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DISTANCES BETWEEN NESTED DENSITIES AND A MEASURE
OF THE IMPACT OF THE PRIOR IN BAYESIAN STATISTICS

BY CHRISTOPHE LEY, GESINE REINERT1 AND YVIK SWAN2

Ghent University, University of Oxford and Université de Liège

In this paper, we propose tight upper and lower bounds for the Wasser-
stein distance between any two univariate continuous distributions with prob-
ability densities p1 and p2 having nested supports. These explicit bounds are
expressed in terms of the derivative of the likelihood ratio p1/p2 as well as
the Stein kernel τ1 of p1. The method of proof relies on a new variant of
Stein’s method which manipulates Stein operators.

We give several applications of these bounds. Our main application is in
Bayesian statistics: we derive explicit data-driven bounds on the Wasserstein
distance between the posterior distribution based on a given prior and the no-
prior posterior based uniquely on the sampling distribution. This is the first
finite sample result confirming the well-known fact that with well-identified
parameters and large sample sizes, reasonable choices of prior distributions
will have only minor effects on posterior inferences if the data are benign.

1. Introduction. A key question in Bayesian analysis is the effect of the prior
on the posterior, and how this effect could be assessed. As more and more data are
collected, will the posterior distributions derived with different priors be very simi-
lar? This question has a long history; see, for example, [4, 5, 29]. While asymptotic
results which give conditions under which the effect of the prior wanes as the sam-
ple size tends to infinity can be found, for example, in [4, 5], here we are interested,
at fixed sample size, in explicit bounds on some measure of the distributional dis-
tance between posteriors based on a given prior and the no-prior data-only based
posterior, allowing to detect at fixed sample size the effect of the prior.

In the simple setting of prior and posterior being univariate and continuous,
the basic relation that the posterior is proportional to the prior times the likelihood
leads to the more general problem of comparing two distributions P1 and P2 whose
densities p1 and p2 have nested support. Letting I1 (resp., I2) be the support of
p1 (resp., p2) and assuming I2 ⊂ I1 we can write

p2 = π0p1
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for π0 = p2/p1 a nonnegative finite function called likelihood ratio in statistics.
To assess the distance between such distributions, we choose the Wasserstein-1
distance (referred to as Wasserstein distance in the sequel) defined as

(1.1) dW(P1,P2) = sup
h∈H

∣∣E[
h(X2)

] −E
[
h(X1)

]∣∣
for H = Lip(1) the class of Lipschitz-1 functions, where X1 has distribution P1
[resp., probability density function (p.d.f.) p1] and X2 has distribution P2 (resp.,
p.d.f. p2). The central aim of this paper is to provide meaningful bounds on
dW(P1,P2) in terms of π0.

Our approach to this problem relies on Stein’s density approach introduced in
[30, 31], as further developed in [17–20]. Let P1 have density p1 with interval
support I1 with closure [a1, b1] for some −∞ ≤ a1 < b1 ≤ +∞. Suppose also
that P1 has mean μ. Throughout this paper, we assume that all random variables
considered have finite mean so that E|P1| < ∞. Then a notion which will be of
particular importance is the Stein kernel of the distribution p1 which is the function
τ1 : [a1, b1] →R given by

τ1(x) = 1

p1(x)

∫ x

a1

(μ − y)p1(y) dy

and whose properties we will discuss in detail in Section 2.4. Our main results
assume that p1 and p2 are absolutely continuous densities with finite means, and
that π0 = p2/p1 is a differentiable function with interval support such that Ī2 =
[a2, b2] ⊂ [a1, b1] and the following two assumptions are satisfied.

ASSUMPTION A. (π0(x)
∫ x
a1

(h(y) − E[h(X1)])p1(y) dy)′ ∈ L1(dx) for all
Lipschitz-continuous functions h. Here, X1 ∼ P1.

ASSUMPTION B. limx↓a2 π0(x)
∫ x
a1

(h(y) − E[h(X1)])p1(y) dy = 0 =
limx↑b2 π0(x)

∫ x
a1

(h(y) − E[h(X1)])p1(y) dy for all Lipschitz-continuous func-
tions h.

Assumptions A and B are not stringent as can be seen from the wealth of ex-
amples that we treat in this paper. Note that it is implicitly understood in Assump-
tion B that E|h(X1)| < ∞ for all h Lipschitz because we suppose that X1 has finite
mean. Under these assumptions, we prove the following result; see Theorem 3.1
for a complete statement.

THEOREM. The Wasserstein distance between P1 with p.d.f. p1 and P2 with
p.d.f. p2 = π0p1 satisfies the following inequalities:∣∣E[

π ′
0(X1)τ1(X1)

]∣∣ ≤ dW(P1,P2) ≤ E
[∣∣π ′

0(X1)
∣∣τ1(X1)

]
,

where τ1 is the Stein kernel associated with p1 and X1 ∼ P1.
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In particular if P1 = N (μ,σ 2) is a normal distribution, then the above result
simplifies considerably because τ1(x) = σ 2 is constant, yielding

σ 2∣∣E[
π ′

0(X1)
]∣∣ ≤ dW(P1,P2) ≤ σ 2

E
[∣∣π ′

0(X1)
∣∣]

for any probability distribution P2 with differentiable density p2 such that
p2(x)/p1(x) vanishes at the boundary of I2.

The Gaussian is characterized by the fact that its Stein kernel is constant. More
generally, all distributions belonging to the classical Pearson family possess a poly-
nomial Stein kernel (see [30]). The problem of determining the Stein kernel is, in
general, difficult. Even when the Stein kernel τ1 is not available we can give the
following simpler bound (Corollary 3.4).

COROLLARY. Under the same assumptions as in the above theorem,∣∣E[X1] −E[X2]
∣∣ ≤ dW(P1,P2) ≤ ∥∥π ′

0
∥∥∞ Var(X1).

More generally, because the Stein kernel is always positive, the upper and lower
bounds in the theorem turn out to be the same whenever the likelihood ratio π0
is monotone, which is equivalent to requiring that P1 and P2 are stochastically
ordered in the sense of likelihood ratios. This brings our next result (Corollary 3.5).

COROLLARY. Let X1 ∼ P1 and X2 ∼ P2. If X1 ≤LR X2 or X2 ≤LR X1 then

dW(P1,P2) = ∣∣E[X2] −E[X1]
∣∣

= E
[∣∣π ′

0(X1)
∣∣τ1(X1)

]
= E

[∣∣(logπ0(X2)
)′∣∣τ1(X2)

]
.

In case of a monotone likelihood ratio between P1 and P2, the first of the above
identities is easy to derive directly from the first of the following known alternative
definitions of the Wasserstein distance:

(1.2)

dW(P1,P2) =
∫
R

∣∣FP1(x) − FP2(x)
∣∣dx

=
∫ 1

0

∣∣F−1
P1

(u) − F−1
P2

(u)
∣∣du

= infE|ξ1 − ξ2|
with FP1 and F−1

P1
(resp., FP2 and F−1

P2
) the cumulative distribution functions and

quantile functions of P1 (resp., P2) and where the infimum in this last expression
is taken over all possible couplings (ξ1, ξ2) of (P1,P2) (see, e.g., [32, 33]).

We illustrate the effectiveness of our bounds in several examples at the end
of Section 3.1, comparing, for example, Gaussian random variables or Azza-
lini’s skew-symmetric densities with their symmetric counterparts. In Section 4,
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we treat as main application the Bayes example wherein we measure explicitly
the effect of priors on posterior distributions. Suppose we observe data points
x := (x1, x2, . . . , xn) with sampling density f (x; θ) (proportional to the likeli-
hood), where θ is the one-dimensional parameter of interest. Let p0(θ) be a cer-
tain prior distribution, possibly improper and let �2 be the resulting posterior
guess for θ perceived as a random variable. By Bayes’ theorem, this has density
p2(θ;x) = κ2(x)f (x; θ)p0(θ) with κ2(x) the normalizing constant which depends
on the data. Under moderate assumptions, we provide computable expressions for
the Wasserstein distance dW(�2,�1) between this posterior distribution and �1,
whose law is the no-prior posterior distribution with density (proportional to the
likelihood) given by p1(θ;x) = κ1(x)f (x; θ), again with normalizing constant
κ1(x) depending on the data. The bounds we derive are expressed in terms of the
data, the prior and the Stein kernel τ1 of the sampling distribution.

We study the normal model with general and normal priors, the binomial model
under a general prior, a conjugate prior, and the Jeffreys’ prior. We also consider
the Poisson model with an exponential prior, in which case we can make use of the
likelihood ratio ordering. For example, with a normal N (μ, δ2) prior and a random
sample x1, . . . , xn from a normal N (θ, σ 2) model with fixed σ 2, we obtain in (4.4)
that

σ 2

nδ2 + σ 2 |x̄ − μ| ≤ dW(�1,�2) ≤ σ 2

nδ2 + σ 2 |x̄ − μ| +
√

2√
π

σ 3

nδ
√

δ2n + σ 2
.

Not only do we see that for n → ∞, the distance becomes zero, as is well known,
but we also have an explicit dependence on the difference between the sample
mean x̄ and the prior mean μ, indicating the importance of a reasonable choice
for the prior. For a normal N (θ, σ 2) model and a general prior on θ , we obtain in
(4.3) that

σ 2

n

∣∣E[
ρ0(�2)

]∣∣ ≤ dW(�1,�2) ≤ σ 2

n
E

[∣∣ρ0(�2)
∣∣]

with ρ0 the score function of the prior distribution. Here, the data are hidden in
the distribution of �2. In the binomial case with conjugate prior, we obtain (letting
y = nx̄, see Section 4.3.1)

1

n + 2

∣∣∣∣(y + α)
α + β − 2

n + α + β
− (α − 1)

∣∣∣∣ ≤ dW(�1,�2)

≤ 1

n + 2

(
(y + α)

|β − α|
n + α + β

+ |α − 1|
)
,

with α and β the parameters of the conjugate (beta) prior. Finally, in the Poisson
case, we obtain

dW(�1,�2) = λ

n + λ
x̄ + λ

n(n + λ)
,

with λ > 0 the parameter of the exponential prior.
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The main tool in this paper is a specification of the general approach in
[17] which allows to manipulate Stein operators. Distributions can be compared
through their Stein operators which are far from being unique; for a single distri-
bution there is a whole family of operators which could serve as Stein operators;
see, for example, [17]. In this paper, for probability distribution P with p.d.f. p we
choose the Stein operator TP as

TP : f �→ TP f = (fp)′

p

with the convention that TP f (x) = 0 outside of the support of P ; for details, see
Definition 2.1 and [19]. For this choice of operator, the product structure implies
a convenient connection between T1, the Stein operator for P1 with p.d.f. p1, and
T2, the Stein operator for P2 with p.d.f. p2 = π0p1, namely

T2(f ) = T1(f ) + f
π ′

0

π0
= T1(f ) + f (logπ0)

′;
see (3.2). The difference

T2(f ) − T1(f ) = f (logπ0)
′

is the cornerstone of our results.

REMARK 1.1. This paper restricts attention to the univariate case. The mul-
tivariate case is of considerable interest but our approach requires an extension of
the density method to a multivariate setting, which is to date still under construc-
tion and not yet available.

Using the approach in [17], it would be possible to extend our results to more
general Radon–Nikodym derivatives, at the expense of clarity of exposition.

The paper is organized as follows. In Section 2, we provide the necessary nota-
tion and definitions from Stein’s method, which allows us to state our main result,
Theorem 3.1, in Section 3.1. Several applications of this result are discussed in
Examples 3.6 to 3.9, while Section 4 tackles our motivating Bayesian problem
by providing a measure of the impact of the choice of the prior on the posterior
distribution for finite sample size n.

2. A review of Stein’s density approach.

2.1. Notation and definitions. Here, we recall some notions from [17] and
[19]. Consider a probability distribution P with continuous univariate Lebesgue
density p on the real line and let L1(p) = L1(p(x) dx) denote the collection
of f : R → R such that E|f (X)| = ∫ |f (x)|p(x)dx < ∞, where X ∼ P . Let
I = {x ∈ R | p(x) > 0} be the support of p. In this paper, we shall use the fol-
lowing definition of a Stein operator; see, for example, [17] for a discussion of
alternative choices.
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DEFINITION 2.1 (Stein pair). The Stein class F(P ) of P is the collection
of f : R → R such that (i) fp is absolutely continuous, (ii) (fp)′ ∈ L1(dx) and
(iii)

∫
R
(fp)′ dx = 0. The Stein operator TP for P is

(2.1) TP : F(P ) → L1(p) : f �→ TP f = (fp)′

p

with the convention that TP f (x) = 0 outside of I .

Here, (fp)′ denotes the derivative of fp which exists Lebesgue-almost surely
due to the assumption of absolute continuity. Often the Stein pair (F(P ),TP ) is
written as dependent on X ∼ P rather than on P [i.e., as (F(X),TX)]; we use the
dependence on the distribution to emphasize that the pair itself is not random.

Note that because we only consider f multiplied by p the behavior of f outside
of I is irrelevant.

REMARK 2.2. A sufficient condition for F(P ) 
= {f = 0} is that p′ is inte-
grable with integral 0 so that, for example, f = 1 ∈ F(P ). Such an assumption is
in general too strong (see, e.g., [31] for a discussion about the arcsine distribution)
and weaker assumptions on p are permitted in our framework, although in such
cases stronger constraints on the functions in F(P ) are necessary. In particular,
the nonzero constant functions may not belong to F(P ).

All random quantities appearing in the sequel will be assumed to have nonempty
Stein class (an assumption verified for all classical distributions from the litera-
ture).

It is easy to see from Definition 2.1(iii) that E[TP f (X)] = 0 for all f ∈ F(P ).
More generally, one can prove that if Y is absolutely continuous with same support
as X and p.d.f. q and if X has p.d.f. p such that F(P ) is dense in L1(P ) and q/p is

differentiable, then Y
D= X (equality in distribution) if and only if E[TP f (Y )] = 0

for all f ∈ F(P ); see [17], Section 3.5, Equation (41) with g = 1. For any family
of operators T indexed by univariate probability measures P and Q and for any
class of functions G, we say that (TP ,G) is a Stein characterization if

(2.2) P = Q ⇐⇒ TQ(f ) = TP (f ) ∀f ∈ G;
see [18, 19] for general versions. In particular, a Stein pair (TP ,F(P )) is a Stein
characterization.

With our notation, the operator TP also admits an inverse which is easy to write
out formally at least. Let X ∼ P have (open, closed or half-open) interval support
I between a and b, where −∞ ≤ a < b ≤ +∞ and

F (0)(P ) = {
h ∈ L1(p) : E[

h(X)
] = 0

}
.
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Define T −1
P : F (0)(P ) → F(P ) by

(2.3) T −1
P h(x) = 1

p(x)

∫ x

a
h(y)p(y) dy = − 1

p(x)

∫ b

x
h(y)p(y) dy.

The operator T −1
P is the inverse Stein operator of P in the sense that

TP

(
T −1

P h
) = h.

Note how the particular structure of the right-hand side of (2.3) ensures that T −1
P h

belongs to F(P ) for any h ∈ F (0)(P ). If in addition (fp)(a) = (fp)(b) = 0 for
all f ∈ F(P ), then

T −1
P (TP f ) = f

so that T −1
P constitutes a bona fide inverse in this case.

2.2. Standardizations of the operator. Although the Stein pair (TP ,F(P )) is
uniquely defined in Definition 2.1, there are many implicit conditions on f ∈ F(P )

which are useful to identify before applying this construction to specific approxi-
mation problems. In particular, for favorable behavior of the inverse Stein operator
it may be advantageous to consider only subclasses Fsub(P ) ⊂ F(P ) of functions
satisfying certain target-specific and well-chosen constraints. A good choice of
subclass will lead to specific forms of the resulting operator which may turn out to
have a smooth inverse Stein operator, as illustrated in the next example. As long as
Fsub(P ) is a measure-determining class, the class is informative enough to satisfy
(2.2).

EXAMPLE 2.3. In the case of the Laplace distribution Lap with p.d.f. p(x) ∝
e−|x| the Stein operator from Definition 2.1 is

(2.4) TLapf (x) = f ′(x) − sign(x)f (x)

with f ∈ F(Lap), the class of functions such that f (x)e−|x| is differentiable al-
most surely with integrable derivative, and the derivative of f (x)e−|x| integrates
to 0 over the real line. This operator does not have agreeable properties, mainly
because the assumptions on F(Lap) are not explicit (see, e.g., [10] and [25]). It
is indeed sufficient to consider functions of the form f (x) = (xf0(x)e|x|)′/e|x| for
certain functions f0. Applying TLap to such functions yields the second-order op-
erator

(2.5) TLapf (x) = AXf0(x) = xf ′′
0 (x) + 2f ′

0(x) − xf0(x)

with f0 ∈ F(ALap) the class of functions which are piecewise twice continu-
ously differentiable such that xf ′′

0 (x), f ′
0(x) and xf0(x) are all in L1(e−|x| dx),
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as considered, for example, in [10, 11]. In [25], functions of the form f (x) =
(−(g(x) − g(0))e|x|)′/e|x| yielded the second-order operator

TLap,PRg(x) = g(x) − g(0) − g′′(x)

for g locally absolutely continuous with g ∈ L1(e−|x| dx), g′ also locally abso-
lutely continuous and g′′ ∈ L1(e−|x| dx). The operator TLap,PR is also discussed in
[10] but not used in [10] because it did not fit in with Malliavin calculus as well as
(2.5).

Even in the straightforward situation of a normal distribution, often a standard-
ization is applied, as explained in the next example.

EXAMPLE 2.4. For the standard normal distribution N (0,1) it is easy to write
out the operator (2.1) explicitly to get TN (0,1)(f )(x) = f ′(x) − xf (x) acting on
a wide class of functions F(N (0,1)) which includes all absolutely continuous
functions with polynomial decay at ±∞. In particular, the constant function 1 is
in F(N (0,1)). A standardization of the form f (x) = Hn(x)f0(x) with Hn the nth
Hermite polynomial [H0(x) = 1,H1(x) = x,H2(x) = x2 − 1] gives as operator
Af0(x) = Hn(x)f ′

0(x) − Hn+1(x)f0(x); see, for example, [12].
It is also possible to study the behavior of functions fh under quite general con-

ditions on h. For instance, if H is the set of measurable functions h : R → [0,1]
(leading to the total variation measure), then F (1) is contained in the collection
of differentiable functions such that ‖f ‖ ≤ √

π/2 and ‖f ′‖ ≤ 2; see, for in-
stance, [21].

For the general normal distribution N (μ,σ 2), the operator (2.1) gives

(2.6) TN (μ,σ 2)(f )(x) = f ′(x) − x − μ

σ 2 f (x).

The standardization f (x) = σ 2g′(x) yields the classical Ornstein–Uhlenbeck
Stein operator Ag(x) = σ 2g′′(x) − (x − μ)g′(x); see, for example, [2].

We call the passage from a parsimonious operator TP [such as (2.4)] acting on
the implicit class F(P ) to a specific operator AP [such as (2.5)] acting on a generic
class F(AP ) a standardization of (TP ,F(P )). Given P there are infinitely many
different possible standardizations.

2.3. The Stein transfer principle. Suppose that we aim to assess the discrep-
ancy between the laws of two random quantities X with distribution P and W with
distribution Q, say, in terms of some probability distance of the form

(2.7) dH(P,Q) = dH(X,W) = sup
h∈H

∣∣E[
h(W)

] −E
[
h(X)

]∣∣,
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for H some measure-determining class; many common distances can be written in
the form (2.7), including the Kolmogorov distance (with H the collection of indi-
cators of half-lines), the total variation distance (with H the collection of indicators
of Borel sets) and the Wasserstein distance [see (1.1)]. Here, writing dH(X,W) is
a shorthand for (2.7): this distance is not random.

Let P have Stein pair (TP ,F(P )) and consider a standardization (AP ,F(AP ))

as described in Section 2.2. The first key idea in Stein’s method is to relate the test
functions h of interest to a function f = fh ∈ F(AP ) through the so-called Stein
equation

(2.8) h(x) −E
[
h(X)

] = AP f (x), x ∈ I,

so that, for fh solving (2.8), we get h(W) − E[h(X)] = AP fh(W) and, in partic-
ular,

(2.9) sup
h∈H

∣∣E[
h(W)

] −E
[
h(X)

]∣∣ = sup
f ∈F (1)

∣∣E[
AP f (W)

]∣∣,
where F (1) = F (1)(AP ,H) = f ∈F(AP ) | AP f = h−E[h(X)] for some h ∈H.
The first step in Stein’s method thus consists in some form of transfer principle
whereby one transforms the problem of bounding the distance dH(P,Q) into that
of bounding the expectations of the operators AP over a specific class of functions.

EXAMPLE 2.5. For the standard normal distribution, the operators (2.1) and
(2.6) give TN (0,1)(f )(x) = f ′(x) − xf (x). Bounding expressions of the form
|E[f ′(W) − Wf (W)]| as occurring in the right-hand side of (2.9) is a potent
starting point for Gaussian approximation problems. Prominent examples include
W = ∑

i ξi a standardized sum of weakly dependent variables, and W = F(X) a
functional of a Gaussian process; see, for example, [2, 21, 26] for an overview.
It is also possible to study the behavior of functions fh under quite general con-
ditions on h. For instance, if H is the set of measurable functions h : R → [0,1]
(leading to the total variation distance), then F (1) is contained in the collection of
differentiable functions such that ‖f ‖ ≤ √

π/2 and ‖f ′‖ ≤ 2; see [21], Section 3.

In general, the success of Stein’s method for a particular target relies on the
positive combination of three factors:

(i) the functions in F (1) need to have “good” properties (e.g., be bounded with
bounded derivatives as in Example 2.5),

(ii) the operator AP needs to be amenable to computations (e.g., its expression
should only involve polynomial functions),

(iii) there must be some “handle” on the expressions E[AP f (W)] (e.g., allow-
ing for Taylor-type expansions or the application of couplings).

Conditions (i) to (iii) are satisfied for a great variety of target distributions (includ-
ing the exponential, chi-squared, gamma, semi-circle, variance gamma and many
others; see, e.g., https://sites.google.com/site/steinsmethod/).

https://sites.google.com/site/steinsmethod/
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2.4. The Stein kernel. One of the many keys to a successful application of
Stein’s method for a given target distribution P lies in the properties of P ’s Stein
kernel introduced in [30], Lecture VI, Lemma 1. We now review some properties
of this quantity which will play a central role in our analysis.

DEFINITION 2.6. Let X ∼ P an absolutely continuous probability distribu-
tion with p.d.f. p and mean μ. Suppose that p has interval support with closure
[a, b]. Then, letting Id denote the identity function, the Stein kernel of P is the
function x �→ τP (x) defined by

τP (x) = T −1
P (μ − Id)(x) = 1

p(x)

∫ x

a
(μ − y)p(y) dy.(2.10)

By metonymy, we also call the random variable τP (X) a Stein kernel for P .

Following Lecture VI, Lemma 1 in [30], one can show that the Stein kernel
satisfies the integration by parts identity

(2.11) E
[
τP (X)ϕ′(X)

] = E
[
(X − μ)ϕ(X)

]
for all continuous and piecewise continuous functions ϕ : R → R such that
E[|ϕ′(X)|τP (X)] < ∞. If P is such that τP is well defined and finite on [a, b],
then (2.11) also uniquely defines the Stein kernel (up to zero-Lebesgue measure
sets) so that this equation is sometimes used as a definition; see [23]. A careful
study of integrals of the form (2.10) is performed in [6], Section 3.

The following properties of the Stein kernel are immediate consequences of its
definition:

(2.12) for all x ∈ R we have that τP (x) ≥ 0 and E
[
τP (X)

] = Var(X).

The Stein kernels for a wide variety of classical distributions (all members of the
Pearson family, as it turns out) bear agreeable expressions; see [6], [8], Table 1,
[22, 23]. Multivariate extensions have been proposed; see [13, 14]. For Stein oper-
ators in Hilbert spaces, see, for example, [3] and [24].

2.5. Stein standardizations. Let P have a continuous density p with mean μ

and support I such that the closure of I is the interval [a, b] (possibly with infinite
endpoints). Let (TP ,F(P )) be the Stein pair of P and suppose that P admits a
Stein kernel τP (x), as defined in Definition 2.6. We introduce the standardized
Stein pair (AP ,F(AP )) with

(2.13) AP f (x) = TP (τP f )(x) = τP (x)f ′(x) + (μ − x)f (x), x ∈ I,
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and

F(AP ) =
{
f :R →R absolutely continuous such that

lim
x→a

f (x)

∫ x

a
(μ − u)p(u)du = lim

x→b
f (x)

∫ b

x
(μ − u)p(u)du = 0

and
(
f (x)

∫ x

a
(μ − u)p(u)du

)′
∈ L1(dx)

}
.

When P admits a Stein kernel then the operator AP in (2.13) has all the properties
required in order for the Stein transfer principle from Section 2.3 to pan out. In
particular, the next lemma shows that, whenever applicable, the standardization in
(2.13) satisfies requirement (i).

LEMMA 2.7. Let H = Lip(1) be the collection of Lipschitz functions h :R →
R with Lipschitz constant 1 and let F (1) be the collection of f ∈F(AP ) such that
AP f = h − E[h(X)] for some h ∈ H. Then F (1) is contained in the collection of
functions f such that ‖f ‖∞ ≤ 1.

Lemma 2.7 is a consequence of [6], Proposition 3.13(a) and Corollary 3.15,
adapted to our framework. The key to our approach lies in the fact that the bound
in Lemma 2.7 does not depend on the standardization of the target P ; it is in
particular independent of the mean and variance of X ∼ P or of any normalizing
constant that might appear in the expression of the density of P .

3. Comparing univariate continuous densities. For i = 1,2, let Pi be a
probability distribution with an absolutely continuous density pi having support Ii

with closure Īi = [ai, bi], for some −∞ ≤ ai < bi ≤ +∞. Suppose that I2 ⊂ I1
and define π0 through

(3.1) p2 = π0p1.

Associate with both distributions the Stein pairs (Ti ,Fi) for i = 1,2, as well as the
resulting construction from the previous section.

The product structure (3.1) implies a key connection between T1 and T2, namely

(3.2) T2(f ) = T1(f ) + f
π ′

0

π0
= T1(f ) + f (logπ0)

′

for all f ∈ F1 ∩F2.

3.1. Bounds on the Wasserstein distance between univariate continuous densi-
ties. Our main objective in this section is to provide computable and meaningful
bounds on the Wasserstein distance dW(P1,P2), defined in (1.1), in terms of π0
and P1, under the product structure (3.1).
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THEOREM 3.1. For i = 1,2, let Pi be a probability distribution with an abso-
lutely continuous density pi having interval support Ii with closure Īi = [ai, bi],
for some −∞ ≤ ai < bi ≤ +∞; suppose that I2 ⊂ I1 and let Xi ∼ Pi have finite
means μi for i = 1,2. Assume that π0 = p2

p1
, defined on I2, is differentiable on I2

and satisfies E|(X1 − μ1)π0(X1)| < ∞ and(
π0(x)

∫ x

a1

(
h(y) −E

[
h(X1)

])
p1(y) dy

)′
∈ L1(dx),(3.3)

as well as

lim
x↓a2

π0(x)

∫ x

a1

(
h(y) −E

[
h(X1)

])
p1(y) dy

(3.4)
= lim

x↑b2
π0(x)

∫ x

a1

(
h(y) −E

[
h(X1)

])
p1(y) dy = 0

for all h ∈ H, the set of Lipschitz-1 functions on R. Then

(3.5)
∣∣E[

π ′
0(X1)τ1(X1)

]∣∣ ≤ dW(P1,P2) ≤ E
[∣∣π ′

0(X1)
∣∣τ1(X1)

]
,

where τ1 is the Stein kernel of P1.

PROOF. We first prove the lower bound. Let X2 ∼ P2. Start by noting that
dW(P1,P2) ≥ |E[X2] −E[X1]| because Id ∈ Lip(1). With (3.1), we get that

(3.6)

E[X2] −E[X1] = E
[
X1π0(X1)

] − μ1

= E
[
(X1 − μ1)π0(X1)

] + μ1
(
E

[
π0(X1)

] − 1
)

= E
[
τ1(X1)π

′
0(X1)

]
,

where we used the fact that E[π0(X1)] = 1 and the definition (2.11) of τ1(X1) in
the last line. Taking absolute values gives the lower bound.

Next, we prove the upper bound. By (2.3), fh = T −1
1 (h − E[h(X1)]) ∈ F1. On

the other hand, Conditions (3.3) and (3.4) guarantee that fh ∈ F2 for all h because

p2(x)fh(x) = π0(x)

∫ x

a1

(
h(y) −E

[
h(X1)

])
p1(y) dy

is necessarily absolutely continuous. We conclude that all functions fh = T −1
1 (h−

E[h(X1)]) belong to the intersection F1 ∩F2. Hence,

E
[
h(X2)

] −E
[
h(X1)

] = E
[
T1(fh)(X2)

]
= E

[
T1(fh)(X2)

] −E
[
T2(fh)(X2)

]
(3.7)

= −E
[
fh(X2)(logπ0)

′(X2)
]
.

Equality (3.7) follows from the assumption that fh ∈ F2 so that T2fh cancels when
integrated with respect to p2, whereas the last equality follows from Equation
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(3.2). Now we define gh = fh/τ1 and recall that τ1 ≥ 0 to get∣∣E[
h(X2)

] −E
[
h(X1)

]∣∣ = ∣∣E[
gh(X2)(logπ0)

′(X2)τ1(X2)
]∣∣

≤ ‖gh‖∞E
[∣∣(logπ0)

′(X2)
∣∣τ1(X2)

]
.

It follows from Lemma 2.7 that ‖gh‖∞ ≤ 1 for all h ∈ Lip(1), yielding

dW(P1,P2) ≤ E
[∣∣(logπ0)

′(X2)
∣∣τ1(X2)

]
= E

[∣∣π ′
0(X1)

∣∣τ1(X1)
]
,

the last equality again following from (3.1). �

Conditions (3.3) and (3.4) are crucial. Condition (3.4) is in a sense innocuous
because I2 ⊂ I1. For instance, if a1 < a2 < b2 < b1, then Condition (3.4) is satis-
fied for h Lipschitz if π0(a2+) = π0(b2−) = 0 because∣∣∣∣

∫ x

a1

(
h(y) −E

[
h(X1)

])
p1(y) dy

∣∣∣∣ =
∣∣∣∣
∫ x

a1

∫ b1

a1

(
h(y) − h(z)

)
p1(z) dzp1(y) dy

∣∣∣∣
≤ 2

∥∥h′∥∥E|X1|.
Condition (3.3) is quite stringent yet hard to verify in practice. Our next result
provides explicit and easy to verify sufficient conditions on p for these, and hence
Theorem 3.1 to hold.

PROPOSITION 3.2. We use the notation of Theorem 3.1. Suppose that π0, p1
and p2 are differentiable over their support and that their derivatives are inte-
grable. Suppose that

lim
x→a2,b2

π0(x)p1(x)τ1(x) = lim
x→a2,b2

p2(x)τ1(x) = 0

(these limits are to be interpreted as left or right hand limits if necessary). Let
ρ1 = p′

1/p1 and suppose also that

π ′
0p1τ1 = p′

2τ1 − ρ1τ1p2 ∈ L1(dx).

Then Theorem 3.1 applies.

PROOF. Conditions (3.3) and (3.4) are equivalent to requiring that fh ∈ F2, in
other words (fhp2) needs to be differentiable, (fhp2)

′ needs to be integrable with
integral on I2 (the support of p2) equal to 0. By definition,

fh(x)p2(x) = π0(x)

∫ x

a1

(
h(y) −E

[
h(X1)

])
p1(y) dy

is differentiable if π0 is differentiable. Next, differentiating,

(fhp2)
′(x) = π ′

0(x)

∫ x

a1

(
h(y) −E

[
h(X1)

])
p1(y) dy

+ π0(x)
(
h(x) −E

[
h(X1)

])
p1(x).
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For the second summand, the Lipschitz property of h gives the bound

∣∣h(x) −E
[
h(X1)

]∣∣ ≤
∫ b1

a1

∣∣h(x) − h(y)
∣∣p1(y) dy ≤

∫ b1

a1

|x − y|p1(y) dy,

so that∫ b1

a1

∣∣π0(x)
(
h(x) −E

[
h(X1)

])
p1(x)

∣∣dx ≤
∫ b1

a1

p2(x)

∫ b1

a1

|x − y|p1(y) dy dx

≤ E|X1| +E|X2|,
and the latter expectations are assumed to exist. Hence, in order to guarantee (3.3)
it is sufficient to impose that

(3.8) π ′
0(x)

∫ x

a1

(
h(y) −E

[
h(X1)

])
p1(y) dy ∈ L1(dx).

We can write

(3.9)
∫ x

a1

(
h(y) −E

[
h(X1)

])
p1(y) dy = p1(x)τ1(x)gh(x)

with

gh(x) = 1

τ1(x)p1(x)

∫ x

a1

(
h(y) −E

[
h(X1)

])
p1(y) dy

a function which we know from Lemma 2.7 to be bounded uniformly by 1. Hence,
(3.8) [and therefore (3.3)] boils down to a condition on π ′

0(x)p1(x)τ1(x). Simi-
larly, using (3.9), Condition (3.4) is satisfied when π0(x)p1(x)τ1(x) vanishes at
the boundaries. �

REMARK 3.3. Our upper bounds are not restricted to the Wasserstein case
only. Indeed, mimicking large parts of the proof of Theorem 3.1, we obtain the
general bound

(3.10) dH(P1,P2) ≤ κHE
[∣∣π ′

0(X1)
∣∣τ1(X1)

]
with κH = suph∈H ‖T −1

1 (h − E1h)/τ1‖∞ and H a measure-determining class of
functions (the Kolmogorov distance corresponds to the class of indicators of half-
lines, the total variation distance to the indicators of Borel sets). Usefulness of
(3.10) hinges around availability of bounds similar to Lemma 2.7 on the more
general constant κH.

Unravelling the lower bound and using (2.12) in the upper bound of (3.5), we
also obtain the following weaker but perhaps more transparent result.

COROLLARY 3.4. Under the same assumptions as for Theorem 3.1, with
X2 ∼ P2,

(3.11)
∣∣E[X2] −E[X1]

∣∣ ≤ dW(P1,P2) ≤ ∥∥π ′
0
∥∥∞ Var(X1).
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We shall use Corollary 3.4 in Section 4. We stress the fact that there is no nor-
malizing constant appearing in the bounds (3.5) and (3.11). Also, the absence of a
Stein kernel in (3.11) is in some cases an advantage because the Stein kernel is not
always easy to compute.

Even in situations where the c.d.f.’s are available, exact computable expressions
of Wasserstein distances via (1.2) tend to be difficult to obtain, as can be seen, for
example, in Example 3.6. The similarity between the upper and lower bounds in
(3.5) encourages us to formulate the next result.

COROLLARY 3.5. If Xi ∼ Pi, i = 1,2 are as in Theorem 3.1 and if π0 is
monotone increasing or decreasing, then

(3.12)

dW(P1,P2) = ∣∣E[X2] −E[X1]
∣∣

= E
[∣∣π ′

0(X1)
∣∣τ1(X1)

]
= E

[∣∣(logπ0)
′(X2)

∣∣τ1(X2)
]
.

Note how the second expression in (3.12) can be immediately obtained from
the first by applying the same argument as in (3.6). Now while the second ex-
pression in (3.12) is new, the first is in fact not. Indeed the condition that π0 be
monotone in Corollary 3.5 is equivalent to requiring X1 ≥LR X2 or X1 ≤LR X2
(stochastically ordered in the sense of likelihood ratio, see, e.g., [27], Section 9.4,
or Example 3.8). If X1 ≤LR X2, then FP2 ≤ FP1 (see, e.g., [28], Theorem 1.C.4),
so that dW(X1,X2) = ∫

R
(FP1(x) − FP2(x)) dx = E[X1] −E[X2].

EXAMPLE 3.6 (Distance between Gaussians). To compare two Gaussian dis-
tributions, N (μ1, σ

2
1 ) and N (μ2, σ

2
2 ), order them so that σ 2

2 ≥ σ 2
1 , and if σ1 = σ2

then assume that μ1 > μ2. If P1 is N (μ1, σ
2
1 ), then τ1(x) = σ 2

1 is constant (see,
e.g., [30]). With P2 being N (μ2, σ

2
2 ), all conditions in Proposition 3.2 are satisfied.

Applying Theorem 3.1 and noting that (logπ0(x))′ = x( 1
σ 2

1
− 1

σ 2
2
)+ (

μ2
σ 2

2
− μ1

σ 2
1
), we

obtain that

(3.13)

|μ2 − μ1| ≤ dW(P1,P2)

≤ σ 2
1 E

∣∣∣∣∣X2

(
1

σ 2
1

− 1

σ 2
2

)
+

(
μ2

σ 2
2

− μ1

σ 2
1

)∣∣∣∣∣
≤

∣∣∣∣σ
2
1

σ 2
2

μ2 − μ1

∣∣∣∣ +
(

σ 2
1

σ 2
2

− 1
)
E|X2|.

Inequality (3.13) generalizes [21], Proposition 3.6.1, to the case of nonzero means.
In the special case μ2 = μ1 = 0, we compute E|X2| = √

2/πσ2 to get

dW(P1,P2) ≤
√

2

π

σ 2
1 − σ 2

2

σ2
,

which is exactly the same as in [21], Proposition 3.6.1.
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If μ2 
= 0, then the general expression for E|X2| is not agreeable, which is why

we suggest using the inequality E|X2| ≤ (E[X2
2])1/2 =

√
σ 2

2 + μ2
2, leading to

|μ2 − μ1| ≤ dW(P1,P2) ≤
∣∣∣∣σ

2
1

σ 2
2

μ2 − μ1

∣∣∣∣ +
(

σ 2
1

σ 2
2

− 1
)√

σ 2
2 + μ2

2.

With μ1 = μ2 = μ, the upper bound becomes (|μ| +
√

σ 2
2 + μ2

2)(
σ 2

1
σ 2

2
− 1). We

have not found a similar result in the literature (outside of the centered case) and
computing the Wasserstein distance directly using (1.2) is prohibitive as the c.d.f.’s
are not available in closed form.

EXAMPLE 3.7 (Distance between Azzalini-type skew-symmetric distributions).
Consider a symmetric density p1 on the real line. The so-called Azzalini-type skew-
symmetric distributions are constructed from such a p.d.f. p1 by considering the
densities p2(x) = 2p1(x)G(λx) with G the c.d.f. of a univariate symmetric distri-
bution with p.d.f. g and λ ∈ R a parameter (called skewness parameter); see [15]
for an overview of these skewing mechanisms and of their applications. The found-
ing example is Azzalini’s skew-normal density 2φ(x)�(λx) (denoted SN (0,1, λ),
see [1]), where φ and � respectively stand for the standard normal density and cu-
mulative distribution function.

Corollary 3.5 provides the Wasserstein distance between P1 with p.d.f. p1 and
its skew-symmetric counterpart P2 with p.d.f. p2 (assuming that G is such that the
assumptions of Theorem 3.1 are satisfied) since in this case π0(x) = 2G(λx) is
necessarily monotone and thus

(3.14) dW(p1,p2) = 2|λ|E[
τ1(X1)g(λX1)

]
.

Perhaps the most interesting instance of the above is the comparison of the standard
normal with the skew-normal which does satisfy the conditions of Theorem 3.1:

dW
(
N (0,1),SN (0,1, λ)

) =
√

2

π

|λ|√
1 + λ2

[recall that τ1(x) = 1]. Letting λ → ∞ we obtain that the distance between the
half-normal with density 2φ(x)Ix≥0 and the normal is

√
2/π , see also [7]. As in

the previous example, such results are not easy to obtain directly from (1.2).

Likelihood ratio orderings have a natural role in comparing parametric den-
sities. Let p(x; θ) be a parametric family of densities with parameter of inter-
est θ ∈ R (see, e.g., [20] for discussion and references). Set p1(·) = p(·; θ1) and
p2(·) = p(·; θ2). The family p(x; θ) is said to have monotone likelihood ratio if
x �→ p(x; θ2)/p(x; θ1) is nondecreasing as soon as θ2 > θ1 (and vice versa). If
P1 has p.d.f. p1 and if P2 has p.d.f. p2, then under monotone likelihood ratio,
P1 ≤ P2. The property of monotone likelihood ratio is intrinsically linked with the
validity of one-sided tests in statistics; see [16].
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EXAMPLE 3.8 (Distances within the exponential family). A noteworthy class
of parametric distributions which satisfy the property of monotone likelihood ra-
tio is the canonical regular exponential family p(x; θ) = h(x)eθx−A(θ) for some
scalar functions h and A, with the range of the distribution being independent
of θ ; see, for example, [16], page 639. If θ1 > θ2, then we can apply Corollary 3.5:
(logπ0)

′(x) = (log p2(x)
p1(x)

)′ = θ2 −θ1 < 0 for all x ∈ R, and thus from (3.12) we find
with X2 ∼ P2 that dW(P1,P2) = |θ2 −θ1|E[τ1(X2)] under mild and easy-to-check
conditions on P1 and P2.

EXAMPLE 3.9 (Distances between “tilted” distributions). Fix a density p1
with mean μ1 and consider, among all other densities g with same support and
fixed but different mean μ2 
= μ1, the density that minimizes the Kullback–Leibler
divergence

KL(g ‖ p1) =
∫

g(x) log
(

g(x)

p1(x)

)
dx.

The Euler–Lagrange equation for the constrained variational problem is logg(x) =
logp1(x) + λ1x + λ2, which is solved by

(3.15) p2(x) = p1(x)
eλ1x

M1(λ1)

with M1(t) = E[etX1] the moment generating function of X1 ∼ p1 and λ1 a solu-
tion to

d

dt

(
logM1(t)

)
t=λ1

= μ2

in order to guarantee E[X2] = μ2. We call (3.15) a “tilted” version of p1 (following
the classical notion of exponential tilting see, e.g., [9]). It is easy to compute

KL(p2 ‖ p1) = λ1μ2 − logM1(λ1).

Setting π0(x) = eλ1x/M1(λ1), we have log(π0)
′(x) = λ1, and hence, if the condi-

tions of Theorem 3.1 are satisfied, then

(3.16) dW(p1,p2) = |λ1|E[
τ1(X2)

]
.

For the sake of illustration, take p1 the Gamma distribution on the positive half-
line with density p1(x;λ, k) = 1

�(k)
e−x/λxk−1λ−k . Then M1(t) = (1 − λt)−k for

t < 1
λ

and λ1 = 1
λ

− k
μ2

. Moreover, τ1(x) = λx. It is thus easy to check in this case
that all conditions in Proposition 3.2 are satisfied. This allows us to deduce from
(3.16) that

dW(p1,p2) = |μ2 − λk|
which nicely complements KL(p2 ‖ p1) = μ2

λ
− k + k log( kλ

μ2
) as an alternative

comparison statistic.
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4. On the influence of the prior in Bayesian statistics. We now tackle the
problem that motivated Theorem 3.1: assessing the impact of the choice of the
prior distribution on the resulting posterior distribution in Bayesian statistics. In
all examples, the conditions in Proposition 3.2 are easy to verify explicitly.

We first fix the notation. Assume that the observation x comes from a parametric
model with p.d.f. f (x; θ) with θ ∈ �—f (x; θ) is often called the likelihood or the
sampling density. We turn this model into a p.d.f. for θ through

p1(θ;x) = κ1(x)f (x; θ),

where κ1(x) = (
∫

f (x; θ) dθ)−1, and we assume that κ1 < ∞. Let P1 have p.d.f.
p1 and call its Stein kernel τ1. Choose a possibly improper prior density π0(θ),
and let

p2(θ;x) = π0(θ;x)p1(θ;x),

where

π0(θ;x) = κ2(x)π0(θ) such that
∫

p2(θ;x)dθ = 1.

Then

1 =
∫

p2(θ;x)dθ = κ2(x)

∫
π0(θ)p1(θ;x)dθ = κ2(x)E

[
π0(�1)

]
,

where �1 has distribution P1 which gives an expression for the normalizing con-
stant. Let P2 = P2(·;x) be the probability distribution on � with p.d.f. p2(·;x).
Then P2 is the posterior distribution of θ under the prior π0 and the data x; more-
over, P1 can be seen as the distribution of θ under a uniform prior and the data x.

Now we extract from (3.5) of Theorem 3.1 the first bounds on the impact of a
prior on the posterior distribution:

(4.1)
|E[τ1(�1)π

′
0(�1)]|

E[π0(�1)] ≤ dW(P2,P1) ≤ E[τ1(�1)|π ′
0(�1)|]

E[π0(�1)]
which can also be rewritten as

(4.2)

∣∣E[�2] −E[�1]
∣∣ = ∣∣E[

τ1(�2)ρ0(�2)
]∣∣ ≤ dW(P2,P1)

≤ E
[
τ1(�2)

∣∣ρ0(�2)
∣∣]

with �2 ∼ P2 and

ρ0(θ) = π ′
0(θ)

π0(θ)
,

the score function of π0(θ;x) with respect to θ , which does not depend on the
data x. As we shall see in the forthcoming subsections which treat some classical
examples in Bayesian statistics, (4.2) often turns out to be handier for computations
than (4.1).
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4.1. A normal model. Consider the simple setting where x = (x1, . . . , xn) is
a random sample from a N (θ, σ 2) population, where the scale σ is known and
the location θ is the parameter of interest, and assume that the prior π0(θ) > 0
for all θ ∈ � is differentiable. The likelihood f (x; θ) of the normal model can be
factorized into

f (x; θ) = (
2πσ 2)− n

2 exp

{
−1

2

n∑
i=1

(xi − θ)2

σ 2

}

= (
2πσ 2)− n

2 exp

{
− 1

2σ 2

(
n∑

i=1

x2
i − nx̄2

)}
exp

{
−1

2

(θ − x̄)2

σ 2/n

}

∝ exp
{
−1

2

(θ − x̄)2

σ 2/n

}
when viewed as a function of θ,

where x̄ = 1
n

∑n
i=1 xi . Thus, P1 = N (x̄, σ 2/n). Since τ1 is constant, equal to

σ 2/n, the variance of �1 ∼ P1, the bound (4.1) becomes

σ 2

n

|E[π ′
0(�1)]|

E[π0(�1)] ≤ dW(P2,P1) ≤ σ 2

n

E[|π ′
0(�1)|]

E[π0(�1)]
and (4.2) becomes

(4.3)
∣∣E[�2] − x̄

∣∣ = σ 2

n

∣∣E[
ρ0(�2)

]∣∣ ≤ dW(P1,P2) ≤ σ 2

n
E

[∣∣ρ0(�2)
∣∣].

Both inequalities are equalities in the case that π0 is monotone.

4.2. Normal prior and normal model. Consider the same setting as in the pre-
vious section with the additional information that the prior π0 is the density of a
N (μ, δ2), where μ and δ2 > 0 are known. Then the posterior P2 is also normal,
since

p2(θ;x) ∝ exp
{
−1

2

(
(θ − x̄)2

σ 2/n
+ (θ − μ)2

δ2

)}
.

Defining a = n
σ 2 + 1

δ2 and b(x) = x̄
σ 2/n

+ μ

δ2 , we see that P2 =N (b(x)
a

, 1
a
).

Since the prior π0 is not monotone, we cannot exactly evaluate the Wasserstein
distance between P1 and P2. However, then we can write ρ0(θ) = −(θ − μ)/δ2 to
obtain

(4.4)

σ 2

nδ2 + σ 2 |x̄ − μ| ≤ dW(P1,P2)

≤ σ 2

nδ2 + σ 2 |x̄ − μ| +
√

2√
π

σ 3

nδ
√

δ2n + σ 2
.
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To see this, the lower bound follows directly from simplifying the difference of the
expectations,

∣∣∣∣b(x)

a
− x̄

∣∣∣∣ = σ 2

nδ2 + σ 2 |x̄ − μ|.

For the upper bound, using ρ0(θ) = −(θ − μ)/δ2 in (4.3) gives

dW(P1,P2) ≤ σ 2

n
E

[∣∣ρ0(�2)
∣∣]

= σ 2

nδ2E
[|�2 − μ|]

≤ σ 2

nδ2

(
E

[∣∣∣∣�2 − b(x)

a

∣∣∣∣
]

+
∣∣∣∣b(x)

a
− μ

∣∣∣∣
)

=
√

2√
π

√
1

a

σ 2

nδ2 + σ 2

nδ2

∣∣∣∣b(x)

a
− μ

∣∣∣∣
=

√
2√
π

δσ√
δ2n + σ 2

σ 2

nδ2 + σ 2

nδ2

δ2

δ2 + σ 2

n

|x̄ − μ|

=
√

2√
π

σ 3

nδ
√

δ2n + σ 2
+ σ 2

nδ2 + σ 2 |x̄ − μ|,

which yields the upper bound in (4.4).
Inequality (4.4) provides a quite concrete and intuitive idea of the impact of the

prior. First, we see that, for n → ∞, the distance becomes zero, as is well known.
The prior variance δ2 has the same influence, which is also natural given that the
prior then tends toward an improper prior, too. If the data are unfavorable so that
|x̄ − μ| is large compared to n, then the Wasserstein distance between the two
posterior distributions will be large. Due to the law of large numbers, for large n

the probability that |x̄ −μ| > δ2n+σ 2 is small; but in contrast to such asymptotic
considerations, the bound (4.4) makes the influence of the data on the distance
explicit. Further, the upper and lower bounds only differ by an O(n−3/2) term,
hence at a 1/n precision, we have an exact expression for the Wasserstein distance.
Finally, the O(1/n) term in both bounds perfectly reflects the intuition that the
better the guess of the prior mean μ (w.r.t. the data), the smaller the influence of
the prior.

4.3. The binomial model. As the next example, we treat the case of n in-
dependent and identically distributed Bernoulli random variables with parame-
ter of interest θ ∈ [0,1]; alternatively, we may say we have a single observation
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y ∈ {0,1, . . . , n} from a Binomial distribution with known n and parameter of in-
terest θ . The corresponding sampling density is

f (y; θ) =
(
n

y

)
θy(1 − θ)n−y

and p1(θ;y) = κ1(y)θy(1 − θ)n−y is a Beta density with

κ1(y) = 1

B(y + 1, n − y + 1)
,

where B(·, ·) denotes the Beta function, and P1 = P1(·;y) = Beta(y+1, n−y+1)

is a Beta distribution.
Recall that, if X ∼ p(x) = 1

B(α,β)
xα−1(1 − x)β−1 then

E[X] = α

α + β
, E

[
X2] = α(1 + α)

(α + β)(α + β + 1)

and

Var[X] = αβ

(α + β)2(α + β + 1)
.

The Stein kernel is τ(x) = x(1−x)
α+β

and in particular τ1(θ) = θ(1−θ)
n+2 . Corollary 3.4

gives that, for any differentiable prior π0 on I = [0,1],

dW(P1,P2) ≤ sup
0≤θ≤1

∣∣π ′
0(θ)

∣∣(y + 1)(n − y + 1)

(n + 2)2(n + 3)
.

For y close to n
2 , this bound is of order n−1. In particular, for any 0 ≤ y ≤ n,

for a prior with bounded derivative, the Wasserstein distance converges to zero as
n → ∞ no matter which data are observed, but the data may affect the rate of
convergence. Next, we consider some choices of prior densities which may not
have bounded derivatives.

4.3.1. Beta prior. For a Beta prior,

(4.5) π0(θ) ∝ θα−1(1 − θ)β−1,

the assumptions of Theorem 3.1 are satisfied but sup0≤θ≤1 |π ′
0(θ)| is infinite un-

less α,β ∈ {1} ∪ [2,+∞]. Let P1 denote the Beta(y + 1, n − y + 1) distribution
and P2 the posterior distribution using the prior (4.5). It is well known that P2 is
again Beta distributed: the Beta distributions are conjugate priors for the Bino-
mial distribution; in fact, it is easy to see that P2 is the Beta(α + y,β + n − y)

distribution.
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We shall show that

(4.6)

1

n + 2

∣∣∣∣(y + α)

(
α + β − 2

n + α + β

)
− (α − 1)

∣∣∣∣
≤ dW(P1,P2)

≤ 1

n + 2

{
(y + α)

|β − α|
n + α + β

+ |α − 1|
}
.

Note how both the upper and the lower bound vanish when α = β = 1. Also,
unless α = 1, the upper bound is of order O(n−1), no matter how favorable the
data y are.

To this end, let �1 ∼ P1 and �2 ∼ P2. With (4.2) we have the immediate lower
bound on the Wasserstein distance, namely

dW(P1,P2) ≥ ∣∣E[�2] −E[�1]
∣∣

=
∣∣∣∣y + 1

n + 2
− y + α

n + α + β

∣∣∣∣
=

∣∣∣∣(y + α)

(
1

n + 2
− 1

n + α + β

)
− α − 1

n + 2

∣∣∣∣
which leads to (4.6) after simplifications.

For the upper bound, we calculate that

ρ0(θ) = (α − 1)(1 − θ) + (β − 1)θ

θ(1 − θ)

and hence

τ1(θ)ρ0(θ) = 1

n + 2

{
(α − 1)(1 − θ) + (β − 1)θ

}
.

Using (4.2), we obtain the upper bound

dW(P1,P2) ≤ 1

n + 2
E

∣∣(α − 1)(1 − �2) − (β − 1)�2
∣∣

≤ 1

n + 2

{|α − 1| + |β − α|E�2
}

= 1

n + 2

{
|α − 1| + y + α

n + α + β
|β − α|

}
.

4.3.2. The Jeffreys prior. An alternative popular prior is

π0(θ) = 1√
θ(1 − θ)

,



238 C. LEY, G. REINERT AND Y. SWAN

the so-called Jeffreys prior obtained for α = β = 1/2 in (4.5). This is an improper
prior which satisfies the assumptions of Theorem 3.1. The posterior distribution
P2 is Beta(y + 1

2 , n − y + 1
2). Moreover,

ρ0(θ) = 2θ − 1

2θ(1 − θ)

and

τ1(θ)ρ0(θ) = 1

2(n + 2)
(2θ − 1).

Using (4.2), we obtain that

1

(n + 1)

∣∣∣∣y + 1

n + 2
− 1

2

∣∣∣∣ ≤ dW(P1,P2)

and

dW(P1,P2) ≤ 1

n + 2

{√√√√(y + 1
2)(n − y + 1

2)

(n + 2)(n + 1)2 +
∣∣∣∣∣y + 1

2

n + 1
− 1

2

∣∣∣∣∣
}
.

The upper bound follows from the Cauchy–Schwarz inequality via

dW(P1,P2) ≤ 1

2(n + 2)
E

∣∣(2�2 − 1)
∣∣

≤ 1

n + 2

{
E

∣∣�2 −E[�2]
∣∣ + ∣∣∣∣E[�2] − 1

2

∣∣∣∣
}

≤ 1

n + 2

{√
Var[�2] +

∣∣∣∣E[�2] − 1

2

∣∣∣∣
}

= 1

n + 2

{√√√√(y + 1
2)(n − y + 1

2)

(n + 2)(n + 1)2 +
∣∣∣∣∣y + 1

2

n + 1
− 1

2

∣∣∣∣∣
}
.

In contrast to (4.6), the Jeffreys prior can achieve a bound of order O(n− 3
2 ) if

the data y is close to n
2 .

4.4. A Poisson model. The last case we tackle is the Poisson model with data
x = (x1, . . . , xn) from a Poisson distribution with sampling density

f (x; θ) = e−nθ θ
∑n

i=1 xi∏n
i=1 xi ! .

When
∑n

i=1 xi 
= 0, which we shall now assume, then we obtain that P1, the pos-
terior distribution under a uniform prior, has p.d.f.

p1(θ;x) ∝ exp(−θn)θ
∑n

i=1 xi+1−1
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a gamma density with parameters 1/n and
∑n

i=1 xi + 1; its Stein kernel is sim-
ply τ1(θ) = θ/n (see Example 3.9). The general bound (3.11) from Corollary 3.4
becomes

(4.7) dW(P1,P2) ≤ sup
θ≥0

∣∣∣π ′
0

(
θ;∑

xi

)∣∣∣ x̄ + 1
n

n
,

where x̄ = 1
n

∑n
i=1 xi ≥ 1

n
.

Taking for θ a negative exponential prior Exp(λ) with λ > 0,

π0(θ) = λe−λθ

over R
+ yields that the posterior P2 has density p2(θ;x) ∝ exp(−θ(n + λ)) ×

θ
∑n

i=1 xi+1−1, again a gamma density where the first parameter is updated to 1/(n+
λ). Here, the prior is monotone decreasing, hence we can exactly calculate the
effect of the prior to obtain

dW(P1,P2) = E

[∣∣(logπ0)
′(�2)

∣∣�2

n

]

= λ
E[�2]

n

= λ
x̄ + 1

n

n + λ

= λ

n + λ
x̄ + λ

n(n + λ)
.

We note that the exact distance differs from the general bound (4.7) here only
through a multiplicative factor n

λ(n+λ)
[since supθ≥0 |π ′

0(θ;∑
xi)| = λ2]. The dis-

tance increases with x̄ but will always be at least as large as λ
n(n+λ)

. As we assume

that x̄ ≥ 1
n

, the data-dependent part of the Wasserstein distance will always be at
least as large as the part which stems solely from the prior. Finally, from the strong
law of large numbers, x̄ will almost surely converge to a constant as n → ∞, so
that the Wasserstein distance will converge to 0 almost surely.

Acknowledgments. The authors thank the three referees for their very careful
reading of the paper and the many pertinent remarks and corrections they sug-
gested. Christophe Ley and Yvik Swan also wish to thank Keble College for logis-
tic support during an important writing stage of this paper.

REFERENCES

[1] AZZALINI, A. (1985). A class of distributions which includes the normal ones. Scand. J. Statist.
12 171–178. MR0808153

[2] CHEN, L. H. Y., GOLDSTEIN, L. and SHAO, Q.-M. (2011). Normal Approximation by Stein’s
Method. Probability and Its Applications (New York). Springer, Heidelberg. MR2732624

http://www.ams.org/mathscinet-getitem?mr=0808153
http://www.ams.org/mathscinet-getitem?mr=2732624


240 C. LEY, G. REINERT AND Y. SWAN

[3] CHWIALKOWSKI, K., STRATHMANN, H. and GRETTON, A. (2016). A kernel test of goodness
of fit. Preprint. Available at arXiv:1602.02964v3.

[4] DIACONIS, P. and FREEDMAN, D. (1986). On inconsistent Bayes estimates of location. Ann.
Statist. 14 68–87. MR0829556

[5] DIACONIS, P. and FREEDMAN, D. (1986). On the consistency of Bayes estimates. Ann. Statist.
14 1–67. MR0829555

[6] DÖBLER, C. (2015). Stein’s method of exchangeable pairs for the beta distribution and gener-
alizations. Electron. J. Probab. 20 109. MR3418541

[7] DÖBLER, C. (2015). Stein’s method for the half-normal distribution with applications to limit
theorems related to the simple symmetric random walk. ALEA Lat. Am. J. Probab. Math.
Stat. 12 171–191. MR3343481

[8] EDEN, R. and VÍQUEZ, J. (2015). Nourdin–Peccati analysis on Wiener and Wiener–Poisson
space for general distributions. Stochastic Process. Appl. 125 182–216. MR3274696

[9] EFRON, B. (1981). Nonparametric standard errors and confidence intervals. Canad. J. Statist.
9 139–172. MR0640014

[10] EICHELSBACHER, P. and THÄLE, C. (2015). Malliavin–Stein method for variance-gamma
approximation on Wiener space. Electron. J. Probab. 20 123. MR3425543

[11] GAUNT, R. E. (2014). Variance-gamma approximation via Stein’s method. Electron. J. Probab.
19 38. MR3194737

[12] GOLDSTEIN, L. and REINERT, G. (2005). Distributional transformations, orthogonal polyno-
mials, and Stein characterizations. J. Theoret. Probab. 18 237–260. MR2132278

[13] GORHAM, J. and MACKEY, L. (2015). Measuring sample quality with Stein’s method. Adv.
Neural Inf. Process. Syst. 226–234.

[14] GORHAM, J. and MACKEY, L. (2016). Multivariate Stein factors for strongly log-concave
distributions. Electron. Commun. Probab. 21.

[15] HALLIN, M. and LEY, C. (2014). Skew-symmetric distributions and Fisher information: The
double sin of the skew-normal. Bernoulli 20 1432–1453. MR3217449

[16] KARLIN, S. and RUBIN, H. (1956). Distributions possessing a monotone likelihood ratio.
J. Amer. Statist. Assoc. 51 637–643. MR0104303

[17] LEY, C., REINERT, G. and SWAN, Y. (2016). Stein’s method for comparison of univariate
distributions. Preprint. Available at arXiv:1408.2998.

[18] LEY, C. and SWAN, Y. (2013). Local Pinsker inequalities via Stein’s discrete density approach.
IEEE Trans. Inform. Theory 59 5584–5591. MR3096942

[19] LEY, C. and SWAN, Y. (2013). Stein’s density approach and information inequalities. Electron.
Commun. Probab. 18 7. MR3019670

[20] LEY, C. and SWAN, Y. (2016). Parametric Stein operators and variance bounds. Braz. J.
Probab. Stat. 30 171–195. MR3481100

[21] NOURDIN, I. and PECCATI, G. (2012). Normal Approximations with Malliavin Calculus: From
Stein’s Method to Universality. Cambridge Tracts in Mathematics 192. Cambridge Univ.
Press, Cambridge. MR2962301

[22] NOURDIN, I., PECCATI, G. and SWAN, Y. (2014). Entropy and the fourth moment phe-
nomenon. J. Funct. Anal. 266 3170–3207. MR3158721

[23] NOURDIN, I., PECCATI, G. and SWAN, Y. (2014). Integration by parts and representation
of information functionals. 2014 IEEE International Symposium on Information Theory
(ISIT) 2217–2221.

[24] OATES, C. J., GIROLAMI, M. and CHOPIN, N. (2016). Control funtionals for Monte Carlo
integration. J. R. Stat. Soc. Ser. B. Stat. Methodol. To appear. DOI:10.1111/rssb.12185.

[25] PIKE, J. and REN, H. (2014). Stein’s method and the Laplace distribution. ALEA Lat. Am. J.
Probab. Math. Stat. 11 571–587. MR3283586

[26] ROSS, N. (2011). Fundamentals of Stein’s method. Probab. Surv. 8 210–293. MR2861132

http://arxiv.org/abs/arXiv:1602.02964v3
http://www.ams.org/mathscinet-getitem?mr=0829556
http://www.ams.org/mathscinet-getitem?mr=0829555
http://www.ams.org/mathscinet-getitem?mr=3418541
http://www.ams.org/mathscinet-getitem?mr=3343481
http://www.ams.org/mathscinet-getitem?mr=3274696
http://www.ams.org/mathscinet-getitem?mr=0640014
http://www.ams.org/mathscinet-getitem?mr=3425543
http://www.ams.org/mathscinet-getitem?mr=3194737
http://www.ams.org/mathscinet-getitem?mr=2132278
http://www.ams.org/mathscinet-getitem?mr=3217449
http://www.ams.org/mathscinet-getitem?mr=0104303
http://arxiv.org/abs/arXiv:1408.2998
http://www.ams.org/mathscinet-getitem?mr=3096942
http://www.ams.org/mathscinet-getitem?mr=3019670
http://www.ams.org/mathscinet-getitem?mr=3481100
http://www.ams.org/mathscinet-getitem?mr=2962301
http://www.ams.org/mathscinet-getitem?mr=3158721
http://dx.doi.org/10.1111/rssb.12185
http://www.ams.org/mathscinet-getitem?mr=3283586
http://www.ams.org/mathscinet-getitem?mr=2861132


DISTANCES BETWEEN NESTED DENSITIES 241

[27] ROSS, S. M. (1996). Stochastic Processes, 2nd ed. Wiley Series in Probability and Statistics:
Probability and Statistics. Wiley, New York. MR1373653

[28] SHAKED, M. and SHANTHIKUMAR, J. G. (2007). Stochastic Orders. Springer Series in Statis-
tics. Springer, New York. MR2265633

[29] STEIN, C. (1965). Approximation of improper prior measures by prior probability measures. In
Proc. Internat. Res. Sem., Statist. Lab., Univ. California, Berkeley, Calif., 1963 217–240.
Springer, New York. MR0199937

[30] STEIN, C. (1986). Approximate Computation of Expectations. Institute of Mathematical Statis-
tics Lecture Notes—Monograph Series 7. IMS, Hayward, CA. MR0882007

[31] STEIN, C., DIACONIS, P., HOLMES, S. and REINERT, G. (2004). Use of exchangeable pairs
in the analysis of simulations. In Stein’s Method: Expository Lectures and Applications.
Institute of Mathematical Statistics Lecture Notes—Monograph Series 46 1–26. IMS,
Beachwood, OH. MR2118600

[32] VALLENDER, S. (1974). Calculation of the Wasserstein distance between probability distribu-
tions on the line. Theory Probab. Appl. 18 784–786.

[33] VILLANI, C. (2009). Optimal Transport: Old and New. Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences] 338. Springer, Berlin.
MR2459454

C. LEY

DEPARTMENT OF APPLIED MATHEMATICS,
COMPUTER SCIENCE AND STATISTICS

GHENT UNIVERSITY

KRIJGSLAAN 281, S9
9000 GHENT

BELGIUM

E-MAIL: christophe.ley@ugent.be

G. REINERT

DEPARTMENT OF STATISTICS

UNIVERSITY OF OXFORD

24–29 ST GILES

OXFORD OX1 3LB
UNITED KINGDOM

E-MAIL: reinert@stats.ox.ac.uk

Y. SWAN

DÉPARTEMENT DE MATHÉMATIQUE

UNIVERSITÉ DE LIÈGE

12 ALLÉE DE LA DÉCOUVERTE

BÂT. B37 PKG 33A

4000 LIÈGE

BELGIUM

E-MAIL: yswan@ulg.ac.be

http://www.ams.org/mathscinet-getitem?mr=1373653
http://www.ams.org/mathscinet-getitem?mr=2265633
http://www.ams.org/mathscinet-getitem?mr=0199937
http://www.ams.org/mathscinet-getitem?mr=0882007
http://www.ams.org/mathscinet-getitem?mr=2118600
http://www.ams.org/mathscinet-getitem?mr=2459454
mailto:christophe.ley@ugent.be
mailto:reinert@stats.ox.ac.uk
mailto:yswan@ulg.ac.be

	Introduction
	A review of Stein's density approach
	Notation and deﬁnitions
	Standardizations of the operator
	The Stein transfer principle
	The Stein kernel
	Stein standardizations

	Comparing univariate continuous densities
	Bounds on the Wasserstein distance between univariate continuous densities

	On the inﬂuence of the prior in Bayesian statistics
	A normal model
	Normal prior and normal model
	The binomial model
	Beta prior
	The Jeffreys prior

	A Poisson model

	Acknowledgments
	References
	Author's Addresses

