/2], 0 ≤ t ≤N−2δ .

As a consequence of the regularization in (A.12), �η∗t is smooth with bounded derivatives (in terms of inverse
powers of η∗) that all lie in Lp(R), 1 ≤ p ≤∞. Consequently, the following basic properties of the Hilbert transform
can be justified easily (see, e.g., [46]): For n ∈N,

∂n
(
T�η∗t

)= (−1)n
(
T
(
∂n�

η∗
t

))
(A.14)
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(here ∂n denotes the nth spatial derivative). Further, we have T(T�η∗t )=−�
η∗
t .

Next, we define the continuous quantile, γ η∗
w (t), w ∈ [0,N ], of the measure �

η∗
t by∫ γ

η∗
w (t)

−∞
�
η∗
t (y)dy = w

N
, �

η∗
0 = �η∗ , (A.15)

cf., (2.9). Note that γ η∗
w (t) is defined for any w by (A.15), since the measure �

η∗
t is supported on the whole real axis.

The measure �t (without regularization) may be supported on several disjoint intervals. This leads to some ambiguities
in the definition of the quantiles, cf., (2.9) for one way of resolving the ambiguity. Using the regularized density �

η∗
t

is another way of avoiding this ambiguity. Nonetheless, we emphasize that the η∗-regularization is simply a technical
tool: for every practical purpose we have η∗ = 0 and the reader may forget about it in the subsequent arguments.

Corollary A.2. Under the assumption of Lemma A.1, the following holds. For 0 ≤ t ≤ C′N−2δ , with C′ sufficiently
small, we have the estimates∣∣�η∗t (E)− �η∗(E)

∣∣≤ CNδt,
∣∣(T�η∗t )

(E)− (
T�η∗

)
(E)

∣∣≤ CNδt, (A.16)

for all E ∈R. Further, for w such that γ η∗
w (0) ∈ [E∗ −�,E∗ +�], we have the estimate∣∣γ η∗

w (t)− γ η∗
w (0)

∣∣≤ CN−δ/2, 0 ≤ t ≤N−2δ, (A.17)

for some C. In particular, if γ η∗
w (0) ∈ [E∗ −�/4,E∗ +�/4], then γ

η∗
w (t) ∈ [E∗ −�/2,E∗ +�/2], for all 0 ≤ t ≤

C′N−2δ .

Proof. The estimates in (A.16) follow from (A.3) by noticing that �
η∗
t (E) = π−1 Immt(E + iη∗), respectively

(T�η∗t )(E)= Remt(E + iη∗). To establish (A.17), we note that, by definition,∫ γ
η∗
w (t)

−∞
�
η∗
t (y)dy =

∫ γ
η∗
w (0)

−∞
�η∗(y)dy = w

N
.

Thus, using (A.16), we get∫ γ
η∗
w (t)

−∞
�η∗(y)dy =

∫ γ
η∗
w (0)

−∞
�η∗(y)dy +O

(√
Nδt

)
, (A.18)

where we also used that � has finite second moment. By our assumption on w we must have �η∗(γ η∗
w (0)) ≥ c, for

some c > 0. We thus get from (A.18) and (A.2) that

�η∗
(
γ η∗
w (0)

)∣∣γ η∗
w (t)− γ η∗

w (0)
∣∣≤ C

∣∣∣∣∫ γ
η∗
w (t)

−∞
�η∗(y)dy −

∫ γ
η∗
w (0)

−∞
�η∗(y)dy

∣∣∣∣≤C
(
Nδt

)1/2
.

Thus, for 0 ≤ t ≤CN−2δ , we get |γ η∗
w (t)− γ

η∗
w (0)| ≤ CN−δ/2. �

The estimate (A.17) will serve as a priori bound below. To get precise estimates, we derive next the equation of
motion of γ η∗

w (t) under the semicircular flow t → �
η∗
t .

Lemma A.3. For t > 0, we have for all w ∈ [0,N ],
dγ η∗

w (t)

dt
= −(T�η∗t )(

γ η∗
w (t)

)− γ
η∗
w (t)

2
− η∗

2

(T�η∗t )(γ
η∗
w (t))

�
η∗
t (γ

η∗
w (t))

, (A.19)

and

dγ η∗
w (t)

dw
= 1

N�
η∗
t (γ

η∗
w (t))

. (A.20)
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In particular, if �η∗t (γ
η∗
w (t))≥ c, for some fixed c > 0, we have the uniform estimates

dγ η∗
w (t)

dt
=−(T�η∗t )(

γ η∗
w (t)

)− γ
η∗
w (t)

2
+O(η∗),

dγ η∗
w (t)

dw
=O

(
N−1). (A.21)

Remark A.4. Lemma A.3 directly controls γ
η∗
w (t) in the bulk. With some more effort the third term on the right

of (A.19) can by controlled at the edges. For example, assuming that �t vanishes as a square root at, say, its lowest
endpoint, it can also be shown that �η∗t (γ

η∗
w (t)) � √

η∗, for small w. Thus the “error” term in (A.19) is of order
√
η∗,

as η∗ ↘ 0, at the lowest edge of the density �
η∗
t .

Proof. We recall that mt(z), z ∈ C+, defined in (A.1), satisfies the following complex Burgers’ equation [47] (see
also [54])

dmt(z)

dt
= 1

2

d

dz

(
mt(z)

(
mt(z)+ z

))
, z ∈C

+, t ≥ 0. (A.22)

Indeed differentiating (A.1) with respect to time we obtain (A.22) after a series of elementary manipulations. We use
(A.22) with m

η∗
t (z)=mt(z+ iη∗) replacing mt(z) in the following.

To deal with the right side of (A.22), we note that

m
η∗
t (z)2 =

∫
R2

�
η∗
t (x)dx

x − z

�
η∗
t (y)dy

y − z
= 2

∫
R2

�
η∗
t (x)dx

x − z

�
η∗
t (y)dy

y − x
= 2

∫
R

(T�η∗t )(x)�
η∗
t (x)dx

x − z
, (A.23)

z ∈C+. Plugging (A.23) into (A.22), we get

dmη∗
t (z)

dt
= 1

2

d

dz

(∫
R

2(T�η∗t )(x)�
η∗
t (x)dx

x − z
+
∫
R

x�
η∗
t (x)dx

x − z
+
∫
R

iη∗�η∗t (x)

x − z

)
, z ∈C

+,

where we used that
∫
R
�
η∗
t (x)dx = 1. Differentiating the right side with respect to z, we get

dmη∗
t (z)

dt
= −1

2

∫
R

(2(T�η∗t )(x)+ x + iη∗)�η∗t (x)dx

(x − z)2
, z ∈C

+.

Integrating by parts in x, taking the imaginary part and the limit η↘ 0 (with η∗ > 0), we obtain

�̇
η∗
t (E)= 1

2

[(
2
(
T�η∗t

)
(E)+E

)
�
η∗
t (E)

]′ + η∗
2

[(
T�η∗t

)
(E)

]′
, (A.24)

where we use the notation ȧ ≡ ∂ta and a′ ≡ ∂Ea, for any function a ≡ a(t,E). On the other hand, differentiating the
defining equation (A.15) of γ η∗

w (t) with respect to t , we get

γ̇ η∗
w (t)=− 1

�
η∗
t (γ

η∗
w (t))

∫ γ
η∗
w (t)

−∞
�̇
η∗
t (y)dy. (A.25)

Hence, combining (A.25) and (A.24) we get (A.19).
Finally, to establish the first estimate in (A.21), we note that (T�η∗t ) is uniformly bounded by Lemma A.1. Together

with the assumption �
η∗
t (γ

η∗
w (t))≥ c > 0, (A.21) follows. To prove (A.20) and the second estimate in (A.21) it suffices

to differentiate (A.15) with respect to w. �

Remark A.5. For � ∈M(R), let

Ent[�] :=
∫
R

1

2
x2�(x)dx −

∫
R

log |x − y|d�(x)d�(y), (A.26)

Voiculescu’s free entropy. Then the limiting equation of (A.24), i.e., as η∗ ↘ 0, is the gradient flow of Ent[�t ] on the
Wasserstein space P2(R); see [9,10,41].
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To conclude this subsection, we give an estimate on the second derivative γ̈
η∗
w (t) inside the bulk.

Lemma A.6. Under the assumptions of Lemma A.1 the following holds. For w ∈ [0,N ], such that γ η∗
w (0) ∈ [E∗ −

�/4,E∗ +�/4] we have∣∣γ̈ η∗
w (t)

∣∣ ≤ CNδ
(
1 + ∣∣γ̇ η∗

w (t)
∣∣), 0 < t ≤ C′N−2δ. (A.27)

Proof. Let 0 < t ≤ C′N−2δ . For notational simplicity, we abbreviate here γw,t ≡ γ
η∗
w (t) and �t ≡ �

η∗
t . We first com-

pute

d

dt

[
(T�t )(γw,t )

] = (T�̇t )(γw,t )+
[
(T�t )

]′
(γw,t )γ̇w,t

= −1

2

[
T
((

2(T�t )(·)+ ·)�t (·))]′(γw,t )− η∗
2

[
T(T�t )

]′
(γw,t )+ [T�t ]′(γw,t )γ̇w,t ,

where we used (A.24) and (A.14). (Here T((2(T�t )(·)+ ·)�t (·))(x) denotes the Hilbert transform of the function
y → ((T�t )(y)+ y)�t (y) evaluated at x.) Next, we note the identities

1

2
(T�t )

2 − 1

2
�2
t = T

(
(T�t )�t

)
,

which follows from (A.23) and (T(�t (·)·))(x) = 1 + x(T�t )(x), x ∈ R, which can be checked by hand. We hence
obtain

d

dt
(T�t )(γw,t ) = −1

2

[
(T�t )

2]′(γw,t )+ 1

2

[
�2
t

]′
(γw,t )− 1

2

[·(T�t )(·)]′(γw,t )

+ [T�t ]′(γw,t )γ̇w,t + η∗
2
[�t ]′(γw,t ),

where we also used that (T(T�t ))=−�t . Simplifying further and using (A.19), we eventually obtain

d

dt

[
(T�t )(γw,t )

] = −1

2

[
�2
t

]′
(γw,t )+ 1

2

[
(T�t )

]
(γw,t )+ 2

[
(T�t )

]′
(γw,t )γ̇w,t

+ η∗
2
[�t ]′(γw,t )− η∗

2

[
(T�t )′(T�t )

�t

]
(γw,t ).

We further compute

d

dt

[[
(T�t )

�t

]
(γw,t )

]
=
[
∂t (T�t )

�t

]
(γw,t )−

[
(T�t )�̇t

�2
t

]
(γw,t )

+
[ [(T�t )]′

�t

]
(γw,t )γ̇w,t −

[
(T�t )�′

t

�2
t

]
(γw,t )γ̇w,t . (A.28)

We next recall that we have the bounds |�t (γw,t )| + |(T�t )(γw,t )| ≤ C, as follows from the boundedness of mt (see
Lemma A.1), and∣∣∂x Immt(x + iη∗)

∣∣+ ∣∣∂x Remt(x + iη∗)
∣∣≤ CNδ, (A.29)

for any x ∈ [E∗ − �/2,E∗ + �/2], see (A.4). Thus, recalling that (T�t )η∗(E) = Remt(E + iη∗), π�
η∗
t (E) =

Immt(E + iη∗), we find∣∣(T�t )′(γw,t )
∣∣+ ∣∣�′

t (γw,t )
∣∣≤ CNδ,

∣∣�̇t (γw,t )
∣∣≤ CNδ.
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Hence, differentiating (A.19) with respect to t and using (A.28), (A.29), we can bound

|γ̈w,t | ≤ 1

2
|γ̇w,t | +C

(
1 + η∗ + η∗

�t (γw,t )
+ η∗

(�t (γw,t ))2

)(
1 +CNδ +Nδ|γ̇w,t |

)
.

Finally, using that �t (γw,0) ≥ c/2, for 0 ≤ t ≤ CN−2δ , as follows from the estimates (A.16) and (A.17), and our
assumption �(γw,0)≥ c > 0, we immediately (A.27). �

Corollary A.7. Under the assumptions of Lemma A.6 the following holds true. Let w,w0 ∈ [0,N ] such that
γw(0), γw0(0) ∈ [E∗ −�/4,E∗ +�/4]. Then we have the estimates∣∣γ̇ η∗

w0
(t)

∣∣≤C,
∣∣γ̈ η∗

w0
(t)

∣∣≤ CNδ, (A.30)

and ∣∣γ̇ η∗
w (t)− γ̇ η∗

w0
(t)

∣∣≤CNδ |w−w0|
N

+Cη∗,
∣∣γ̇ η∗

w0
(t)− γ̇ η∗

w0
(0)

∣∣≤ CNδt, (A.31)

uniformly in 0 ≤ t ≤ CN−2δ , with constants depending only on δ, � and E and �.

Proof. Since γw(0), γw0(0) ∈ [E∗ − �/4,E∗ + �/4], we have by Corollary A.2 that γw(t), γw0(t) ∈∈ [E∗ −
�/2,E∗ +�/2], for t ≤ CN−2δ , in particular we have �t (γw(t)), �t (γw0(t))≥ c > 0 for such t .

Recalling the identity (T�η∗t0 )(E)= Remt0(E + iη∗) (as follows from (A.13) and (2.5)), and the estimates on mt ,
∂zmt derived in Lemma A.1, we conclude from that from (A.19) and (A.20) that∣∣γ̇w0(t)

∣∣≤C,
∣∣γ̇ η∗

w (t)− γ̇ η∗
w0
(t)

∣∣≤CN−1+δ|w−w0| +Cη∗,

for all 0 ≤ t ≤ CN−2δ . We further get from (A.27) that∣∣γ̈ η∗
w0
(t)

∣∣≤CNδ,
∣∣γ̇ η∗

w0
(t)− γ̇ η∗

w0
(0)

∣∣≤ CNδt.

This proves (A.31). �

A.1.2. Proofs of Lemma 4.2 and of Lemma 4.3

Proof of Lemma 4.2. Without lost of generality, we can assume that t1 = 0. Fix N ∈N. From Lemma A.1, we directly
get |�t (x)−�(t)| � CNδt . Thus for t ≤C′N−2δ , we get the first estimate in (4.8). Next, we note that first and second
derivative of mt(z), z=E+ iη, are bounded on D�/2 by (A.4). Thus the first derivative converges uniformly as η↘ 0,
E ∈ [E∗ −�/2,E∗ +�/2], and we have π∂E�t (E)= limη↘0 Immt(E+ iη). In particular, we obtain from (A.4) the
second estimate in (4.8). �

Proof of Lemma 4.3. Without lost of generality, we can assume that t1 = 0 here. Let η∗ > 0 as in (A.11). We then
recall that we have |�η∗t (x)− �t | ≤ CNδη∗, for all x ∈ [E∗ −�,E∗ +�] and 0 ≤ t ≤ C′N−2δ . This follows directly
from the definition of the Poisson kernel in (2.2) and Lemma A.1. Thus, using the definition of γ

η∗
w (t) in (A.15),

we must have |γ η∗
i (t)− γi(t)| ≤ CNδη∗, i ∈ Iσ . By Assumption (1) of Theorem 2.1, m0(z) extends to a continuous

function on D� . Thus reasoning as in the proof of Lemma A.1, we conclude that mt(z) extends to a continuous
function on D�/2 for 0 ≤ t ≤ C′N−2δ . Hence, considering now η∗ as a free parameter (not depending on N ) and
taking η∗ ↘ 0, we conclude from (A.19) that

lim
η∗↘0

dγ η∗
i (t)

dt
=−

∫
R

�t (y)dy

y − γi(t)
− γi(t)

2
, i ∈ Iσ , (A.32)

for all i ∈ Iσ and 0 ≤ t ≤ C′N−2δ . Here, we also used that �η∗t (γ
η∗
i (t)) > 0, �t (γi(t)) > 0. Further, since γ̇

η∗
i (t)

converges uniformly to γ̇i (t) for all 0 ≤ t ≤ C′N−2δ , we can also exchange derivative and limit on the left side of



1650 L. Erdős and K. Schnelli

(A.32) and we obtain (4.11). In particular, we have limη∗↘0 γ̇
η∗
i (t) = γ̇i (t), i ∈ Iσ , 0 ≤ t ≤ C′N−2δ . Thus (4.13)

follows from (A.31).
Now we show (4.12). For any fixed t we define the “continuous” quantiles∫ γu(t)

−∞
�t (x)dx = u

N
, u ∈ [0,N ], (A.33)

and also the “half-quantiles” γ̂i (t) := γi−1/2(t) for any integer i. Since t is fixed throughout the proof, we drop the t

argument. From (A.33) we get the regularity of the continuous quantiles:

dγu
du

= 1

N�(γu)
=O

(
N−1), d2γu

du2
=− �′(γu)

N2�(γu)3
=O

(
N−2+δ

)
, (A.34)

in the bulk regime, where we used (4.8).
Setting j = �(i) for brevity, we can write∫

R

�t (y)dy

y − γ�(i)
=
[∫ γ̂j−σN

−∞
+
∫ γ̂j+σN+1

γ̂j−σN

+
∫ ∞

γ̂j+σN+1

]
�(y)dy

y − γj
. (A.35)

The first integral can be written as (with γ̂0 =−∞ and using (A.33))

j−σN−1∑
k=0

∫ γ̂k+1

γ̂k

�(y)dy

y − γj
= 1

N

j−σN−1∑
k=1

1

γk − γj
+

j−σN−1∑
k=1

∫ γ̂k+1

γ̂k

(γk − y)�(y)dy

(y − γj )(γk − γj )
+
∫ γ̂1

−∞
�(y)dy

y − γj
. (A.36)

The last term is O(N−1). The error term in the middle is bounded by∣∣∣∣∣
j−σN−1∑

k=1

∫ γ̂k+1

γ̂k

(γk − y)�(y)dy

(y − γj )(γk − γj )

∣∣∣∣∣≤ C

N

j−σN−1∑
k=1

∫ γ̂k+1

γ̂k

�(y)dy

(γk − γj )2
≤ C

j−σN−1∑
k=1

1

(k − j)2
≤ CN−1.

The third integral in (A.35) is estimated similarly. Finally, for the second integral we write∫ γ̂j+σN+1

γ̂j−σN

�(y)dy

y − γj
=

σN∑
k:|k−j |=1

(
1

N(γk − γj )
+
∫ γ̂k+1

γ̂k

(γk − y)�(y)dy

(y − γj )(γk − γj )

)
+
∫ γ̂j+1

γ̂j

�(y)dy

y − γj
. (A.37)

In the last integral we Taylor expand �(y)= �(γj )+O(Nδ|γj − y|) by (4.8) to get∫ γ̂j+1

γ̂j

�(y)dy

y − γj
= �(γj )

∫ γ̂j+1

γ̂j

dy

y − γj
+O

(
N−1).

Computing the integral explicitly and using γ̂j = γj−1/2, γ̂j+1 = γj+1/2 we have∫ γ̂j+1

γ̂j

dy

y − γj
= log

∣∣∣∣1 + γj−1/2 − 2γj + γj+1/2

γj−1/2 − γj

∣∣∣∣=O
(
N−1+δ

)
.

Here we used γj−1/2 − γj ≥ c/N and (A.34) to estimate the second order discrete derivative.
Finally, we estimate the integral in the middle term in (A.37) and we will show that

σN∑
k:|k−j |=1

∫ γ̂k+1

γ̂k

(γk − y)�(y)dy

(y − γj )(γk − γj )
=O

(
N−1+δ logN

)
. (A.38)

Clearly, (A.38) together with (A.35), (A.36), (A.37) and (A.39) imply (4.12).
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In the rest of the proof we show (A.38). We write

σN∑
k:|k−j |=1

∫ γ̂k+1

γ̂k

(γk − y)�(y)dy

(y − γj )(γk − γj )

=
σN∑
m=1

(∫ γ̂j−m+1

γ̂j−m

(γj−m − y)�(y)dy

(y − γj )(γj−m − γj )
+
∫ γ̂j+m+1

γ̂j+m

(γj+m − y)�(y)dy

(y − γj )(γj+m − γj )

)
. (A.39)

In the first integral, we replace �(y) with �(γj ). From Taylor expansion, |�(y)− �(γj )| ≤ CmN−1+δ , the error in
this replacement is bounded by

CmNδ

N

∫ γ̂j−m+1

γ̂j−m

|γj−m − y|dy

|y − γj ||γj−m − γj | ≤
CmNδ

N2

∫ γ̂j−m+1

γ̂j−m

dy

|y − γj ||γj−m − γj | ≤
CNδ

Nm
,

since |γj−m − γj | ∼ m/N . We get a similar error when replacing �(y) with �(γj ) in the second integral in (A.39).
These errors, even after summation over m, are still of order O(N−1+δ logN), hence negligible. Thus we get that
(A.39) equals

σN∑
m=1

(
�(γj )

γj−m − γj

∫ γ̂j−m+1

γ̂j−m

γj−m − y

y − γj
dy + �(γj )

γj+m − γj

∫ γ̂j+m+1

γ̂j+m

γj+m − y

y − γj
dy

)
+O

(
N−1+δ logN

)
.

Next, using (A.34), we have

1

γj−m − γj
=−�(γj )N

m
+O

(
Nδ

)
, γj+m − γj = m

�(γj )N
+O

(
N−2+δm2),

so we get, after a change of variables, that (A.39) equals

σN∑
m=1

N

m

(
−
∫ γ̂j−m+1

γ̂j−m

γj−m − y

y − γj
dy +

∫ γ̂j+m+1

γ̂j+m

γj+m − y

y − γj
dy

)
+O

(
N−1+δ logN

)

=−
σN∑
m=1

N

m

(∫ γ̂j−m+1−γj−m

γ̂j−m−γj−m

udu

γj − γj−m − u
+
∫ γ̂j+m+1−γj+m

γ̂j+m−γj+m

udu

γj+m − γj + u

)
+O

(
N−1+δ logN

)
.

The limits of integrations can be approximated as follows:

γ̂j−m − γj−m =− 1

2N�(γj )
+O

(
mN−2+δ

)
, γ̂j+m − γj+m =− 1

2N�(γj )
+O

(
mN−2+δ

)
,

γ̂j−m+1 − γj−m = 1

2N�(γj )
+O

(
mN−2+δ

)
, γ̂j+m+1 − γj+m = 1

2N�(γj )
+O

(
mN−2+δ

)
.

Replacing these limits with their common values yields negligible errors, for example:

σN∑
m=1

N

m

∫ γ̂j−m+1−γj−m

1
2N�(γj )

udu

|γj − γj−m − u| ≤ C

σN∑
m=1

N

m
· mNδ

N2
· 1

N

1

m/N
= CN−1+δ logN.

Thus, with the notation d := 1/2N�(γj ), we get

(A.39)=−
σN∑
m=1

N

m

(∫ d

−d

udu

γj − γj−m − u
+
∫ d

−d

udu

γj+m − γj + u

)
+O

(
N−1+δ logN

)
. (A.40)
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Using that γj − γj−m = γj+m − γj +O(m2N−2+δ) from (A.34), we can write

1

γj+m − γj + u
= 1

γj − γj−m + u
+O

(
Nδ

)
,

for any u in the second integration regime, since here |u| ≤ 1
2N�(γj )

and γj+m − γj ≥ m
N�(γj )

+O(m2N−2+δ). Thus,

replacing γj+m − γj with γj − γj−m in the denominator of the second integral in (A.40) yields an error of order∑
m(N/m)N−2+δ = CN1+δ logN . After this replacement the two integrals in (A.40) cancel out:∫ d

−d

udu

γj − γj−m − u
+
∫ d

−d

udu

γj − γj−m + u
=
∫ d

−d

udu

(γj − γj−m)2 − u2
= 0.

We have shown that (A.39) is of order O(N−1+δ logN), which finishes the proof of (A.38). �

A.2. Remarks on Assumption (1) of Theorem 2.1

We conclude this Appendix with some remarks on Assumption (1) of Theorem 2.1. We consider the semicircular flow
�t =Ft (�) started from �, for t ≥ 0. As remarked earlier, the semicircle law �sc is invariant under the flow. It is then
easy to check that msc, the Stieltjes transform of �sc satisfies the bound in (2.15) for all t with δ = 1.

For many matrix models the distribution �, and hence also �t , are not explicit and checking Assumption (1)
directly may be not an easy task. In many situations, one can however use the smoothing effect of the semicircle flow
to establish these estimates. The following example may be of some interest.

Denote by C0,α(R), C0,α(C+) the spaces of uniformly α-Hölder continuous functions on R, C+. Assume that
� ∈C0,α(R), for some α > 0. Then the Stieltjes transform, m0, of � is in C0,α(C+). Adapting the proof of Lemma A.1
one can establish the following result. Abbreviate σt = 1 − e−t .

Lemma A.8. Assume that � ∈C0,α(R). Then, mt(z), the Stieltjes transform of �t =Ft (�), is uniformly bounded for
all z ∈C+ ∪R and t ≥ 0. Moreover, there is a constant C, depending only on �, such that∣∣mt(z)−m0(z)

∣∣≤ Cσα
t , 0 ≤ t ≤ 1, (A.41)

and all z ∈C+ ∪R. Further, for all n ∈N, there is Cn such that we have the bounds∣∣∂nz mt (z)
∣∣≤Cn

(
σt Immt(z)

)α−n
, t > 0, (A.42)

for all z ∈C+ ∪R.

Thus, running the semicircular flow from time t = 0 to time t1 = N−τ1 , τ1 > 0, we see that Lemma A.8 implies
the Assumption (1) of Theorem 2.1 for energies inside the “bulk” for the choice δ ≥ (1 − α)τ1. For the Wigner-like
matrices of [1,2] typical choices for α are 1/3 or 1/2.

Appendix B: Persistent trailing of the DBM

In this section, we prove that the time-dependent quantiles γk(t) persistently trail the DBM up to a time-independent
shift in the indices. More precisely, we have the following

Proposition B.1. Consider a time interval [t1, t2] of length t2 − t1 =O(N−ε) with some small ε > 2δ, where δ, given
in (2.15), is the regularity exponent of the initial data of the quantiles. Let λ(t) be the solution of (2.11) and let γ (t)

be given by (2.9). Suppose that

P

{∣∣λi(t)− λj (t)
∣∣≤ Nξ |i − j |

N
, i, j ∈ Iσ

}
≥ 1 −N−D, (B.1)
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for any D. Fix an index L in the bulk and let �(L) such that∣∣λL(t1)− γ�(L)(t1)
∣∣≤ CN−1+ξ . (B.2)

Then in the probability space of the Brownian motions {Bi(t) : i ∈NN, t ∈ [t1, t2]} we have

P

(
sup

t∈[t1,t2]
∣∣λL(t)− γ�(L)(t)

∣∣≤CN−1+2ξ
)
≥ 1 −N−ξ . (B.3)

Notice that γ�(L)(t) is a deterministic trajectory. This result therefore also shows that the typical fluctuation of the
solution of the DBM is much smaller than the white noise term in (2.11) naively indicates. Indeed, the variance of the
integral of this term is

E

∣∣∣∣∫ t2

t1

√
2

βN
dBL

∣∣∣∣2 ! t2 − t1

N
,

which would indicate a behavior |λL(t2) − λL(t1)| � (t2 − t1)
1/2N−1/2. This is much larger than the actual value

|λL(t2)− λL(t1)| ≤ CN−1+ξ .

Proof of Proposition B.1. Let

vi(t) := λi(t)− γ�(i)(t).

Subtracting the DBM (2.11) from (4.12) and localizing it for the indices i ∈ I , we get

dvi(t)=
√

2

βN
dBi(t)−

∑
j∈I

Bij (vi − vj )dt −Wivi dt + κi(t)dt, i ∈ I,

with (time-dependent) coefficients

Bij = 1

N

1

(λj − λi)(γj − γi)
, i, j ∈ I, Wi = 1

2
+
∑
k /∈I

1

N

1

(λk − λi)(γk − γi)
, i ∈ I,

and a deterministic error term |κi(t)| ≤N−1+δ .
By (B.1) and the spacing of the quantiles in the bulk, we know that

Bij (s)≥ b

|i − j | , Wi (s)≥ b

||j −L| −K| + 1
, (B.4)

with b :=N1−ξ uniformly in time s ∈ [t1, t2] with very high probability.
Let U(s, t) be the propagator of the parabolic equation

dui(t)

dt
=−

∑
j∈I

Bij (ui − uj )−Wiui, i ∈ I, (B.5)

then

vi(t)= vi(t1)+
∫ t

t1

∑
j

[
U(s, t)

]
ij

[√
2

βN
dBj (s)+ κj (s)ds

]
. (B.6)

Since the propagator is a contraction in the supremum norm, the κ(s) error term, after integration, gives a negligible
error at most C(t2 − t1)N

−1+δ ≤ CN−1. To estimate the main term, notice that the propagator depends on the sigma
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algebra �s := {{Bi(u)}i∈I : u ∈ (s, t]} and is independent of the white noise at time s. Therefore

E
∣∣vi(t)− vi(t1)

∣∣2 = 2

βN
E

∫ t

t1

∑
j

∣∣[U(s, t)
]
ij

∣∣2 ds +O
(
N−2). (B.7)

Fix i ∈ I , s and t and define wj := [U(s, t)]ij , which is the same as [U(s, t)]ji by symmetry. Then for any ν > 0, we
have ∣∣∣∣∑

j

∣∣[U(s, t)
]
ij

∣∣2∣∣∣∣≤ ∥∥U(s, t)w
∥∥∞ ≤ CNξ

[N(t − s)] 1
1+ν

‖w‖1+ν,

by the heat kernel estimate on the equation (B.5); see Proposition 9.4 in [28] (the conditions of this proposition are
guaranteed by (B.4)). By the Lp-contraction of the semigroup for any p ≥ 1, we have

‖w‖1+ν = ∥∥U(s, t)δi
∥∥

1+ν
≤ ‖δi‖1+ν = 1.

Thus we get

E
∣∣vi(t)− vi(t1)

∣∣2 ≤ CNξ

N1+ 1
1+ν

∫ t

t1

1

(t − s)
1

1+ν

ds +O
(
N−2)≤Cν

Nξ+2ν

N2
≤ C

N2ξ

N2
, (B.8)

after choosing ν = ξ/2. Using Doob martingale inequality, one also has

E sup
t≤t2

∣∣vi(t)− vi(t1)
∣∣2 ≤ CE

∣∣vi(t2)− vi(t1)
∣∣2 ≤C

N2ξ

N2
.

Setting i = L and using Markov inequality and combining it with assumption (B.2), we get (B.3). �
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[26] L. Erdős, B. Schlein, H.-T. Yau and J. Yin. The local relaxation flow approach to universality of the local statistics for random matrices. Ann.

Inst. Henri Poincaré B, Probab. Stat. 48 (1) (2012) 1–46. MR2919197
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[28] L. Erdős and H.-T. Yau. Gap universality of generalized Wigner and β-ensembles. J. Eur. Math. Soc. (JEMS) 17 (2015) 1927–2036.

MR3372074
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