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A Closer Look at Testing the
“No-Treatment-Effect” Hypothesis in
a Comparative Experiment
Joseph B. Lang

Abstract. Standard tests of the “no-treatment-effect” hypothesis for a com-
parative experiment include permutation tests, the Wilcoxon rank sum test,
two-sample t tests, and Fisher-type randomization tests. Practitioners are
aware that these procedures test different no-effect hypotheses and are based
on different modeling assumptions. However, this awareness is not always,
or even usually, accompanied by a clear understanding or appreciation of
these differences. Borrowing from the rich literatures on causality and finite-
population sampling theory, this paper develops a modeling framework that
affords answers to several important questions, including: exactly what hy-
pothesis is being tested, what model assumptions are being made, and are
there other, perhaps better, approaches to testing a no-effect hypothesis?
The framework lends itself to clear descriptions of three main inference ap-
proaches: process-based, randomization-based, and selection-based. It also
promotes careful consideration of model assumptions and targets of infer-
ence, and highlights the importance of randomization. Along the way, Fisher-
type randomization tests are compared to permutation tests and a less well-
known Neyman-type randomization test. A simulation study compares the
operating characteristics of the Neyman-type randomization test to those of
the other more familiar tests.

Key words and phrases: Causal effects, completely randomized design,
finite-population sampling theory, Fisher vs. Neyman, Fisher’s exact test,
Horvitz–Thompson estimator, nonmeasurable probability sample, permuta-
tion tests, potential variables, process-based inference, randomization-based
inference, randomization tests, selection-based inference.

1. INTRODUCTION

We begin with a simple example of a randomized
comparative experiment. Researchers are interested in
determining whether cell phone use while driving has
an impact on reaction times. Toward this end, 64 Uni-
versity of Utah student volunteers were enlisted to take
part in a randomized comparative experiment (Strayer
and Johnston, 2001). Of the 64 students, 32 were ran-
domized to treatment 1 (operate a driving simulator
while using a cell phone) and 32 were randomized to
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treatment 2 (operate a driving simulator without a cell
phone). For a summary description of the data and of
the way the two treatments were actually administered,
see Agresti and Franklin (2007, page 446). In the driv-
ing simulation, each student encountered several red
lights at random times. Each student’s response was the
average time required to stop when a red light was de-
tected. The 64 responses, in milliseconds, are recorded
in Table 1.

Is there a cell phone use effect? Generically, is there
a treatment effect?

Standard tests of the “no-treatment-effect” hypoth-
esis include permutation tests (Pitman, 1937, 1938),
the Wilcoxon rank sum test (Wilcoxon, 1945), two-
sample t tests (cf. Welch, 1938), and Fisher-type ran-
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TABLE 1
Reaction times (milliseconds)

Cell phone: 636 623 615 672 601 600 542 554 543 520 609 559 595 565 573 554
626 501 574 468 578 560 525 647 456 688 679 960 558 482 527 536

Control: 557 572 457 489 532 506 648 485 610 444 626 626 426 585 487 436
642 476 586 565 617 528 578 472 485 539 523 479 535 603 512 449

Generically. . .
Treatment 1: y1,1, y1,2, . . . , y1,32
Treatment 2: y2,1, y2,2, . . . , y2,32.

domization tests (Eden and Yates, 1933, Fisher, 1935;
see also the history in David, 2008). Most practition-
ers are aware that these procedures test different “no-
effect” hypotheses and are based on different modeling
assumptions. However, this awareness is not always, or
even usually, accompanied by a clear understanding or
appreciation of these differences. This paper looks at
each of these testing approaches and addresses the all
important questions, exactly what hypothesis is being
tested and what model assumptions are being made?
Along the way, we will have to confront several other
questions such as, how is the definition of treatment ef-
fect operationalized, what is the actual target of infer-
ence, what is the role of randomization, and are there
other, perhaps better, approaches to testing a no-effect
hypothesis?

To address these questions, we draw on ideas from
the rich literature on causal analysis. In particular, we
employ the useful concept of “potential variables.” Al-
though the idea of potential variables can be traced
back to Neyman (1923), Rubin, beginning with a series
of papers on causal models in the 1970s (see Rubin,
2010, and references therein) is usually credited with
more explicitly stating the potential variable model and
extending it to both randomized and nonrandomized
design settings, with or without covariates (see Ru-
bin’s causal model, Holland, 1986). Between Neyman
and Rubin, potential variables were used by relatively
few authors; Welch (1937), Kempthorne (1952, 1955),
and Cox (1958a), Section 5, were among the notable
early proponents. Around the time of and after Ru-
bin, many more authors made important contributions
to the potential variables literature. See, for example,
Copas (1973), Bailey (1981), Holland (1986), Green-
land (1991, 2000), Gadbury (2001), and the references
therein.

To be clear, it is not the goal of this paper to summa-
rize the vast literature on potential variables and causal
modeling. (To this end, see Paul R. Rosenbaum’s
very informative website and references therein, www-
stat.wharton.upenn/~rosenbap/downloadTalks.htm.)

Instead, the first goal is to exploit the benefits of hind-
sight to develop a modeling framework that supports
clear descriptions and comparisons of the different
testing approaches, and promotes careful considera-
tion of the model assumptions and targets of infer-
ence. This modeling framework and associated nota-
tion draws clear distinctions between realizations and
random variables, and between observed and unob-
served data. It accommodates both treatment assign-
ment and sampling from populations, and clearly dif-
ferentiates between the two. Although the proposed
model lends itself to generalizations in many directions
(e.g., more than two treatments, restricted randomiza-
tion, etc.), to simplify exposition, we will focus on the
two-treatment comparative experiment setting. This re-
striction allows us to more directly highlight the useful
features of the proposed modeling framework.

The second goal of this paper is to address the ques-
tion of availability of other testing approaches, besides
the four common ones mentioned above. Toward this
end, we revisit ideas introduced in Neyman (1923).
Using the model structure introduced herein, we de-
scribe a less well-known Neyman-type randomization
test, which is qualitatively different than the Fisher-
type randomization test (cf. Welch, 1937; Rubin, 1990,
2004, 2010). (Readers with an interest in history are en-
couraged to read Neyman et al., 1935, along with the
discussions, to see how Neyman and Fisher publicly
aired their differences of opinions on testing in ran-
domized design settings.) The Neyman randomization
test, which uses a less restrictive “no-effect” hypothesis
than Fisher’s, is based on a test statistic with the com-
mon form, (estimator minus estimand)/(standard error
of estimator). Neyman, with an eye on interval estima-
tion rather than testing, derived the standard error with
respect to a randomization distribution using tools from
finite-population sampling theory. In retrospect, Ney-
man’s derivation approach is hardly surprising given
that he “may be said to have initiated the modern theory
of survey sampling” (Lehmann, 1994) in his landmark
paper of 1934 (Neyman, 1934). Compared to Fisher
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randomization tests, the Neyman tests do have their ad-
vantages and disadvantages. One disadvantage is that
Neyman tests are approximate, whereas Fisher tests
are exact. An advantage is that the Neyman test can
be more powerful than the Fisher test (see Section 7
below). Another advantage is that, unlike the Fisher
randomization test, the Neyman version can be used
to test hypotheses about a population when units are
randomly sampled from the population and then ran-
domized to treatment levels.

The third and final goal of this paper is to compare
the operating characteristics of the five tests: the per-
mutation test, the Wilcoxon rank sum test, the two-
sample t-test, the Fisher randomization test, and the
Neyman randomization test. The penultimate section
of the paper includes a small-scale simulation study of
the size and power of these five tests. Based on these
comparisons, we make tentative recommendations on
which test to use in different settings.

The remainder of this paper is organized as follows:
Section 2 introduces potential variables and recasts the
data in Table 1 within this framework. Section 3 intro-
duces a sequential data generation model that explic-
itly accommodates both random sampling and random-
ization. The components in the three-level sequential
model are identified as the “process,” the “sampling,”
and the “randomization.” This model, along with a use-
ful component-selection notation, leads to an explicit
identification of the observed data and the three main
targets of inference. Section 4 gives candidate defini-
tions of treatment effects that are based on potential
variables; corresponding no-treatment-effect hypothe-
ses are also given. An overview of the three main infer-
ence approaches—process-based, selection-based, and
randomization-based—is given in Section 5. Section 6
introduces a difference statistic that can be used as the
basis for tests of the no-treatment-effect hypotheses.
Tests corresponding to each of the three inference ap-
proaches, along with assumptions for their validity, are
described in detail; some of these tests are well known
and some are less well known. Section 7 carries out an
analysis of the cell phone data and includes a small-
scale simulation study of the operating characteristics
of the different testing approaches discussed herein. Fi-
nally, Section 8 includes a brief discussion.

2. WHAT MIGHT HAVE BEEN: THE POTENTIAL
VARIABLES VIEWPOINT

Going back to Neyman (1923) and following the
lead of Welch (1937), Kempthorne (e.g., 1955, 1977),

Cox (1958a), and Rubin (e.g., 2005), we will view the
data as observed values of a sample of “potential val-
ues.”

Consider a population of N units that are, without
loss of generality, identified by the numbers 1 through
N ; in symbols, we will let P = (1, . . . ,N) represent
the unit identifiers for the population. For convenience,
we will also refer to P as the population of units. Let
Yt.i be the response for unit i when exposed to treat-
ment t , where i = 1, . . . ,N and t = 1,2. The response
variables Y1.i and Y2.i are called potential variables for
reasons made clear in the next paragraph.

The introduction of these potential variables leads
to intuitively appealing definitions of treatment effects
that are based on head-to-head comparisons of Y1.i and
Y2.i . There is a catch, however. Although there is the
potential to observe either Y1.i or Y2.i , unfortunately,
it is not possible to observe both. Strictly speaking, it
is not possible to observe the values of both potential
variables because the same subject cannot be simul-
taneously exposed to both treatments. To the potential
variable advocates, this is the “fundamental problem of
causal analysis” (Holland, 1986). As an example, if we
observe the value of Y2.i , then the value of Y1.i , and
hence the difference Y1.i − Y2.i , cannot be observed.
In this case, the unobserved value of Y1.i is relegated
to counterfactual status; the value is “what might have
been” had unit i been exposed to treatment 1 rather
than treatment 2.

The data in Table 1 can be viewed as observed values
of a sample of the potential variable values. Specifi-
cally, a sample s of size n = n1 + n2 = 64 is taken,
without replacement, from the population P . That is,
s = (s1, . . . , sn), where sj ∈ P and sj �= sj ′ . One of
the two treatments will be assigned to each of the units
in the sample s. For the example, treatment 1 was as-
signed to n1 = 32 and treatment 2 was assigned to
n2 = 32 of the 64 sampled units.

Let yt.sj be the response value for sampled subject
sj when exposed to treatment t . That is, yt.sj is a re-
alization of Yt.sj . Of course, for each subject sj , only
one of the realizations, y1.sj or y2.sj , will be observed.
From a potential variables viewpoint, the original data
in Table 1 can be viewed as follows:

REMARK. Table 1 used the conventional yt,i , i =
1, . . . ,32, t = 1,2 to represent the observed data,
whereas Table 2 uses y2.s1, y2.s2, y1.s3, . . . , y2.s63, y1.s64 .
It is important to note that the symbols yt,i and yt.i rep-
resent very different objects. For example, in Table 1,
of those units sampled and assigned treatment 1, the
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TABLE 2
Potential values notation

Treatment 1: y1.s1×, y1.s2×, y1.s3 , . . . , y1.s63×, y1.s64 Only the 32 non-×’ed out values are observed.
Treatment 2: y2.s1 , y2.s2 , y2.s3× , . . . , y2.s63 , y2.s64× Only the 32 non-×’ed out values are observed.

Here, s = (s1, . . . , s64) is a sample from some population P = (1, . . . ,N),N ≥ 64.

3rd had a process value of y1,3, and of those units sam-
pled and assigned treatment 2, the 3rd had a process
value of y2,3. That is, y1,3 and y2,3 are process values
for two distinct units. In contrast, y1.3 and y2.3 repre-
sent the process values under treatments 1 and 2 for the
same unit, specifically, the 3rd unit in the population.

3. DATA-GENERATION MODELS AND INFERENCE
GOALS

Let Y = (Y1.1, . . . , Y1.N , Y2.1, . . . , Y2.N ) be the vec-
tor of potential variables for the population P and
y = (y1.1, y1.2, . . . , y1.N , y2.1, . . . , y2.N ) be the corre-
sponding vector of realizations. We will use this no-
tational convention throughout the paper: upper case
letters for random variables and lower case letters for
realizations.

To simplify and to highlight vector component
identification, we introduce dot “.” operations and a
component-selection bracket “[ ]” notation that is sim-
ilar to the matrix syntax used in computer languages
such as R. Let x and w be m-dimensional vectors and
let k be a scalar. Define

x.w = (x1.w1, . . . , xm.wm) and

k.x = (k.x1, . . . , k.xm).

Consider an m-dimensional vector x with compo-
nents identified by subscripts a1, . . . , am, that is, x =
(xa1, . . . , xam). Provided b = (b1, . . . , bq) has compo-
nents bi ∈ {a1, . . . , am}, for each i = 1, . . . , q , the vec-
tor x[b] is defined as x[b] = x[b1, . . . , bq] = (xb1, . . . ,

xbq ).
As an example, y = (y1.1, . . . , y1.N , y2.1, . . . , y2.N )

can be expressed as y = y[1.P ,2.P ]. Similarly,
y[1.s] = (y1.s1, . . . , y1.sn) and y[t .s] = (yt1.s1, . . . ,

ytn.sn). We will also use a notation for averages: As
examples,

Y [t.P ] = N−1
N∑

i=1

Y [t.i],

y[t.P ] = N−1
N∑

i=1

y[t.i] and

y[t.s] = n−1
n∑

j=1

y[t.sj ].

The data-generation models we consider in this pa-
per are based on the following sequential generations:

y ← Y

here, y = (y1.1, . . . , y1.N , y2.1, . . . , y2.N ),

s ← S|(Y = y)
(1)

here, s = (s1, . . . , sn), sj ∈ P , sj �= sj ′,

t ← T |(Y = y,S = s)

here, t = (t1, . . . , tn), tj ∈ {1,2}.
The left arrow “←” is read, “is a realization of.” Here,
Y is the collection of 2N potential response variables,
S is the collection of n sampling variables, and T is
the collection of n treatment assignment variables. The
sequencing in (1) is not required to correspond to the
temporal sequencing of data generation. It is meant
only as a device for specifying the joint distribution of
(Y , S,T ). For a related discussion, see Rubin [2010,
between equations (4) and (5)].

In words, “Nature” generates N units, which are
labeled 1,2, . . . ,N . Each unit can potentially expe-
rience either of two “possible worlds,” which corre-
spond to exposure under the two treatments. The vec-
tor y contains the 2N potential response values, one
for each of the N units under treatment 1 and one
for each of the N units under treatment 2. These po-
tential deviates in y are viewed as realized, at least
in theory, but only partially observable. We sample n

distinct subjects s from the population P . The sam-
pling may depend on potential deviates y; this depen-
dence often stems from selecting on covariates that
are statistically related to the potential variables [see
Rubin, 2010, between equations (4) and (5)]. Finally,
we assign treatment levels t to units in the sample,
that is, we choose which of the two possible worlds
we will observe for each unit in the sample. The treat-
ment assignment may depend on the potential devi-
ates y and/or the sampled units s. However, when me-
chanical or physical randomization (cf. Fisher, 1935,
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Kempthorne, 1955) is used, the treatment assignment
can be made to be independent of the potential devi-
ates.

We will refer to the potential variables Y as “process
variables”1 and the values y as “process values,” to dif-
ferentiate them from the “selection” variables (S, T )

and values (s, t). The process portion describes how
things behave under both possible worlds and the se-
lection portion determines how we go about observing
this behavior. Owing to the sampling and treatment as-
signment (the selection), we do not observe the entire
vector of potential deviates y (the process values). In-
deed, the “fundamental problem of causal inference”
rules out the possibility of fully observing the 2N -
dimensional data vector y. Instead, we observe only
the n-dimensional sub-vector y[t .s]. Schematically, we
have

y[t .s]︸ ︷︷ ︸
observed

⊆ y[1.s,2.s] ⊆ y[1.P ,2.P ] = y ← Y︸ ︷︷ ︸
unobserved

.

The inference goal of this paper can be stated suc-
cinctly as follows:

Inference goal. Use the observed data y[t .s] from
a comparative experiment to reduce uncertainty about
one of the three targets: the vector y[1.s,2.s], the vec-
tor y[1.P ,2.P ], or the distribution of Y .

4. TREATMENT EFFECTS AND
“NO-TREATMENT-EFFECT” HYPOTHESES

4.1 Treatment Effects

We began this paper with the question of whether
there was a treatment effect. Of course, this raises an-
other question: What exactly is a “treatment effect”?

In a comparative experiment, a treatment effect can
be viewed as some measure of the difference between
the response (Y ) distribution or response values (y)
for treatment level 1 and the response distribution or
response values for treatment level 2. The potential
variables viewpoint lends itself to intuitively-appealing
candidate definitions of such treatment effects (cf. Ney-
man, 1923; Rubin, 1990, 2005, 2010). Some of the can-
didates considered in this paper are as follows:

1Rubin (2005), uses the descriptor “science” rather than “pro-
cess.”

Realized unit-specific effects:
y[1.sj ] − y[2.sj ], j = 1, . . . , n or
y[1.i] − y[2.i], i = 1, . . . ,N .

Distribution unit-specific effects:
δ(F1.i , F2.i ), i = 1, . . . ,N .

Expected unit-specific effects:
E(Y [1.i]) − E(Y [2.i]), i = 1, . . . ,N .

Realized aggregate effects:
y[1.s] − y[2.s] or
y[1.P ] − y[2.P ].

Expected aggregate effects:
E(Y [1.P ]) − E(Y [2.P ]).

For example, the realized unit-specific treatment ef-
fect y[1.sj ] − y[2.sj ] is simply the difference between
unit sj ’s responses under two scenarios or two possi-
ble worlds—in one world the unit is exposed to treat-
ment 1 and in the other world the unit is exposed to
treatment 2. As another example, the distribution unit-
specific effect δ(F1.i , F2.i ) measures the distance be-
tween the c.d.f.’s of Y [1.i] and Y [2.i] using some dis-
tance function δ(·). This latter example illustrates that
treatment effects need not be defined in terms of sim-
ple differences, arithmetic averages, or means of dis-
tributions. Other examples of treatment effects include
the distribution unit-specific effect median(Y [1.i]) −
median(Y [2.i]), realized unit-specific effects, such as
(y[2.sj ] − y[1.sj ])/y[1.sj ], and realized aggregate
effects, such as ‖y[1.s] − y[2.s]‖ or var(y[1.s]) −
var(y[2.s]) or y[2.s]−y[1.s]

y[1.s] , or for binary responses, the

realized odds ratio y[1.s]/(1−y[1.s])
y[2.s]/(1−y[2.s]) , etc.

Unfortunately, none of the treatment effects men-
tioned above is observable. The expected and distribu-
tion effects cannot be observed because the distribu-
tion of Y is not completely known. The realized effects
cannot be observed because, by the fundamental prob-
lem of causal inference, only one of the realizations,
for example, either y[1.sj ] or y[2.sj ], can be observed.
Fortunately, this does not preclude unbiased estimation
of some of these unobservable treatment effects, as we
point out below.

In the potential-variables causal literature, the treat-
ment effects defined above would be considered causal
effects provided certain assumptions hold (e.g., Rubin,
1990, 2005, 2010). To avoid the ongoing debate about
the nature of causality, we will refrain from referring
to treatment effects as causal effects.

4.2 “No-Treatment-Effect” Hypotheses

Corresponding to each treatment effect definition,
there is a “no-treatment-effect” hypothesis. As exam-
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ples,

HUP
0 : Y [1.P ] = Y [2.P ], with probability 1;

HDUP
0 : Y [1.i] ∼ Y [2.i], i = 1, . . . ,N.

Herein, “∼” means “distributed as”;

HEUP
0 : E(Y [1.i]) = E(Y [2.i]),

i = 1, . . . ,N;
HRUP

0 : y[1.P ] = y[2.P ];
HRAP

0 : y[1.P ] = y[2.P ];
HRUs

0 : y[1.s] = y[2.s];
HRAs

0 : y[1.s] = y[2.s].
The indentations are used to denote nesting. For ex-

ample, both HEUP
0 and HRUP

0 are implied by HUP
0 .

Similarly, HRAs
0 is implied by HRUs

0 and by HRUP
0 ,

but not by HRAP
0 . The superscripts remind us of the

type of treatment effect used in the hypothesis. For
example, the hypothesis HEUP

0 uses Expected Unit-
specific effects (for the Population), and HRAs

0 uses
Realized Aggregate (over sample s) effects.

5. INFERENCE APPROACHES AND
ASSUMPTIONS

The (y, s, t) components in the observed data y[t .s]
are viewed as outcomes of the sequential generations
of (1). The complete, but only partially observed, data
y is a realization of the 2N -dimensional vector of
potential variables Y . In symbols, we have y[t .s] ←
Y [T .S] and y ← Y .

As stated previously, the inference goal is to use
the observed data y[t .s] to reduce uncertainty about
one of three targets: the distribution of Y , the vector
y[1.P ,2.P ], or the vector y[1.s,2.s]. The choice of in-
ference approach depends on which of these targets we
are interested in and it depends on what assumptions
we can reasonably make about the joint distribution of
(Y , S,T ), where Y is the “process” variable and (S, T )

are the “selection” variables. More specifically, S is the
“sampling” variable and T is the “randomization” or
treatment assignment variable. In this paper, we con-
sider three candidate inference approaches.

5.1 Process-Based Inference and Assumptions

With the process-based approach, we condition on
the selection (only Y is random) and use

y[t .s] ← Y [T .S]|(S = s, T = t)

∼ Y [t .s]|(S = s, T = t)

to carry out inferences about the distribution of Y . (The
discussion section describes more general inferences.)

With process-based inference, we generally must
make assumptions about the conditional distribution of
Y |(S = s, T = t). However, because this paper focuses
on test procedures that are valid provided the process is
independent of the selection (see assumption A1), we
will only make assumptions about the (unconditional)
process distribution of Y ; see assumptions A2–A7.

A1 : (S, T ) ⊥⊥ Y ;
A2 : Y [t.i] ∼ Ft , i = 1, . . . ,N, t = 1,2;
A3 : Y [1.i,2.i], i = 1, . . . ,N, are independent;
A4 : Ft ∈ {continuous c.d.f.s};
A5 : Ft ∈ {N(μt , σ

2
t ) c.d.f.s};

A6 : Ft ∈ {N(μt , σ
2) c.d.f.s};

A7 : Ft ∈ {c.d.f.s with mean and variance (μt , σ
2
t )}.

Process-based inference is simplified under Assump-
tion A1 because the observed data can be viewed as a
realization of Y [t .s]; in symbols, y[t .s] ← Y [t .s]. It
follows that we need only model the (unconditional)
distribution of the process variable Y . Importantly, un-
der A1, process-based inference does not require any
assumptions about the selection (S, T ). It is also im-
portant to note that when A1 holds and Y is mod-
eled via assumptions such as A2–A7, the observed data
y[t .s] can be used to make process-based inferences
about the distribution of Y .

Unfortunately, Assumption A1 is typically not ten-
able in practice. Notice that A1 is equivalent to the two
assumptions, T ⊥⊥ Y |S and S ⊥⊥ Y . When mechani-
cal randomization is used to assign treatments to the
sampled units, the first assumption can be made ten-
able. However, the reasonableness of the second as-
sumption, that the sampling variable S is independent
of Y , is often questionable in practice. For example,
with haphazard or convenience sampling, rather than
probability sampling, it often turns out that S and Y are
not independent. The dependence typically stems from
sampling on the basis of covariates that are related to
Y .2

The assumption A2 is not as restrictive as it may ini-
tially appear. For example, whenever the identifiers are

2Of course, if the covariates responsible for the dependence were
known and observable, we could condition on their values to re-
store independence; however, this conditional model falls outside
the purview of the current paper.
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arbitrarily assigned to the N population units, the N

pairs Y [1.i,2.i] would be exchangeable and, hence, A2
would hold. Generally, the more tenuous assumptions
are A1, that the selection is carried out independently
of the process, the independence assumption A3, and
the assumptions A4–A7 about the form of marginal dis-
tributions F1 and F2.

5.2 Randomization-Based Inference and
Assumptions

With the randomization-based approach, we condi-
tion on both the process values and the sample (only T

is random) and use

y[t .s] ← Y [T .S]|(Y = y,S = s)

∼ y[T .s]|(Y = y,S = s)

to carry out inferences about y[1.s,2.s].
With randomization-based inference, we generally

must make assumptions about the conditional distribu-
tion of T |(Y = y,S = s). However, because this pa-
per focuses on test procedures that are valid provided
the randomization is conditionally independent of the
process, given the sample (see assumption B1), we
will only make assumptions about the distribution of
T |(S = s); see assumption B2.

B1 : T ⊥⊥ Y |S.

B2 : The distribution of T |(S = s) is completely

known and satisfies. . .

P(T .S � t.sj |S = s) > 0,

j = 1, . . . , n, t = 1,2;
P(T .S � t.sj , T .S � t ′.sj ′ |S = s) = 0

if and only if t �= t ′andj = j ′.

Randomization-based inference is simplified under
assumption B1 and fortunately the use of mechanical
randomization makes this assumption tenable. Under
B1, we have that the observed data can be viewed as
y[t .s] ← y[T .s]|(S = s), so only the distribution of
T |(S = s) needs to be modeled. In particular, we need
not make any assumption about the distribution of Y

or its relation to S; for example, Y and S, that is, the
process and the sampling, need not be independent.
It is important to note that when the distribution of
T |(S = s) is completely known (see B2), the distri-
bution of y[T .s]|(S = s) is known up to the partially-
observed values y[1.s,2.s], which are the parameters
of interest for randomization-based inference. Thus,

when B1 and B2 hold, the observed data y[t .s] can be
used to carry out randomization-based inference about
the target parameters y[1.s,2.s].

In B2, the probabilities are called first- and second-
order inclusion probabilities for the random sample,
namely, T .S|(S = s), taken from (1.s,2.s). Assump-
tion B2 imposes constraints on these inclusion proba-
bilities. The positive first-order inclusion probabilities
imply that “proper” randomization is used to assign
treatments, that is, each unit in the sample has a pos-
itive probability of receiving either treatment; we say
that this is a “proper” randomized comparative exper-
iment.3 Put another way, T .S|(S = s) is a probability
sample from (1.s,2.s). Because the same unit cannot
be assigned different treatments, the second-order in-
clusion probabilities with t �= t ′ and j = j ′ are 0. This
implies that the probability sample is nonmeasurable,
to use language from sampling theory (cf. Särndal et
al., 1992, pages 32–33). This nonmeasurability compli-
cates the computation of certain randomization-based
test statistics (see Section 6.3.2 below), as Neyman was
fully aware of in 1923.

5.3 Selection-Based Inference and Assumptions

With the selection-based approach, we condition on
the process values [only (S, T ) is random] and use

y[t .s] ← Y [T .S]|(Y = y) ∼ y[T .S]|(Y = y)

to carry out inferences about y[1.P ,2.P ].
With selection-based inference, we generally must

make assumptions about the conditional distribution of
(S, T )|(Y = y). However, because this paper focuses
on test procedures that are valid provided the selection
is independent of the process (see assumption C1), we
will only make assumptions about the unconditional
distribution of (S, T ); see assumption C2.

C1 : (S, T ) ⊥⊥ Y .

C2 : The distribution of (S, T ) is completely known

and satisfies. . .

P(T .S � t.i) > 0,

i = 1, . . . ,N, t = 1,2.

P (T .S � t.i, T .S � t ′.i ′) = 0

if and only if t �= t ′ and i = i′.

3The two-treatment completely randomized design (CRD) exper-
iment is a special-case example of a proper randomized compara-
tive experiment. With the CRD, T |(S = s) has a uniform distri-
bution over all possible rearrangments of n1 1’s and n2 2’s (cf.
Cox, 1958b, pages 71–72; Kempthorne, 1977, Section 8; or Cox
and Reid, 2000, Section 2.2.4.)
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Selection-based inference is simplified under as-
sumption C1 because the observed data can be viewed
as y[t .s] ← y[T .S]. It follows that we need only spec-
ify the (unconditional) distribution of the selection
(S, T ); no assumptions about Y are needed. Unfortu-
nately, as discussed in the process-based subsection
above, assumption C1 is not usually tenable in prac-
tice because the sampling and process are often depen-
dent. It is important to note that when the distribution
of (S, T ) is completely known (see C2), the distribu-
tion of y[T .S] is known up to the partially-observed
values y[1.P ,2.P ], which are the parameters of inter-
est for selection-based inference. Thus, when C1 and
C2 hold, the observed data y[t .s] can be used to carry
out selection-based inference about the target parame-
ters y[1.P ,2.P ].

As discussed in the randomization-based section, as-
sumption C2 imposes constraints on first- and second-
order inclusion probabilities. In this case, the random
sample T .S is taken from (1.P ,2.P ). The assumption
implies that each of the 2N elements in (1.P ,2.P )

has a positive probability of being selected. Thus, the
random sample is a probability sample. The 0 second-
order inclusion probabilities imply that the probability
sample is nonmeasurable.

6. TESTS OF THE NO-TREATMENT-EFFECT
HYPOTHESIS

This section describes a collection of process-,
randomization-, and selection-based tests of no treat-
ment effect hypotheses. Some of these tests are well
known (e.g., the two-sample t test), and some are less
well known (e.g., the Neyman randomization test). In
any case, we will emphasize the assumptions needed
for their applicability and we will carefully state the
hypothesis that is actually being tested. We begin by
introducing a difference statistic that forms the basis of
most of the tests considered in this paper.

6.1 The Difference Statistic

With the exception of the Wilcoxon rank sum statis-
tic, this paper will focus on test statistics that are based
on the following difference statistics:

D1
(
Y [t .s]) = D(Y , s, t,w1)︸ ︷︷ ︸

process

,

D3(T ) = D(y, s, T ,w3)︸ ︷︷ ︸
randomization

,

D 23(S, T ) = D(y,S,T ,w23)︸ ︷︷ ︸
selection

,

where

D(y, s, t,w) =
N∑

i=1

y[1.i]1(t .s � 1.i)

w[1.i]︸ ︷︷ ︸
weighted avg of trt 1 values

(2)

−
N∑

i=1

y[2.i]1(t .s � 2.i)

w[2.i]︸ ︷︷ ︸
weighted avg of trt 2 values

.

The candidate values for weights w include

w1[t.i] = nt , w3[t.i] = nP (T .s � t.i|S = s),

w23[t.i] = NP(T .S � t.i),

where n = length(s), nt = ∑n
j=1 1(tj = t). From the

discussions in Sections 5.2 and 5.3, it follows that the
w3 and w23 components are multiples of first-order in-
clusion probabilities (cf. Särndal et al., 1992), using
language from finite-population sampling theory. By
convention, we set 0/0 ≡ 0 in (2).

There are several useful properties of these D statis-
tics. First, note that

D(y, s, t,w) can be computed using only the
observed values y[t .s], s, and t .

That is, D, and hence each of D1,D3, and D23, is an
observable statistic. It also follows that the process-
based statistic D1 depends on Y only through Y [t .s],
hence the notation D1(Y [t .s]). Second, the process-
based statistic D1 is simply the difference between
the unweighted sample averages n−1

1
∑

j :tj=1 Y [1.sj ]
and n−1

2
∑

j :tj=2 Y [2.sj ]. The randomization- and the
selection-based statistics D3 and D23 are differences
between probability-weighted sample averages. Third,

Under A1,D1|(S = s, T = t)

has distribution that depends only on the model

for Y [t .s].
Under B1,D3|(Y = y,S = s)

has distribution that depends only on the(3)

y[1.s,2.s] values and the T |(S = s) distribution.

Under C1,D23|(Y = y)

has distribution that depends only on the

y[1.P ,2.P ] values and the (S, T ) distribution.

Fourth,

Under A1 and A2,
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E(D1|S = s, T = t) = E(D1) = μ1 − μ2.

Under B1 and B2,

E(D3|Y = y,S = s) = E(D3|S = s)(4)

= y[1.s] − y[2.s].
Under C1 and C2,

E(D23|Y = y) = E(D23) = y[1.P ] − y[2.P ].
Here, μt = E(Y [t.i]) is the mean of the assumed com-
mon distribution Ft . The last two expectation results
follow because D3 and D23 are Horvitz–Thompson
probability-weighted estimators (Horvitz and Thomp-
son, 1952; Särndal et al., 1992, page 43). These expec-
tation results highlight the usefulness of basing tests
of “no treatment effects” on these D statistics, at least
when the treatment effect is measured in terms of dif-
ferences in means. These results also highlight the use-
fulness of random sampling and treatment randomiza-
tion.

6.2 Process-Based Tests

With the process-based approach, we condition on
the selection (only Y is random) and use

y[t .s] ← Y [T .S]|(S = s, T = t)

∼ Y [t .s]|(S = s, T = t)

to carry out inferences about the distribution of Y .
Among other assumptions, the validity of the process-
based tests described below generally require that
assumptions A1: (S, T ) ⊥⊥ Y ; A2: Y [t.i] ∼ Ft , i =
1, . . . ,N, t = 1,2; and A3: Y [1.i,2.i], i = 1, . . . ,N

are independent hold. As noted in Section 5.1, these
assumptions are often untenable in practice,4 so the
reader is reminded to apply these tests with caution.

6.2.1 Permutation test. Consider the no-treatment-
effect hypothesis

HDUP
0 : Y [1.i] ∼ Y [2.i], i = 1, . . . ,N.

Under H0 = (A1,A2,A3,H
DUP
0 ), we can state the

null as HDUP
0 : F1 = F2 and base our test on

D1|(Y [t .s] ∈ �
(
y[t .s]))

which has a known,

computable distribution under H0.

4The tests are often invalid because the selection is related to the
process, the treatment-specific process variables are not identically
distributed, and/or the process variables are not independent across
units.

Here �(x) = {set of distinct permutations of x}. That
this distribution is known under H0 follows because in
this case

Y [t .s]|(Y [t .s] ∈ �
(
y[t .s]))

(5)
H0∼ uniform over points in �

(
y[t .s]).

The computability follows because D1(x) can be com-
puted for any x ∈ �(y[t .s]).

In practice, we would report a one- or two-sided p-
value. For example, letting D1,obs = D1(y[t .s]) be the
observed difference, a two-sided p-value can be de-
fined as

pval(D1,obs)

= PH0

(|D1| ≥ |D1,obs||Y [t .s] ∈ �
(
y[t .s])).

The size of the test that rejects H0 iff pval ≤ α is less
than or equal to α. If we observe a p-value ≤ α and we
assume that A1,A2, and A3 hold, then we have statisti-
cal evidence against HDUP

0 : F1 = F2, that is, evidence
at the α level that F1 �= F2.

Remark: At first glance, one might think that ex-
changeability of the N pairs Y [1.i,2.i] could replace
(A2,A3). Unfortunately, a stronger exchangeability as-
sumption would be needed to guarantee the uniform
permutation distribution of (5). Specifically, the as-
sumption must lead to the exchangeability of the n

components of Y [t .s]. Along these lines, we could
consider a more restrictive no-treatment-effect hypoth-
esis, for example, HDUP∗

0 : all 2N components in
Y [1.P ,2.P ] are exchangeable. Then the permutation
test would be valid under H ∗

0 = (A1,H
DUP∗
0 ). It is

useful to note that HDUP∗
0 can be viewed as HDUP

0
along with extra assumptions about the process distri-
bution. In this sense, this strong exchangeability hy-
pothesis is an example of the no-treatment-effect hy-
potheses considered herein.

6.2.2 Wilcoxon rank sum test. Consider the no-
treatment-effect hypothesis

HDUP
0 : Y [1.i] ∼ Y [2.i], i = 1, . . . ,N.

Under H0 = (A1,A2,A3,A4,H
DUP
0 ), where A4 is the

assumption that the c.d.f.s Ft are continuous, we can
state the null as HDUP

0 : F1 = F2 and base our test on

W ≡ W(R) =
n∑

j=1

Rj 1(tj = 1),

where W |(R ∈ �(r)
)

has a known, computable distribution under H0.
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Here Rj = rank(Y [tj .sj ]) and rj = rank(y[tj .sj ]),
where the ranks are taken over the n values in Y [t .s]
and y[t .s], respectively. Again, the �(r) is the set of
permutations of r . That this distribution is known un-
der H0 follows because in this case

R|(R ∈ �(r)
) H0∼ uniform over points in �(r).(6)

The computability follows because R(x) can be com-
puted for any x ∈ �(r).

In practice, we would report a one- or two-sided p-
value. For convenience, let Wobs = W(r) be the ob-
served rank sum statistic. Then the following is a rea-
sonable two-sided p-value (of course there are others):

pval(Wobs) = 2 min
{
PH0

(
W ≥ Wobs|R ∈ �(r)

)
,

PH0

(
W ≤ Wobs|R ∈ �(r)

)}
.

Assuming that A1–A4 hold, an observed p-value ≤ α

would give us statistical evidence against HDUP
0 : F1 =

F2, that is, evidence at the α level that F1 �= F2.

6.2.3 Two-sample t tests. Consider the no-
treatment-effect hypothesis

HEUP
0 : E(

Y [1.i]) ∼ E
(
Y [2.i]), i = 1, . . . ,N.

Under H0 = (A1,A2,A3,A5,H
EUP
0 ), where A5 states

that we are sampling from N(μt , σ
2
t ) distributions, we

can state the null as HEUP
0 : μ1 = μ2 and base our test

on

T ≡ D1

SE(D1)

H0∼ approx t (ν),

where ν is Welch’s formula for the approximate de-
grees of freedom and t (ν) is Student’s t distribution.
The standard error has the familiar form

SE(D1) =
√

σ̂ 2
1

n1
+ σ̂ 2

2

n2
,

where σ̂ 2
t is the sample variance of the {Y [t.sj ] : tj =

t}. Because D1 is simply the difference between the
two unweighted sample averages, this statistic T is
identical to Welch’s (1938) version of the two-sample
t statistic.

An approximate two-sided p-value can be computed
as

PH0(|T | ≥ |Tobs|) ≈ P
(∣∣t (ν)

∣∣ ≥ |Tobs|) ≡ apval(Tobs).

Assuming that A1–A3 and A5 hold, an approximate
p-value ≤ α gives statistical evidence against HEUP

0 :
μ1 = μ2, that is, evidence at the approximate α level
that μ1 �= μ2.

Under H0 = (A1,A2,A3,A6,H
EUP
0 ), where A6

states that we are sampling from N(μt , σ
2) distribu-

tions, we can state the null as HEUP
0 : μ1 = μ2 and

base our test on

Tp ≡ D1

SEp(D1)

H0∼ t (ν), ν = n1 + n2 − 2.

The standard error has the familiar form

SEp(D1) =
√

σ̂ 2

n1
+ σ̂ 2

n2
,

where σ̂ 2 is the pooled estimate ((n1 − 1)σ̂ 2
1 + (n2 −

1)σ̂ 2
2 )/(n1 + n2 − 2). The statistic Tp is the standard

two-sample pooled t statistic.
An exact two-sided p-value can be computed as

PH0

(|Tp| ≥ |Tp,obs|) = P
(∣∣t (ν)

∣∣ ≥ |Tp,obs|)
≡ pval(Tp,obs).

Assuming that A1–A3 and A6 hold, an exact p-value
≤ α gives statistical evidence against HEUP

0 : μ1 = μ2,
that is, evidence at the approximate α level that μ1 �=
μ2.

Under the less restrictive assumption, H0 = (A1,A2,

A3,A7,H
EUP
0 ), where A7 states that we are sampling

from any distributions Ft with mean μt and variance
σ 2

t , we can still use T to test HEUP
0 : μ1 = μ2, but the

actual size of the tests based on the p-value, which uses
the t approximation, may be far from the nominal α. In
practice, the approximation is usually reasonable when
n is large enough to compensate for any asymmetry in
the underlying Ft distributions.

6.3 Randomization-Based Tests

With the randomization-based approach, we condi-
tion on both the process and the sample (only T is ran-
dom), and use

y[t .s] ← Y [T .S]|(Y = y,S = s)

∼ y[T .s]|(Y = y,S = s)

to carry out inferences about y[1.s,2.s]. The
randomization-based test procedures outlined below
are valid provided the assumptions B1 and B2 of Sec-
tion 5.2 hold. There it was pointed out that these two
assumptions can be made tenable when the treatment
assignment is carried out by mechanical randomiza-
tion.
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6.3.1 Fisher randomization test. Although R. A.
Fisher never explicitly used potential variables, sev-
eral authors, including Welch (1937), Rubin (1990,
2005), and Cox (2009), have suggested that he tac-
itly used the no-unit-specific-effects (or sharp null) hy-
pothesis in this randomized comparative experiment
setting. That is, it has been suggested that to Fisher
the no-treatment-effect hypothesis had the form HRUs

0 :
y[1.sj ] = y[2.sj ], j = 1, . . . , n, or, in simpler notation,

HRUs
0 : y[1.s] = y[2.s].

When H0 = (B1,B2,H
RUs
0 ) holds, we have by (4) that

E(D3|S = s)
H0= 0 and we can base a test of H0 on

D3|(S = s)

which has a known, computable distribution under H0.

This null distribution is known because D3 has form
D3 = D3(T ) and assumption B2 tells us that the distri-
bution of T |(S = s) is known. It is computable because
under B1, the distribution of D3|(S = s) depends only
on y[1.s,2.s] and under HRUs

0 the observed data y[t .s]
determines the collection y[1.s,2.s].

An exact two-sided p-value can be computed as

pval(D3,obs)

= PH0(|D3| ≥ |D3,obs||S = s)

= PH0

(
T ∈ {

x : |D3(x)| ≥ |D3,obs|}|S = s
)
.

If we assume that B1 and B2 hold, an exact p-value
≤ α gives statistical evidence against HRUs

0 : y[1.s] =
y[2.s], that is, evidence at the α level that y[1.sj ] �=
y[2.sj ] for at least one subject sj . This test is called
a Fisher randomization test because it is based on the
randomization approach and it was described by Fisher
(1935).

This Fisher randomization test based on D3 is tai-
lored to detect differences between y[1.s] and y[2.s].
To detect other differences, such as scale differences
between the y[1.s] and y[2.s], an alternative to D3
should (and can easily) be used.

Attractive features of this Fisher randomization test
include the following: it has size guaranteed to be no
larger than α; it is valid when the sampling depends
on the process (S �⊥⊥ Y ); it does not require a model
for the process variables Y ; and it does not require an
estimate of the variance, var(D3|S = s).

Randomization vs. Permutation P -values: It is clear
that this Fisher randomization test is conceptually very
different from the process-based permutation test. In-
deed, as a rule, the randomization p-value based on D3

is numerically different than the permutation p-value
based on D1. In fact, even if we had based both p-
values on the same statistic D1, the p-values would
generally be different. There is an exception to this
rule. Consider the special case uniform randomization
distribution,

P(T = x|S = s) = 1(x ∈ �(t))( n
n1

) ,(7)

where n1 is the number of 1’s in t and �(t) is the set
of all rearrangements of n1 1’s and n2 = n − n1 2’s.
This is the randomization used in the special case two-
treatment completely randomized design (e.g., Cox,
1958b, pages 71–72; Kempthorne, 1977, Section 8). In
this case, D1 and D3 are numerically identical, and the
randomization and permutation p-values are numeri-
cally identical. It is this identity that often leads prac-
titioners to incorrectly conclude that the process-based
permutation test is identical to the randomization test.
See Ernst (2004) for an interesting discussion.

6.3.2 Neyman randomization test. Compared to the
view attributed to Fisher, Neyman was more interested
in detecting nonzero treatment effects of the aggre-
gate variety, especially y[1.s] − y[2.s]. He apparently
found it less practically useful to detect unit-specific
effects if the average effect was 0. For this reason, Ney-
man used the no-average-effect hypothesis (cf. Welch,
1937). That is, Neyman viewed the no-treatment-effect
hypothesis as

HRAs
0 : y[1.s] = y[2.s].

Because HRAs
0 ⊃ HRUs

0 , Neyman’s approach focused
on a narrower set of alternatives than Fisher, thereby
opening up the possibility of finding a test with higher
power than the Fisher randomization test, at least for
alternatives of practical (in Neyman’s view) interest.

When H0 = (B1,B2,H
RAs
0 ) holds, we have by (4)

that E(D3|S = s)
H0= 0 and we can consider basing a

test of H0 on

D3|(S = s)

which has a known, but noncomputable,

distribution under H0.

This null distribution is known because D3 = D3(T )

and T |(S = s) has a known distribution. It, however,
is not computable because it depends on y[1.s,2.s],
which is not determined by the observed data y[t .s]
under the no-average-effect hypothesis HRAs

0 . In con-
trast, recall that under the more restrictive unit-specific
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(or sharp) null HRUs
0 , the observed data did determine

y[1.s,2.s].
Neyman was clearly aware of this noncomputability

issue and instead invoked a central limit theorem and
used

Z3 ≡ Z3(T ) ≡ D3

SE(D3|S = s)

where Z3|(S = s)
H0∼ approxN(0,1).

Here, SE is a standard error, which is an estimator
of the standard deviation, sd(D3|S = s). The stan-
dard deviation can be computed using sampling the-
ory as described in Särndal et al. (1992). However,
finding a reasonable estimator SE of this standard
deviation is more difficult because of the 0 second-
order inclusion probabilities. Toward this end, Ney-
man (1923) derived a reasonable estimator of a tight
upper bound for the variance under simplifying as-
sumptions on the inclusion probabilities (Rubin, 1990,
Gadbury, 2001; see Copas, 1973, for a related result).
It is useful to note that the variance attains this up-
per bound when unit-treatment additivity holds, that
is, y[1.sj ] = y[2.sj ] + constant, j = 1, . . . , n. In this
paper, we use the Neyman estimator of variance. The
square root of this estimator is SE(D3|S = s).

REMARK. There is a related approximate normal-
ity result when HRAs

0 does not hold. Under (B1,B2),
we noted in (4) that E(D3|S = s) = y[1.s] − y[2.s]
and we have that sd(D3|S = s) is approximated by
SE(D3|S = s). By the central limit theorem and con-
tinuous mapping results, we have

D3 − (y[1.s] − y[2.s])
SE(D3|S = s)

|(S = s) ∼ approxN(0,1).

This result is useful for testing other hypotheses and
for computing confidence intervals.

The Normal approximation for Z3 generally im-
proves as the number of support points in T |(S = s)

increases. However, when the differences y[1.sj ] −
y[2.sj ] are highly variable, the unit variance in the
approximation can be a substantial overestimate (see
Gadbury, 2001), and when y[1.sj ]−y[2.sj ] = constant,
the unit variance can be a slight underestimate when
the sample sizes are small (based on observations from
the simulation study carried out for this paper).

An approximate two-sided p-value can be computed
as

PH0

(|Z3| ≥ |Z3,obs||S = s
) ≈ P

(∣∣N(0,1)
∣∣ ≥ |Z3,obs|)

≡ apval(Z3,obs).

If B1 and B2 hold, an approximate p-value ≤ α gives
statistical evidence against HRAs

0 : y[1.s] = y[2.s], that
is, evidence at the approximate α level that y[1.s] �=
y[2.s]. This test is called a Neyman randomization test
because it is based on the randomization approach and
ideas in Neyman (1923).

Unlike the Fisher randomization test of HRUs
0 , the

size of the Neyman test of HRAs
0 is not guaranteed to

be less than or equal to α; it is only approximately size
α. For smaller n1 and n2 and when the more restric-
tive hypothesis HRUs

0 holds, the Neyman randomiza-
tion test tends to be anti-conservative, with size a bit
larger than the nominal α. This follows because the
Neyman estimator of the variance tends to slightly un-
derestimate the true variance in this case. For moderate
n1 and n2 the approximation is usually reasonable pro-
vided D3(T ) has enough support points with respect to
the T |(S = s) distribution. We empirically explore this
approximation below.

6.4 Selection-Based Tests

With the selection-based approach, we condition on
the process values [only (S, T ) is random] and use

y[t .s] ← Y [T .S]|(Y = y) ∼ y[T .S]|(Y = y)

to carry out inferences about y[1.P ,2.P ]. The
selection-based test procedures outlined below are
valid provided the assumptions C1 and C2 of Sec-
tion 5.3 hold. There it was pointed out that these two
assumptions are often untenable, so the following test
procedures must be applied with caution.

6.4.1 Fisher selection test. The no-unit-specific-
treatment-effect (or sharp null) hypothesis in this
selection-based setting has the form HRUP

0 : y[1.i] =
y[2.i], i = 1, . . . ,N , or, more simply,

HRUP
0 : y[1.P ] = y[2.P ].

When H0 = (C1,C2,H
RUP
0 ) holds, we have by (4)

that E(D23)
H0= 0 and we can consider basing a test of

H0 on

D23|(S = s)

which has a known, but noncomputable

distribution under H0.

This null distribution is known because D23 has form
D23 = D23(S, T ) and assumption C2 tells us that the
distribution of (S, T ) is known. It is, however, not com-
putable because it depends on y[1.P ,2.P ], which is
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not determined by the observed data y[t .s] under the
hypothesis HRUP

0 . To see this, note that for s′ �= s,
there is an s ′

j such that both y[1.s ′
j ] and y[2.s ′

j ] are un-

observed and hence not computable even under HRUP
0 .

It follows that an exact Fisher selection test is not
available in this selection-based setting. We could con-
dition on the sample and be content using the Fisher
randomization test to draw inferences about y[1.s,2.s]
rather than y[1.P ,2.P ]. Alternatively, we could use
the approximate selection-based test described in the
next subsection.

6.4.2 Neyman selection test. In analogy to the ran-
domization setting, Neyman likely would consider the
no-average-effect hypothesis:

HRAP
0 : y[1.P ] = y[2.P ].

When H0 = (C1,C2,H
RAP
0 ) holds, we have by (4) that

E(D23)
H0= 0 and, analogous to the randomization set-

ting, we can base a test of H0 on

Z23 ≡ Z23(S, T ) = D23

SE(D23)

where Z23
H0∼ approxN(0,1).

Just as with sd(D3|S = s) in the randomization ap-
proach, the standard deviation sd(D23) can be com-
puted and estimated using sampling theory. The esti-
mation, however, is subject to the same problems as in
the randomization approach because of the nonmeasur-
ability of probability sample T .S. Suffice it to say that
a reasonable Neyman estimator SE(D23), analogous to
the one in the randomization setting, exists.

The approximate Normality result follows just as in
the randomization setting. Specifically, under C1 and
C2, and using the same arguments as in the randomiza-
tion approach, we have that quite generally

D23 − (y[1.P ] − y[2.P ])
SE(D23)

∼ approxN(0,1).

The approximation generally improves as the number
of support points in T .S increases. However, when
the differences y[1.i] − y[2.i] are highly variable, the
unit variance in the approximation can be a substantial
overestimate (see Gadbury, 2001).

An approximate two-sided p-value can be computed
as

PH0

(|Z23| ≥ |Z23,obs|) ≈ P
(∣∣N(0,1)

∣∣ ≥ |Z23,obs|)
≡ apval(Z23,obs).

If C1 and C2 hold, an approximate p-value ≤ α gives
statistical evidence against HRAP

0 : y[1.P ] = y[2.P ],
that is, evidence at the approximate α level that
y[1.P ] �= y[2.P ]. This test is called a Neyman selec-
tion test because it is based on the selection approach
and ideas in Neyman (1923).

Just as in the randomization setting, the size of the
Neyman test of HRAP

0 is not guaranteed to be less than
or equal to α; it is only approximately size α. Remarks
regarding the approximation in this selection setting
are analogous to those given at the end of Section 6.3.2,
in the randomization setting.

7. EMPIRICAL INVESTIGATIONS

7.1 Cell Phone Use Example (Revisited)

The process variable Y [t.i] is defined as the reaction
time for the ith unit in population P when exposed
to treatment t . Inference about the process Y distri-
bution will be difficult to describe because the sam-
ple of 64 students was not taken from any well-defined
population P . For any substantively interesting popu-
lation, for example, P = licensed drivers in Utah, the
assumption that S ⊥⊥ Y is untenable given the haphaz-
ard nature of the sample selection. The untenability of
S ⊥⊥ Y also implies that it will be difficult to carry out
inferences about the population values y[1.P ,2.P ] for
any substantively interesting population P . For these
reasons, it makes sense to focus on inferences about
the 128 potential values in y[1.s,2.s]. That is, it is ar-
guably better to use randomization-based inference for
this example.

We assume that the randomization was carried out
mechanically so that T ⊥⊥ Y |S and we assume that the
distribution of T |(S = s) is uniform in the sense of (7);
that is, conditions B1 and B2 of Section 6.3 are as-
sumed to hold. We will use the Fisher randomization
test to test the no-treatment-effect hypothesis HRUs

0 :
y[1.sj ] = y[2.sj ], j = 1, . . . ,64 and the Neyman ran-
domization test to test the no-treatment-effect hypoth-
esis HRAs

0 : y[1.s] = y[2.s].
For these data, the observed randomization statistics

are

D3,obs = 51.59, Z3,obs = 51.59

19.30
= 2.67,

pval(D3,obs) = 0.0074 and

apval(Z3,obs) = 0.0075.

Because the Fisher randomization p-value
pval(D3,obs) = 0.0074 is small, we have sufficient ev-
idence to reject HRUs

0 ; there is statistical evidence
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that y[1.sj ] �= y[2.sj ] for at least one subject in the
sample of 64. Because the Neyman randomization p-
value apval(Z3,obs) = 0.0075 is small, we have suffi-
cient evidence to reject HRAs

0 ; there is statistical evi-
dence that y[1.s] �= y[2.s]. In fact, because D3,obs =
51.59 is a Horvitz–Thompson unbiased estimate of
y[1.s] − y[2.s], the Neyman test gives statistical ev-
idence that the reaction time values are higher on aver-
age when cell phones are used, at least for this sample
of 64. In other words, there is statistical evidence of a
treatment effect.

For completeness and for comparison purposes, we
also give the values of the other commonly used p-
values, viz., permutation, Wilcoxon, Welch’s approxi-
mate t , and the pooled t :

pval(D1,obs) = 0.0074, pval(Wobs) = 0.0184,

apval(Tobs) = 0.0110 and pval(Tp,obs) = 0.0107.

Strictly speaking, these are only applicable for process-
based inference, so they are of questionable utility
for this example. As noted above, because the ran-
domization distribution is uniform, the permutation p-
value pval(D1,obs) is numerically (but not conceptu-
ally!) identical to the Fisher randomization p-value
pval(D3,obs).

All the computations were carried out in R. The au-
thor has written code to compute the Neyman random-
ization p-value. The Fisher randomization and per-
mutation p-values were approximated using Monte-
Carlo estimation (here we used 106 simulations) as
carried out in twot.permutation {DAAG}. The
Wilcoxon p-value was computed using wilcox.
test {stats}. Note that when there are ties, as
there are in this example, wilcox.test only reports
approximate p-values.

7.2 A Simulation Study

This section empirically compares the operating
characteristics of the different tests considered in this
paper, under a variety of scenarios. All computations
were carried out in R, with p-values computed as de-
scribed at the end of the previous subsection. The sim-
ulated data are generated according to models of the
form

y[1.i] ← Y [1.i] IID ∼ [scenario],
y[2.i] ← Y [2.i] ∼ [scenario], i = 1, . . . ,N,

s ← S|(Y = y) ∼ P
(
S = (1, . . . , n)|Y = y

) = 1,
(8)

where n = N,

t ← T |(Y = y,S = s) ∼ P
(
T = t ′|Y = y,S = s

)
= n1!n2!

n! 1
(
t ′ ∈ T

)
,

where n = n1 + n2 and T is the set of all possible re-
arrangements of n1 1’s and n2 2’s. Looking back at the
process-based assumptions of Section 5.1, we see that
A1 holds, but none of A2–A7 is guaranteed to hold.
Both the randomization-based assumptions B1 and B2
of Section 5.2 hold, as do both the selection-based as-
sumptions C1 and C2 of Section 5.3. A more exten-
sive simulation would also investigate scenarios where
more of the assumptions do not hold.

For data-generation models of the form (8), we have
that (i) the randomization- and selection-based ap-
proaches are identical because the sample S is taken to
be equal to the population P with probability one; and
(ii) the permutation and Fisher randomization p-values
are numerically (not conceptually!) identical because
the randomization distribution (the distribution of T )
is uniform over the set of all possible treatment assign-
ments.

Although the permutation-, Wilcoxon-, and t-tests
are process-based approaches, we will estimate their
operating characteristics for both the process and ran-
domization (here, randomization = selection) distribu-
tions. Similarly, the Fisher and Neyman randomization
tests are randomization-based approaches, but we re-
port their operating characteristics for both the process
and the randomization distributions. In the tables be-
low, the rows labeled “Randomization” give Monte-
Carlo estimates of the power of the tests over the distri-
bution T |(Y = y,S = s). The rows labeled “Process”
give Monte-Carlo estimates of the power of the tests
over the distribution Y |(S = s, T = t). In all cases, the
nominal size is set at α = 0.05.

The simulation results in Tables 3–6 give us a
glimpse at the operating characteristics of the tests for
a variety of scenarios, labeled “Sc. #.” The following
summary focuses on comparisons between the Fisher
and Neyman randomization tests, but the table entries
afford broader comparisons.

For small n1, n2, when y[1.sj ]− y[2.sj ] = constant,
the Neyman randomization test tends to be just a bit
anti-conservative for testing HRAs

0 ; that is, the ac-
tual size appears to be a little larger than the nomi-
nal size (see scenarios 1, 2, and 6 of Table 3). This
anti-conservativeness presumably stems from the fact
that the Neyman estimator of the variance, var(D3|S =
s), tends to be slightly biased on the low side when
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TABLE 3
Monte-Carlo estimates of size when n1 = n2 = 10, nominal size = 5%

n1 = n2 = 10 Permutationa Wilcoxon t(Welch) t(Pooled) Fishera Neyman

HUP
0 y[1.i] ← Y [1.i] IID ∼ N(10,22) Sc. 1

true y[2.i] ← Y [2.i] = Y [1.i], i = 1, . . . ,20

Randomization 4.6 3.6 4.7 4.7 4.6 6.5
Process 4.3 3.4 4.2 4.3 4.3 6.9

HUP
0 y[1.i] ← Y [1.i] IID ∼ Gamma(shape = 1, scale = 5) Sc. 2

true y[2.i] ← Y [2.i] = Y [1.i], i = 1, . . . ,20

Randomization 5.0 4.9 4.1 4.6 5.0 7.4
Process 4.0 4.1 3.2 3.5 4.0 7.7

HUP
0 y[1.i] ← Y [1.i] IID ∼ 0.9U(0,20) + 0.1U(200,201), “mixture of uniforms” Sc. 3

true y[2.i] ← Y [2.i] = Y [1.i], i = 1, . . . ,20

Randomizationb 4.6 3.9 0.0 0.0 4.6 0.0
Process 3.8 3.5 1.1 1.8 3.8 11.2

HEUP
0 ,HRAs

0 y[1.i] ← Y [1.i] IID ∼ N(10,22) Sc. 4
true y[2.i] ← Y [2.i] = Y [1.i] + Ei − E,Ei IID ∼ N(0,32), i = 1, . . . ,20

Randomization 1.5 1.9 1.7 1.8 1.5 3.3
Process 2.7 2.0 2.5 2.6 2.7 4.2

HEUP
0 ,HRAs

0 y[1.i] ← Y [1.i] IID ∼ Gamma(shape = 1, scale = 5) Sc. 5
true y[2.i] ← Y [2.i] = 2Y [1.i] − Y [1.P ], i = 1, . . . ,20

Randomization 4.8 6.8 4.3 4.4 4.8 7.6
Process 4.0 7.4 3.6 3.7 4.0 7.4

HUP
0 y[1.i] ← Y [1.i] IID∼bin(1,0.28) Sc. 6

true y[2.i] ← Y [2.i] = Y [1.i], i = 1, . . . ,20

Randomizationc 0.0 NA 9.1 9.1 0.0 9.1
Process 2.1 NA 4.5 4.5 2.1 11.3

HDUP
0 ,HRAs

0 y[1.i] ← Y [1.i] IID∼d bin(1,0.28) Sc. 7
true y[2.i] ← Y [2.i] IID∼d bin(1,0.28), corr(Y [1.i], Y [2.i]) = 0.37, i = 1, . . . ,20

Randomizatione 0.4 NAf 1.6 1.6 0.4 4.6
Process 0.2 NA 1.0 1.0 0.2 3.7

Table entries give the rejection rates (as a percent) for the 1000 simulations.

All indented hypotheses are also true; see Section 4.2. For example, in row 1, HUP
0 is true. It follows that all the other hypotheses in

Section 4.2 are also true.
aFor this simulation, the permutation and Fisher randomization test results are numerically identical.
bThe fixed y includes one large observation from the U(200,201) distribution.
cThe fixed y[1.P ] = 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 = y[2.P ].
dThis is an approximation because the Y values are adjusted to satisfy HRAs

0 .
eThe fixed y[1.P ] = 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0, y[2.P ] = 0 0 0 0 1 1 0 1 0 0 1 0 0 1 1 0 0 0 0 0.
fBecause of the many ties in the binomial case, the Wilcoxon test as described herein is not applicable.

y[1.sj ] − y[2.sj ] = constant. For larger n1, n2, this
anti-conservativeness disappears (scenarios 1, 2, and 6
of Table 5).

When the differences y[1.sj ] − y[2.sj ] are highly
variable, the Neyman randomization test tends to be a
bit conservative for testing HRAs

0 , although not as con-

servative as the Fisher randomization test (scenarios 4
and 7 in Tables 3 and 5). This conservativeness presum-
ably stems from the fact that the Neyman estimator of
the variance, var(D3|S = s), tends to be biased on the
high side when y[1.sj ] − y[2.sj ] are highly variable
(see Gadbury, 2001).
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TABLE 4
Monte-Carlo estimates of power when n1 = n2 = 10, nominal size = 5%

n1 = n2 = 10 Permutationa Wilcoxon t(Welch) t(Pooled) Fishera Neyman

HEUP
0 ,HRAs

0 y[1.i] ← Y [1.i] IID ∼ N(10,22) Sc. 1
false y[2.i] ← Y [2.i] = Y [1.i] + 2, i = 1, . . . ,20

Randomization 52.7 49.3 51.3 52.5 52.7 59.9
Process 55.9 51.6 55.5 56.1 55.9 62.7

HEUP
0 ,HRAs

0 y[1.i] ← Y [1.i] IID ∼ N(10,22) Sc. 2
false y[2.i] ← Y [2.i] = Y [1.i] + 2 + Ei − E,Ei IID ∼ N(0,32), i = 1, . . . ,20

Randomization 26.2 23.6 24.1 25.7 26.2 35.6
Process 28.6 23.8 26.1 27.2 28.6 36.6

HEUP
0 ,HRAs

0 y[1.i] ← Y [1.i] IID ∼ N(10,22) Sc. 3
false y[2.i] ← Y [2.i] = 1.2Y [1.i], i = 1, . . . ,20

Randomization 34.7 27.1 34.8 35.3 34.7 43.0
Process 48.4 43.0 47.5 48.4 48.4 57.2

HEUP
0 ,HRAs

0 y[1.i] ← Y [1.i] IID ∼ Gamma(shape = 1, scale = 5) Sc. 4
false y[2.i] ← Y [2.i] = 2Y [1.i], i = 1, . . . ,20

Randomization 19.2 12.9 16.1 18.7 19.2 28.6
Process 30.2 23.7 23.4 26.0 30.2 38.5

HEUP
0 ,HRAs

0 y[1.i] ← Y [1.i] IID ∼ Gamma(shape = 1, scale = 5) Sc. 5
false y[2.i] ← Y [2.i] = 3Y [1.i] + Ei,Ei IID ∼ N(0,52), i = 1, . . . ,20

Randomization 45.7 28.6 40.2 45.3 45.7 65.5
Process 49.2 38.1 39.8 44.4 49.2 63.5

HEUP
0 ,HRAs

0 y[1.i] ← Y [1.i] IID∼bin(1,0.28) Sc. 6
false y[2.i] ← Y [2.i] IID∼bin(1,0.71), corr(Y [1.i], Y [2.i]) = 0.29, i = 1, . . . ,20

Randomizationb 18.9 NA 37.3 37.3 18.9 37.4
Process 29.6 NA 48.0 48.0 29.6 50.3

Table entries give the rejection rates (as a percent) for the 1000 simulations.
aFor this simulation, the permutation and Fisher randomization test results are numerically identical.
bThe fixed y[1.P ] = 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 1 0 1 0, y[2.P ] = 0 1 1 1 1 1 1 0 1 0 1 1 0 0 1 1 1 0 1 1.

For small n1, n2, the Normal approximation to the
Neyman test statistic can be unreasonable when there
are extreme outliers present (scenario 3 of Table 3).
With larger n1, n2, the Normal approximations become
more reasonable in the presence of extreme outliers
(scenario 3 of Table 5).

In all of the simulation scenarios, the Neyman ran-
domization test had higher power than the Fisher ran-
domization test (see Tables 4 and 6), especially when
n1, n2 are smaller (see Table 4). Of course, power com-
parisons are most useful when both tests have the same
size. Because neither of these tests has size exactly
equal to the nominal 0.05, these power comparisons
should be considered carefully. In particular, in head-
to-head comparisons, the Fisher test is at a disadvan-
tage because its actual size is guaranteed to be no larger

than 0.05; the Neyman test has size that is only approx-
imately equal to, and can exceed, the nominal 0.05.

On the basis of this limited simulation study, we rec-
ommend that practitioners at least think seriously about
using the Neyman randomization test as an alterna-
tive to the Fisher randomization test, especially when
n1, n2 are moderate, say, at least 10, and when there
are no extreme outliers.

8. DISCUSSION

This paper used concepts from the rich literatures
on causal analysis and finite-population sampling the-
ory to clear up some of the confusion that exists
about tests of the no-treatment-effect hypothesis in the
randomized comparative experiment setting. Our ap-
proach lends itself to explicit specifications of the can-
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TABLE 5
Monte-Carlo estimates of size when n1 = n2 = 50, nominal size = 5%

n1 = n2 = 50 Permutationa Wilcoxon t(Welch) t(Pooled) Fishera Neyman

HUP
0 y[1.i] ← Y [1.i] IID ∼ N(10,22) Sc. 1

true y[2.i] ← Y [2.i] = Y [1.i], i = 1, . . . ,100

Randomization 4.0 4.0 4.0 4.0 4.0 4.4
Process 4.7 4.8 4.8 4.8 4.7 5.5

HUP
0 y[1.i] ← Y [1.i] IID ∼ Gamma(shape = 1, scale = 5) Sc. 2

true y[2.i] ← Y [2.i] = Y [1.i], i = 1, . . . ,100

Randomization 4.9 5.0 4.8 4.8 4.9 5.4
Process 4.1 3.9 3.9 3.9 4.1 4.8

HUP
0 y[1.i] ← Y [1.i] IID ∼ 0.9U(0,20) + 0.1U(200,201), “mixture of uniforms” Sc. 3

true y[2.i] ← Y [2.i] = Y [1.i], i = 1, . . . ,100

Randomizationb 4.2 6.5 4.3 4.5 4.2 8.6
Process 5.3 5.4 5.3 5.3 5.3 6.6

HEUP
0 ,HRAs

0 y[1.i] ← Y [1.i] IID ∼ N(10,22) Sc. 4
true y[2.i] ← Y [2.i] = Y [1.i] + Ei − E,Ei IID ∼ N(0,32), i = 1, . . . ,100

Randomization 2.5 3.1 2.4 2.4 2.5 3.4
Process 3.0 4.6 2.9 3.2 3.0 3.9

HEUP
0 ,HRAs

0 y[1.i] ← Y [1.i] IID ∼ Gamma(shape = 1, scale = 5) Sc. 5
true y[2.i] ← Y [2.i] = 2Y [1.i] − Y [1,P ], i = 1, . . . ,100

Randomization 4.6 42.5 4.4 4.4 4.6 6.1
Process 2.8 35.1 2.8 2.8 2.8 5.0

HUP
0 y[1.i] ← Y [1.i] IID∼bin(1,0.28) Sc. 6

true y[2.i] ← Y [2.i] = Y [1.i], i = 1, . . . ,100

Randomizationc 2.2 NA 5.5 5.5 2.2 5.5
Process 3.5 NA 5.0 5.0 3.5 5.9

HDUP
0 ,HRAs

0 y[1.i] ← Y [1.i] IID∼d bin(1,0.28) Sc. 7
true y[2.i] ← Y [2.i] IID∼d bin(1,0.28), corr(Y [1.i], Y [2.i]) = 0.37, i = 1, . . . ,100

Randomizatione 0.5 NA 0.8 0.8 0.5 1.0
Process 1.6 NA 2.8 2.8 1.6 3.5

Table entries give the rejection rates (as a percent) for the 1000 simulations.
aFor this simulation, the permutation and Fisher randomization test results are numerically identical.
bThe fixed y includes 7 large observations from the U(200,201) distribution.
cThe fixed y[1.P ] = y[2.P ] with y[1.P ] = y[2.P ] = 32/100.
dThis is an approximation because the Y values are adjusted to satisfy HRAs

0 .
eThe fixed y is such that y[1.P ] �= y[2.P ], y[1.P ] = y[2.P ] = 33/100, and corr(y[1.P ], y[2.P ]) = 0.186.

didate no-treatment-effects hypotheses and targets of
inference. We clearly distinguished between three main
inference approaches: process-based, randomization-
based, and selection-based. The commonly-used per-
mutation test, Wilcoxon rank sum test, and two-sample
t tests are examples of process-based approaches. Ex-
amples of randomization-based approaches include the
commonly-used Fisher randomization test and the less
commonly-used Neyman randomization test. We also

described a Neyman selection test. A small-scale em-
pirical comparison of these different tests was carried
out. On the basis of the simulation results, we recom-
mend that practitioners consider using the Neyman ran-
domization test in certain scenarios.

In our description of the process-based approach, we
focused on testing hypotheses about the distribution of
Y . More generally, the process-based approach can be
used to both estimate, or test hypotheses about, char-
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TABLE 6
Monte-Carlo estimates of power when n1 = n2 = 50, nominal size = 5%

n1 = n2 = 50 Permutationa Wilcoxon t(Welch) t(Pooled) Fishera Neyman

HEUP
0 ,HRAs

0 y[1.i] ← Y [1.i] IID ∼ N(10,22) Sc. 1
false y[2.i] ← Y [2.i] = Y [1.i] + 1, i = 1, . . . ,100

Randomization 80.9 76.4 80.4 80.4 80.9 81.3
Process 69.5 67.7 69.9 69.9 69.5 70.4

HEUP
0 ,HRAs

0 y[1.i] ← Y [1.i] IID ∼ N(10,22) Sc. 2
false y[2.i] ← Y [2.i] = Y [1.i] + 1 + Ei − E,Ei IID ∼ N(0,32), i = 1, . . . ,100

Randomization 36.3 31.4 36.2 36.4 36.3 42.7
Process 37.9 36.3 37.5 38.0 37.9 42.8

HEUP
0 ,HRAs

0 y[1.i] ← Y [1.i] IID ∼ N(10,22) Sc. 3
false y[2.i] ← Y [2.i] = 1.1Y [1.i], i = 1, . . . ,100

Randomization 70.5 68.6 71.0 71.1 70.5 72.1
Process 66.6 63.9 65.7 65.7 66.6 67.4

HEUP
0 ,HRAs

0 y[1.i] ← Y [1.i] IID ∼ Gamma(shape = 1, scale = 5) Sc. 4
false y[2.i] ← Y [2.i] = 1.5Y [1.i], i = 1, . . . ,100

Randomization 46.6 39.0 46.2 46.4 46.6 49.5
Process 49.2 40.6 48.0 48.2 49.2 51.8

HEUP
0 ,HRAs

0 y[1.i] ← Y [1.i] IID ∼ Gamma(shape = 1, scale = 5) Sc. 5
false y[2.i] ← Y [2.i] = 1.5Y [1.i] + Ei,Ei IID ∼ N(0,52), i = 1, . . . ,100

Randomization 41.0 35.2 40.4 40.5 41.0 44.3
Process 39.2 30.7 38.9 39.0 39.2 44.2

HEUP
0 ,HRAs

0 y[1.i] ← Y [1.i] IID∼bin(1,0.28) Sc. 6
false y[2.i] ← Y [2.i] IID∼bin(1,0.50), corr(Y [1.i], Y [2.i]) = 0.36, i = 1, . . . ,100

Randomizationb 48.8 NA 58.8 58.8 48.8 60.3
Process 51.1 NA 60.1 60.1 51.1 60.3

Table entries give the rejection rates (as a percent) for the 1000 simulations.
aFor this simulation, the permutation and Fisher randomization test results are numerically identical.
bThe fixed y is such that y[1.P ] �= y[2.P ], y[1.P ] = 24/100, y[2.P ] = 45/100, and corr(y[1.P ], y[2.P ]) = 0.386.

acteristics of the distribution of Y and predict/estimate
the unobserved values y[−t .s]. Here, y[−A] is the col-
lection of all 2N components of y excluding those with
subscripts in the set A. A look back at the assump-
tions A1–A7 shows that we did not have to specify
a model for the joint distribution of Y to carry out
a test of no treatment effect. We only assumed inde-
pendence across units and modeled the marginal dis-
tributions of Y [1.i] and Y [2.i]. In contrast, the predic-
tion of unobserved values generally requires a model
for the joint distribution of Y , equivalently, a model
for (Y [t .s], Y [−t .s]), the “(Yobs, Ymis)” of Rubin (e.g.,
2005). Rubin advocates using a Bayesian approach to
process-based prediction of y[−t .s].

This paper restricted attention to inferences about
one population or sample, under two scenarios corre-

sponding to two treatments. Owing to randomization,
we were able to compare these two treatment scenar-
ios; for example, see equation (4). Comparing two pop-
ulations of distinct units is a qualitatively different in-
ference problem. However, similar notation and model
structures can be used to study this problem as well.
Interestingly, in this two population setting, Fisher ran-
domization tests, as described herein, are generally not
applicable. In contrast, the other tests described in this
paper, including the Neyman selection test, are appli-
cable.

The notation and model structure introduced in this
paper can be directly applied in more general set-
tings where nonuniform or constrained randomization
is used or where there are more than two treatments
being compared; see, for example, the descriptions in
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Sutter et al. (1963), Kempthorne (1977), and Bailey
(1981). There are extensions in other directions. For
example, rather than testing hypotheses, the ideas in-
troduced in this paper show promise for confidence in-
terval estimation. More work in this direction will be
forthcoming.

In the binary response, comparative experiment set-
ting, Fisher’s exact test for 2 × 2 tables (see Agresti,
2002, page 91) is equivalent to the Fisher random-
ization test of HRUs

0 when T ⊥⊥ Y |S and T |(S = s)

have a uniform distribution as in (7); recall that HRUs
0

states that the binary response values satisfy y[1.sj ] =
y[2.sj ], j = 1, . . . , n. Fisher’s exact test is also nu-
merically equivalent to the process-based permutation
test of HDUP

0 when (S, T ) ⊥⊥ Y and Y [t.i]indep ∼
bin(1, πt ); here HDUP

0 is equivalent to π1 = π2. In
fact, in the simulation (scenarios 6 and 7 of Tables 3
and 5, and scenario 6 of Tables 4 and 6), because of the
uniform randomization distribution, we were able to
use the R code for Fisher’s exact test, fisher.test
{stat}, to compute the exact values of the Fisher
randomization and permutation p-values. On a related
note, we point out that the Neyman randomization test
is also available for testing the no-treatment-effect hy-
pothesis HRAs

0 : y[1.s] = y[2.s] in 2×2 tables. This pa-
per’s simulation results suggest that when the random-
ization distribution is uniform as in (7), this Neyman
randomization test for 2 × 2 tables may be somewhat
more powerful than Fisher’s exact test.
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