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Abstract. For d ∈ {1,2,3}, let (Bd
t ; t ≥ 0) be a d-dimensional standard Brownian motion. We study the d-Brownian span set

Span(d) := {t − s;Bd
s = Bd

t for some 0 ≤ s ≤ t}. We prove that almost surely the random set Span(d) is σ -compact and dense
in R+. In addition, we show that Span(1) = R+ almost surely; the Lebesgue measure of Span(2) is 0 almost surely and its
Hausdorff dimension is 1 almost surely; and the Hausdorff dimension of Span(3) is 1

2 almost surely. We also list a number of
conjectures and open problems.

Résumé. Pour d ∈ {1,2,3}, soit (Bd
t ; t ≥ 0) un mouvement brownien standard d-dimensionnel. Nous étudions le d-ensemble

de portée brownienne Span(d) := {t − s;Bd
s = Bd

t pour certains 0 ≤ s ≤ t}. Nous prouvons que presque sûrement l’ensemble
aléatoire Span(d) est σ -compact et dense dans R+. De plus, nous montrons que Span(1) = R+ presque sûrement ; la mesure de
Lebesgue de Span(2) est 0 presque sûrement et sa dimension de Hausdorff est 1 presque sûrement ; et la dimension de Hausdorff
de Span(3) est 1

2 presque sûrement. Nous listons aussi un certain nombre de conjectures et problèmes ouverts.

MSC: 28A78; 60J65

Keywords: Brownian span set; Random set; Energy method; Fractal projection; Hausdorff dimension; Multiple point; Self-intersection; Local
time; Self-similar

1. Introduction and statement of main results

1.1. Main results and motivation

We investigate the random set Span(d), consisting of the durations of loops at all levels in a d-dimensional standard
Brownian motion (Bd

t ; t ≥ 0) for some positive integer d . That is,

Span(d) := {
t − s;Bd

t = Bd
s for some 0 ≤ s ≤ t

}
. (1.1)

We call Span(d) the d-Brownian span set. Note that we allow loops to have zero duration.
Observe that Span(d) = ⋃

u>0 Span[0,u](d), where

Span[0,u](d) := {
t − s;Bd

s = Bd
t for some 0 ≤ s ≤ t ≤ u

}
(1.2)
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is the span set of Brownian motion on [0, u]. It follows from Brownian scaling that (Span[0,u](d);u ≥ 0) has the
scaling property(

Span[0,cu](d);u > 0
) (d)= (

c Span[0,u](d);u > 0
)

for all c > 0, (1.3)

where X
(d)= Y means that the distribution of X is the same as that of Y . In particular,

Span[0,u](d)
(d)= uSpan[0,1](d) for all u > 0. (1.4)

Consequently,

Span(d)
(d)= c Span(d) for all c > 0. (1.5)

Note that for all u > 0, Span[0,u](d) is a random closed set, while Span(d) is a countable union of random closed sets,
which may be treated as a random Borel set, see e.g. Molchanov [106, Section 1.2.5] for background.

Given a path with values in R
d , a point in R

d that is visited at least twice is called a double point, while a point
visited at least r times is called an r-multiple point. It is a result of Kakutani [71] and Dvoretzky et al. [27] that for
d ≥ 4, almost surely the d-dimensional Brownian motion does not have a double point and hence

Span(d) = {0} a.s. for d ≥ 4.

In Section 1.2, we review some known results about the multiple points of the d-dimensional Brownian motion for
d = 1,2,3. As a consequence of the results reviewed there,

Span(d) �= {0} a.s. for d ∈ {1,2,3}.
We now describe our results and some of our motivations for undertaking the study of the Brownian span set. Given

A ⊂ R
d for some positive integer d , let LebA be the Lebesgue measure of the set A and dimH A be the Hausdorff

dimension of the set A. Our main result, which we prove in the course of the paper, is the following.

Theorem 1.1. For d = 1,2,3, almost surely the random set Span(d) is σ -compact and dense in R+. Furthermore,

(1) Span(1) =R+ a.s.,
(2) Leb Span(2) = 0 a.s. and dimH Span(2) = 1 a.s.,
(3) dimH Span(3) = 1

2 a.s.

For h > 0 let

Fh := inf
{
t ≥ 0;Bd

t+h = Bd
t

}
(1.6)

be the first time at which the stationary Gaussian process (Bd
t+h −Bd

t ; t ≥ 0) hits the origin. This Gaussian process was
studied by Slepian [140] and Shepp [136,137] when d = 1, see also Pitman and Tang [113] for further developments.
Note that

Span(d) \ {0} = {
h > 0;Fh < ∞}

,

and so an understanding of the distributional properties of the random variables Fh is important to the study of the
random set Span(d). By Brownian scaling, the random variable Fh has the same distribution as hF , where

F := F 1 = inf
{
t ≥ 0;Bd

t+1 = Bd
t

}
. (1.7)

Indeed, it is even true that for c > 0 the stochastic process {Fch;h > 0} has the same distribution as the stochastic
process {cFh;h > 0}.
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A possible approach to obtaining information about Span(d) is to consider the analogous object for simple sym-
metric random walk. Write N for the nonnegative integers and N

∗ for the positive integers. Let (RWk)k∈N be a
one-dimensional simple symmetric random walk. For n ∈ 2N∗, put

Fn := inf{k ≥ 0;RWk+n = RWk}.
Pitman and Tang [112, Proposition 2.4] established the following invariance principle for the first hitting bridge

{RWFn+j − RWFn;0 ≤ j ≤ n}.

Proposition 1.2 ([112]). The distribution of the process(
RWFn+nu − RWFn√

n
;0 ≤ u ≤ 1

)
,

where the walk is defined by linear interpolation between integer times, converges weakly to the distribution of
(B1

F+u − B1
F ;0 ≤ u ≤ 1) as n → ∞.

As explained in Pitman and Tang [113, Section 2], there is an almost sure version of Proposition 1.2 obtained
by considering Knight’s [76] consistent embedding of simple symmetric random walks on finer and finer time and
space scales in Brownian motion (see also the monograph of Knight [78, Section 1.3] for details of this embedding).
Later, Knight’s approach was simplified by Révész [116, Section 6.3] and Szabados [142] using what they call the
twist-shrinkage algorithm. We refer to the thesis of Székely [144] for further discussions.

The proof of Proposition 1.2 relies on the fact that F thought of as a map from the space of continuous real-valued
paths to the nonnegative reals is continuous almost surely. As the following example shows, this map is not continuous
and that makes the use of random walk approximations a more delicate matter.

Example 1.3. Define C0[0,1] to be the set of continuous paths (wt ;0 ≤ t ≤ 1) with real values, starting from w0 = 0.
Given a path w ∈ C0[0,1], let

Spanw := {t − s;wt = ws for some 0 ≤ s ≤ t ≤ 1} (1.8)

be the span set of w. Consider the piecewise linear function f ∈ C0[0,1] with slopes 1 on [0, 1
4 ] ∪ [ 3

4 ,1] and −1 on
[ 1

4 , 3
4 ]. It is not hard to see that Spanf = [0, 1

2 ] ∪ {1}; that is, there is a gap of length 1
2 . For n ∈N, let fn ∈ C0[0,1] be

the piecewise linear function with slopes 1 on [0, 1
4 ], −1 on [ 1

4 , 3
4 ] and 1 − 1

n
on [ 3

4 ,1]. Observe that Spanfn
= [0, 1

2 ]
for each n ∈N. Define the Hausdorff distance dH between two subsets of R by

dH (X,Y ) := inf
{
ε ≥ 0;X ⊂ Y ε and Y ⊂ Xε

}
for X,Y ⊂R, (1.9)

where Xε (resp. Y ε) is the ε-neighborhood of X (resp. Y ). It is well-known that dH is a metric on the set of all compact
subsets of R. Then for each n ∈ N,

dH (Spanfn
,Spanf ) = 1

2
,

while ‖fn − f ‖∞ := sup0≤t≤1 |fn(t) − f (t)| → 0 as n → ∞. Therefore, the map w → Spanw from C0[0,1] with the
sup-norm metric to compact subsets of [0,1] with the Hausdorff metric is not continuous.

Observe, however, that if {gn}n∈N is a sequence in C0[0,1] such that ‖gn − g‖∞ → 0 as n → ∞ for some g ∈
C0[0,1], then⋂

m∈N

⋃
n>m

Spangn
⊆ Spang

and any subsequential limit of {Spangn
}n∈N in the Hausdorff metric is a subset of Spang . As this example shows, the

containment may be strict.
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We will see in Section 3 that almost surely Span[0,1](1) is a compact subset of [0,1] with 0 < ELeb Span[0,1](1) <

1. In particular,

P
(
Span[0,1](1) �= Span(1) ∩ [0,1]) > 0, (1.10)

since Span(1) ∩ [0,1] = [0,1] almost surely by Theorem 1.1(1).
Consider the random set

Ld := {
(s, t) ∈ R

2+;Bd
s = Bd

t

}
. (1.11)

The set Ld can be viewed as the 0-level set of the random field Xd
s,t := Bd

t −Bd
s for s, t ≥ 0; that is, Ld = (Xd)−1({0}).

For θ ∈ [−π
2 , π

2 ), let

Projθ : R2 � X → X · (cos θ, sin θ) ∈ R (1.12)

be the orthogonal projection of R2 onto the θ -direction. It is not hard to see that

Span(d) = √
2 Proj− π

4

(
Ld

) ∩R+. (1.13)

The relation (1.13) suggests that the d-Brownian span set can be understood by studying the projection of Ld onto the
−π

4 -direction. To this end, we recall a result of Rosen [121, Theorem 6], [122, Theorem 2] which gives the Hausdorff
dimension of the random set Ld \ {(t, t) ∈ R

2+}.

Theorem 1.4 ([121,122]). Let Ld be defined by (1.11), and the set D := {(t, t) ∈R
2+}. Then

dimH Ld \D = 2 − d

2
a.s. for d = 1,2,3. (1.14)

Rosen [122] provided a general theory for r-multiple points of the N -parameter Brownian sheet with values in
R

d from which the formula (1.14) follows as a special case by taking r = 2, N = 1 and d ∈ N
∗. The formula (1.14)

for d = 2,3 was also proved in Rosen [121] by a thorough study of the self-intersection local times. We refer to
Section 1.2 for a review of the theory of self-intersection local times, and connections to our problem.

Let us return to the Brownian span sets. Since the map Proj− π
4

is Lipschitz and Proj− π
4
D = {0}, the relation (1.13)

together with Theorem 1.4 imply the following.

Corollary 1.5.

dimH Span(d) ≤ 2 − d

2
a.s. for d = 2,3. (1.15)

The bound dimH Span(2) ≤ 1 is immediate, but the upper bound for dimH Span(3) provided by Corollary 1.5 is
non-trivial. One of the main contributions of this work is to prove the corresponding lower bounds

dimH Span(d) ≥ 2 − d

2
a.s. for d = 2,3. (1.16)

Our approach is to construct a random measure Md(·) on the Brownian span set Span(d) for d = 2,3. We describe
in Section 1.2 how this measure is related to the self-intersection local times. In Section 4.1, we define rigorously the
random measure Md(·) by weak approximation as in the case of self-intersection local times. After a study of this
measure in Section 4.2, we apply Frostman’s energy method to get the lower bound (1.16).

To conclude, we explain why the claimed Hausdorff dimensions in Theorem 1.1 are expected to be true in the light
of a well-known result of Marstrand [100] on fractal projections.

Theorem 1.6 ([100]). Let A be a Borel subset of R2.
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(1) If dimH A ≤ 1, then dimH Projθ A = dimH A for almost all θ ∈ [−π
2 , π

2 ).
(2) If dimH A > 1, then Leb Projθ A > 0 for almost all θ ∈ [−π

2 , π
2 ).

We refer to Falconer [45, Chapter 6], Mattila [102, Chapter 9] and a recent survey of Falconer et al. [43] for further
development on fractal projections. By Theorem 1.4 and Theorem 1.6(1), we have a.s. for almost all θ ∈ [−π

2 , π
2 ),

dimH Projθ Ld \D = 2 − d

2
for d = 2,3.

In other words, almost surely the above relations hold outside a set of directions having zero Lebesgue measure.
Unfortunately, this result does not provide any information on the exceptional set. By Kaufman’s dimension doubling
theorem [73], almost surely 0 does not belong to the exceptional set. Theorem 1.1 implies that almost surely −π

4 does
not belong to the exceptional set as well.

1.2. Related problems and literature

First we provide a literature review on the multiple points of the d-dimensional Brownian motion for d ≤ 3. In
particular, the results imply that almost surely Span(d) \ {0} �=∅ for d ≤ 3.

• For d = 1, Lévy [92] proved that the linear Brownian motion is point recurrent and points are regular for them-
selves, so that almost surely any given point is visited uncountably many times. In fact, almost surely all points
are visited uncountably many times by the linear Brownian motion. One way to see this is as follows. Let
φ(t) := √

2t | log | log t ||. According to Perkins [111], almost surely

mφ

({
s ≤ t;B1

t = x
}) = �x

t for all t ≥ 0, x ∈ R,

where mφ(A) is the φ-Hausdorff measure of a set A and �x
t is the Brownian local times at level x up to time t . This

implies that almost surely,{
x ∈R; (B1

t ; t ≥ 0
)

visits x ∈ R uncountably many times
}

⊃ It := {
x ∈R;�x

t > 0
}

for each t > 0.

It is a consequence of the second Ray–Knight theorem [77,115], see Marcus and Rosen [96, Theorem 2.7.1], that
almost surely It is an open interval for each t > 0 and

⋃
t>0 It =R.

• For d = 2, Dvoretzky et al. [30] showed that almost surely planar Brownian paths contain points of uncountable
multiplicity. Taylor [146] proved that for all r almost surely the set of r-multiple points of planar Brownian motion
has Hausdorff dimension 2, and later Wolpert [154] provided an alternative proof for this result. Adelman and
Dvoretzky [2] generalized a result of Dvoretzky et al. [28] by showing that almost surely for all positive integers r

there are strict r-multiple points which the planar Brownian motion visits exactly r times (that is, there are points
that are r-multiple points but not (r + 1)-multiple points). In a series of papers [81,82,85], Le Gall determined
the exact Hausdorff measure of the set of r-multiple points for each r , a result which also implies that there are
strict r-multiple points fore each r . Moreover, Le Gall [83] established the result that given any compact, totally
disconnected set K ⊂ R+, almost surely there is a point z ∈ R

2 such that the level set at z has the same order type
as K . In particular, almost surely there is a point z ∈ R

2 such that the level set at z is homeomorphic to the classical
Cantor set. We refer to Freidlin and Le Gall [48] for various topics on the planar Brownian motion.

• For d = 3, Dvoretzky et al. [29] showed that almost surely the three-dimensional Brownian motion does not have
triple points. By refining the argument of Taylor [146], Fristedt [49] was able to prove that almost surely the set of
double points of the three-dimensional Brownian motion has Hausdorff dimension 1.

We refer to the survey of Khoshnevisan [75], and Mörters and Peres [107, Chapter 9] for further development on
intersections of Brownian paths.

The existence of multiple points of Lévy processes was investigated by Taylor [146], Hendricks [54,55], Hawkes
[52], Evans [42], and Le Gall et al. [87]. Recently, the extent to which SLE paths self-intersect has received much
attention. Rohde and Schramm [120] showed that the chordal SLEκ process is self-intersecting for κ > 4. Relying on
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the prediction of Duplantier and Saleur [26] in the physics literature, Miller and Wu [104] provided a rigorous proof
of the almost sure Hausdorff dimension of the double points of a chordal SLEκ path for κ > 4. They also proved
that almost surely the chordal SLEκ process does not have a triple point for 4 < κ < 8, and the set of triple points is
countable for κ ≥ 8.

Now we turn to the theory of self-intersection local times. Formally, this measure can be written as

αd(x,B) :=
∫ ∫

B

δx

(
Bd

t − Bd
s

)
ds dt for B ∈ B

(
R

2+
)
, (1.17)

where δx is the Dirac mass at x ∈ R
d . The random measure α2 defined as in (1.17) plays an important role in

Symanzik’s [141] construction of Euclidean quantum field as well as the Edwards–Westwater’s model [40,151–153]
of random polymers. Let

p2
ε (z) := exp(−|z|2

2ε
)

2πε
for z ∈R

2,

so that (p2
ε )ε>0 converges weakly to δ0 as ε → 0. In an appendix to Symanzik [141], Varadhan [148] showed that

limε→0
∫∫

[0,T ]2 p2
ε (B

2
t − B2

s ) ds dt is infinite, but∫ ∫
[0,T ]2

p2
ε

(
B2

t − B2
s

)
ds dt − T

2π
log

(
1

ε

)
converges in L2 to an almost surely finite random variable as ε → 0.

In the 1980s, Rosen [123,125] established Tanaka-like formulae for self-intersection local times. These were used
by Yor [156] and Rosen [126] to explain Varadhan’s renormalization for α2(0, ·), and by Yor [155] to study the
renormalization for α3(0, ·). Around the same time, Le Gall [80] derived the existence of (α2(x, ·);x �= 0) from
earlier work of Geman et al. [51], and proved that x → α2(x, ·) −Eα2(x, ·) can be extended as a continuous function
to R

2. This provided an alternative explanation of Varadhan’s renormalization. Furthermore, the renormalization of
self-intersection local times for planar Brownian motion was explored by Dynkin [33–39], Rosen [124], Le Gall [84,
86], Calais and Yor [16], and Rosen and Yor [132]. Le Jan [88] provided a construction of self-intersection local
times for Brownian motion on manifolds. Later Bass and Khoshnevisan [7] studied self-intersection local times by
the theory of additive functionals for Markov processes, while Cadre [15], Bass and Rosen [8], and Szabados [143]
approached by the strong invariance principle.

The regularity of the renormalized self-intersection local times was investigated by Rosen [128–131,133], Bertoin
[10], Werner [150], Marcus and Rosen [95], and Markowsky [97,98]. Watanabe [149] and Shieh [138] initiated a
white noise analysis via chaos expansions of self-intersection local times for Brownian motion. The approach was
further developed by Nualart and Vives [108], Imkeller et al. [63,64], He et al. [53], Hu [57], de Faria et al. [21–23],
Albeverio et al. [3], Mendonça and Streit [103], Rezgui and Streit [119], Jenane et al. [68], Markowsky [99], Bock et
al. [11], and Bornales et al. [12]. The large deviation principle and the law of iterated logarithm for self-intersection
local times for Brownian motion were considered by Chen and Li [19], Bass and Chen [4], and Bass et al. [5], see also
Chen [18] [17, Chapter 4] for further references.

Rosen [127] considered renormalized self-intersection local times for fractional Brownian motion, which were
further treated by Hu [58], Hu and Nualart [59,60], Rezgui [118], Hu et al. [61,62], Rudenko [134], and Jung and
Markowsky [69,70]. The renormalization of self-intersection local times for Gaussian processes was explored by
Berman [9], Izyumtseva [66,67], and Dorogovtsev and Izyumtseva [24,25]. Recently, motivated by Lawler–Werner’s
[79] construction of Brownian loop soup, Le Jan [89,90] studied the occupation fields induced by Poisson point
processes of Markov loops, providing an interpretation of Dynkin’s isomorphism [32]. There the renormalization for
the self-intersection local times of the Poisson loop ensemble was investigated. We refer to Sznitman [145] for a
user-friendly account, and to Lupu [94], Fitzsimmons et al. [46,47], and Le Jan et al. [91] for various extensions.

Let us describe the connection between the self-intersection local times αd(0, ·) and the random measure Md(·) that
we use to prove the lower bounds (1.16). Formally, the measure Md(·) is defined as the image of the self-intersection
local times αd(0, ·) by the projection

√
2 Proj− π

4
. That is,

Md(A) := [
(
√

2 Proj− π
4
)∗αd

]
(0,A) for A ∈ B(R+), (1.18)
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where f∗μ is the push-forward of the measure μ by the map f . From Rosen [121] and Le Gall’s [80] explanation
of Varadhan’s renormalization as well as the computation in Section 4.1, the random measure Md(·) is σ -finite with
infinite mass accumulated at 0. We restrict Md(·) to intervals away from the origin.

The rest of the paper is organized as follows.

• In Section 2, we provide some preliminary observations of the d-Brownian span set for d ∈ {1,2,3}.
• In Section 3, we deal with the case of d = 1. We study the properties of the span sets of linear Brownian motion,

Span[0,u](1) for u > 0 and Span(1), and prove Theorem 1.1(1).
• In Section 4, we construct a measure supported by Span(d) for d = 2,3, and investigate the properties of this

measure. We prove Theorem 1.1(2), (3).

We show that the random set Span(d) is almost surely σ -compact in Section 3.1 and that it is almost surely dense in
R+ in Section 4.1. We present a selection of open problems in Sections 3.2 and 4.3.

2. Basic properties of the d-Brownian span set for d = 1,2,3

In this section, we study topological properties of the d-Brownian span set for d ∈ {1,2,3}. To proceed further, we
require the following notation.

• For T > 0, define C0([0, T ],Rd) to be the set of continuous paths (wt ;0 ≤ t ≤ T ) with values in R
d starting from

w0 = 0 on [0, T ], endowed with the topology of the uniform convergence.
• Define C0([0,∞),Rd) to be the set of continuous paths (wt ; t ≥ 0) with values in R

d starting from w(0) = 0 on
[0,∞), endowed with the topology of uniform convergence on compacts.

• Endow the space C0([0,∞),Rd) ×R+ with the product topology metrized by ρ, where

ρ
(
(w,h),

(
w′, h′)) :=

∑
n∈N

1

2n
min

(
sup

0≤t≤n

∥∥wt − w′
t

∥∥,1
)

+ ∣∣h − h′∣∣, (2.1)

for (w,h), (w′, h′) ∈ C0([0,∞),Rd) ×R+.

Observe that the span set of Brownian motion on [0, u] can be written as

Span[0,u](d) = √
2 Proj− π

4

(
Ld ∩ [0, u]2) ∩R+, (2.2)

where Ld is the random set defined by (1.11). The d-Brownian span set is the increasing limit of Span[0,u](d) as
u → ∞; that is,

Span(d) =↑ lim
u→∞ Span[0,u](d) =

⋃
k∈N

Span[0,k](d). (2.3)

Proposition 2.1. Consider d ∈ {1,2,3}. For all u > 0, Span[0,u](d) is almost surely compact. Thus, Span(d) is almost
surely σ -compact; that is, it is almost surely a countable union of compact sets.

Proof. Recall that the set Ld defined by (1.11) is the 0-level set of the random field (Xd
s,t := Bd

t − Bd
s ; s, t ≥ 0), and

thus is closed almost surely. Hence, for all u ≥ 0, almost surely Proj− π
4
(Ld ∩ [0, u]2) is compact, as the continuous

image of a compact set. By (2.2), for all u ≥ 0, almost surely Span[0,u](d) is compact. Further, by (2.3), almost surely
Span(d) is σ -compact. �

We next show that the set

T d := {
(w,h) ∈ C0

([0,∞),Rd
) ×R+;wt+h = wt for some t ≥ 0

}
(2.4)

is measurable with respect to the product of the Borel σ -fields.
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Proposition 2.2. The set T d defined by (2.4) is an Fσ -set; that is, it is a countable union of closed sets for the product
topology. In particular, T d is measurable with respect to the product of the Borel σ -fields.

Proof. Observe that the set T d can be written as
⋃

k,l∈N T d
k,l , where

T d
k,l := {

(w,h) ∈ C0
([0,∞),Rd

) ×R+;0 ≤ h ≤ l and wt+h = wt for some 0 ≤ t ≤ k
}
.

For each k, l ∈N, define the map

Qd
k,l : C0

([0, k + l],Rd
) × [0, l] � (w,h) −→ (t → wt+h − wt) ∈ C

([0, k],Rd
)
,

which is clearly continuous. Note that T d
k,l = (Qd

k,l)
−1(Ad

k ), where

Ad
k := {

f ∈ C
([0, k],Rd

);f (t) = 0 for some 0 ≤ t ≤ k
}

is closed. Therefore, T d
k,l is closed with respect to the metric ρ, and T d is a countable union of these closed sets. �

Recall the definitions of Fh, h > 0, and F := F 1 from (1.6) and (1.7), and recall that Fh has the same distribution
as hF . Put F 0 ≡ 0. Recall also that 1-Brownian span set can be expressed as

Span(1) = {
h ≥ 0;B1

t = B1
t+h for some t ≥ 0

} = {
h ≥ 0;Fh < ∞}

. (2.5)

Observe that

{F < ∞} ⊃
⋃
n∈N

{∃0 ≤ t ≤ 1;B1
t+2n+1 − B1

2n = B1
t+2n − B1

2n

}
.

That is, the random set {F < ∞} contains a union of independent events with the common probability

P
(∃0 ≤ t ≤ 1;B1

t+1 − B1
t = 0

)
.

This common probability is obviously nonzero; for example, by the intermediate value theorem and the continuity of
Brownian paths it is at least

P
(
sgn

(
B1

1

) �= sgn
(
B1

2 − B1
1

)) = 1

2
,

where sgn(·) is the sign of a real number. By the second Borel–Cantelli lemma, F < ∞ almost surely and hence
Fh < ∞ almost surely for each h > 0.

Because of Proposition 2.2, we can apply Fubini’s theorem to get

ELeb
(
Span(1) ∩ [0, T ]) =

∫ T

0
P
(
Fh < ∞)

dh = T for T > 0, (2.6)

which implies that almost surely Leb(Span(1) ∩ [0, T ]) = T for all T > 0. Thus, almost surely the 1-Brownian span
set Span(1) misses almost nothing. But Theorem 1.1(1) is stronger, asserting that almost surely the random set Span(1)

misses nothing.
For d ∈ {1,2,3}, it follows from the fact that Span(d) �= {0} almost surely that Span[0,u](d) �= {0} with positive

probability. The next result is our first strengthening of this fact. The case d = 1 is also a consequence of Corollary 3.2.

Proposition 2.3. For d ∈ {1,2,3}, the random set Span[0,1](d) has 0 as an accumulation point almost surely.

Proof. Observe that{
Span[0,1](d) has 0 as an accumulation point

} ⊃
⋂
ε>0

{
Span[0,ε](d) �= {0}}.
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Let (Ft ; t ≥ 0) be the usual Brownian filtration, and F+
0 := ⋂

u>0 Fu be the germ σ -field. It is not hard to see that⋂
ε>0{Span[0,ε](d) �= {0}} ∈F+

0 , and by the Blumenthal 0–1 law,

P

(⋂
ε>0

{
Span[0,ε](d) �= {0}}) ∈ {0,1}.

Note that the events {Span[0,ε](d) �= {0}} decreases as ε ↓ 0 and that P(Span[0,ε](d) �= {0}) = P(Span[0,1](d) �= {0})
for all ε > 0. Thus,

P

(⋂
ε>0

{
Span[0,ε](d) �= {0}}) = lim

ε>0
P
(
Span[0,ε](d) �= {0})

= P
(
Span[0,1](d) �= {0}) > 0,

which implies that P(
⋂

ε>0{Span[0,ε](d) �= {0}}) = 1. Therefore,

P
(
Span[0,1](d) has 0 as an accumulation point

) = 1. �

3. The 1-Brownian span set

This section is concerned with the span sets of linear Brownian motion; that is, Span(1) defined by (1.1) for d = 1 and
Span[0,u](1) for u > 0 defined by (1.2) for d = 1. We study their properties in Section 3.1 and prove Theorem 1.1(1).
We present some open problems and conjectures in Section 3.2.

3.1. Properties of Span(1)

For T > 0, let

E(T ) := {
w ∈ C0[0, T ];w(t) �= w(T ) = 0 for 0 < t < T

}
be the set of continuous excursions of length T . To prove Theorem 1.1(1), we need the following lemma which was
pointed out to us by Alexander Holroyd.

Lemma 3.1. Given a path w ∈ C0([0,∞),R) and any level x ∈ R, if there exist u ≥ 0 and T > 0 such that

(wu+t − x;0 ≤ t ≤ T ) ∈ E(T ),

then the span set of w

Spanw := {t − s;ws = wt for 0 ≤ s ≤ t} ⊃ [0, T ].

Proof. It suffices to show that for each 0 < t < T , t ∈ Spanw . To this end, consider the function f : R+ � s →
wu+t+s − wu+s ∈ R. Obviously f is continuous. Note that f (0) = wu+t − x and f (T − t) = x − wu+T −t have
opposite signs. By the intermediate value theorem, there exists 0 < s′ < T − t such that f (s′) = wu+t+s′ −wu+s′ = 0,
from which the result follows. �

Proof of Theorem 1.1(1). Consider the excursions of linear Brownian motion away from 0. According to Itô excur-
sion theory [65], see e.g. Revuz and Yor [117, Chapter XII], for each T > 0, almost surely there exists an excursion
whose length exceeds T . By applying Lemma 3.1 in the case of x = 0, almost surely the 1-Brownian span set Span(1)

contains [0, T ] for each T > 0. This yields the desired result. �

In the rest of this subsection, we focus on the span sets of linear Brownian motion on [0, u] for u ≥ 0. By the same
argument as for Theorem 1.1(1), we can easily prove that
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Corollary 3.2. For each u > 0,

P
(
Span[0,u](1) ⊃ [0, ε] for some ε > 0

) = 1. (3.1)

By Corollary 3.2 or Proposition 2.3, almost surely 0 is not isolated in the set Span[0,1](1).

Proposition 3.3. Almost surely, the closed random set Span[0,1](1) is perfect; that is, it does not have any isolated
points.

Proof. For δ > 0, let

Hδ := {
t − s; ∃0 ≤ s ≤ t ≤ 1 such that B1

s = B1
t and for all 0 ≤ u ≤ v ≤ 1,

B1
u = B1

v and v − u �= t − s ⇒ ∣∣(t − s) − (v − u)
∣∣ > δ

}
be the set of spans which are isolated by at least δ from others in Span[0,1](1). Suppose for the sake of contradiction
that P(Hδ �=∅) > 0 for some δ > 0.

For 0 ≤ t ≤ 1 put

Gδ(t) := {
0 ≤ s ≤ t;B1

s = B1
t and for all 0 ≤ u ≤ v < t,

B1
u = B1

v ⇒ ∣∣(t − s) − (v − u)
∣∣ > δ

}
and

Eδ := {
t ∈ [0,1] : Gδ(t) �=∅

}
.

Note that each h ∈ Hδ is of the form t − s for some t ∈ Eδ and s ∈ Gδ(t) (but that the converse is not necessarily true)
and also that 1 /∈ Eδ almost surely. It therefore suffices to show that almost surely for every t ∈ Eδ there exist tn ↓ t

such that B1
tn

= B1
t , because this will imply that lengths in Hδ of the form t − s for some s ∈ Gδ(t) are the limits on

the right of lengths of the form tn − s ∈ Span[0,1](1), which contradicts the definition of Hδ .
We claim that the set Eδ has at most � 1

δ
� elements. To see this, assume that 0 ≤ t1 < t2 < · · · < tk ≤ 1 are distinct

elements of Eδ and choose si ∈ Gδ(ti). By construction,∣∣(tj − sj ) − (ti − si)
∣∣ > δ, 1 ≤ i < j ≤ k.

It is not hard to see that

1 ≥ max
1≤i≤k

(ti − si) − min
1≤i≤k

(ti − si) > (k − 1)δ,

which implies that k < 1
δ

+ 1 and hence k ≤ � 1
δ
�.

Set τ 0
δ := 0 ∈ Eδ and for i ≥ 1 put

τ i
δ : = inf

{
t ∈ (τ i−1

δ ,1];Gδ(t) �=∅
}

= inf
{
t ∈ (τ i−1

δ ,1]; ∃0 ≤ s ≤ t such that B1
s = B1

t and for all 0 ≤ u ≤ v < t,

B1
u = B1

v ⇒ ∣∣(t − s) − (v − u)
∣∣ > δ

}
,

with the convention inf∅ := ∞. We have τ i
δ = ∞ for i > � 1

δ
� and

Eδ = {
τ i
δ ; τ i

δ < ∞}
.

It is clear that each τ i
δ is a stopping time. By the strong Markov property, on the event {τ i

δ < ∞}, the process (B1
τ i
δ+u

−
B1

τ i
δ

;u ≥ 0) is a standard Brownian motion independent of Fτ i
δ
. Because almost surely a standard Brownian motion

returns to the origin infinitely often in any interval [0, ε] for ε > 0 we achieve the desired contradiction. �
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Remark 3.4. We sketch an informative alternative proof of Proposition 3.3 which relies on the following facts. Con-
sider w ∈ C0[0,1], and recall the definition of Spanw from (1.8).

(1) If Spanw contains an isolated point, then there exists x ∈ R such that the level set {0 ≤ t ≤ 1;wt = x} has two or
more isolated points.

(2) If s is an isolated point of the level set {0 ≤ t ≤ 1;wt = x} for some x ∈ R, then s is either a local minimum, a
local maximum, a point of increase or a point of decrease.

To prove (1), assume that Spanw contains an isolated point � > 0. Then there exist δ > 0 and 0 ≤ s < t ≤ 1 with
ws = wt = x and t − s = � such that for all 0 ≤ u < v ≤ 1, wu = wv = x and v − u �= � imply that∣∣(v − u) − �

∣∣ > δ.

Suppose by contradiction that for each ε > 0, there exists 0 ≤ r ≤ 1 such that 0 < |r − s| ≤ ε and wr = x. By taking
ε < min(δ, �), u = r and v = t , we get

δ <
∣∣(v − u) − �

∣∣ = |r − s| ≤ ε < δ,

which leads to a contradiction. Similarly, it cannot be the case that for each ε > 0 there exists 0 ≤ r ≤ 1 such that
0 < |r − t | ≤ ε and wr = x. Thus, s and t are isolated points of the level set at x.

To prove (2), consider the case 0 < s < 1. The case of endpoints can be handled similarly. By assumption, there
exists ε > 0 such that wt �= x for t ∈ (s − ε, s) ∪ (s, s + ε). By path continuity, the sign of wt − x is some constant
σ− ∈ {−1,+1} for s − ε < t < s and some constant σ+ ∈ {−1,+1} for s < t < s + ε. Now if σ− = σ+ = +1 then
s is a local minimum; if σ− = σ+ = −1, then s is a local maximum; if σ− = −1 and σ+ = +1, then s is a point of
increase; and if σ− = +1 and σ+ = −1, then s is a point of decrease.

It is a result of Dvoretzky et al. [31] that almost surely a Brownian path has no points of increase or decrease;
see also Adelman [1], Karatzas and Shreve [72, Section 6.4B], Burdzy [14], and Peres [109] for shorter proofs.
Consequently, isolated points in a level set of Brownian motion over [0,1] are necessarily local minima or local
maxima. We complete the proof by showing that

(3) Almost surely, there do not exist 0 ≤ s < t ≤ 1 such that B1
s = B1

t and both s and t are local extrema.

For 0 ≤ a < b, let Mab be the set of levels of local extrema of Brownian motion in [a, b]. It suffices to prove that
for rationals 0 ≤ p < q < r < s ≤ 1,

Mpq ∩ Mrs =∅ a.s.

Note that for any function f : R → R the set of levels of local extrema is countable, see e.g. van Rooij and Schikhof
[147, Theorem 7.2]. Thus, Mpq and Mrs are both countable. Write

Mrs = B1
q + (

B1
r − B1

q

) + M ′
rs ,

where M ′
rs is the set of levels of local extrema of Brownian motion (B1

r+t − B1
r ; t ≥ 0) in the interval [0, s − r].

Therefore,

Mpq ∩ Mrs �=∅ if and only if B1
r − B1

q ∈ Mpq − (
B1

q + M ′
rs

)
.

The random set Mpq − (B1
q + M ′

rs) is countable as the Minkowski difference of two countable sets and it is

independent of the random variable B1
r − B1

q . The random variable B1
r − B1

q has a distribution that is absolutely
continuous with respect to Lebesgue measure and so it has zero probability of taking values in a countable set. It
follows from Fubini’s theorem that P(Mpq ∩ Mrs �=∅) = 0, as required.

In view of the expression (2.5), the random set Span[0,u](1) can be written as

Span[0,u](1) = {
h ∈ [0, u];Fh ≤ u − h

}
, (3.2)
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where Fh is defined by (1.6). Let

Su := Leb Span[0,u](1) for u > 0. (3.3)

By (1.3),

(Scu;u > 0)
(d)= (cSu;u > 0) for all c > 0.

In particular, Su
(d)= uS1 for all u > 0. It follows from Corollary 3.2 that for all u > 0, Su > 0 almost surely. In the

following proposition, we provide an estimate for the expected value of S1.

Proposition 3.5. For each u > 0, ESu = uES1, and 0.655 ≤ ES1 ≤ 0.746.

Proof. From the representation (3.2), we have

ES1 = E

∫ 1

0
1
(
Fh ≤ 1 − h

)
dh = E

∫ 1

0
1

(
F ≤ 1 − h

h

)
dh = E

(
1

1 + F

)
, (3.4)

where Fh (resp. F ) is defined by (1.6) (resp. (1.7)). It was proved in Pitman and Tang [113, Proposition 4.1] that

P(F ∈ dt) = 1

π

√
2 − t

t
for 0 ≤ t ≤ 1 and P(F > 1) = 1

2
− 1

π
.

As a consequence,∫ 1

0

1

π(1 + t)

√
2 − t

t
dt ≤ E

(
1

1 + F

)
≤

∫ 1

0

1

π(1 + t)

√
2 − t

t
dt + 1

2
P(F > 1), (3.5)

which provides the numerical bound. �

We refer to Pitman and Tang [113, Section 3] for further discussion on the distribution of the first hitting time F

defined by (1.7).

3.2. Some open problems

Let us consider the random set Span[0,1](1); that is the span set of linear Brownian motion on [0,1]. It follows from
Lemma 3.1 that

Span[0,1](1) ⊃ [0,R], (3.6)

where R is the length of the longest complete excursion from all levels in linear Brownian motion up to time 1. Recall
that S1 := Leb Span[0,1](1), and let

T1 := inf
{
t > 0; t /∈ Span[0,1](1)

}
. (3.7)

According to Corollary 3.2, neither the distribution of S1 nor that of T1 has any atom at 0. By (3.6), S1 and T1 are
at least R almost surely. Thus the expectation of R provides a lower bound for those of S1 and T1. However, the study
of these random variables seems to be challenging.

Open problem 3.6.

(1) Is the distribution of S1 (resp. T1, R) diffuse?
(2) Is the distribution of S1 (resp. T1, R) absolutely continuous with respect to Lebesgue measure on [0,1] and, if it

is, what is the Radon–Nikodym derivative?
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Let R0
1 be the length of the longest complete excursion away from 0 in linear Brownian motion up to time 1. Note

that it also gives a lower bound for S1 and T1. Let

g1 := sup
{
t < 1;B1

t = 0
}

be the time of last exit from 0 on the unit interval. A result of Lévy [93], see e.g. Revuz and Yor [117, Exercise 3.8,
Chapter XII], shows that

• g1 is arcsine distributed,
• (B1

tg1
/
√

g1;0 ≤ t ≤ 1) is independent of g1, and has the same distribution as a standard Brownian bridge.

Therefore,

R0
1

(d)= R
0,br
1 g1,

where R
0,br
1 is the length of the longest excursion away from 0 in a standard Brownian bridge up to time 1, independent

of g1. Pitman and Yor [114] proved that R
0,br
1 is the first component of a sequence with the Poisson–Dirichlet ( 1

2 , 1
2 )

distribution. It follows as a special case of Pitman and Yor [114, Proposition 17] by taking α = θ = 1
2 and p = n = 1

that

ER
0,br
1 = √

π

∫ ∞

0

√
te−t

[e−t + erf(t)]2
dt ≈ 0.5739,

where erf(t) := 2√
π

∫ t

−∞ e−s2
ds is the error function. Hence,

ER0
1 = ER

0,br
1 Eg1 ≈ 0.2869. (3.8)

The lower bound given by (3.8) is less tight than that given in Proposition 3.5. Contrary to the case of Span(1), it
is not enough to study Span[0,1](1) by only considering excursions away from 0 on the unit interval.

We also point out that the argument of Lemma 3.1 does not just work for single excursions. If for 0 ≤ p < q < r < s

we have excursions above a level x over the intervals (p, q) and (r, s), then for all t ≥ 0 such that

p + t ∈ [r, s] and r − t ∈ [p,q]
or

q + t ∈ [r, s] and s − t ∈ [p,q],
we have a span of length t . That is, we have a span for all t ≥ 0 such that

max{r − p, s − q} ≤ t ≤ s − p or r − q ≤ t ≤ min{r − p, s − q}.
Recall that the span set of the piecewise linear function f in Example 1.3 is a disjoint union of finitely many closed

intervals. The following example shows that a continuous function of finite length can have a span set as a disjoint
union of infinitely many closed intervals.

Example 3.7. Consider the piecewise linear function g ∈ C0[0,6] with slopes 1 on [0,1] ∪ [3, 17
4 ] ∪ (

⋃
n≥2[6 −

5
2n ,6 − 7

2n+1 ]) and −1 on [1,3] ∪ [ 17
4 , 19

4 ] ∪ (
⋃

n≥2[6 − 7
2n+1 ,6 − 5

2n+1 ]), shown in Figure 1. Note that g is composed

of consecutive positive/negative tent functions of heights 1, 1
22 , 1

23 , . . . . For geometric reasons, we only need to consider
the spans obtained from positive tents; those are positive excursions away from 0. Applying Lemma 3.1 to the positive
tent 1 , we have that [0,2] ⊂ Spang . Observe that the spans that we get from the positive tents 2 , 3 , . . . are no
larger than 2. These spans are obviously contained in [0,2]. Furthermore, the refinement of Lemma 3.1 for different
excursions shows that the spans obtained from the positive tents 1 and n are:[

2,
5

2

]
∪

[
4,

9

2

]
for n = 2,



The spans in Brownian motion 1121

Fig. 1. A path g ∈ C0[0,6] whose span set is a disjoint union of infinitely many closed intervals.

and [
4 − 1

2n−3
,4 − 3

2n−1

]
∪

[
6 − 1

2n−3
,6 − 3

2n−1

]
for n ≥ 3.

Therefore, the span set of g is[
0,

5

2

]
∪

(⋃
n≥3

[
4 − 1

2n−3
,4 − 3

2n−1

])
∪

[
4,

9

2

]
∪

(⋃
n≥3

[
6 − 1

2n−3
,6 − 3

2n−1

])
∪ {6}.

The path g is not “typical” for a linear Brownian motion. However, by the support theorem, see e.g. Bass [6,
Proposition 6.5, Chapter 1], P(sup0≤t≤6 |B1

t − gt | ≤ ε) > 0 for any ε > 0. It follows that for any positive integer k

there is positive probability that among the connected components of Span[0,1](1) there are at least k (closed) intervals
with nonempty interiors.

Open problem 3.8.

(1) Is the random set Span[0,1](1) the closure of its interior almost surely?
(2) Is the random set Span[0,1](1) a disjoint union of finitely many closed intervals almost surely?

According to the Choquet–Kendall–Matheron theorem [20,74,101], the distribution of the random closed set
Span[0,1](1) is characterized by the capacity functional.

TSpan[0,1](1)(K) := P
(
Span[0,1](1) ∩ K �=∅

)
for all K ∈K, (3.9)

where K is the family of compact subsets of [0,1]. We refer to Molchanov [105], [106, Chapter 1] for a review on the
general theory of random closed sets.

Open problem 3.9. Is there an explicit closed form for the capacity functional TSpan[0,1](1) defined by (3.9)?

Alternatively, we can consider the complement of Span[0,1](1), which is almost surely open. By the Heine–Borel
theorem, see e.g. Rudin [135, Chapter 1], any open set in R can be expressed as a countable union of pairwise disjoint
open intervals. Write

[0,1] \ Span[0,1](1) =
⊔

k∈N∗
Ok,

where the open intervals (Ok)k∈N∗ are in some arbitrary enumeration. It is interesting to understand the distribution
of the ranked lengths of these open intervals.
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Open problem 3.10.

(1) Is the random set [0,1] \ Span[0,1](1) a disjoint union of finitely many open intervals almost surely or infinitely
many open intervals almost surely?

(2) What is the distribution of the longest of the intervals (Ok)k∈N∗?
(3) More generally, what is the distribution of the ranked lengths of the intervals (Ok)k∈N∗?

It is also interesting to study the discrete version of the problem concerning the spans in a simple random walk. Let
(RWk)k∈N be a simple random walk. Define

SpanN
RW(1) := {k − l ≥ 0;RWk = RW l for k, l ≤ N} (3.10)

as the spans in N steps of the walk. This object is of interest in its own right and there are many questions such as the
following that naturally suggest themselves.

Open problem 3.11. What is the distribution of the number of distinct spans in N steps of a random walk?

Recall the definition of the Hausdorff distance dH from (1.9). See also Burago et al. [13, Chapter 7] for further
development on the Hausdorff distance between compact sets. We conjecture the following result.

Conjecture 3.12. The sequence of random compact sets 1
N

SpanN
RW(1) converges in distribution to Span[0,1](1) with

respect to the Hausdorff metric dH on the compact subsets of [0,1] as N → ∞.

Fix n ∈ N. Let τ
(n)
0 := 0 and τ

(n)
k+1 := inf{t > τ

(n)
k ; |B1

t − B1
τ

(n)
k

| = 2−n} for k ∈ N. Note that (RW(n)
k := 2nB1

τ
(n)
k

)k∈N
is a simple random walk. Knight [76] proved that the sequence of linearly interpolated random walks

(RW(n)

22nt

2n
; t ≥ 0

)
converges almost surely in C[0,∞) to (B1

t ; t ≥ 0). Define

Span(n)
KRW(1) := {

k − l ≥ 0;RW(n)
k = RW(n)

l for k, l ≤ 22n
}
. (3.11)

Further, we conjecture that:

Conjecture 3.13.

dH

(
1

22n
Span(n)

KRW(1),Span[0,1](1)

)
−→ 0 in probability, (3.12)

as n → ∞.

4. The d-Brownian span set for d = 2,3

This section is devoted to the span set of d-dimensional Brownian motion, Span(d), for d = 2,3. In Section 4.1, we
prove that almost surely Span(2) has null Lebesgue measure and Span(d) is dense in R+ for d = 2,3. After recalling
a general strategy for obtaining lower bounds on Hausdorff dimensions, we outline the proof of Theorem 1.1(2), (3)
by constructing a random measure Md , formally defined by (1.18) on Span(d) for d = 2,3. In Section 4.2, we study
the measure introduced in Section 4.1 and finish the proof of Theorem 1.1(2), (3) by establishing that this measure
has finite energy in the relevant range of indices. In Section 4.3, we present some open problems related to fractal
projections.



The spans in Brownian motion 1123

4.1. Hausdorff dimensions

To start with, we show that the 2-Brownian span set is Lebesgue null.

Proof that Leb Span(2) = 0 a.s. The 2-Brownian span set can be written as

Span(2) = {
h ≥ 0;B2

t = B2
t+h for some t ≥ 0

}
, (4.1)

and, by Fubini’s theorem,

ELeb Span(2) =
∫ ∞

0
P
(
B2

t = B2
t+h for some t ≥ 0

)
dh. (4.2)

It thus suffices to show that for all h > 0 that P(B2
t = B2

t+h for some t ≥ 0) = 0. By Brownian scaling, it further
suffices to prove that for each fixed T > 0 that

P
(
B2

t = B2
t+1 for some 0 ≤ t ≤ T

) = 0. (4.3)

Given x ∈ R
2, set B

2,x
t := B2

t − tx for t ≥ 0. By the Cameron–Martin theorem, the distributions of (B
2,x
t ;0 ≤ t ≤ T )

and (B2
t ;0 ≤ t ≤ T ) are mutually absolutely continuous for all T > 0. Thus, (4.3) is equivalent to

0 = P
(
B

2,x
t = B

2,x
t+1 for some 0 ≤ t ≤ T

)
= P

(
B2

t+1 − B2
t = x for some 0 ≤ t ≤ T

)
for each fixed T > 0. (4.4)

Again by Fubini’s theorem, it is enough to prove that

Leb
{
B2

t+1 − B2
t ;0 ≤ t ≤ T

} = 0 a.s. for each fixed T > 0. (4.5)

Taking 0 < T < 1, we have

Leb
{
B2

t+1 − B2
t ;0 ≤ t ≤ T

} = Leb
(
B2

1 + {(
B2

t+1 − B2
1

) − B2
t ;0 ≤ t ≤ T

})
= Leb

{(
B2

t+1 − B2
1

) − B2
t ;0 ≤ t ≤ T

}
(d)= 2 Leb

{
B2

t ;0 ≤ t ≤ T
}
,

since (B2
t+1 − B2

1 ;0 ≤ t ≤ T ) and (B2
t ;0 ≤ t ≤ T ) are independent and identically distributed, and hence ((B2

t+1 −
B2

1 ) − B2
t ;0 ≤ t ≤ T ) and (

√
2B2

t ;0 ≤ t ≤ T ) are identically distributed. We complete the proof by appealing to the
result of Lévy [92] that the image of 2-dimensional Brownian motion has Lebesgue measure 0 almost surely, see e.g.
Mörters and Peres [107, Theorem 2.24]. �

It is clear from Theorem 1.1(1) that almost surely Span(1) is dense in R+. For d = 2,3 the random set Span(d)

has null Lebesgue measure, but we show that Span(d) is still dense in R+ almost surely.

Proof that Span(d) =R+ a.s. for d = 2,3. Assume that for some 0 ≤ a < b ≤ ∞,

P
(
Span(d) ∩ (a, b) �=∅

)
> 0.

Then

P
(
Span[0,u](d) ∩ (a, b) �=∅

)
> 0 for some u > 0.

Observe that

Span(d) ⊃
⋃
k∈N

{
t − s;Bd

s = Bd
t for some ku ≤ s ≤ t ≤ (k + 1)u

}
.
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That is, the random set Span(d) contains a union of i.i.d. copies of Span[0,u](d). Applying the second Borel–Cantelli
lemma, we have

P
(
Span(d) ∩ (a, b) �=∅

) = 1 and P
(
Span(d) ∩ (a, b) �=∅

) = 1.

Letting (a, b) range over a suitable countable subset of intervals, we conclude that almost surely the set Span(d) is
equal to some fixed closed set C. By the scaling property (1.5), the set C is such that uC = C for all u > 0. The only
closed subsets of R+ with this property are {0} and R+. The desired result follows from the fact that Span(d) �= {0}
for d ≤ 3. �

From now on, we deal with the Hausdorff dimension of d-Brownian span set for d = 2,3. We first recall a result
of Frostman [50] which is useful for finding lower bounds on the Hausdorff dimension of fractal sets.

Given α > 0 and a measure μ on a subset E of Rn, let

Iα(μ) :=
∫

E

μ(dx)μ(dy)

|x − y|α (4.6)

be the α-energy of μ. Frostman’s energy method is encapsulated in the following result, which can be read from
Mörters and Peres [107, Proposition 4.27].

Theorem 4.1 ([50,107]). Let E be a random set in R
n, and μ be a non-trivial random measure supported on E. If

EIβ(μ) < ∞ for every 0 ≤ β < α, then dimH E ≥ α a.s.

Note that for a nonrandom set S ∈ R
d , the converse of Theorem 4.1 also holds true. If dimH E ≥ α, then there

exists a non-trivial measure μ supported on E, and Iβ(μ) < ∞ for every 0 ≤ β < α. This result is known as the
Frostman lemma. For more details on the relation between α-energy and Hausdorff dimension, we refer to the book
of Mattila [102, Chapter 8]. See also Mörters and Peres [107, Chapter 4] for probabilistic implications, or Evans and
Gariepy [41, Chapter 4] for applications to analysis.

We now aim to construct a random measure Md on Span(d) for d = 2,3 such that EIα(Md) < ∞ for every
0 ≤ α < 2 − 2

d
. Then, by applying Theorem 4.6, we obtain the desired lower bound for dimH Span(d) when d = 2,3.

Let ξ be exponentially distributed with rate 1, independent of (Bd
t ; t ≥ 0). We consider the random measure defined by

Md,ε(A) :=
∫ ∫

0≤s≤t≤ξ

1
(
t − s ∈ A; ∣∣Bd

t − Bd
s

∣∣ ≤ ε
)
ds dt, (4.7)

for ε > 0 and A ∈ B(R+).
We expect that there are suitable constants cd,ε such that {cd,εMd,ε}ε>0 converges vaguely in probability to a non-

trivial random measure Md as ε → 0. A similar idea appeared earlier in the work of Rosen [121,125] to shed light on
Varadhan’s renormalization for self intersection local times of planar Brownian motion, and in that of Le Gall [83] to
make rigorous the intuition that between the two time instants when it hits a double point, the planar Brownian motion
behaves like a Brownian bridge. Since the objective in those papers is different from ours, the random measure Md,ε

defined by (4.7) seems to be new, and the computation is also more involved.
To have some idea about the right choice of cd,ε , we are led to calculate the expectation of Md,ε([a,∞)) for a > 0.

Let pd
t (x, y) be the transition density for d-dimensional Brownian motion; that is,

pd
t (x, y) := (2πt)−

d
2 exp

(
−|x − y|2

2t

)
.

Write pt (x) for pt(0, x). We have

E
[
Md,ε

([a,∞)
)] = E

∫
0≤s≤t≤ξ

1
(
t − s ≥ a; ∣∣Bd

t − Bd
s

∣∣ ≤ ε
)
ds dt

=
∫

x,y∈R

∫ ∞

s=0
e−spd

s (x) dx ds

∫ ∞

t=a

e−tpd
t (y)1

(|y| ≤ ε
)
dy dt
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=
∫ ∞

a

e−t (2πt)−
d
2

∫
|y|≤ε

exp

(
−|y|2

2t

)
dy dt

∼ εd

2
d
2 �(d

2 + 1)

∫ ∞

a

e−t t−
d
2 dt as ε → 0, (4.8)

where �(t) := ∫ ∞
0 xt−1e−x dx is the Gamma function. The above computation suggests that the right scaling for Md,ε

be cd,ε = ε−d . Moreover, it follows from (4.8) that

E
[
ε−dMd,ε

([a,∞)
)] = 1

2
d
2 �(d

2 + 1)

∫ ∞

a

e−t t−
d
2 dt → ∞ as a → 0.

Thus, E[Md([a,∞))] < ∞ for every a > 0 and E[Md([0,∞))] = ∞. This means that the limiting measure
E[Md(da)] is σ -finite with mass piling up in neighborhoods of 0. Keeping the above picture in mind, we have the
following result.

Theorem 4.2. For d = 2,3, the sequence of measures {ε−dMd,ε}ε>0 converges vaguely to a σ -finite measure Md in
probability; that is, for all continuous functions with compact support f ∈ Cc(0,∞),

1

εd

∫
R

∗+
f (x)Md,ε(dx) −→

∫
R

∗+
f (x)Md(dx) in probability,

as ε → 0. Moreover, for every l > 0 and 0 ≤ α < 2 − d
2 ,

E

∫
a,b≥l

Md(da)Md(db)

|a − b|α < ∞. (4.9)

We defer the proof of Theorem 4.2 to Section 4.2, but let us describe briefly how it proceeds. For a, b > 0, we
consider the second moment

E
[
Md,ε

([a,∞)
)
Md,δ

([b,∞)
)]

. (4.10)

If we can show that E[ε−dMd,ε([a,∞)) · δ−dMd,δ([b,∞))] converges as ε, δ → 0 to a quantity depending on a, b,
then {ε−dMd,ε([a,∞))}ε>0 is a Cauchy sequence in L2. Thus, for every a > 0, {ε−dMd,ε([a,∞))}ε>0 converges
in L2. This implies the vague convergence in probability as ε ↓ 0 of the family of random measures {ε−dMd,ε}ε>0 to
a random measure Md . As a byproduct, we obtain an expression for E[Md(da)Md(db)] that gives the bound (4.9).

4.2. The second moment computation

Let 0 < b ≤ a. As explained in Section 4.1, we aim to evaluate the asymptotics of (4.10) as ε, δ → 0. Write

E
[
Md,ε

([a,∞)
)
Md,δ

([b,∞)
)]

= E

∫
0≤s′≤t ′≤ξ,0≤u′≤v′≤ξ

1
(
t ′ − s′ ≥ a, v′ − u′ ≥ b;∣∣Bd

t ′ − Bd
s′
∣∣ ≤ ε,

∣∣Bd
v′ − Bd

u′
∣∣ ≤ δ

)
ds′ dt ′ du′ dv′. (4.11)

Let us split the integral (4.11) according to the position of s′, t ′, u′, v′, with the constraint s′ ≤ t ′ and u′ ≤ v′.
Case 1: 0 ≤ s′ ≤ t ′ ≤ u′ ≤ v′ ≤ ξ , see Figure 2. We have

E

∫
0≤s′≤t ′≤u′≤v′≤ξ

1
(
t ′ − s′ ≥ a, v′ − u′ ≥ b; ∣∣Bd

t ′ − Bd
s′
∣∣ ≤ ε,

∣∣Bd
v′ − Bd

u′
∣∣ ≤ δ

)
ds′ dt ′ du′ dv′
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Fig. 2. The case 0 ≤ s ≤ t ≤ u ≤ v.

Fig. 3. The case 0 ≤ s ≤ u ≤ v ≤ t .

=
∫

x,y,z,w∈R

∫ ∞

s=0
e−sps(x) dx ds

∫ ∞

t=a

e−tpt (y)1
(|y| ≤ ε

)
dy dt

×
∫ ∞

u=0
e−upu(z) dz du

∫ ∞

v=b

e−vpv(w)1(w ≤ δ) dw dv

∼ εdδd

2d�(d
2 + 1)2

∫ ∞

a

e−t t−
d
2 dt

∫ ∞

b

e−vv− d
2 dv as ε, δ → 0. (4.12)

Case 2: 0 ≤ s′ ≤ u′ ≤ v′ ≤ t ′ ≤ ξ , see Figure 3. We have

E

∫
0≤s′≤u′≤v′≤t ′≤ξ

1
(
t ′ − s′ ≥ a, v′ − u′ ≥ b;∣∣Bd

t ′ − Bd
s′
∣∣ ≤ ε,

∣∣Bd
v′ − Bd

u′
∣∣ ≤ δ

)
ds′ dt ′ du′ dv′

=
∫

x,z,w,y∈R

∫ ∞

s=0
e−sps(x) dx ds

{∫ ∞

u=0
e−upu(z)

[∫ ∞

v=b

e−vpv(w)1
(|w| ≤ δ

)
×

∫
u+v+t≥a

e−tpt (z + w,y)1(y ≤ ε) dy dt

]
dw dv

}
dzdu

∼ εdδd

2d�(d
2 + 1)2

∫
v≥b,u+v+t≥a

e−(u+v+t)

v
d
2 (u + t)

d
2

dudv dt as ε, δ → 0. (4.13)
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Fig. 4. The case 0 ≤ s ≤ u ≤ t ≤ v.

Let us make a change of variables p = u + v + t , q = v and r = t . Then∫
v≥b,u+v+t≥a

e−(u+v+t)

v
d
2 (u + t)

d
2

dudv dt

=
∫

p≥a

∫
b≤q≤p

∫
r≤p−q

e−p

q
d
2 (p − q)

d
2

dr dq dp

=
{∫ ∞

a
e−p(logp − logb)dp for d = 2,

2√
b

∫ ∞
a

e−pp−1(p − b)
1
2 dp for d = 3.

(4.14)

Case 3: 0 ≤ s′ ≤ u′ ≤ t ′ ≤ v′ ≤ ξ , see Figure 4. We have

E

∫
0≤s′≤u′≤t ′≤v′≤ξ

1
(
t ′ − s′ ≥ a, v′ − u′ ≥ b; ∣∣Bd

t ′ − Bd
s′
∣∣ ≤ ε,

∣∣Bd
v′ − Bd

u′
∣∣ ≤ δ

)
ds′ dt ′ du′ dv′

=
∫

x,z,y,w∈R

∫ ∞

s=0
e−sps(x) dx ds

{∫ ∞

u=0
e−upu(z)

[∫
u+t≥a

e−tpt (z, y)1
(|y| ≤ ε

)
×

∫
t+v≥b

e−vpv(y, z + w)1
(|w| ≤ δ

)
dw dv

]
dy dt

}
dzdu

∼ εdδd

2d�(d
2 + 1)2

∫
u+t≥a,t+v≥b

e−(u+v+t)

(uv + ut + vt)
d
2

dudv dt as ε, δ → 0. (4.15)

Again we make a change of variables u + t = p, t + v = q and t = r . Then∫
u+t≥a,t+v≥b

e−(u+v+t)

(uv + ut + vt)
d
2

dudv dt

=
∫

p≥a,q≥b

e−(p+q)

(∫ p∧q

0

er

(pq − r2)
d
2

dr

)
dq dp, (4.16)

where p ∧ q is the minimum of p and q . We show that the RHS of (4.16) is finite for d = 2,3. Since 0 < b ≤ a,

RHS of (4.16) ≤
∫

p≥a,q≥b

e−(p+q)+p∧q

(∫ p∧q

0

dr

pq − r2

)
dp dq

=
∫

q≥a,a≤p<q

e−q

(∫ p

0

dr

pq − r2

)
dp dq +

∫
p≥a,b≤q≤p

e−p

(∫ q

0

dr

pq − r2

)
dq dp. (4.17)
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The case d = 2:∫
q≥a,a≤p<q

e−q

(∫ p

0

dr

pq − r2

)
dp dq

=
∫ ∞

a

e−q

√
q

[∫ q

a

1

2
√

p
log

(√
q + √

p√
q − √

p

)
dp

]
dq

=
∫ ∞

a

e−q

√
q

[
(
√

q + √
p) log(

√
q + √

p) + (
√

q − √
p) log(

√
q − √

p)
]q
p=a

dq

=
∫ ∞

a

e−q

√
q

[√
q log(4q) − (

√
q + √

a) log(
√

q + √
a) − (

√
q − √

a) log(
√

q − √
a)

]
dq. (4.18)

Similarly,∫
p≥a,b≤q≤p

e−p

(∫ q

0

dr

pq − r2

)
dq dp

=
∫ ∞

a

e−p

√
p

[√
p log(4p) − (

√
p + √

b) log(
√

p + √
b) − log(

√
p − √

b)
]
dp. (4.19)

From (4.18) and (4.19), we see that the RHS of (4.17) and thus of (4.16) is finite for d = 2.
The case d = 3:∫

q≥a,a≤p<q

e−q

(∫ p

0

dr

(pq − r2)
3
2

)
dp dq =

∫ ∞

a

e−q

q

[∫ q

a

dp√
p(q − p)

]
dq

= 2
∫ ∞

a

e−q

q
arccos

(√
a

q

)
dq (4.20)

and ∫
p≥a,b≤q≤p

e−p

(∫ q

0

dr

(pq − r2)
3
2

)
dq dp = 2

∫ ∞

a

e−p

p
arccos

(√
b

p

)
dp. (4.21)

From (4.20) and (4.21), we see that the RHS of (4.17) and thus of (4.16) is finite for d = 3.
Note that the case 0 ≤ u′ ≤ v′ ≤ s′ ≤ t ′ ≤ ξ is similar to Case 1 of 0 ≤ s′ ≤ t ′ ≤ u′ ≤ v′ ≤ ξ , and the case 0 ≤ u′ ≤

s′ ≤ v′ ≤ t ′ ≤ ξ is similar to Case 3 of 0 ≤ s′ ≤ u′ ≤ t ′ ≤ v′ ≤ ξ . The assumption 0 < b ≤ a excludes the possibility
of 0 ≤ u′ ≤ s′ ≤ t ′ ≤ v′ ≤ ξ .

Therefore, for 0 < b ≤ a, E[ε−dMd,ε([a,∞)) · δ−dMd,δ([b,∞))] converges as ε, δ → 0 to

1

4

[
2
∫ ∞

a

e−p

p
dp

∫ ∞

b

e−q

q
dq +

∫ ∞

a

e−p log

(
p

b

)
dp

+
∫

Da,b

e−(p+q)

(∫ p∧q

0

er dr

pq − r2

)
dp dq

]
(4.22)

for d = 2, and

2

9π

[
2
∫ ∞

a

e−p

p
dp

∫ ∞

b

e−q

q
dq + 2√

b

∫ ∞

a

e−p

p

√
p − b dp

+
∫

Da,b

e−(p+q)

(∫ p∧q

0

er dr

(pq − r2)
3
2

)
dp dq

]
(4.23)
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for d = 3, where

Da,b := {p ≥ a, q ≥ b} ∪ {p ≥ b, q ≥ a}.
As explained in Section 4.1, this implies that the sequence of measures {ε−dMd,ε}ε>0 converges vaguely to a σ -finite
measure Md in probability for d = 2,3. Moreover, for l > 0 and α ≥ 0,

E

[∫
a,b≥l

M2(da)M2(db)

|a − b|α
]

= 1

2

∫
a,b≥l,a≥b

da db

|a − b|α
[

2e−(a+b)

ab
+ e−a

b
+ 2e−(a+b)

∫ b

0

er dr

ab − r2

]

≤ 1

2

∫
a≥b≥l

da db

|a − b|α
[

2e−(a+b)

ab
+ e−a

b

+ 2e−a

√
ab

(
2 log(

√
a + √

b) − log(a − b)
)]

(4.24)

which is finite for every α < 1. Furthermore,

E

[∫
a,b≥l

M3(da)M3(db)

|a − b|α
]

= 4

9π

∫
a≥b≥l

da db

|a − b|α
[

2e−(a+b)

ab
+ e−a√

b3(a − b)

+ 2e−(a+b)

∫ b

0

er dr

(ab − r2)
3
2

]

≤ 4

9π

∫
a≥b≥l

da db

|a − b|α
[

2e−(a+b)

ab
+ e−a√

b3(a − b)
+ 2e−a

a
√

b(a − b)

]
, (4.25)

which is finite for every α < 1
2 . This finishes the proof of Theorem 4.2.

4.3. Further open problems

As mentioned at the end of Introduction, we have

dimH Projθ0
Ld \D = 2 − d

2
a.s. for d = 2,3

for θ0 = −π
4 (Theorem 1.1), and θ0 = 0 or −π

2 (Kaufman’s dimension doubling theorem [73]). We hope that argu-
ments similar to those presented here can be used to deal with the projection in any direction, possibly with much
tougher computations.

Conjecture 4.3. For every θ ∈ [−π
2 , π

2 ),

dimH Projθ Ld \D = 2 − d

2
a.s. for d = 2,3.

Further, by Marstrand’s projection theorem [100], almost surely for almost all θ ∈ [−π
2 , π

2 ),

dimH Projθ Ld \D = 2 − d

2
for d = 2,3.
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A general theorem of Falconer [44] says that for E ⊂R
2 and dimH E > 1 the exceptional set of directions satisfies

dimH {θ;Leb Projθ E = 0} ≤ 2 − dimH E.

However, this result does not apply in our case, since both dimH Projθ L2 and dimH Projθ L3 are smaller than 1.
More recently, projections and the exceptional set of directions have been investigated for specific set, where it is
sometimes possible to identify the exceptional directions. For example, Peres and Shmerkin [110], Hochman and
Shmerkin [56] proved that there is no exceptional direction for self-similar sets with dense rotations. We refer to the
survey of Shmerkin [139] for further development.

Open problem 4.4. Do we have almost surely for all θ ∈ [−π
2 , π

2 ) that

dimH Projθ Ld \D = 2 − d

2
for d = 2,3

and, if not, what can we say about the exceptional set of directions?

Finally, the construction of the random measure Md in Section 4.1 also works in the case of d = 1. For x ∈ R, let

�x(A) :=
∫

A∩[0,ξ)

d�x
t and �̃x(A) := �x(A) for A ∈ B(R+).

It is not hard to see that

M1(A) =
∫ ∞

−∞

∫ ξ

0

∫ ξ

s

1(t − s ∈ A)d�x
t d�x

s dx for A ∈ B(R+) (4.26)

and so M1 is the trace of the random measure∫ ∞

−∞
�x ∗ �̃x dx (4.27)

on R+, where ∗ denotes the convolution of measures.

Proposition 4.5. The compactly supported random measure M1 almost surely does not have a continuous density
on R+.

Proof. It suffices to show that almost surely the random measure in (4.27) does not have a continuous density. Observe
that the Fourier transform of the latter random measure is the nonnegative function∫ +∞

−∞
∣∣�̂x(·)∣∣2

dx,

where �̂x(·) is the Fourier transform of the measure �x . A finite measure with a nonnegative Fourier transform has a
bounded and continuous density if and only if the Fourier transform is integrable. However, if

∫ +∞
−∞ |�̂x(·)|2 dx was

integrable, then |�̂x(·)|2 would be integrable for almost every x ∈ R. This, however, would imply by the Parseval
identity that �x has a square-integrable density for almost every x ∈ R, which contradicts the fact that �x is a non-
trivial measure that is singular with respect to Lebesgue measure. �

By Corollary 3.2, we know that the random set Span[0,1](1) contains intervals almost surely. It is believable that
Span[0,1](1) is the closure of its interior with probability one. In this case it is presumably true that the set Span[0,1](1)

is the support of a measure with a bounded and continuous density, and the obvious candidate for such a measure
is the one built from Brownian local time in the same manner that the measure M1 on Span[0,ξ ](1) is constructed.
However, Proposition 4.5 provides some evidence that this is not true.
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