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SCALING LIMIT OF THE CORRECTOR IN STOCHASTIC
HOMOGENIZATION

BY JEAN-CHRISTOPHE MOURRAT AND JAMES NOLEN1

CNRS and Duke University

In the homogenization of divergence-form equations with random coef-
ficients, a central role is played by the corrector. We focus on a discrete space
setting and on dimension 3 and more. Under a minor smoothness assumption
on the law of the random coefficients, we identify the scaling limit of the cor-
rector, which is akin to a Gaussian free field. This completes the argument
started in [Ann. Probab. 44 (2016) 3207–3233].

1. Introduction. We consider a random conductance problem on Z
d associ-

ated with the discrete divergence-form operator ∇∗A∇ , where the coefficients of
A are independent, identically distributed random variables, bounded away from 0
and infinity. The main object of this paper is the stationary random corrector φ,
satisfying ∇∗A(ξ + ∇φ(ξ)) = 0 with ξ ∈ R

d being a fixed vector, d ≥ 3. This ran-
dom function φ plays a central role [2, 6, 7, 9] in homogenenization theory for the
operator ∇∗A∇ , a discrete analogue of the random elliptic operators considered
in [8, 13]. Our main result is that for d ≥ 3 the appropriately rescaled corrector
converges to a Gaussian field that has the homogeneity of a Gaussian free field.

To make this statement precise, we need to introduce some notation. We
view Z

d as a graph with edges between nearest neighbors, and we denote by
B= {(x, y) ∈ Z

d ×Z
d ||x −y| = 1} the set of (nonoriented) edges. Let (e1, . . . , ed)

be the canonical basis of Z
d . For every edge e ∈ B, there exists a unique pair

(e, i) ∈ Z
d × {1, . . . , d} such that e links e to e + ei . Given such a pair, we write

e = e + ei . We call e the base point of the edge e. For f : Zd → R, we let
∇f : B →R be the gradient of f , defined by

∇f (e) = f (e) − f (e).

We write ∇∗ for the formal adjoint of ∇ , that is, for F : B →R, ∇∗F : Zd →R is
defined via

(∇∗F
)
(x) =

d∑
i=1

F
(
(x − ei , x)

) − F
(
(x, x + ei )

)
.
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Given a family {a(e)}e∈B of positive real numbers and a function F : B → R, we
let AF(e) = a(e)F (e). This provides us with a precise definition of the operator
∇∗A∇ .

In order to facilitate the derivation of the result (and match the assumptions
made in [11] for the same reason), we make the simplifying assumption that the co-
efficients {a(e)}e∈B are constructed as follows: we give ourselves a family {ζe}e∈B
of independent standard Gaussian random variables, and define a(e) := a(ζe),
where a : R → R is a twice differentiable function with bounded first and second
derivatives, and taking values in a compact subset of (0,∞). Without loss of gen-
erality, we may assume that the underlying probability space is � = R

B equipped
with the Borel product σ -algebra F , and that the underlying probability measure
P is the product measure on (�,F) whose marginal distributions are all standard
Gaussian, N(0,1). The random variable ζe : � →R is then defined by the coordi-
nate map; ζe is simply the eth component of the element ζ ∈ �. Due to the product
structure of P, the {ζe}e∈B are independent. In this way, any F ∈ L2(�,F,P) may
be regarded as a Borel-measurable function of the family {ζe}e∈B. We use 〈·〉 to
denote expectation with respect to P.

Gloria and Otto showed in [7] that for d ≥ 3, for every given ξ ∈ R
d , there exists

a random, stationary φ(ξ) : Zd →R, called the corrector, satisfying

(1.1) ∇∗A
(
ξ + ∇φ(ξ)) = 0.

Also, 〈|φ(ξ)(0)|p〉 < ∞ for all p ≥ 1. If we interpret the random variables
{a(e)}e∈B as conductances, the function x · ξ + φ(ξ)(x) represents a potential with
macroscopic gradient ξ , and the value a(e)(ξ + ∇φ(ξ))(e) represents a current
across edge e. The effective conductivity of the network is the matrix Ah defined
by

ξ · Ahξ = ∑
e=(0,ei )

〈(
ξ + ∇φ(ξ))(e)a(e)

(
ξ + ∇φ(ξ))(e)〉.

Let Gh be the Green function of the continuum differential operator −∇ · Ah∇ .
The main result of [11] is that there exists a deterministic d × d matrix Q(ξ) and a
constant C < ∞ such that letting

Kξ (x) :=
∫
Rd

∇Gh(y) · Q(ξ)∇Gh(x − y)dy,

we have

(1.2)
∣∣〈φ(ξ)(0)φ(ξ)(x)

〉 − Kξ (x)
∣∣ ≤ C

1 ∨ log2 |x|
|x|d−1

(
x ∈ Z

d)
.

The matrix Q(ξ) is positive semidefinite, and Q(ξ)
j,k is defined in terms of ∇φ(ξ),

∇φ(ej ) and ∇φ(ek). We refer to [11] for a more precise description of the ma-
trix Q(ξ). The function Kξ (x) has the same homogeneity as the Green function:
Kξ (λx) = λ2−dKξ (x) for all x ∈ R

d , λ > 0.
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We denote by Cα
loc = Cα

loc(R
d) the local Besov space with exponent of regularity

α and exponents of regularity (∞,∞). For α ∈ (0,1), the space Cα
loc is the space

of locally α-Hölder continuous functions. For α < 0, if a distribution 	 belongs to
Cα

loc, then for every ψ ∈ C∞
c and every x ∈ R

d , we have

(1.3) sup
λ∈(0,1]

λ−α(
	,λ−dψ

(
(· − x)/λ

))
< ∞,

where (·, ·) denotes the duality pairing. This is essentially a characterization of the
space Cα

loc, up to the fact that we prefer to work with a smaller, separable version
of this space. We refer to [5] for a more precise discussion.

In the present article, we show that φ(ξ) converges to a Gaussian field. The
following theorem is our main result.

THEOREM 1.1 (Scaling limit of the corrector). Recall that we assume d ≥ 3,
and let 	

(ξ)
ε be the (random) distribution defined by

(1.4) 	(ξ)
ε (f ) := ε

d
2 +1

∑
x∈Zd

f (εx)φ(ξ)(x)

for f ∈ C∞
c . For every α < −d , the distribution 	

(ξ)
ε converges in law to 	

(ξ)
as

ε → 0 in the topology of Cα
loc, where 	

(ξ)
is the Gaussian random field such that

for every smooth, compactly supported function f , 	(ξ)(f ) is a centred Gaussian
with variance

(1.5) σ 2(f ) :=
∫

f (x)Kξ (y − x)f (y)dx dy.

Furthermore, for any β < 1 − d/2, the law of 	 is supported on Cβ
loc.

In [1] (Conjecture 5), it was conjectured that the appropriate scaling limit for
the corrector is a Gaussian free field. While Theorem 1.1 shows that the limit is
a Gaussian field, the covariance structure can be different from the Gaussian free
field. Indeed, if Q(ξ) is proportional to Ah, then an integration by parts shows
that Kξ (x) is proportional to the Green function; but not so otherwise. Moreover,
a computation in the regime of small ellipticity contrast shows that Q(ξ) is not
necessarily a multiple of Ah.

From (1.2), one infers that for every smooth and compactly supported func-
tion f , one has

Var
[
	(ξ)

ε (f )
] −−→

ε→0
σ 2(f ).

In order to prove Theorem 1.1, it suffices to prove that (1) the fluctuations of
	

(ξ)
ε (f ) are Gaussian, and that (2) the law of 	

(ξ)
ε is tight in Cα

loc. For the first
part, we will in fact be more precise and give a rate of convergence:
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PROPOSITION 1.2 (Gaussian fluctuations). Let dK denote the Kantorovich–
Wasserstein distance

dK(X,W) = sup
{〈
h(X) − h(W)

〉|∥∥h′∥∥∞ ≤ 1
}
,

and let Y be a standard Gaussian random variable. For every f ∈ C∞
c , we have

(1.6) dK

(
	ε(f ), σ (f )Y

) −−→
ε→0

0.

Moreover, if σ(f ) > 0 and σε = √
Var(	ε(f )), then

(1.7) dK

(
σ−1

ε 	ε(f ), Y
)
� εd/2 log |ε|

as ε → 0.

Here and elsewhere, the relation g1 � g2 is used to mean that g1 ≤ Cg2 for
some constant C > 0 that depends only on d ≥ 3 and on the coefficient function
a [specifically, on (max a)/(min a) and on ‖a′‖∞ and ‖a′′‖∞]. Proposition 1.2 is
proved in Section 2. We then prove the following tightness result in Section 3.

PROPOSITION 1.3 (Tightness). For every α < −d , the sequence of (random)
distributions (	

(ξ)
ε )ε∈(0,1] is tight in Cα

loc.

The last statement in Theorem 1.1 follows from the first estimate in Proposi-
tion 3.1 below and from Theorem 1.1 of [5] applied to the family of distributions
which has the single element 	, since

λ
d
2 −1〈∣∣	(fλ)

∣∣p〉1/p = λ
d
2 −1 lim

ε→0

〈∣∣	ε(fλ)
∣∣p〉1/p ≤ C(p,f ) < ∞

holds for all λ ∈ (0,1] and p ≥ 1.

REMARK 1.4. Theorem 1.1 can be reformulated as the joint convergence in
law of (	

(e1)
ε , . . . ,	

(ed )
ε ) to a Gaussian vector field. Indeed, tightness for the prod-

uct topology follows from the tightness of each of the coordinates. The limit law is
then uniquely identified since Theorem 1.1 gives a characterisation of the limit law
of every linear combination of (	

(e1)
ε , . . . ,	

(ed )
ε ). The covariance structure of the

limiting field can be inferred by a polarization (with respect to ξ ) of the left-hand
side of (1.2).

2. Proof of Proposition 1.2. From now on, we drop the dependence on ξ in
the notation for simplicity, writing φ and 	ε instead of φ(ξ) and 	

(ξ)
ε , respectively.

If σ(f ) = 0, then the distribution of σ(f )W is δ0. In this case, (1.6) follows
immediately from Chebyshev’s inequality and the fact that 〈	ε(f )〉 = 0: for all
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Lipschitz functions h with ‖h′‖ ≤ 1,∣∣〈h(
	ε(f )

)〉 − 〈
h
(
σ(f )W

)〉∣∣ = ∣∣〈h(
	ε(f )

)〉 − h(0)
∣∣

≤ 〈∣∣h(
	ε(f )

) − h(0)
∣∣〉(2.1)

≤ ∥∥h′∥∥〈∣∣	ε(f )
∣∣〉 ≤ √

Var
(
	ε(f )

)
.

Hence,

dK

(
	ε(f ), σ (f )W

) ≤
√
Var

(
	ε(f )

) → 0

holds in this case.
So let us suppose that σ(f ) > 0. We wish to prove (1.6) and (1.7). Our proof

will be based on the following proposition, which is a version of Theorem 2.2 in
[4] and Theorem 3.1 (and Remark 3.6) of [12], stated in a form that is convenient
for our purpose.

For a random variable F ∈ L2(�), we say that U = ∂eF ∈ L2(�) is the weak
derivative with respect to ζe [recall that ζ ∼ N(0,1)] if the following holds: for any
finite subset � ⊂ B and any smooth, compactly supported function η : R|�| → R,
we have

(2.2)
〈
Uη(ζ )

〉 = 〈
Fζeη(ζ )

〉 − 〈
F

∂η

∂ζe

(ζ )

〉
,

where η(ζ ) depends only on {ζe′ }e′∈�. We will write ∂∗
e = ζe − ∂e for the adjoint

of the derivative operator: 〈(∂eF )η〉 = 〈F∂∗
e η〉.

PROPOSITION 2.1. Let F ∈ L2(�) be such that 〈F 〉 = 0, 〈F 2〉 = 1. Assume
also that F has weak derivatives satisfying

∑
e〈|∂eF |4〉1/2 < ∞ and 〈|∂e′∂eF |4〉 <

∞ for all e, e′ ∈ B. Let Y ∼ N(0,1). Then

(2.3) sup
‖h′‖∞≤1

〈
h(F ) − h(Y )

〉 ≤
√

5

π

√√√√∑
e′

(∑
e

〈|∂eF |4〉1/4〈|∂e′∂eF |4〉1/4
)2

.

A proof of Proposition 2.1 is given later in Section 4. We note that except for
the numerical constant, the same result holds if the weak derivatives are replaced
by the so-called Glauber derivatives, hence providing a version of the result that
applies to functions of independent random variables that are not necessarily Gaus-
sian; see Remark 2.3 of [11].

We will apply this proposition to F = σ−1
ε 	ε(f ), where σε = √

Var(	ε(f )) →
σ(f ) > 0. Without loss of generality, we may assume that f (x) = 0 when |x| > 1.
For any edges e, e′,

∂e	 = ε
d
2 +1

∑
x∈Zd

f (εx)∂eφ(x),
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and

∂e′∂e	 = ε
d
2 +1

∑
x∈Zd

f (εx)∂e′∂eφ(x).

We recall from [7] that the stationary process φ(x) is defined by the limit

(2.4) φ(x) = lim
μ→0

φμ(x), in Lp(�)

for every p ≥ 1, where the stationary process φμ(x) satisfies the regularized cor-
rector problem

−μφμ + ∇∗A(ξ + ∇φμ) = 0

with μ > 0. The random variable φμ(x) with μ > 0 is differentiable with respect
to each variable {ζe} (Lemma 2.4 of [7]), and ∂eφμ(x) satisfies

−μ∂eφμ + ∇∗A∇∂eφμ = −∇∗ · (∂ea)(ξ + ∇φμ), x ∈ Z
d

and is given by the formula

∂eφμ(x) = −(
∂ea(e)

)∇eGμ(x, e)
(∇φμ(e) + ξe

)
, x ∈ Z

d,(2.5)

where Gμ is the Green function associated with operator −μ + ∇∗A∇ , and
∇eG(x, e) denotes G(x, z+ei)−G(x, z) where e = [z, z+ei]. Notice that in (2.5),
∂ea(e) = a′(ζe) and ∇φμ(e) = φμ(z + ei) − φμ(z) if e = [z, z + ei].

As mentioned in Remark 4.8 of [11], the weak derivatives ∂eφ and ∂e∂e′φ may
be obtained in the limit as μ → 0, in the usual way. Specifically, as μ → 0 we have
φμ(x) → φ(x) and Gμ(x, e) → G0(x, e) = G(x, e) in Lp(�) for any p, where G

denotes the Green function associated with the operator ∇∗A∇ . In view of (2.5),
this implies that the limit

(2.6) lim
μ→0

∂eφμ(x) = −(
∂ea(e)

)∇eG(x, e)
(∇φ(e) + ξe

)
holds in Lp(�) for any p ≥ 1. For any test function η [in the sense of (2.2)], we
have 〈

φ, ∂∗
e η(ζ )

〉 = lim
μ→0

〈
φμ, ∂∗

e η(ζ )
〉 = lim

μ→0

〈
∂eφμ,η(ζ )

〉
.(2.7)

Combining (2.6) and (2.7), we obtain the Green function identity for ∂eφ:

∂eφ(x) = −(
∂ea(e)

)∇eG(x, e)
(∇φ(e) + ξe

)
.

Similarly, if e′ = [y, y + ej ], then ∂e′∂eφμ satisfies

μ∂e′∂eφμ − ∇∗A∇(∂e′∂eφμ)

= ∇∗ · (∂e′∂ea)(∇φμ + ξ) + ∇∗ · (
∂ea(e)

)
(∇∂e′φμ)(2.8)

+ ∇∗ · (
∂e′a(e)

)
(∇∂eφμ).
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Passing to the limit μ → 0 in the same way as above, we obtain the analogous
representation for ∂e′∂eφ. For e �= e′, ∂e′∂ea = 0, and we have

∂e′∂eφ(x) = −(
∂ea(e)

)∇eG(x, e)
(∇e∂e′φ(z)

) − (
∂e′a

(
e′))∇e′G

(
x, e′)(∇e′∂eφ(y)

)
= (

∂ea(e)
)(

∂e′a
(
e′))∇eG(x, e)

(∇e∇e′G
(
e, e′)(∇φ

(
e′) + ξe′

))
(2.9)

+ (
∂ea(e)

)(
∂e′a

(
e′))∇e′G

(
x, e′)(∇e′∇eG

(
e′, e

)(∇φ(e) + ξe

))
,

while for e′ = e, we have

∂2
e φ(x) = 2

(
∂ea(e)

)2∇eG(x, e)
(∇e∇eG(e, e)

(∇eφ(e) + ξe

))
(2.10)

− (
∂2
e a(e)

)∇eG(x, e)
(∇eφ(e) + ξe

)
.

Therefore, applying the generalized Hölder inequality and the fact that |∂ea| =
|a′(ζe)|� 1 and |∂2

e a| = |a′′(ζe)|� 1〈∣∣∂e∂e′φ(x)
∣∣p〉1/p

�
〈∣∣∇eG(x, e)

∣∣3p〉 1
3p

〈∣∣∇e∇e′G
(
e, e′)∣∣3p〉 1

3p
〈∣∣∇φ

(
e′) + ξ

∣∣3p〉 1
3p(2.11)

+ 〈∣∣∇eG
(
x, e′)∣∣3p〉 1

3p
〈∣∣∇e′∇eG

(
e′, e

)∣∣3p〉 1
3p

〈∣∣∇φ(e) + ξ
∣∣3p〉 1

3p .

Also, 〈∣∣∂eφ(x)
∣∣p〉1/p �

〈∣∣∇eG(x, e)
∣∣2p〉 1

2p
〈∣∣∇φ(x) + ξ

∣∣2p〉 1
2p .(2.12)

Gloria and Otto [7] proved that for all p ≥ 1,〈∣∣∇φ(e) + ξ
∣∣p〉1/p � 1.

Marahrens and Otto [10] proved that the Green function satisfies

〈∣∣∇eG(0, e)
∣∣p〉1/p � 1

(1 + |e|)d−1 ,

and 〈∣∣∇e′∇eG
(
e′, e

)∣∣p〉1/p � 1

(1 + |e − e′|)d
for all p ≥ 2. By combining these crucial estimates with (2.11) and (2.12), we
obtain 〈∣∣∂e∂e′φ(x)

∣∣p〉1/p

(2.13)

�
(

1

(1 + |x − e|)d−1 + 1

(1 + |x − e′|)d−1

)
· 1

(1 + |e − e′|)d ,

and 〈∣∣∂eφ(x)
∣∣p〉1/p � 1

(1 + |x − e|)d−1 .(2.14)
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Applying (2.14) and (2.13) to ∂e	 and ∂e′∂e	, and recalling that f (x) = 0 when
|x| > 1, we have

ε− d
2 −1〈|∂e	|p〉1/p �

∑
|x|≤ε−1

〈∣∣∂eφ(x)
∣∣p〉1/p

(2.15)

�
∑

|x|≤ε−1

1

(1 + |x − e|)d−1 ,

and

ε− d
2 −1〈|∂e∂e′	|p〉1/p

�
∑

|x|≤ε−1

〈∣∣∂e∂e′φ(x)
∣∣p〉1/p(2.16)

� 1

(1 + |e − e′|)d
∑

|x|≤ε−1

(
1

(1 + |x − e|)d−1 + 1

(1 + |x − e′|)d−1

)
.

Now, we are prepared to apply Proposition 2.1. The fact that
∑

e〈|∂e	|4〉1/2 <

∞ and 〈|∂e′∂e	|4〉 < ∞ follows from (2.15), (2.16) and the following lemma,
which is proved later.

LEMMA 2.2. For all e ∈ Z
d and ε ∈ (0,1],

∑
|x|≤ε−1

1

(1 + |x − e|)d−1 � ε−1

(1 + |εe|)d−1 .(2.17)

By the estimates above, we have

ε−d−2
∑
e

〈|∂e∂e′	|4〉1/4〈|∂e	|4〉1/4

≤ ∑
e

1

(1 + |e − e′|)d
( ∑

|x|≤ε−1

(
1

(1 + |x − e|)d−1 + 1

(1 + |x − e′|)d−1

))

×
( ∑

|x|≤ε−1

1

(1 + |x − e|)d−1

)
.

Therefore,

ε−d−2
∑
e

〈|∂e∂e′	|4〉1/4〈|∂e	|4〉1/4

≤ ε−2
∑
e

1

(1 + |e − e′|)d
(

1

(1 + |εe|)d−1 + 1

(1 + |εe′|)d−1

)
(2.18)

× 1

(1 + |εe|)d−1 .
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To bound this expression, we use the following estimate, proved later.

LEMMA 2.3. Let p > 0. For all e′ ∈ Z
d and ε ∈ (0,1/2],

∑
e

1

(1 + |e − e′|)d
1

(1 + |εe|)p � | log ε|
(1 + |εe′|)d + | log ε|

(1 + |εe′|)p .(2.19)

Using Lemma 2.3, we conclude that

∑
e

1

(1 + |e − e′|)d
1

(1 + |εe|)2(d−1)
� | log ε|

(1 + |εe′|)d + | log ε|
(1 + |εe′|)2(d−1)

� | log ε|
(1 + |εe′|)d

and ∑
e

1

(1 + |e − e′|)d
1

(1 + |εe|)d−1 � | log ε|
(1 + |εe′|)d + | log ε|

(1 + |εe′|)d−1

� | log ε|
(1 + |εe′|)d−1 .

These bounds combined with (2.18) imply that

ε−2d−4
∑
e′

(∑
e

〈|∂e∂e′	|4〉1/4〈|∂e	|4〉1/4
)2

� ε−4
∑
e′

( | log ε|
(1 + |εe′|)d

)2
+ ε−4

∑
e′

1

(1 + |εe′|)2(d−1)

( | log ε|
(1 + |εe′|)d−1

)2
(2.20)

� ε−4−d(log ε)2.

In view of this estimate, we see that the random variable Fε = σ−1
ε 	ε satisfies

∑
e′

(∑
e

〈|∂e∂e′Fε|4〉1/4〈|∂eFε|4〉1/4
)2

� σ−4
ε εd(log ε)2.

By Proposition 2.1, we conclude that

sup
‖h′‖∞≤1

〈
h(Fε) − h(Y )

〉
� σ−2

ε εd/2 log ε � εd/2 log ε

as ε → 0, since limε→0 σε = σ > 0 in this case. This proves (1.7). Finally,〈
h(	ε) − h(σY )

〉 = 〈
h(	ε) − h(σεY )

〉 + 〈
h(σεY ) − h(σY )

〉
= σε

〈
ĥε

(
σ−1

ε 	ε

) − ĥε(Y )
〉 + 〈

h(σεY ) − h(σY )
〉

(2.21)

= σε

〈
ĥε(Fε) − ĥε(Y )

〉 + 〈
h(σεY ) − h(σY )

〉
,
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where ĥε(·) = σ−1
ε h(σε·) also satisfies ‖ĥ′

ε‖∞ ≤ 1. Hence,

sup
‖h′‖∞≤1

〈
h(	ε) − h(σY )

〉
� εd/2 log ε + |σε − σ |,

which implies that (1.6) holds as well.

PROOF OF LEMMA 2.2. If |e| > 2ε−1 and |x| ≤ ε−1, then |x − e| > |e|/2 ≥ 1.
So, clearly

∑
|x|≤ε−1

1

(1 + |x − e|)d−1 � ε−d

|e|d−1 = ε−1

|εe|d−1

in this case. For |e| < 2ε−1,∑
|x|≤ε−1

1

(1 + |x − e|)d−1 ≤
∫
|y|<3ε−1

1

(1 + |y|)d−1 dy � ε−1.

So, (2.17) holds in this case as well. �

PROOF OF LEMMA 2.3. First, consider the sum over edges satisfying |e| <

ε−1: ∑
|e|<ε−1

1

(1 + |e − e′|)d
1

(1 + |εe|)p �
∑

|e|<ε−1

1

(1 + |e − e′|)d

�

⎧⎪⎨
⎪⎩

| log ε|, ∀e′,
ε−d

|e′|d , ∀∣∣e′∣∣ > ε−1(2.22)

� | log ε|
(1 + |εe′|)d .

Next, consider the sum over edges satisfying |e| > ε−1:
∑

|e|≥ε−1

1

(1 + |e − e′|)d
1

(1 + |εe|)p

�
∑

|e|≥ε−1

1

(1 + |e − e′|)d
1

|εe|p(2.23)

� ε−p
∫
|x|>ε−1

1

(1 + |x − e′|)d
1

|x|p dx.

Let x = ε−1z, e′ = ε−1w. Then

(2.24)
∑

|e|≥ε−1

1

(1 + |e − e′|)d
1

(1 + |εe|)p � ε−d
∫
|z|>1

1

(1 + ε−d |z − w|d)

1

|z|p dz.
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Restricting the integral in (2.24) to the set |z − w| ≤ ε, we have

ε−d
∫

|z|>1
|z−w|≤ε

1

(1 + ε−d |z − w|d)

1

|z|p dz � ε−d
∫

|z|>1
|z−w|≤ε

1

|z|p dz � min
(
1, |w|−p)

.

Restricting the integral in (2.24) to the set |z − w| ≥ ε, we have

ε−d
∫

|z|>1
|z−w|≥ε

1

(1 + ε−d |z − w|d)

1

|z|p dz �
∫

|z|>1
|z−w|≥ε

1

|z − w|d
1

|z|p dz.

If |z| > 3|w|, then |w − z| > |z|/2, so∫
|z|>1

|z−w|≥ε
|z|>3|w|

1

|z − w|d
1

|z|p dz ≤
∫

|z|>1
|z|>3|w|

1

|z|p+d
dz � min

(
1, |w|−p)

.

On the other hand, restricting to |z| < 3|w|,∫
|z|>1

|z−w|≥ε
|z|<3|w|

1

|z − w|d
1

|z|p dz

=
∫

|z|>1
ε≤|z−w|≤1

|z|<3|w|

1

|z − w|d
1

|z|p dz +
∫

|z|>1
|z−w|≥1
|z|<3|w|

1

|z − w|d
1

|z|p dz(2.25)

� | log ε|min
(
1, |w|−p) + log

(
1 + |w|) min

(
1, |w|−p)

.

The bound (2.19) now follows by combining these estimates with w = εe′. �

3. Proof of Proposition 1.3. We now proceed to prove Proposition 1.3. The
main result of [5] states informally that in order to verify the tightness of a fam-
ily of distributions (fn) in Cα

loc, it suffices to check that the estimate (1.3) holds
uniformly over fn. More precisely, and by the invariance of the corrector under
translations, it suffices to show the following proposition.

PROPOSITION 3.1. For f ∈ C0
c (Rd;R), let fλ(x) = λ−df (x/λ). For all

p ≥ 1, there exists a constant C = C(p,f ) such that

〈∣∣	ε(fλ)
∣∣p〉1/p ≤ C ·

⎧⎨
⎩λ1− d

2 , 0 < ε ≤ λ ≤ 1,

ε
d
2 +1λ−d, 0 < λ ≤ ε ≤ 1.

PROOF. In the regime 0 < λ ≤ ε ≤ 1 the stated bound is immediate from the
fact that the corrector φ is in Lp(�), since in this case

	ε(fλ) = ε
d
2 +1

∑
x∈Zd

fλ(εx)φ(x)
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has only a finite number of nonzero terms (independent of λ and ε) and
‖fλ‖L∞(Rd ) ≤ Cλ−d . In the regime 0 < ε ≤ λ ≤ 1, observe that for any ε,λ ∈
(0,1],

	ε(fλ) = λ1− d
2 	r(f )

with r = ε/λ. Therefore, to prove Proposition 3.1, it suffices to show that

(3.1)
〈∣∣	ε(f )

∣∣p〉1/p ≤ C

holds for all ε ∈ (0,1].
Since φ is stationary and 〈φ(0)〉 = 0, we know that 〈	ε(f )〉 = 0. In particular,

(3.2)
〈
	ε(f )p

〉2 � 1 uniformly over ε > 0

holds for p = 1. Arguing inductively, let us suppose that (3.2) holds for some
positive integer p = n. We claim that (3.2) must also hold for p = 2n. To prove
this claim, we use the identity

〈
	ε(f )2n〉 = 〈

	ε(f )n
〉2 +Var

(
	ε(f )n

)
,

which, by the induction hypothesis, gives us

(3.3)
〈
	ε(f )2n〉

� 1 +Var
(
	ε(f )n

)
.

We will show that Var(	ε(f )n)� 〈	ε(f )2n〉1−1/n, hence

(3.4)
〈
	ε(f )2n〉

� 1 + 〈
	ε(f )2n〉1−1/n

.

This bound and Young’s inequality establish the claim that (3.2) also holds for
p = 2n.

To prove that Var(	ε(f )n) � 〈	ε(f )2n〉1−1/n, we first apply the Gaussian
spectral gap inequality [which in this infinite dimensional setting follows from the
Helffer–Sjöstrand representation stated in Section 4, i.e., from (4.3) with F = G]:

Var
(
	ε(f )n

) ≤ ∑
e

〈∣∣∂e

(
	ε(f )n

)∣∣2〉
.(3.5)

Then we apply Hölder’s inequality to obtain

Var
(
	ε(f )n

) ≤ ∑
e

〈∣∣n	ε(f )n−1∂e	ε(f )
∣∣2〉

≤ ∑
e

〈
	ε(f )2n〉1−1/n〈∣∣∂e	ε(f )

∣∣2n〉1/n(3.6)

= 〈
	ε(f )2n〉1−1/n

∑
e

〈∣∣∂e	ε(f )
∣∣2n〉1/n

.
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Now we show that the last sum is bounded by a constant. Without loss of general-
ity, assume that f (x) = 0 for |x| > 1. Recall that 〈|∂eφ(x)|p〉1/p � (1+|x−e|)1−d

[see (2.14)]. So,

〈(
∂e	(f )

)2n〉1/(2n) = ε
d
2 +1

〈(∑
x

f (εx)∂eφ(x)

)2n〉1/(2n)

� ε
d
2 +1

∑
|x|≤ε−1

〈(
∂eφ(x)

)2n〉1/(2n)

� ε
d
2 +1

∑
|x|≤ε−1

1

(1 + |x − e|)d−1 .

The last sum is controlled by Lemma 2.2, which leads to

〈(
∂e	(f )

)2n〉1/(2n) ≤ ε
d
2 +1 ε−1

(1 + |εe|)d−1 .

Therefore,
∑
e

〈∣∣∂e	ε(f )
∣∣2n〉1/n � εd+2

∑
e

ε−2

(1 + |εe|)2d−2 � 1(3.7)

since d ≥ 3. In view (3.6), we have now established that Var(	ε(f )n) �
〈	ε(f )2n〉1−1/n.

By induction on n, we have proved that〈
	ε(f )p

〉2 � 1

holds for all p ∈ {2n|n = 0,1,2,3, . . . }. Now (3.1) follows by Jensen’s inequality.
�

4. Stein’s method. In this section, we prove Proposition 2.1, which is a ver-
sion of Theorem 2.2 in [4] and Theorem 3.1 (and Remark 3.6) in [12], stated in a
form that is convenient for our purpose. The basis of the estimate is the following
lemma.

LEMMA 4.1 (See [3], Lemma 4.2). Suppose h :R →R is absolutely continu-
ous with bounded derivative, and Y ∼ N(0,1). There exists a solution to

(4.1) ϕ′(x) − xϕ(x) = h(x) − 〈
h(Y )

〉
, x ∈ R

which satisfies ‖ϕ′‖∞ ≤
√

2
π
‖h′‖∞ and ‖ϕ′′‖∞ ≤ 2‖h′‖∞.

PROOF OF PROPOSITION 2.1. Let F ∈ L2(�) be such that 〈F 〉 = 0, 〈F 2〉 = 1.
By (4.1), we have 〈

h(F ) − h(Y )
〉 = 〈

ϕ′(F ) − ϕ(F )F
〉

(4.2)
= Cov

(〈
ϕ′(F )

〉
F − ϕ(F ),F

)
.
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Since ∂eF ∈ L2(�) for all e ∈ B, we can estimate this covariance by apply-
ing the Helffer–Sjöstrand correlation representation (see [11], Proposition 3.1) to
Cov(G,F ) with G = 〈ϕ′(F )〉F − ϕ(F ). Let ∂∗

e = −∂e + ζe be the adjoint of the
derivative operator ∂e. Let L = ∂∗∂ , where ∂F = (∂eF )e∈B and for K = (Ke)e∈B,
∂∗K = ∑

e ∂∗
e Ke. The correlation representation is

(4.3) Cov(G,F ) = ∑
e∈B

〈
∂eG(L+ 1)−1∂eF

〉
.

From this and (4.2), we obtain〈
h(F ) − h(Y )

〉 = ∑
e

〈
∂eG(L + 1)−1∂eF

〉
(4.4)

= ∑
e

〈(〈
ϕ′(F )

〉 − ϕ′(F )
)
∂eF (L + 1)−1∂eF

〉
.

Observe that 〈ϕ′(F )〉 − ϕ′(F ) ∈ L∞ has zero mean. Moreover, the series∑
e ∂eF (L + 1)−1∂eF converges in L1(�) and has mean 1 = Cov(F,F ). Hence,

〈
h(F ) − h(Y )

〉 = 〈(〈
ϕ′(F )

〉 − ϕ′(F )
)(∑

e

∂eF (L + 1)−1∂eF

)〉

=
〈
ϕ′(F )

(
1 − ∑

e

∂eF (L + 1)−1∂eF

)〉
(4.5)

≤ ∥∥ϕ′∥∥∞
〈∣∣∣∣1 − ∑

e

∂eF (L + 1)−1∂eF

∣∣∣∣
〉

≤
√

2

π

∥∥h′∥∥∞
〈∣∣∣∣1 − ∑

e

∂eF (L + 1)−1∂eF

∣∣∣∣
〉
.

Assuming that
∑

e〈|∂eF |4〉1/2 < ∞, we claim that the sum

S = ∑
e

∂eF (L + 1)−1∂eF

is in L2(�), and we will estimate the last term in (4.5) by the variance

(4.6)
〈∣∣∣∣1 − ∑

e

∂eF (L + 1)−1∂eF

∣∣∣∣
〉
≤

√
Var

(∑
e

∂eF (L + 1)−1∂eF

)
.

Indeed, ∥∥∂eF (L + 1)−1∂eF
∥∥

2 ≤ ‖∂eF‖4
∥∥(L + 1)−1∂eF

∥∥
4 ≤ ‖∂eF‖2

4,

since (L + 1)−1 is a contraction on Lp(�) for any p ≥ 2 (see Proposition 3.2
of [11]). Thus, S ∈ L2(�) if

∑
e‖∂eF‖2

4 < ∞.
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Under the additional assumption 〈|∂e′∂eF |4〉 < ∞ for all e, e′ ∈ B, we also have
∂e′S ∈ L2(�) for all e′ ∈ B, so that Var(S) can be estimated by the Gaussian spec-
tral gap inequality. We compute

∂e′(L + 1)−1∂eF = (L + 2)−1∂e′∂eF,

so that

∂e′
(
∂eF (L + 1)−1∂eF

) = (∂e′∂eF )(L + 1)−1∂eF + ∂eF (L + 2)−1∂e′∂eF.

The operator (L + 2)−1 is also a contraction, satisfying ‖(L + 2)−1u‖p ≤
(1/2)‖u‖p for all u ∈ Lp(�), p ≥ 2 (this follows from minor modification to the
proof of Proposition 3.2 of [11]). Therefore,∥∥∂e′

(
∂eF (L + 1)−1∂eF

)∥∥
2

≤ ∥∥(∂e′∂eF )(L + 1)−1∂eF
∥∥

2 + ∥∥∂eF (L + 2)−1∂e′∂eF
∥∥

2
(4.7)

≤ ‖∂e′∂eF‖4
∥∥(L + 1)−1∂eF

∥∥
4 + ‖∂eF‖4

∥∥(L + 2)−1∂e′∂eF
∥∥

4

≤
(

1 + 1

2

)
‖∂e′∂eF‖4‖∂eF‖4 < ∞.

Hence, ∂e′S ∈ L2(�) for all e′ ∈ B.
Now we apply the Gaussian spectral gap inequality:

Var
(∑

e

∂eF (L + 1)−1∂eF

)
≤ ∑

e′

〈∣∣∣∣∂e′
∑
e

∂eF (L + 1)−1∂eF

∣∣∣∣2
〉

≤ 2
∑
e′

〈∣∣∣∣∑
e

(∂e′∂eF )(L + 1)−1∂eF

∣∣∣∣2
〉

(4.8)

+ 2
∑
e′

〈∣∣∣∣∑
e

∂eF (L + 2)−1∂e′∂eF

∣∣∣∣2
〉
.

To bound the last two sums, we apply Minkowski’s inequality:〈∣∣∣∣∑
e

(∂e′∂eF )(L + 1)−1∂eF

∣∣∣∣2
〉1/2

≤ ∑
e

〈∣∣(∂e′∂eF )(L + 1)−1∂eF
∣∣2〉1/2

,

〈∣∣∣∣∑
e

(∂e′∂eF )(L + 1)−1∂eF

∣∣∣∣2
〉1/2

≤ ∑
e

〈∣∣∂eF (L + 2)−1∂e′∂eF
∣∣2〉1/2

.

As was seen in (4.7), we have〈∣∣(∂e′∂eF )(L + 1)−1∂eF
∣∣2〉1/2 ≤ 〈|∂e′∂eF |4〉1/4〈|∂eF |4〉1/4

,
(4.9) 〈∣∣∂eF (L + 2)−1∂e′∂eF

∣∣2〉1/2 ≤ 1

2

〈|∂eF |4〉1/4〈|∂e′∂eF |4〉1/4
.
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Therefore, returning to (4.8), we obtain that

Var
(∑

e

∂eF (L + 1)−1∂eF

)
≤ 5

2

∑
e′

(∑
e

〈|∂eF |4〉1/4〈|∂e′∂eF |4〉1/4
)2

,

and thus from (4.5) and (4.6) we conclude

(4.10)
〈
h(F ) − h(Y )

〉 ≤
√

5

π

∥∥h′∥∥∞

√√√√∑
e′

(∑
e

〈|∂eF |4〉1/4〈|∂e′∂eF |4〉1/4
)2

.

[The assumptions on F in Proposition 2.1 do not guarantee that the right-hand side
of (4.10) is finite. In the case that the right-hand side is infinite, the conclusion of
the theorem holds trivially.] �
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