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CHI-SQUARE APPROXIMATION BY STEIN’S METHOD WITH
APPLICATION TO PEARSON’S STATISTIC

BY ROBERT E. GAUNT1, ALASTAIR M. PICKETT2 AND GESINE REINERT3

University of Oxford

This paper concerns the development of Stein’s method for chi-square
approximation and its application to problems in statistics. New bounds for
the derivatives of the solution of the gamma Stein equation are obtained.
These bounds involve both the shape parameter and the order of the deriva-
tive. Subsequently, Stein’s method for chi-square approximation is applied to
bound the distributional distance between Pearson’s statistic and its limiting
chi-square distribution, measured using smooth test functions. In combination
with the use of symmetry arguments, Stein’s method yields explicit bounds
on this distributional distance of order n−1.

1. Introduction. One of the first statistical tests which a student learns is
based on Pearson’s chi-square statistic, denoted by X2 and commonly used to test
goodness-of-fit in classification problems. Under the null hypothesis of fit to (any)
specified distribution over m classes, X2 converges in distribution to a chi-square
random variable with m − 1 degrees of freedom, as the sample size increases.
There are many rules-of-thumb as to when it is valid to use Pearson’s test, gener-
ally based on experience and simulation experiments; the most famous such rule,
oft quoted in school textbooks, is that the expected values in each class should be
at least 5 under the null hypothesis. This restriction is now considered by many
authors to be conservative—indeed for some datasets, any such stipulation quickly
becomes a severe handicap; see, for example, [31]. Error bounds can be used to
rigorously improve such rules-of-thumb and base them on the experimenter’s par-
ticular needs.

The most common method of analysing the asymptotics of X2 is by way of
normal approximation, using the Lindeberg–Levy multivariate central limit theo-
rem. Knowledge of the convergence rate of the central limit theorem shows that
X2 converges to its limit at rate of at least n−1/2, where n is the overall size of the
sample. This strategy has been applied to the approximation of quadratic forms to
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obtain bounds on the distance to a normal distribution using Stein’s method; see,
for example, [9].

In this paper, we consider convergence in the square directly, using Stein’s
method, to obtain an explicit bound on the rate of convergence of order n−1 for
smooth test functions. This may seem counter-intuitive at first sight, but can be
attributed to the fact that there is an additional symmetry structure to the prob-
lem that is not exploited when using a normal approximation; it is this symmetry
which gives rise to the improvement in the order of the chi-square approximation.
Another motivation for studying chi-square approximations directly is that some-
times the underlying normality does not hold; see, for example, [12].

In order to obtain explicit bounds for such a chi-square approximation, we em-
ploy Stein’s method. Stein’s method was introduced in [32] for assessing the dis-
tance between a probability distribution and the normal distribution. At the heart of
Stein’s method for normal approximation is an inhomogeneous differential equa-
tion, known as the Stein equation:

(1.1) f ′(x) − xf (x) = h(x) − �h,

where �h denotes the quantity Eh(Z) for Z ∼ N(0,1). Evaluating both sides of
(1.1) at a random variable W and taking expectations gives

(1.2) E
[
f ′(W) − Wf (W)

] = Eh(W) − �h.

Thus, the quantity Eh(W) − �h can be bounded by solving the Stein equation
(1.1) and then bounding the left-hand side of (1.2). Associated with (1.1) is the
Stein operator

(1.3) Af (x) = f ′(x) − xf (x),

defined for differentiable functions f .
Over the years, Stein’s method has been extended to many other distributions,

such as the Poisson [5], multinomial [20], exponential [4, 27], Laplace [29],
variance-gamma [14] and the gamma distribution [21, 25], which we develop fur-
ther in this paper. For multivariate normal approximations, the method was first
adapted in [2] and [16], viewing the normal distribution as the stationary distribu-
tion of an Ornstein–Uhlenbeck diffusion, and using the generator of this diffusion
as a characterising operator (1.3) for the normal distribution.

This generator approach was used by [21] to extend Stein’s method to the
gamma distribution. Through this method, [21] obtained the following Stein equa-
tion for the �(r, λ) distribution with probability density function λr

�(r)
xr−1e−λx ,

x > 0:

(1.4) xf ′′(x) + (r − λx)f ′(x) = h(x) − �r,λh,

where �r,λh denotes the quantity Eh(X) for X ∼ �(r, λ) (this characterisation
of the gamma distribution was known from [8]). It therefore follows that a Stein
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operator for the chi-square distribution with p degrees of freedom is

(1.5) Apf (x) = xf ′′(x) + 1

2
(p − x)f ′(x),

defined for all twice differentiable functions f , and a Stein equation for the chi-
square distribution with p degrees of freedom is

(1.6) xf ′′(x) + 1

2
(p − x)f ′(x) = h(x) − χ2

(p)h,

where χ2
(p)h denotes the quantity Eh(X) for X ∼ χ2

(p).
Luk [21] obtained the second essential ingredient of Stein’s method for gamma

approximation by bounding the derivatives of the solution f of the gamma Stein
equation (1.4). Let h(k) denote the kth derivative of a (k times differentiable) func-
tion h, and let

Cλ,k = {
h :R+ →R : ∃c > 0, a < λ such that ∀x ∈ R, � = 0,1, . . . , k − 1,∣∣h(�)(x)

∣∣ ≤ ceax and h(k−1) is absolutely continuous
}
.

Then, for h ∈ Cλ,k ,

(1.7)
∥∥f (k)

∥∥ ≤ ‖h(k)‖
kλ

, k ≥ 1,

where ‖f ‖ := ‖f ‖∞ = supx>0 |f (x)|.
An alternative bound was obtained by [13], improving a bound of [28]. If h ∈

Cλ,k−1, then

(1.8)
∥∥f (k)

∥∥ ≤
{√

2π + e−1
√

r + k − 1
+ 2

r + k − 1

}∥∥h(k−1)
∥∥, k ≥ 1,

where h(0) ≡ h. (Indeed [13, 21] and [28] imposed stronger conditions on the test
function h, although by slightly modifying their proofs one can weaken the as-
sumptions to those stated above.) The bound (1.8) involves one fewer derivative
of the test function h than (1.7), and also—and more importantly in the context
of chi-square approximation—(1.8) involves the shape parameter r . For the χ2

(p)

distribution, inequality (1.7) gives a bound ‖f (k)‖ ≤ 2
k
‖h(k)‖, whereas bound (1.8)

is of order p−1/2 for large p.
In Section 2, we obtain new bounds for the solution of the gamma Stein equa-

tion. Of particular interest is the bound of Theorem 2.1, which is of order p−1 for
large p:

(1.9)
∥∥f (k)

∥∥ ≤ 2

r + k − 1

(
3
∥∥h(k−1)

∥∥ + 2λ
∥∥h(k−2)

∥∥), k ≥ 2.

The p−1 rate, which is optimal (see Remark 2.2), means that (1.9) is more suited
to the applications considered in this paper than either (1.7) or (1.8).
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The rest of this paper applies Stein’s method for chi-square approximation to
problems in statistics. Before bounding the distance between Pearson’s statistic
and its limiting chi-square distribution, we illustrate Stein’s method for chi-square
approximation by considering a simpler example in which the random variables
are independent and identically distributed. Specifically, let X be a n× d matrix of
i.i.d. random variables Xij with zero mean and unit variance. Then the statistic

(1.10) Wd = 1

n

d∑
j=1

(
n∑

i=1

Xij

)2

is asymptotically χ2
(d) distributed, by the central limit theorem. From the Berry–

Esséen theorem, one might expect Wd to converge (in the weak convergence sense)
at a rate of order n−1/2. In contrast, in Theorem 3.3, through the use of symmetry
arguments, we are able to obtain bounds of order n−1 for smooth test functions.
Our bound (1.9) for the solution of the Stein equation allows an improvement on
the O(dn−1) and O(d1/2n−1) bounds that would result from an application of
(1.7) or (1.8). Though, for nonsmooth test functions, we expect a n−1/2 rate to be
optimal; see Remark 3.4.

In Section 4, we use Stein’s method for chi-square approximation to obtain
bounds for the distance between Pearson’s statistic and its limiting distribution.
This is a more challenging application, because, unlike (1.10), Pearson’s statis-
tic cannot be written in terms of i.i.d. random variables (knowledge of whether
the outcome of the j th trial falls in the first m − 1 cells allows one to determine
whether it fell in the mth cell). In particular, by using symmetry considerations, we
are able to obtain a bound of order n−1 for smooth test functions (Theorem 4.2).
This is the first O(n−1) bound for the rate of convergence of Pearson’s statistic that
holds for all m ≥ 2. While [17] proved that the rate of convergence of Pearson’s
statistic in Kolmogorov distance is O(n−1) for all m ≥ 6, they did not give an ex-
plicit bound. In Theorem 4.3, we obtain a O(n−1/2) bound that holds for smooth
test functions which has smaller constants and a better dependence on m than the
bound of Theorem 4.2. Both of the bounds depend on n and the null hypothesis
cell classification probabilities p1, . . . , pm in the correct manner, in that they tend
to zero if and only if np∗ → ∞, where p∗ = min1≤i≤m pi . A simple consequence
of these bounds is a Kolmogorov distance bound for the rate of convergence of
Pearson’s statistic (Corollary 4.2). The dependence on n is suboptimal, but Corol-
lary 4.2 is the first Kolmogorov distance bound for Pearson’s statistic that tends to
zero if and only if np∗ → ∞.

The rest of the article is organised as follows. Section 2 gives new bounds for the
derivatives of the solution of the gamma Stein equation. In Section 3, we demon-
strate Stein’s method for chi-square approximation by considering an example in
which the random variables are independent and identically distributed. In par-
ticular, symmetry considerations can be used to obtain bounds of order n−1. In
Section 4, we obtain bounds for the distance between Pearson’s statistic and its
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limiting chi-square distribution, one of which is of order n−1 for smooth test func-
tions. A bound for the rate of convergence of Pearson’s statistic in Kolmogorov
distance appears as a corollary. Proofs of technical results are postponed to Sec-
tion 5.

2. Stein’s method for the gamma distribution. First, we briefly review some
of the existing literature of Stein’s method for the gamma distribution. We shall
need some of this theory to obtain our bounds for the derivatives of the solution of
the gamma Stein equation.

The following characterisation of the gamma distribution (see [8] and [21]) is
the starting point for Stein’s method for gamma approximation. The random vari-
able X has the �(r, λ) distribution if and only if

(2.1) E
[
Xf ′′(X) + (r − λX)f ′(X)

] = 0

for all twice differentiable functions f :R+ →R which are such that the expecta-
tions E|Zf ′′(Z)|, E|f ′(Z)| and E|Zf ′(Z)| are finite for Z ∼ �(r, λ). This charac-
terisation leads to the �(r, λ) Stein equation (1.4).

It is straightforward to verify that

f ′(x) = 1

xp(x)

∫ x

0

(
h(t) − �r,λh

)
p(t)dt(2.2)

= − 1

xp(x)

∫ ∞
x

(
h(t) − �r,λh

)
p(t)dt,(2.3)

where p(x) = λr

�(r)
xr−1e−λx , solves the �(r, λ) Stein equation (see [33], page 59,

Lemma 1). The representations (2.2) and (2.3) of the solution become difficult to
work with if one is interested in bounding higher order derivatives. Luk [21] used
probabilistic arguments to obtain an alternative representation of the solution for
which it is possible to write down a simple formula for derivatives of general order.
From this formula for the kth order derivative, [21] deduced the bound (1.7), and
[13] used this formula and some more involved calculations to obtain (1.8) (see
also [28]).

With the introductory results now stated, we turn our attention to deriving our
order r−1 bound for the solution of �(r, λ) Stein equation. In proving our result,
we do not need to make use of either (2.2) or the formula in [21] for the solution;
the bound follows from a simple application of (1.7) and the following lemma.

LEMMA 2.1. Let f ′ be the solution (2.2) of the Stein equation (1.4). Then, if
h :R+ →R is bounded,

(2.4)
∥∥xf ′′(x)

∥∥ ≤ 2‖h − �r,λh‖ ≤ 4‖h‖.
Suppose now that h ∈ Cλ,k for k ≥ 1. Then

(2.5)
∥∥xf (k+2)(x)

∥∥ ≤ 4
∥∥h(k)

∥∥
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and

(2.6)
∥∥xf (k+1)(x)

∥∥ ≤ 4

λ
(2 + √

r + k)
∥∥h(k)

∥∥.
PROOF. First, we show that, for bounded h,

(2.7)
∥∥xf ′′(x)

∥∥ ≤ 2‖h − �r,λh‖.
From (1.4) and the triangle inequality,∣∣xf ′′(x)

∣∣ ≤ ‖h − �r,λh‖ + ∣∣(r − λx)f ′(x)
∣∣.

Now, for 0 < x < r
λ

, from (2.2),

∣∣(r − λx)f ′(x)
∣∣ = r − λx

xp(x)

∫ x

0

(
h(t) − �r,λh

)
p(t)dt

≤ ‖h − �r,λh‖r − λx

xp(x)

∫ x

0
p(t)dt.

Note that with p(x) = λr

�(r)
xr−1e−λx it holds for all t > 0 that (tp(t))′ = (r −

λt)p(t). Hence, for 0 < x < r
λ

,

0 <
r − λx

xp(x)

∫ x

0
p(t)dt

≤ r − λx

xp(x)

∫ x

0

r − λt

r − λx
p(t)dt

= 1

xp(x)

∫ x

0

(
tp(t)

)′ dt = 1.

With an analogous argument for the case x > r
λ

, using representation (2.3), the
bound (2.7) follows, and with it inequality (2.4).

We now use (2.4) to prove inequality (2.5). The technique used to achieve this is
similar to the proof of Proposition 4.2 of [10] (the technique has since been further
developed in [11]). The �(r, λ) Stein equation with a straightforward induction on
k gives

(2.8) xf (k+2)(x) + (r + k − λx)f (k+1)(x) − kλf (k)(x) = h(k)(x).

Note that, since h ∈ Cλ,k , it follows from (1.7) and (1.8) that f (k)(x) and f (k−1)(x)

exist and are bounded, and consequently xf (k+2)(x) also exists and is bounded.
Rearranging (2.8),

(2.9) xf (k+2)(x) + (r + k − λx)f (k+1)(x) = h(k)(x) + kλf (k)(x),

which we recognise as the �(r + k,λ) Stein equation with f replaced by f (k),
and h(x) − �r,λh replaced by h̃(x) := h(k)(x) + kλf (k)(x). Now h̃(x) is bounded



726 R. E. GAUNT, A. M. PICKETT AND G. REINERT

and has zero mean with respect to the �(r + k,λ) distribution. Indeed, for X ∼
�(r + k,λ),

Eh̃(X) = E
[
Xf (k+2)(X) + (r + k − λX)f (k+1)(X)

] = 0,

by characterisation (2.1) of the �(r + k,λ) distribution, since the expectations
E|Xf (k+2)(X)|, E|f (k+1)(X)| and E|Xf (k+1)(X)| are finite. Hence, it follows
from (2.4) that∥∥xf (k+2)(x)

∥∥ ≤ 2
∥∥h(k)(x) + kλf (k)(x)

∥∥ ≤ 2
(∥∥h(k)

∥∥ + kλ
∥∥f (k)

∥∥) ≤ 4
∥∥h(k)

∥∥,
where the final inequality follows from (1.7).

Finally, we prove inequality (2.5). From (2.8),

λxf (k+1)(x) = −h(k)(x) − kλf (k)(x) + (r + k)f (k+1)(x) + xf (k+2)(x),

and applying the triangle inequality gives

λ
∥∥xf (k+1)

∥∥ ≤ ∥∥h(k)
∥∥ + kλ

∥∥f (k)
∥∥ + (r + k)

∥∥f (k+1)
∥∥ + ∥∥xf (k+2)(x)

∥∥.
Inequality (2.6) now follows on bounding ‖f (k)‖, ‖f (k+1)‖ and ‖xf (k+2)(x)‖ us-
ing inequalities (1.7), (1.8) and (2.5), respectively. �

The following theorem follows easily from Lemma 2.1.

THEOREM 2.1. Let k ≥ 2 and suppose h ∈ Cλ,k−1 and that h(k−2) is bounded.
Then

(2.10)
∥∥f (k)

∥∥ ≤ 2

r + k − 1

(
3
∥∥h(k−1)

∥∥ + 2λ
∥∥h(k−2)

∥∥),
where h(0) ≡ h. In particular, for the derivatives of the solution of the χ2

(p) Stein
equation (1.6), we have, for k ≥ 2,

(2.11)
∥∥f (k)

∥∥ ≤ 4

p + 2

(
3
∥∥h(k−1)

∥∥ + ∥∥h(k−2)
∥∥).

PROOF. From (2.8), it follows that

f (k)(x) = 1

r + k − 1

{
h(k−1)(x) + λ(k − 1)f (k−1)(x) − xf (k+1)(x) + λxf (k)(x)

}
,

and applying the triangle inequality gives∥∥f (k)
∥∥ ≤ 1

r + k − 1

{∥∥h(k−1)
∥∥+λ(k−1)

∥∥f (k−1)
∥∥+∥∥xf (k+1)(x)

∥∥+λ
∥∥xf (k)(x)

∥∥}.
Using (1.7) to bound ‖f (k−1)‖ and using (2.5) to bound ‖xf (k)(x)‖ and
‖xf (k+1)(x)‖ gives the desired bound. In the case k = 2, we use (2.4) to bound
‖xf (k)(x)‖. For the last assertion, take r = 1

2p and λ = 1
2 , yielding

∥∥f (k)
∥∥ ≤ 4

p + 2k − 2

(
3
∥∥h(k−1)

∥∥ + ∥∥h(k−2)
∥∥);

(2.11) follows by noting that k − 1 ≥ 1. �
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REMARK 2.2. The bound (2.10) of Theorem 2.1 is of order r−1 as r → ∞.
This is indeed the optimal order, which can be seen as follows. Evaluating both
sides of the �(r, λ) Stein equation at x = 0 gives

f ′(0) = 1

r

[
h(0) − �r,λh

]
.

Also, evaluating both sides of equation (2.9) at x = 0 gives that

f (k)(0) = 1

r + k − 1

{
h(k−1)(0) + (k − 1)λf (k−1)(0)

}
, k ≥ 2.

We therefore have that

f ′′(0) = 1

r + 1

(
h′(0) + λ

r

[
h(0) − �r,λh

])
,

which for a general test function h is of order r−1. Repeating this procedure shows
that the optimal order for ‖f (k)‖ is O(r−1) as r → ∞.

3. A squared central limit theorem. Let X be a n×d matrix of i.i.d. random
variables Xij with zero mean and unit variance. In this section, we use symmetry
considerations to obtain a bound of order n−1 for the distance between the statistic

(3.1) Wd = 1

n

d∑
j=1

(
n∑

i=1

Xij

)2

and its limiting χ2
(d) distribution. To elucidate the proof, we first consider the case

d = 1; the general d case follows easily as Wd is a linear sum of W1. For ease
of notation, set W ≡ W1 and Xi ≡ Xi1. Let Ck

b(R+) denote the class of bounded
functions h : R+ → R for which h(k) exists and derivatives up to kth order are
bounded. Stein’s method for the chi-square distribution yields the following result.

THEOREM 3.1. Let X,X1, . . . ,Xn be i.i.d. random variables with EX = 0,
EX2 = 1 and EX8 < ∞, and let W ≡ W1 be defined as per equation (3.1). Then,
for h ∈ C3

b(R+),

(3.2)
∣∣Eh(W) − χ2

(1)h
∣∣ ≤ 4EX8

3n

{
α0‖h‖ + α1

∥∥h′∥∥ + α2
∥∥h′′∥∥ + α3

∥∥h(3)
∥∥},

where χ2
(1)h denotes the expectation of h(T ) for T ∼ χ2

(1) and

α0 = 2 + 69
∣∣EX3∣∣,

α1 = 38 + 654
∣∣EX3∣∣,

α2 = 203 + 1781
∣∣EX3∣∣,

α3 = 321 + 1320
∣∣EX3∣∣.
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PROOF. The proof comes in two parts. The first part includes expansions and
bounds, whereas the second part includes the symmetry argument.

Proof Part I: Expansions and bounding. Let S = 1√
n

∑n
1 Xj , so that W = S2.

We also let S(i) = S − 1√
n
Xi and note that S(i) and Xi are independent. Using the

Stein equation for a χ2
(1) random variable, we require a bound on the expression

E[Wf ′′(W)+ 1
2(1−W)f ′(W)]. Define the function g :R →R by g(s) = 1

4f (s2).
Then simple differentiation shows that

(3.3) E

[
Wf ′′(W) + 1

2
(1 − W)f ′(W)

]
= E

[
g′′(S) − Sg′(S)

]
.

The right-hand side of this equality can be recognised as the quantity to be bounded
in the Stein equation for the standard normal distribution, with g′ instead of g [see
equation (1.1)]. Thus, our problem is reduced from that of a χ2

(1) to that of a normal.
As the Xi are identically distributed,

ESg′(S) = 1√
n

n∑
i=1

EXig
′(S) = √

nEX1g
′(S).

Taylor expansion of g′′(S) and g′(S) about S(1), using independence and that
EX1 = 0 and EX2

1 = 1 gives

E
[
g′′(S) − Sg′(S)

] = Eg′′(S(1)) + 1√
n
EX1Eg(3)(S(1)) + R1

− √
nEX1Eg′(S(1)) −EX2

1Eg′′(S(1)) − R2 − R3

= R1 − N − R2,

where

R1 = 1

2n
EX2

1g
(4)

(
S(1) + θ1

X1√
n

)
,

N = EX3

2
√

n
Eg(3)(S(1)) and

R2 = 1

6n
EX4

1g
(4)

(
S(1) + θ2

X1√
n

)

for some θ1, θ2 ∈ (0,1). In order to bound these terms, note that

g(4)(s) = 3f ′′(s2) + 12s2f (3)(s2) + 4s4f (4)(s2)
so that

(3.4)
∣∣g(4)(s)

∣∣ ≤ 3
∥∥f ′′∥∥ + 12s2∥∥f (3)

∥∥ + 4s4∥∥f (4)
∥∥.
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Let ξθ = S(1) + θ X1√
n

. In bounding R1, and throughout this proof, we shall use that,
for θ ∈ (0,1),

(3.5) E
∣∣Xp

1 ξ
q
θ

∣∣ = E

∣∣∣∣Xp
1

(
S(1) + θ

X1√
n

)q ∣∣∣∣ ≤ 2q−1
[
E|X|pE∣∣S(1)

∣∣q + E|X|p+q

nq/2

]
,

as |a + b|q ≤ 2q−1(|a|q + |b|q) for q ≥ 1.
We begin by bounding R1;

|R1| = 1

2n
E
∣∣X2

1
{
3f ′′(ξ2

θ1

) + 12ξ2
θ1

f (3)(ξ2
θ1

) + 4ξ4
θ1

f (4)(ξ2
θ1

)}∣∣
≤ 3

2n

∥∥f ′′∥∥ + 12

n

∥∥f (3)
∥∥[EX2

E
(
S(1))2 + EX4

n

]

+ 16

n

∥∥f (4)
∥∥[EX2

E
(
S(1))4 + EX6

n2

]

≤ 3

2n

∥∥f ′′∥∥ + 12

n

∥∥f (3)
∥∥[1 + EX4

n

]
+ 16

n

∥∥f (4)
∥∥[3 + EX4

n
+ EX6

n2

]
,

using that E(S(1))2 = n−1
n

< 1 and the inequality

E
(
S(1))4 = (n − 1)EX4 + 3(n − 1)(n − 2)

n2 < 3 + EX4

n

to obtain the last inequality. The bounding of R2 is similar, with the modification
that the order of the moments of X is increased by 2:

|R2| ≤ 1

2n
EX4∥∥f ′′∥∥ + 4

n

∥∥f (3)
∥∥[EX4 + EX6

n

]

+ 16

3n

∥∥f (4)
∥∥[3EX4 + (EX4)2

n
+ EX8

n2

]
.

It remains to bound N . By Taylor expanding g(3)(S(1)) about S,

N = EX3

2
√

n
Eg(3)(S) + R3,

where

R3 = −EX3
1

2n
EX1g

(4)

(
S(1) + θ3

X1√
n

)

for some θ3 ∈ (0,1). We bound R3 similarly to R1 and R2,

|R3| ≤ ∣∣EX3∣∣{ 3

2n

∥∥f ′′∥∥ + 12

n

∥∥f (3)
∥∥[1 + E|X|3

n

]

+ 16

n

∥∥f (4)
∥∥[3 + EX4

n
+ E|X|5

n2

]}
.
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It remains to show that EX3

2
√

n
Eg(3)(S) is of order n−1/2. Here, the symmetry

argument enters.
Proof Part II: Symmetry argument for optimal rate. We shall approach this

problem using a form of normal approximation: since S ≈ N(0,1), the O(n−1/2)

central limit theorem convergence rate to the standard normal Stein equation can
be applied with test functions g(3). Using (1.1), the Stein equation with test func-
tion g(3) for a standard normal random variable is given by

(3.6) ψ ′(x) − xψ(x) = g(3)(x) − �g(3).

Now the test function g(3)(s) = 3sf ′′(s2) + 2s3f (3)(s2) is an odd function
[g(3)(−x) = −g(3)(x)], and so must then be the density of g(3)(Z) for Z stan-
dard normal, and hence must have zero mean, giving that �g(3) = 0. The following
lemma gives bounds on the solution of this Stein equation; its proof is in Section 5.

LEMMA 3.1. For the solution ψ of (3.6), we have that∣∣ψ(x)
∣∣ ≤ 3

∥∥f ′′∥∥ + 2
(
x2 + 2

)∥∥f (3)
∥∥,(3.7) ∣∣xψ ′(x)

∣∣ ≤ 6x2∥∥f ′′∥∥ + 4x2(x2 + 1
)∥∥f (3)

∥∥,(3.8) ∣∣ψ ′′(x)
∣∣ ≤ 6

(
2x2 + 1

)∥∥f ′′∥∥ + 2
(
2x4 + 3x2 + 8

)∥∥f (3)
∥∥ + 4x4∥∥f (4)

∥∥.(3.9)

Now, performing Taylor expansions as in the first part of the proof,

Eg(3)(S) = E
[
ψ ′(S) − Sψ(S)

] = R4 + R5,

where

R4 = 1√
n
EX1ψ

′′
(
S(1) + θ4

X1√
n

)
,

R5 = − 1

2
√

n
EX3

1ψ
′′
(
S(1) + θ5

X1√
n

)

for some θ4, θ5 ∈ (0,1). Using (3.9) and E|X| ≤ 1, we obtain that

|R4| ≤ 1√
n
E
∣∣X1ψ

′′(ξθ4)
∣∣

≤ 1√
n

{
6
∥∥f ′′∥∥E∣∣X1

(
2ξ2

θ4
+ 1

)∣∣ + 2
∥∥f (3)

∥∥E∣∣X1
(
2ξ4

θ4
+ 3ξ2

θ4
+ 8

)∣∣
+ 4

∥∥f (4)
∥∥E∣∣X1ξ

4
θ4

∣∣}
≤ 1√

n

{
6
∥∥f ′′∥∥ + 16

∥∥f (3)
∥∥ +E

∣∣X1ξ
2
θ4

∣∣(12
∥∥f ′′∥∥ + 6

∥∥f (3)
∥∥)

+ 4E
∣∣X1ξ

4
θ4

∣∣(∥∥f (3)
∥∥ + ∥∥f (4)

∥∥)}.
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The last expression we bound with (3.5) to obtain

|R4| ≤ 1√
n

{
6
∥∥f ′′∥∥ + 16

∥∥f (3)
∥∥ +

(
1 + E|X|3

n

)(
12

∥∥f ′′∥∥ + 6
∥∥f (3)

∥∥)

+ 32
(

3 + EX4

n
+ E|X|5

n2

)(∥∥f (3)
∥∥ + ∥∥f (4)

∥∥)}

= 1√
n

{
6
[
3 + 2E|X|3

n

]∥∥f ′′∥∥

+ 2
[
59 + 3E|X|3

n
+ 16EX4

n
+ 16E|X|5

n2

]∥∥f (3)
∥∥

+ 32
[
3 + EX4

n
+ E|X|5

n2

]∥∥f (4)
∥∥}.

Similarly,

|R5| ≤ 1

2
√

n

{
6
∥∥f ′′∥∥E∣∣X3

1
(
2ξ2

θ4
+ 1

)∣∣ + 2
∥∥f (3)

∥∥E∣∣X3
1
(
2ξ4

θ4
+ 3ξ2

θ4
+ 8

)∣∣
+ 4

∥∥f (4)
∥∥E∣∣X3

1ξ
4
θ4

∣∣}
≤ 1√

n

{
3
[
3E|X|3 + 2E|X|5

n

]∥∥f ′′∥∥

+
[
59E|X|3 + 3E|X|5

n
+ 16E|X|3EX4

n
+ 16E|X|7

n2

]∥∥f (3)
∥∥

+ 16
[
3E|X|3 + E|X|3EX4

n
+ E|X|7

n2

]∥∥f (4)
∥∥}.

To conclude, we have shown that

∣∣Eh(W) − χ2
(1)h

∣∣ ≤ |R1| + |R2| + |R3| + 3|EX3|
2
√

n

(|R4| + |R5|),
and summing up these remainder terms gives

∣∣Eh(W) − χ2
(1)h

∣∣ ≤ 1

n

{
β1

∥∥f ′′∥∥ + β2
∥∥f (3)

∥∥ + β3
∥∥f (4)

∥∥},
where

β1 = 3

2
+ EX4

2
+ ∣∣EX3∣∣[57

2
+

(
27

2
+ 18

n

)
E|X|3 + 9E|X|5

n

]
,

β2 = 12 + 4
(

1 + 3

n

)
EX4 + 4EX6

n
+ ∣∣EX3∣∣[189 +

(
177

2
+ 21

n

)
E|X|3
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+ 48EX4

n
+ 24E|X|3EX4

n
+ 1

n

(
9

2
+ 48

n

)
E|X|5 + 24E|X|7

n2

]
,

β3 = 48 + 16
(

1 + 1

n

)
EX4 + 16(EX4)2

3n
+ 16EX6

n2 + 16EX8

3n2

+ ∣∣EX3∣∣[192 + 72E|X|3 + 64EX4

n
+ 24E|X|3EX4

n

+ 64E|X|5
n2 + 24E|X|7

n2

]
.

The βi can be simplified using that n ≥ 1 and 1 ≤ E|X|a ≤ E|X|b for 2 ≤ a ≤ b,
as well as the inequalities E|X|3(EX4)3/4 ≤ E|X|3EX4 ≤ E|X|7 and (EX4)2 ≤
EX8, which follow from Hölder’s inequality. Carrying out this simplification gives
that

β1 ≤ (
2 + 69

∣∣EX3∣∣)EX8,

β2 ≤ (
32 + 447

∣∣EX3∣∣)EX8,

β3 ≤ (
107 + 440

∣∣EX3∣∣)EX8.

Finally, using inequality (2.11) to translate bounds on the derivatives of the solu-
tion f to bounds on the derivatives of the test function h completes the proof of
Theorem 3.1. �

REMARK 3.2. Instead of using (2.10) to bound the derivatives of f , we could
have used (2.5), which would have reduced the moment requirements on X to
sixth order and also weakened the conditions on the test function h, and would
have resulted in the bound

∣∣Eh(W) − χ2
(1)h

∣∣ ≤ EX6

n

{
γ0‖h‖ + γ1

∥∥h′∥∥ + γ2
∥∥h′′∥∥},

where

γi = Ai + Bi

∣∣EX3∣∣, i = 0,1,2,

for universal constants Ai and Bi . This approach does not easily adapt to give the
right order in d for Wd , whereas the previous approach does, as will be seen in
Theorem 3.3.

Moving onto the case of d > 1, the following generalisation of Theorem 3.1 is
almost immediate.

THEOREM 3.3. Suppose the Xij are defined as before with bounded eighth
moment, and let Wd be defined as in Equation (3.1). Then, for a function h ∈
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C3
b(R+) and for any positive integer d ,

(3.10)
∣∣Eh(Wd) − χ2

(d)h
∣∣ ≤ 4dEX8

(d + 2)n

{
α0‖h‖ + α1

∥∥h′∥∥ + α2
∥∥h′′∥∥ + α3

∥∥h(3)
∥∥},

where the αi are as in the statement of Theorem 3.1.

PROOF. Define W(j) = 1
n
(
∑n

i=1 Xij )
2, so that Wd = ∑d

j=1 W(j). Using the

χ2
(d) Stein equation and conditioning gives

Eh(Wd) − χ2
(d)h = E

[
Wdf ′′(Wd) + 1

2
(d − Wd)f ′(Wd)

]

=
d∑

j=1

E

[
W(j)f

′′(Wd) + 1

2
(1 − W(j))f

′(Wd)

]

=
d∑

j=1

E

[
E

[
W(j)f

′′(Wd) + 1

2
(1 − W(j))f

′(Wd)
∣∣∣

W(1), . . . ,W(j−1),W(j+1), . . . ,W(d)

]]
.

Since ‖g(n)(x +c)‖ = ‖g(n)(x)‖ for any constant c, bound (3.2) from Theorem 3.1
can be used to bound the above expression, which yields (3.10). �

REMARK 3.4. The premise that the test function must be smooth is vital.
Consider the following example in the univariate case with the single point test
function h ≡ χ{0}. Let Xi , i = 1, . . . , n = 2k, be random variables taking values in
the set {−1,1} with equal probability. Then EXi = 0, VarXi = 1 and

Eh(W) = P

(∑
i

Xi = 0
)

=
(

2k

k

)(
1

2

)2k

≈ 1√
πk

=
√

2

πn
,

by Stirling’s approximation. Furthermore, χ2
(1)h = P(χ2

(1) = 0) = 0, and hence the

total variation distance between the distribution of W and the χ2
(1) distribution is

of order n−1/2. It is an open question whether a bound of order n−1 in Wasserstein
distance can be achieved.

REMARK 3.5. The bound (3.10) allows for d → ∞. Of course, for large d ,
the statistic Wd will be approximately normally distributed because the chi-square
distribution approaches the normal distribution as d increases.
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4. Application to Pearson’s statistic. Now we tackle the Pearson chi-square
goodness-of-fit test, introduced in 1900 in [26].

THEOREM 4.1 (Pearson’s χ2 test). Consider n independent trials, with
each trial leading to a unique classification over m classes. Let the vec-
tor p = (p1, . . . , pm) represent the nonzero classification probabilities, and let
(U1, . . . ,Um) represent the observed numbers arising in each class. Then Pear-
son’s chi-square statistic, given by

(4.1) W =
m∑

j=1

(Uj − npj )
2

npj

,

is asymptotically χ2
(m−1) distributed.

The aim of this section is to ascertain how fast W converges (in the sense of
weak convergence) in terms of n, m and p1, . . . , pm. To date, the application of
Stein’s method to this problem has been fairly limited. To the best of our knowl-
edge, the only work thus far on this topic are the unpublished papers [22] and
[23]. The first of these papers [22] uses an exchangeable pair coupling to study
the asymptotic properties of the statistic with a uniform null distribution using a
smooth test function, and in it is derive a bound of order n−1/2, but with an un-
manageably large constant. In the second paper [23], a bound (Theorem 1.3) of
[16] for the multidimensional central limit theorem is used to derive a bound, in
the Kolmogorov distance, on Pearson’s statistic with general null distribution:

(4.2) sup
z>0

∣∣P(W ≤ z) − P(Ym−1 ≤ z)
∣∣ ≤ 250m

p
3/2∗

√
n
,

where Ym−1 ∼ χ2
(m−1) and p∗ = min1≤i≤m pi . The dependence on m in this bound

can actually be improved by using Theorem 1.1 of [3] in place of Theorem 1.3 of
[16], which yields the upper bound 400m1/4p

−3/2∗ n−1/2.
An explicit O(n−1/2) bound for the distance between Pearson’s statistic and its

limiting chi-square distribution is given by (4.2). However, this rate is not optimal.
In [37] Edgeworth expansions are used to show that

sup
z>0

∣∣P(W ≤ z) − P(Ym−1 ≤ z)
∣∣ = O

(
n−(m−1)/m)

, m ≥ 2,

and this was improved, for m ≥ 6, by [17]:

sup
z>0

∣∣P(W ≤ z) − P(Ym−1 ≤ z)
∣∣ = O

(
n−1), m ≥ 6.

However, [37] and [17] do not give explicit upper bounds. It should also be noted
that [36] and [1] have used Edgeworth expansions to study the rate of convergence
of the more general power divergence family of statistics (see [7]) constructed
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from the multinomial distribution of degree m (which includes Pearson’s statistic,
the log-likelihood ratio statistic and Freeman–Tukey statistics as special cases) to
their χ2

(m−1) limits.
In this section, we obtain explicit bounds for the distributional distance between

Pearson’s statistic and its limiting chi-square distribution. We now present our
bounds, starting with one of the main results of this paper: a Pearson chi-square
weak convergence theorem for smooth test functions with a bound of order n−1,
which holds for all m ≥ 2.

THEOREM 4.2. Let (U1, . . . ,Um) represent the multinomial vector of n ≥ 2
observed counts, where m ≥ 2, and suppose that npj ≥ 1 for all j = 1, . . . ,m.
Denote the Pearson statistic by W . Let h ∈ C5

b(R+). Then∣∣Eh(W) − χ2
(m−1)h

∣∣
≤ 4

(m + 1)n

(
m∑

j=1

1√
pj

)2{
19‖h‖ + 366

∥∥h′∥∥ + 2016
∥∥h′′∥∥(4.3)

+ 5264
∥∥h(3)

∥∥ + 106,965
∥∥h(4)

∥∥ + 302,922
∥∥h(5)

∥∥}.
When the constants are large compared to n, then the next result may give the

smaller numerical bound.

THEOREM 4.3. Suppose npj ≥ 1 for all j = 1, . . . ,m. Then, for h ∈ C2
b(R+),

(4.4)
∣∣Eh(W) − χ2

(m−1)h
∣∣ ≤ 12

(m + 1)
√

n

{
6‖h‖ + 46

∥∥h′∥∥ + 84
∥∥h′′∥∥} m∑

j=1

1√
pj

.

Let p∗ = min1≤i≤m pi ; using that
∑m

j=1
1√
pj

≤ m√
p∗ the next corollary is imme-

diate from (4.3) and (4.4).

COROLLARY 4.1. Suppose that np∗ ≥ 1. Then, for h ∈ C2
b(R+),

(4.5)
∣∣Eh(W) − χ2

(m−1)h
∣∣ ≤ 12√

np∗
{
6‖h‖ + 46

∥∥h′∥∥ + 84
∥∥h′′∥∥}

and, for h ∈ C5
b(R+),∣∣Eh(W) − χ2

(m−1)h
∣∣

≤ 4m

np∗
{
19‖h‖ + 366

∥∥h′∥∥ + 2016
∥∥h′′∥∥(4.6)

+ 5264
∥∥h(3)

∥∥ + 106,965
∥∥h(4)

∥∥ + 302,922
∥∥h(5)

∥∥}.
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Applying a basic technique for converting smooth test function bounds into Kol-
mogorov distance bounds, which can be found in [6], page 48, to bound (4.5) gives
Kolmogorov distance bounds for the rate of convergence of Pearson’s statistic. The
standard proof is given in Section 5.

COROLLARY 4.2. Let Yd denote a χ2
(d) random variable and suppose

np∗ ≥ 1. Then

sup
z>0

∣∣P(W ≤ z) − P(Ym−1 ≤ z)
∣∣

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

(np∗)1/10

{
8 + 21

(np∗)1/5 + 72

(np∗)2/5

}
, m = 2,

1

(np∗)1/6

{
19 + 44

(np∗)1/6 + 72

(np∗)1/3

}
, m = 3,

1

(m − 3)1/3(np∗)1/6

{
13 + 37(m − 3)1/6

(np∗)1/6 + 72(m − 3)1/3

(np∗)1/3

}
, m ≥ 4.

REMARK 4.4. The assumption np∗ ≥ 1 is very mild [bounds (4.3) and (4.4)
are uninformative otherwise] and is included for the sole purpose of simplifying
calculations. Indeed, we do not claim that the numerical constants in our bounds
are close to optimal. In order to simplify the calculations and obtain a compact
final bound, we make a number of simple and rather crude approximations. We
do, however, take care to ensure that these approximations do not affect the role of
m, n and p1, . . . , pm in our final bounds.

REMARK 4.5. For fixed m, bounds (4.5) and (4.6) depend on n and p∗ in
the correct way, in the sense that they tend to zero if and only if np∗ → ∞. This
is an established condition under which Pearson’s statistic W converges to the
χ2

(m−1) distribution; see [18]. However, if we allow m to vary with n, then Theo-
rem 4.3 shows that this is not a necessary condition; some cell probabilities may
be of the order n−1 as long as m is large and the bound could still be small. To
illustrate this point, assume that p1 = n−1 and for j = 2, . . . ,m, pj = n−1

n(m−1)
.

Then
∑m

i=1 pi = 1 and the bound in Theorem 4.3 is of order 1
m

+
√

m
n

. As long as
m = m(n) → ∞ as n → ∞ such that m/n → 0 as n → ∞ the chi-square approx-
imation is valid.

REMARK 4.6. Considering the situation where m → ∞ as n → ∞ more gen-
erally, [19] gives an example of when this might occur in contingency table analy-
sis by considering cross-classification of discrete variables. In [35] it is shown that
the null distribution of the Pearson statistic is asymptotically normal if np∗ → ∞
and m → ∞. Note that this result is consistent with the chi-square convergence
result since the chi-square distribution converges to the normal as the degrees of
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freedom increase. An attractive property of the bound (4.5) is that it does not in-
volve m, so that it tends to zero if np∗ → ∞ and m → ∞. However, the bound
(4.6) does involve m and as a result tends to zero only if the stronger condition
np∗/m → ∞ holds. This, along with the very large numerical constants indicates
a weakness in the bound; the price we pay for the faster n−1 convergence rate.

REMARK 4.7. The Kolmogorov distance bound of Corollary 4.2 has a subop-
timal dependence on n. This is perhaps to be expected, as the bound was derived
by applying a fairly crude nonsmooth test function approximation technique to the
smooth test function bound (4.5). However, it is the first bound in the literature for
the rate of convergence in Kolmogorov distance of Pearson’s statistic that depends
on n and p1, . . . , pm in the correct manner, in the sense that it tends to zero if and
only if np∗ → ∞. In fact, to the best of our knowledge there does not exist bound
in any metric for the rate of convergence of Pearson’s statistic that depends on n

and p1, . . . , pm in this manner.
This demonstrates the power of Stein’s method, which allows us to use the mul-

tivariate normal Stein equation to effectively deal with the dependence structure of
Pearson’s statistic (see the proofs of Theorems 4.2 and 4.3). A direction for future
research would be to use Stein’s method, with an approach tailored to nonsmooth
test functions, to Pearson’s statistic. With this approach, it may be possible to ob-
tain a bound which tends to zero if any only if np∗ → ∞ but with a better rate
in n.

Let us now prove Theorem 4.2; the proof of Theorem 4.3 is much simpler and
is given in Section 5.

PROOF OF THEOREM 4.2. As was the case for the proof of Theorem 3.1, the
proof comes in two parts. The first part includes expansions and bounds, and the
second part includes the symmetry argument.

Proof Part I: Expansions and bounding. Let Sj = 1√
npj

(Uj − npj ), so that Sj

denotes the standardised cell counts, and notice that
∑m

j=1
√

pjSj = 0; also Uj ∼
Bin(n,pj ) for each j . Now,

W =
m∑

j=1

S2
j .

This is analogous to the already studied case of independent summands in a chi-
square statistic. The key difference in this application is that the Sj are not indepen-
dent, although they can be constructed from independent indicators. Let Ij (i) be
the indicator that trial i results in classification in cell j , and let Ĩj (i) = Ij (i)−pj

be its standardised version. Then it is clear that Sj = 1√
npj

∑n
i=1 Ĩj (i).
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To take advantage of the independence of the indicators Ij (1), . . . , Ij (n), we de-

fine S
(i)
j = Sj − 1√

npj
Ij (i) and denote the vector (S

(i)
1 , . . . , S

(i)
m ) by S(i). Note that

S(i) is independent of Ij (i) for all j . The following expressions for the moments

of the S
(i)
j are straightforward.

LEMMA 4.1. The second, fourth and sixth moments of S
(i)
j are given by

E
(
S

(i)
j

)2 = (n − 1)(1 − pj )

n
+ pj

n
,

E
(
S

(i)
j

)4 = 3(1 − pj )
2 (n − 1)

n
+ (n − 1)

n2pj

(1 − pj )
(
1 − 13pj + 23p2

j

) + p2
j

n2 ,

E
(
S

(i)
j

)6 = 15(1 − pj )
3 + P1(pj )

npj

+ P2(pj )

(npj )2 + P3(pj )

(npj )2n
,

where

P1(pj ) = (1 − pj )
(
1 − 87pj + 724p2

j − 1626p3
j + 1044p4

j

)
,

P2(pj ) = 5(1 − pj )
2(5 − 47pj + 68p2

j

)
,

P3(pj ) = −(1 − 2pj )
(
1 − 60pj + 420p2

j − 720p3
j + 360p4

j

)
.

If npj ≥ 1, then E|S(i)
j | < 1, E(S

(i)
j )2 < 1, E|S(i)

j |3 < 43/4, E(S
(i)
j )4 < 4,

E|S(i)
j |5 < 425/6 and E(S

(i)
j )6 < 42.

PROOF. The equalities can be obtained by using the formulas for the first
six moments of the Binomial distribution, which are given in [34]. To obtain
the inequalities for the fourth and sixth moments, note that in the interval [0,1]
the functions g1(p) = 3(1 − p)2 + (1 − p)|1 − 13p + 23p2| + p2 and g2(p) =
15(1−p)3 +|P1(p)|+ |P2(p)|+ |P3(p)| take their maximum value at p = 0. The
inequalities for the first, third and fifth absolute moments follow from applying
Hölder’s inequality to the inequalities for the second, fourth and sixth moments,
respectively. �

We shall take a similar approach to before, where we converted the χ2
(1) Stein

equation into the N(0,1) Stein equation; this time, however, we shall convert to a
multivariate normal, which has Stein equation (see, e.g., [15]):

(4.7) ∇T �∇f (s) − sT ∇f (s) = h(s) −Eh(Z),

where Z ∼ MVN(0,�). In analogy with (1.3), we define the Stein operator

(4.8) AMVN(0,�)f (s) = ∇T �∇f (s) − sT ∇f (s).
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Since for S = (S1, . . . , Sm), the covariance matrix of S is �S = �U, where �U de-
notes the covariance matrix of U, it follows by a simple random sampling without
replacement argument (see [30], Section 7.3) that �S = (σjk), has entries

σjj = 1 − pj and σjk = −√
pjpk, j �= k.

The following connection between the χ2
(m−1) and MVN(0,�S) Stein equations

will be proven in Section 5.

LEMMA 4.2. Let AMVN(0,�S) be given in (4.8) and let Am−1 be given in (1.5).
Let f ∈ C2(R) and define g : Rm → R by g(s) = 1

4f (w) with w = ∑m
i=1 s2

i for
s = (s1, . . . , sm). If

∑m
j=1

√
pj sj = 0, then

AMVN(0,�S)g(s) = Am−1f (w).

We wish to bound EAm−1g(W), which by Lemma 4.2 is equivalent to bound-
ing EAMVN(0,�S)g(S). As the indicators Ij (1), Ij (2), . . . , Ij (n) are identically dis-
tributed, it follows that

m∑
j=1

ESj

∂g

∂sj
(S) = 1√

n

n∑
i=1

m∑
j=1

1√
pj

EĨj (i)
∂g

∂sj
(S)

= √
n

m∑
j=1

1√
pj

EĨj (1)
∂g

∂sj
(S).

We now Taylor expand and use the independence of S(1) and the Ij (1) to obtain

m∑
j=1

ESj

∂g

∂sj
(S) = √

n

m∑
j=1

1√
pj

EĨj (1)E
∂g

∂sj

(
S(1))

+
m∑

j=1

m∑
k=1

1√
pjpk

EĨj (1)Ik(1)E
∂2g

∂sj ∂sk

(
S(1)) + N1 + R1,

where

N1 = 1

2
√

n

m∑
j=1

m∑
k=1

m∑
l=1

1√
pjpkpl

EĨj (1)Ik(1)Il(1)E
∂3g

∂sj ∂sk∂sl

(
S(1)),

R1 = 1

6n

m∑
j=1

m∑
k=1

m∑
l=1

m∑
t=1

1√
pjpkplpt

EĨj (1)Ik(1)Il(1)It (1)
∂4g

∂sj ∂sk∂sl∂st
(ξ).

Here and throughout the proof, ξ denotes a vector with m entries with j th entry
ξj = S

(1)
j + θj√

npj
Ij (1) for some θj ∈ (0,1). Using that EĨj = 0 and then Taylor
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expanding gives

m∑
j=1

ESj

∂g

∂sj
(S) =

m∑
j=1

m∑
k=1

1√
pjpk

EĨj (1)Ik(1)E
∂2g

∂sj ∂sk

(
S(1)) + N1 + R1

=
m∑

j=1

m∑
k=1

1√
pjpk

EĨj (1)Ik(1)E
∂2g

∂sj ∂sk
(S)

+ N1 + N2 + R1 + R2,

where

N2 = − 1√
n

m∑
j=1

m∑
k=1

m∑
l=1

1√
pjpkpl

EĨj (1)Ik(1)EIl(1)
∂3g

∂sj ∂sk∂sl
(S),

R2 = − 1

2n

m∑
j=1

m∑
k=1

m∑
l=1

m∑
t=1

1√
pjpkplpt

EĨj (1)Ik(1)EIl(1)It (1)
∂4g

∂sj ∂sk∂sl∂st
(ξ).

Note that the vector ξ in the above formula for R2 is in general different from
the ξ in the expression for R1, as was the case in the proof of Theorem 3.1.
As Ĩj (i)Ij (i) = (1 − pj )Ij (i) and, for j �= k, Ĩj (i)Ik(i) = (Ij (i) − pj )Ik(i) =
−pjIk(i), since each trial leads to a unique classification, taking expectations gives

(4.9) EĨj (i)Ij (i) = pj (1 − pj ) and EĨj (i)Ik(i) = −pjpk, j �= k,

and so

1

pj

EĨj (i)Ij (i) = 1 − pj = σjj ;

1√
pjpk

EĨj (i)Ik(i) = −√
pjpk = σjk, j �= k.

Therefore,

E

[
m∑

j=1

m∑
k=1

σjk

∂2g

∂sj ∂sk
(S) −

m∑
j=1

Sj

∂g

∂sj
(S)

]
= −N1 − N2 − R1 − R2,

and it remains to bound the terms N1, N2, R1 and R2.
First we deal with N2. Taylor expanding ∂3g

∂sj ∂sk∂sl
(S) about S(1) yields

N2 = N3 + R3,

where

N3 = − 1√
n

m∑
j=1

m∑
k=1

m∑
l=1

1√
pjpkpl

EĨj (1)Ik(1)EIl(1)E
∂3g

∂sj ∂sk∂sl

(
S(1))
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and

R3 = 1

n

m∑
j=1

m∑
k=1

m∑
l=1

m∑
t=1

1√
pjpkplpt

EĨj (1)Ik(1)EIl(1)It (1)
∂4g

∂sj ∂sk∂sl∂st
(ξ).

We can immediately bound R1, R2 and R3 to the desired order of O(n−1), but
a more detailed calculation, involving symmetry arguments, is required to bound
N1 and N3 to this order. We begin by bounding R1. Recalling that Ĩj (i)Ij (i) =
(1 − pj )Ij (i), Ĩj (i)Ik(i) = −pjIk(i) for j �= k and Ij (i)Ik(i) = 0 for j �= k,

|R1| = 1

6n

∣∣∣∣∣
m∑

j=1

1 − pj

p2
j

EIj (1)
∂4g

∂s4
j

(ξ) −
m∑

j=1

m∑
k �=j

√
pj

p
3/2
k

EIk(1)
∂4g

∂sj ∂s3
k

(ξ)

∣∣∣∣∣
(4.10)

≤ 1

6n

{
m∑

j=1

1

p2
j

E

∣∣∣∣Ij (1)
∂4g

∂s4
j

(ξ)

∣∣∣∣ +
m∑

j=1

m∑
k �=j

√
pj

p
3/2
k

E

∣∣∣∣Ik(1)
∂4g

∂sj ∂s3
k

(ξ)

∣∣∣∣
}
.

To obtain the desired O(n−1) rate for R1, we need to show that the two expecta-
tions given in (4.10) are O(1). This is somewhat involved, and is deferred until we
have bounds of a similar form to (4.10) for R2 and R2. The terms R2 and R3 cam
be bounded using a similar approach,

|R2| + |R3| ≤ 3

2n

m∑
j=1

m∑
k=1

m∑
l=1

1√
pjpkp

2
l

∣∣EĨj (1)Ik(1)
∣∣E∣∣∣∣Il(1)

∂4g

∂sj ∂sk∂s2
l

(ξ)

∣∣∣∣

= 3

2n

{
m∑

j=1

m∑
l=1

1 − pj

pl

E

∣∣∣∣Il(1)
∂4g

∂s2
j ∂s2

l

(ξ)

∣∣∣∣
+

m∑
j=1

m∑
k �=j

m∑
l=1

√
pjpk

pl

E

∣∣∣∣Il(1)
∂4g

∂sj ∂sk∂s2
l

(ξ)

∣∣∣∣
}
.

Collecting the bounds for R1, R2 and R3 and then using that 0 < pj < 1, j =
1, . . . ,m, to simplify the resulting bound gives

|R1| + |R2| + |R3|

≤ 1

6n

{
m∑

j=1

1

p2
j

E

∣∣∣∣Ij (1)
∂4g

∂s4
j

(ξ)

∣∣∣∣ + 9
m∑

j=1

m∑
k=1

1

pj

E

∣∣∣∣Ij (1)
∂4g

∂s2
j ∂s2

k

(ξ)

∣∣∣∣
(4.11)

+
m∑

j=1

m∑
k �=j

√
pk

p
3/2
j

E

∣∣∣∣Ij (1)
∂4g

∂s3
j ∂sk

(ξ)

∣∣∣∣
+ 9

m∑
j=1

m∑
k �=j

m∑
l=1

√
pkpl

pj

E

∣∣∣∣Ij (1)
∂4g

∂s2
j ∂sk∂sl

(ξ)

∣∣∣∣
}
.
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To bound the expectations on the right-hand side of (4.11), straightforward dif-
ferentiation gives

∂4g

∂s4
j

(s) = 3f ′′(w) + 12s2
j f (3)(w) + 4s4

j f (4)(w),

and similar expressions hold for mixed partial derivatives. Hence, for any j , k, l, t ,∣∣∣∣ ∂4g

∂sj ∂sk∂sl∂st
(s)

∣∣∣∣ ≤ 3
∥∥f ′′∥∥ + 3

(
s2
j + s2

k + s2
l + s2

t

)∥∥f (3)
∥∥

(4.12)
+ (

s4
j + s4

k + s4
l + s4

t

)∥∥f (4)
∥∥.

The following lemma is proved in Section 5. Some of the inequalities given in
this lemma are only used in the proof of Theorem 4.3 but are collected here for
completeness.

LEMMA 4.3. For all j, k = 1, . . . ,m, we have E|Ij (1)ξk| < 2pj , EIj (1)ξ2
k <

4pj , E|Ij (1)ξ3
k | < 14pj , EIj (1)ξ4

k < 27pj and EIj (1)ξ6
k < 305pj .

Using inequality (4.12), Lemma 4.3 and the triangle inequality, the expectations
on the right-hand side of (4.11) can be bounded as follows:

E

∣∣∣∣Ij (1)
∂4g

∂sj ∂sk∂sl∂st
(ξ)

∣∣∣∣
≤ 3

∥∥f ′′∥∥EIj (1)

+ 3
∥∥f (3)

∥∥[EIj (1)ξ2
j +EIj (1)ξ2

k +EIj (1)ξ2
l +EIj (1)ξ2

t

]
(4.13)

+ ∥∥f (4)
∥∥[EIj (1)ξ4

j +EIj (1)ξ4
k +EIj (1)ξ4

l +EIj (1)ξ4
t

]
≤ pj

{
3
∥∥f ′′∥∥ + 48

∥∥f (3)
∥∥ + 108

∥∥f (4)
∥∥}.

Applying this bound gives the desired O(n−1) rate for the remainder terms R1,
R2, R3:

|R1| + |R2| + |R3|
≤ 1

6n

{
3
∥∥f ′′∥∥ + 48

∥∥f (3)
∥∥

+ 108
∥∥f (4)

∥∥}{ m∑
j=1

1

pj

+ 9m2 +
m∑

j=1

m∑
k �=j

√
pk

pj

+ 9
m∑

j=1

m∑
k �=j

m∑
l=1

√
pkpl

}

≤ 1

n

{
10

∥∥f ′′∥∥ + 160
∥∥f (3)

∥∥ + 360
∥∥f (4)

∥∥} m∑
j=1

1

pj

.
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Recalling that Ij (i)Ik(i) = 0 if j �= k and (4.9),

N1 + N3

= 1

2
√

n

m∑
j=1

m∑
k=1

1√
pjp

2
k

EĨj (1)Ik(1)E
∂3g

∂sj ∂s2
k

(
S(1))

− 1√
n

m∑
j=1

m∑
k=1

m∑
l=1

EĨj (1)Ik(1)√
pjpkpl

· plE
∂3g

∂sj ∂sk∂sl

(
S(1))

= 1

2
√

n

{
m∑

j=1

1√
pj

(1 − pj )(1 − 2pj )E
∂3g

∂s3
j

(
S(1))

−
m∑

j=1

m∑
k �=j

√
pjE

∂3g

∂sj ∂s2
k

(
S(1)) − 2

m∑
j=1

m∑
l=1

(1 − pj )
√

plE
∂3g

∂s2
j ∂sl

(
S(1))

+ 2
m∑

j=1

m∑
k �=j

m∑
l=1

√
pjpkplE

∂3g

∂sj ∂sk∂sl

(
S(1))}.

By Taylor expanding in the usual manner,

N1 + N3 = N4 + R4,

where

N4 = 1

2
√

n

{
m∑

j=1

1√
pj

(1 − pj )(1 − 2pj )E
∂3g

∂s3
j

(S) −
m∑

j=1

m∑
k �=j

√
pjE

∂3g

∂sj ∂s2
k

(S)

− 2
m∑

j=1

m∑
l=1

(1 − pj )
√

plE
∂3g

∂s2
j ∂sl

(S)

+ 2
m∑

j=1

m∑
k �=j

m∑
l=1

√
pjpkplE

∂3g

∂sj ∂sk∂sl
(S)

}
,

|R4| ≤ 1

2n

{
m∑

j=1

m∑
k=1

1√
pj

E

∣∣∣∣Ik(1)
∂4g

∂s3
j ∂sk

(ξ)

∣∣∣∣
+

m∑
j=1

m∑
k �=j

m∑
l=1

√
pjE

∣∣∣∣Il(1)
∂4g

∂sj ∂s2
k ∂sl

(ξ)

∣∣∣∣
+ 2

m∑
j=1

m∑
l=1

m∑
t=1

√
plE

∣∣∣∣It (1)
∂4g

∂s2
j ∂sl∂st

(ξ)

∣∣∣∣
+ 2

m∑
j=1

m∑
k �=j

m∑
l=1

m∑
t=1

√
pjpkplE

∣∣∣∣It (1)
∂4g

∂sj ∂sk∂sl∂st
(ξ)

∣∣∣∣
}
.
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We can bound R4 by applying inequality (4.13):

|R4| ≤ 1

2n

{
3
∥∥f ′′∥∥ + 48

∥∥f (3)
∥∥ + 108

∥∥f (4)
∥∥}{ m∑

j=1

m∑
k=1

pk√
pj

+
m∑

j=1

m∑
k �=j

m∑
l=1

√
pjpl

+ 2
m∑

j=1

m∑
l=1

m∑
t=1

√
plpt + 2

m∑
j=1

m∑
k �=j

m∑
l=1

m∑
t=1

√
pjpkplpt

}

≤ 1

n

{
9
∥∥f ′′∥∥ + 144

∥∥f (3)
∥∥ + 324

∥∥f (4)
∥∥} m∑

j=1

1√
pj

.

For N4, by writing partial derivatives of g in terms of derivatives of f ,

N4 = 1

2
√

n

{
m∑

j=1

1√
pj

(1 − pj )(1 − 2pj )
{
3ESjf

′′(W) + 2ES3
j f (3)(W)

}

−
m∑

j=1

m∑
k �=j

√
pj

{
ESjf

′′(W) + 2ESjS
2
k f (3)(W)

}

− 2
m∑

j=1

m∑
l=1

(1 − pj )
√

pl

{
ESlf

′′(W) + 2ES2
j Slf

(3)(W)
}

+ 4
m∑

j=1

m∑
k �=j

m∑
l=1

√
pjpkplESjSkSlf

(3)(W)

}
.

Since
∑m

j=1
√

pjSj = 0, the final two sums in the above display equal 0.

Furthermore,
∑m

j=1
∑m

k �=j

√
pjESjS

2
k f (3)(W) = −∑m

j=1
√

pjES3
j f (3)(W) and∑m

j=1
∑m

k �=j

√
pjESjf

′′(W) = 0. Hence,

|N4| = 1

2
√

n

∣∣∣∣∣
m∑

j=1

{
3√
pj

(1 − pj )(1 − 2pj )ESjf
′′(W)

+ 2
[

1√
pj

(1 − pj )(1 − 2pj ) + √
pj

]
ES3

j f (3)(W)

}∣∣∣∣∣(4.14)

≤ 1√
n

m∑
j=1

1√
pj

{
3

2

∣∣ESjf
′′(W)

∣∣ + ∣∣ES3
j f (3)(W)

∣∣}.

Proof Part II: Symmetry argument for optimal rate. To complete the proof, we
show that the expectations ESjf

′′(W) and ES3
j f (3)(W) are of order n−1/2, and

we do so by applying symmetry arguments similar to those used in the proof of
Theorem 3.1. We use a form of multivariate normal approximation, and base our
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approximation on the MVN(0,�S) Stein equation

(4.15)
m∑

a=1

m∑
b=1

σab

∂2ψi

∂sa∂sb
(s) −

m∑
a=1

sa
∂ψi

∂sa
(s) = hi(s) −Ehi(Z),

where h1(s) = sjf
′′(∑m

k=1 s2
k ), h2(s) = s3

j f (3)(
∑m

k=1 s2
k ) and Z ∼ MVN(0,�S).

Due to the symmetry in the test functions h1 and h2, so that as hi(s) = −hi(−s)
for i = 1,2, if Z ∼ MVN(0,�S), then Eh1(Z) = Eh2(Z) = 0. Evaluating both
sides of (4.15) at S and taking expectations gives

Ehi(S) = E

[
m∑

a=1

m∑
b=1

σab

∂2ψi

∂sa∂sb
(S) −

m∑
a=1

Sa

∂ψi

∂sa
(S)

]
.

Now Taylor expand in a similar manner to before to obtain∣∣Ehi(S)
∣∣ = |R5,i + R6,i | ≤ |R5,i | + |R6,i |,

where

R5,i = 1

2
√

n

m∑
a=1

m∑
b=1

m∑
c=1

1√
papbpc

EĨa(1)Ib(1)Ic(1)
∂3ψi

∂sa∂sb∂sc
(ξ),

R6,i = − 1√
n

m∑
a=1

m∑
b=1

m∑
c=1

1√
papbpc

EĨa(1)Ib(1)EIc(1)
∂3ψi

∂sa∂sb∂sc
(ξ).

Bounding R5,i and R6,i is now almost routine:

|R5,i | ≤ 1

2
√

n

{
m∑

a=1

1 − pa

p
3/2
a

E

∣∣∣∣Ia(1)
∂3ψi

∂s3
a

(ξ)

∣∣∣∣
+

m∑
a=1

m∑
b �=a

1√
papb

pbE

∣∣∣∣Ib(1)
∂3ψi

∂sa∂s2
b

(ξ)

∣∣∣∣
}

≤ 1

2
√

n

{
m∑

a=1

1

p
3/2
a

E

∣∣∣∣Ia(1)
∂3ψi

∂s3
a

(ξ)

∣∣∣∣
+

m∑
a=1

m∑
b �=a

1√
pa

E

∣∣∣∣Ib(1)
∂3ψi

∂sa∂s2
b

(ξ)

∣∣∣∣
}

and

|R6,i | ≤ 1√
n

{
m∑

a=1

m∑
c=1

1√
pc

E

∣∣∣∣Ic(1)
∂3ψi

∂s2
a∂sc

(ξ)

∣∣∣∣
+

m∑
a=1

m∑
b �=a

m∑
c=1

√
papb

pc

E

∣∣∣∣Ic(1)
∂3ψi

∂sa∂sb∂sc
(ξ)

∣∣∣∣
}
.
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Combining these bounds and then using that pj < 1 gives

∣∣Ehi(S)
∣∣ ≤ 1

2
√

n

{
m∑

a=1

1

p
3/2
a

E

∣∣∣∣Ia(1)
∂3ψi

∂s3
a

(ξ)

∣∣∣∣
+ 3

m∑
a=1

m∑
b=1

1√
pb

E

∣∣∣∣Ia(1)
∂3ψi

∂s2
a∂sb

(ξ)

∣∣∣∣(4.16)

+ 2
m∑

a=1

m∑
b �=a

m∑
c=1

√
pbpc

pa

E

∣∣∣∣Ia(1)
∂3ψi

∂sa∂sb∂sc
(ξ)

∣∣∣∣
}
.

It now just remains to bound the expectations involving the derivatives ψi . The
bounds in the following lemma are proved in Section 5.

LEMMA 4.4. The third-order partial derivatives of the solutions ψ1(s) and
ψ2(s) of the Stein equation (4.15) satisfy the following bounds:∣∣∣∣ ∂3ψ1

∂sa∂sb∂sc
(s)

∣∣∣∣ ≤ ‖f (3)‖
2

+ 4

5

∥∥f (4)
∥∥[8 + 3

(
s2
a + s2

b + s2
c + s2

j

)]
(4.17)

+ 16

35

∥∥f (5)
∥∥[32 + 5

(
s4
a + s4

b + s4
c + s4

j

)]
,

∣∣∣∣ ∂3ψ2

∂sa∂sb∂sc
(s)

∣∣∣∣ ≤ ‖f (3)‖
2

+ 12

5

∥∥f (4)
∥∥[4 + s2

a + s2
b + s2

c + 3s2
j

]

+ 8

35

∥∥f (5)
∥∥[384 + 5

(
7s4

a + 7s4
b + 7s4

c + 27s4
j

)]
(4.18)

+ ∥∥f (6)
∥∥[4096

21
+ 128

27

(
s6
a + s6

b + s6
c + 3s6

j

)]
.

On applying Lemmas 4.3 and 4.4, we now have

E

∣∣∣∣Ia(1)
∂3ψ1

∂sa∂sb∂sc
(ξ)

∣∣∣∣
≤ ‖f (3)‖

2
EIa(1)

+ 4

5

∥∥f (4)
∥∥[8EIa(1) + 3

(
EIaξ

2
a +EIaξ

2
b +EIaξ

2
c +EIaξ

2
j

)]

+ 16

35

∥∥f (5)
∥∥[32EIa(1) + 5

(
EIaξ

4
a +EIaξ

4
b +EIaξ

4
c +EIaξ

4
j

)]

≤ pa

[‖f (3)‖
2

+ 4

5
(8 + 3 · 4 · 4)

∥∥f (4)
∥∥ + 16

35
(32 + 5 · 4 · 27)

∥∥f (5)
∥∥]

= pa

[‖f (3)‖
2

+ 224

5

∥∥f (4)
∥∥ + 9152

35

∥∥f (5)
∥∥]
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and

E

∣∣∣∣Ia(1)
∂3ψ2

∂sa∂sb∂sc
(ξ)

∣∣∣∣
≤ pa

[‖f (3)‖
2

+ 12

5
(4 + 6 · 3)

∥∥f (4)
∥∥ + 8

35
(384 + 5 · 6 · 27)

∥∥f (5)
∥∥

+ ∥∥f (6)
∥∥(4096

21
+ 128

7
· 6 · 305

)]

= pa

[‖f (3)‖
2

+ 336

5

∥∥f (4)
∥∥ + 9552

35

∥∥f (5)
∥∥ + 706,816

21

∥∥f (6)
∥∥].

Substituting into (4.16),

∣∣Eh1(S)
∣∣ ≤ 1

2
√

n

[‖f (3)‖
2

+ 224

5

∥∥f (4)
∥∥ + 9152

35

∥∥f (5)
∥∥]

×
{

m∑
a=1

1√
pa

+ 3
m∑

a=1

m∑
b=1

pa√
pb

+ 2
m∑

a=1

m∑
b �=a

m∑
c=1

√
papbpc

}

≤ 1√
n

{
2
∥∥f (3)

∥∥ + 135
∥∥f (4)

∥∥ + 785
∥∥f (5)

∥∥} m∑
a=1

1√
pa

and, by a similar calculation,

∣∣Eh2(S)
∣∣ ≤ 1√

n

{
2
∥∥f (3)

∥∥ + 202
∥∥f (4)

∥∥ + 819
∥∥f (5)

∥∥ + 100,974
∥∥f (6)

∥∥} m∑
a=1

1√
pa

,

where we rounded the constants up to the nearest integer. Finally, we substitute
these inequalities into (4.14) to bound N4:

|N4| ≤ 1

n

{(
3

2
· 2 + 2

)∥∥f (3)
∥∥ +

(
3

2
· 135 + 202

)∥∥f (4)
∥∥

+
(

3

2
· 785 + 819

)∥∥f (5)
∥∥ + 100,974

∥∥f (6)
∥∥}( m∑

j=1

1√
pj

)2

≤ 1

n

{
5
∥∥f (3)

∥∥ + 405
∥∥f (4)

∥∥ + 1997
∥∥f (5)

∥∥ + 100,974
∥∥f (6)

∥∥}( m∑
j=1

1√
pj

)2

.

In conclusion,∣∣Eh(W) − χ2
(m−1)h

∣∣ ≤ |R1| + |R2| + |R3| + |R4| + |N4|.
To arrive at (4.3), we sum up these remainders and use the inequality

∑m
j=1

1
pj

≤
(
∑m

j=1 p
−1/2
j )2 to simplify the bound. Finally, we use (2.11) to translate bounds on
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the derivatives of the solution f to bounds on the derivatives of the test function h,
which completes the proof of Theorem 4.2. �

5. Further proofs.

PROOF OF LEMMA 3.1. From Lemma I.4 in [33], ψ exists and

ψ(w) = e
1
2 w2

∫ ∞
w

g(3)(s)e− 1
2 s2

ds

= −e
1
2 w2

∫ w

−∞
g(3)(s)e− 1

2 s2
ds.

From g(3)(s) = 3sf ′′(s2) + 2s3f (3)(s2), we get that

(5.1)
∣∣g(3)(x)

∣∣ ≤ 3|x|∥∥f ′′∥∥ + 2|x|3∥∥f (3)
∥∥.

Hence, for w > 0∣∣ψ(w)
∣∣ ≤ 3

∥∥f ′′∥∥e
1
2 w2

∫ ∞
w

se− 1
2 s2

ds + 2
∥∥f (3)

∥∥e
1
2 w2

∫ ∞
w

s3e− 1
2 s2

ds

= 3
∥∥f ′′∥∥ + 2

(
w2 + 2

)∥∥f (3)
∥∥.

Similarly, for w < 0
∣∣ψ(w)

∣∣ ≤ 3
∥∥f ′′∥∥e

1
2 w2

∫ w

−∞
(−s)e− 1

2 s2
ds + 2

∥∥f (3)
∥∥e

1
2 w2

∫ w

−∞
(−s)3e− 1

2 s2
ds

= 3
∥∥f ′′∥∥ + 2

(
w2 + 2

)∥∥f (3)
∥∥,

proving the first bound. The second bound uses (3.6) to obtain

xψ ′(x) = x2ψ(x) + xg(3)(x)

and the bound then follows directly with (3.7) and (5.1). For the last bound, differ-
entiate (3.6) to get

ψ ′′(x) = xψ ′(x) + ψ(x) + g(4)(x)

and combine (3.7), (3.8) and (3.4). �

PROOF OF LEMMA 4.2. The derivatives of g are

∂g

∂sj
(s) = 1

2
sjf

′(w),

∂2g

∂s2
j

(s) = 1

2
f ′(w) + s2

j f ′′(w),

∂2g

∂sj ∂sk
(s) = sj skf

′′(w), j �= k.
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Note that we can write the multivariate normal Stein equation (4.7) as

AMVN(0,�S)g(s) =
m∑

j=1

σjj

∂2g

∂s2
j

(s) +
m∑

j=1

m∑
k �=j

σjk

∂2g

∂sj ∂sk
(s) −

m∑
j=1

sj
∂g

∂sj
(s).

Now, as
∑m

j=1 pj = 1,

m∑
j=1

σjj

∂2g

∂s2
j

(s) = 1

2
f ′(w)

m∑
j=1

(1 − pj ) + f ′′(w)

m∑
j=1

(1 − pj )s
2
j

= m − 1

2
f ′(w) + wf ′′(w) − f ′′(w)

m∑
j=1

pjs
2
j .

Similarly, since
∑m

j=1
∑m

k �=j

√
pjpksj sk = −∑m

j=1 pj s
2
j (recall

∑m
j=1

√
pj sj =

0),

m∑
j=1

m∑
k �=j

σjk

∂2g

∂sj ∂sk
(s) = −f ′′(w)

m∑
j=1

m∑
k �=j

√
pjpksj sk = f ′′(w)

m∑
j=1

pj s
2
j .

Finally,

m∑
j=1

sj
∂g

∂sj
(s) = 1

2
f ′(w)

m∑
j=1

s2
j = 1

2
wf ′(w).

Putting all the above together gives that

AMVN(0,�S)g(s) = wf ′′(w) + 1

2
(m − 1 − w)f ′(w) = Am−1f (w),

as required. �

PROOF OF LEMMA 4.3. Suppose first that j = k. As S
(1)
j and Ij (1) are inde-

pendent, we have

EIj (1)ξ2
j = EIj (1)

(
S

(1)
j + θj√

npj

Ij (1)

)2

≤ EIj (1)
{
E
(
S

(1)
j

)2 + 2E
∣∣S(1)

j

∣∣ + 1
}
< 4pj ,

where we used that 0 < θj < 1 and npj ≥ 1 to obtain the first inequality. Similarly,

EIj (1)ξ4
j ≤ pj

[
E
(
S

(1)
j

)4 + 4E
∣∣S(1)

j

∣∣3 + 6E
(
S

(1)
j

)2 + 4E
∣∣S(1)

j

∣∣ + 1
]

< pj

(
4 + 4 · 43/4 + 6 + 4 + 1

)
< 27pj
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and

EIj (1)ξ6
j ≤ pj

[
E
(
S

(1)
j

)6 + 6E
∣∣S(1)

j

∣∣5 + 15E
(
S

(1)
j

)4 + 20E
∣∣S(1)

j

∣∣3
+ 15E

(
S

(1)
j

)2 + 6E
∣∣S(1)

j

∣∣ + 1
]

< pj

(
42 + 6 · 425/6 + 15 · 4 + 20 · 43/4 + 15 + 6 + 1

)
< 305pj ,

where we used Lemma 4.1 to bound the absolute moments of S
(1)
j . Also,

E
∣∣Ij (1)ξj

∣∣ ≤ pj

(
E
∣∣S(1)

j

∣∣ + 1
)
< 2pj

and

E
∣∣Ij (1)ξ3

j

∣∣ ≤ pj

[
E
∣∣S(1)

j

∣∣3 + 3E
(
S

(1)
j

)2 + 3E
∣∣S(1)

j

∣∣ + 1
]

< pj

(
43/4 + 3 + 3 + 1

)
< 14pj .

When j �= k, it is clear that the same bounds still hold, as Ij (1)Ik(1) = 0. �

PROOF OF LEMMA 4.4. Since the covariance-matrix �S is nonnegative defi-
nite, the solution of the Stein equation (4.15) is well defined and is given by (see
[24]):

ψi(s) = −
∫ ∞

0
E
[
hi

(
e−us +

√
1 − e−2uZ

)]
du.

By dominated convergence,

∂3ψi

∂sa∂sb∂sc
(s) = −

∫ ∞
0

e−3u
E

[
∂3hi

∂sa∂sb∂sc

(
e−us +

√
1 − e−2uZ

)]
du,

and so ∣∣∣∣ ∂3ψi

∂sa∂sb∂sc
(s)

∣∣∣∣ ≤
∫ ∞

0
e−3u

E

∣∣∣∣ ∂3hi

∂sa∂sb∂sc

(
e−us +

√
1 − e−2uZ

)∣∣∣∣du.

We now obtain bounds for the third-order partial derivatives of h1 and h2. By
straightforward differentiation,

∂3h1

∂sa∂sb∂sc
(s)

= 2[δja + δjb + δjc]f (3)(w) + 4
[
sj (sa + sb + sc)

+ sbscδja + sascδjb + sasbδjc

]
f (4)(w) + 8sj sasbscf

(5)(w),

∂3h2

∂sa∂sb∂sc
(s)

= 6δjaδjbδjcf
(3)(w)
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+ 12sj [saδjbδjc + sbδjaδjc + scδjaδjb]f (4)(w)

+ 4
[
s3
j (sa + sb + sc) + 3s2

j (sbscδja + sascδjb + sasbδjc)
]
f (5)(w)

+ 8s3
j sasbscf

(6)(w),

where δjj = 1 and δjk = 0 if j �= k. We can bound these partial derivatives by
using the inequalities δjk ≤ 1 and

∏n
k=1 |ak| ≤ 1

n

∑n
k=1 |ak|n for n ≥ 1. Doing so

yields the bounds

∣∣∣∣ ∂3h1

∂sa∂sb∂sc
(s)

∣∣∣∣ ≤ 6
∥∥f (3)

∥∥ + 6
∥∥f (4)

∥∥(s2
a + s2

b + s2
c + s2

j

)
+ 2

∥∥f (5)
∥∥(s4

a + s4
b + s4

c + s4
j

)
,∣∣∣∣ ∂3h2

∂sa∂sb∂sc
(s)

∣∣∣∣ ≤ 6
∥∥f (3)

∥∥ + 6
∥∥f (4)

∥∥(s2
a + s2

b + s2
c + 3s2

j

)
+ ∥∥f (5)

∥∥(7s4
s + 7s4

b + 7s4
c + 27s4

j

)
+ 4

3

∥∥f (6)
∥∥(s6

a + s6
b + s6

c + 3s6
j

)
.

We now use the inequality for the third-order partial derivative of h2(s) to bound
the third-order partial derivatives of ψ2(s). The random vector Z ∼ MVN(0,�S)

can be written as (Z1, . . . ,Zm), where Zj ∼ N(0,1 − pj ) and Cov(Zj ,Zk) =
−√

pjpk for j �= k. On applying the inequality |a1 + a2|r ≤ 2r−1(|a1|r + |a2|r ),
where r ≥ 1, we have

∣∣∣∣ ∂3ψi

∂sa∂sb∂sc
(s)

∣∣∣∣
≤

∫ ∞
0

e−3u
E

[
6
∥∥f (3)

∥∥ + 12
∥∥f (4)

∥∥[e−2u(s2
a + s2

b + s2
c + 3s2

j

)
+ (

1 − e−2u)(Z2
a + Z2

b + Z2
c + 3Z2

j

)]
+ 8

∥∥f (5)
∥∥[e−4u(7s4

a + 7s4
b + 7s4

c + 27s4
j

)
+ (

1 − e−2u)2(7Z4
a + 7Z4

b + 7Z4
c + 27Z4

j

)]
+ 128

3

∥∥f (6)
∥∥[e−6u(s6

a + s6
b + s6

c + 3s6
j

)

+ (
1 − e−2u)3(

Z6
a + Z6

b + Z6
c + 3Z6

j

)]]
du

≤ ‖f (3)‖
2

+ 12

5

∥∥f (4)
∥∥[4 + s2

a + s2
b + s2

c + 3s2
j

]
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+ 8

35

∥∥f (5)
∥∥[384 + 5

(
7s4

a + 7s4
b + 7s4

c + 27s4
j

)]

+ ∥∥f (6)
∥∥[4096

21
+ 128

27

(
s6
a + s6

b + s6
c + 3s6

j

)]
.

To obtain the last inequality, we used that EZ2
j = 1−pj < 1, EZ4

j = 3(1−pj )
2 <

3 and EZ6
j = 15(1 − pj )

3 < 15, j = 1, . . . ,m, and the formulas
∫ ∞

0 e−3u(1 −
e−2u)du = 2

15 ,
∫ ∞

0 e−3u(1 − e−2u)2 du = 8
105 and

∫ ∞
0 e−3u(1 − e−2u)3 du = 16

315 .
This completes the proof of inequality (4.18), and inequality (4.17) follows from
a similar calculation. �

PROOF OF THEOREM 4.3. As was the case in the proof of Theorem 4.2, we
require a bound for the expression EAm−1f (W), which is equivalent to bounding
EAMVN(0,�S)g(S). By using Taylor expansions in a similar manner to that used in
the proof of Theorem 4.2, we have that

∣∣Eh(W) − χ2
(m−1)h

∣∣ = ∣∣EAm−1f (W)
∣∣ = ∣∣EAMVN(0,�S)g(S)

∣∣ ≤ |R1| + |R2|,
where

|R1| ≤ 1

2
√

n

∣∣∣∣∣
m∑

j=1

m∑
k=1

m∑
l=1

1√
pjpkpl

EĨj (1)Ik(1)Il(1)
∂3g

∂sj ∂sk∂sl
(ξ)

∣∣∣∣∣,

|R2| ≤ 1√
n

∣∣∣∣∣
m∑

j=1

m∑
k=1

m∑
l=1

1√
pjpkpl

EĨj (1)Ik(1)EIl(1)
∂3g

∂sj ∂sk∂sl
(ξ)

∣∣∣∣∣
and again ξ denotes a vector with m entries with j th entry ξj = S

(1)
j + θj√

npj
Ij (1)

for some θj ∈ (0,1). Carrying out a calculation similar to the one used to obtain
(4.11) yields

|R1| + |R2| ≤ 1

2
√

n

{
m∑

j=1

1

p
3/2
j

E

∣∣∣∣Ij (1)
∂3g

∂s3
j

(ξ)

∣∣∣∣
+ 2

m∑
j=1

m∑
k=1

1√
pj

E

∣∣∣∣Ij (1)
∂3g

∂sj ∂s2
k

(ξ)

∣∣∣∣
(5.2)

+
m∑

j=1

m∑
k �=j

√
pk

pj

E

∣∣∣∣Ij (1)
∂3g

∂s2
j ∂sk

(ξ)

∣∣∣∣
+ 2

m∑
j=1

m∑
k �=j

m∑
l=1

√
pkpl

pj

E

∣∣∣∣Ij (1)
∂3g

∂sj ∂sk∂sl
(ξ)

∣∣∣∣
}
.
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To complete the proof, we require bounds on the expectations on the right-hand
side of (5.2). Now recall that g(s) = 1

4f (w). By a straightforward differentiation,

∂3g

∂s3
j

(s) = 3sjf
′′(w) + 2s2

j f (3)(w),

and so, for any j , k, l,

(5.3)
∣∣∣∣ ∂3g

∂sj ∂sk∂sl
(s)

∣∣∣∣ ≤ (|sj | + |sk| + |sl|)∥∥f ′′∥∥+ 2

3

(|sj |3 + |sk|3 + |sl|3)∥∥f (3)
∥∥.

To bound the expectations, we also use the inequalities E|Ij (1)ξk| < 2pj and
E|Ij (1)ξ3

k | < 14pj , j, k = 1, . . . ,m from Lemma 4.3. Using (5.3) and these in-
equalities yields

E

∣∣∣∣Ij (1)
∂3g

∂sj ∂sk∂sl
(ξ)

∣∣∣∣ ≤ 3 ·2pj

∥∥f ′′∥∥+2 ·14pj

∥∥f (3)
∥∥ = 2pj

{
3
∥∥f ′′∥∥+14

∥∥f (3)
∥∥}.

Hence, we obtain the bound

∣∣Eh(W) − χ2
(m−1)h

∣∣ ≤ 1√
n

{
3
∥∥f ′′∥∥ + 14

∥∥f (3)
∥∥}{ m∑

j=1

1√
pj

+ 2m

m∑
j=1

√
pj

+
m∑

j=1

m∑
k �=j

√
pk + 2

m∑
j=1

m∑
k �=j

m∑
l=1

√
pjpkpl

}
(5.4)

≤ 6√
n

{
3
∥∥f ′′∥∥ + 14

∥∥f (3)
∥∥} m∑

j=1

1√
pj

.

Using inequality (2.11) to translate bounds for the derivatives of the solution f to
bounds on the derivatives of the test function h completes the proof. �

PROOF OF COROLLARY 4.2. Let α > 0, and for some fixed z > 0 define

hα(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if x ≤ z,

1 − 2(x − z)2/α2, if z < x ≤ z + α/2,

2
(
x − (z + α)

)2
/α2, if z + α/2 < x ≤ z + α,

0, if x ≥ z + α.

Then h′
α exists and is Lipshitz continuous with ‖hα‖ = 1, ‖h′

α‖ = 2/α and ‖h′′
α‖ =

4/α2. Let Yd be a χ2
(d) random variable, then by (4.5),

P(W ≤ z) − P(Ym−1 ≤ z)

≤ Ehα(W) −Ehα(Ym−1) +Ehα(Ym−1) − P(Ym−1 ≤ z)(5.5)
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≤ 12√
np∗

{
6‖hα‖ + 46

∥∥h′
α

∥∥ + 84
∥∥h′′

α

∥∥} + P(z ≤ Ym−1 ≤ z + α)

= 12√
np∗

{
6 + 92

α
+ 336

α2

}
+ P(z ≤ Yd ≤ z + α).

Now, for d = 1 (which corresponds to m = 2),

P(z ≤ Y1 ≤ z + α) =
∫ z+α

z

e−x/2
√

2πx
dx ≤

∫ α

0

1√
2πx

dx =
√

2α

π
.

For d ≥ 2, the mode of Yd is given by d − 2. The density of Y2 is clearly bounded
by 1

2 , and, for d ≥ 3, the density of Yd can be bounded by

1

2d/2�(d
2 )

xd/2−1e−x/2 ≤ 1

2d/2�(d
2 )

(d − 2)d/2−1e−(d−2)/2 ≤ 1

2
√

π(d − 2)
,

where the last inequality follows from Stirling’s inequality �(x + 1) ≥√
2πxx+1/2e−x , which holds for all x > 0. Therefore,

(5.6) P(z ≤ Ym−1 ≤ z + α) ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2α/π, if m = 2,

α/2, if m = 3,
α

2
√

π(m − 3)
, if m ≥ 4.

Bounds for m = 2, m = 3 and m ≥ 4 now follow on substituting inequality (5.6)
into (5.5) and choosing an appropriate α. For m = 2, we take α = 52.75n−1/5; for
m = 3, we choose α = 25.27n−1/6; and α = 30.58(m − 3)1/6n−1/6 is taken when
m ≥ 4. We can obtain a lower bound similarly, which is the negative of the upper
bound. The proof is now complete. �
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