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1. Introduction

The problem of parameter estimation in dynamical systems appears in many ar-
eas of science and engineering. Often the form of the model can be derived from
some knowledge about the process under investigation, but parameters of the
model must be inferred from empirical observations in the form of time series
data. As this problem has appeared in many different contexts, partial solutions
have been proposed in a wide variety of disciplines, including nonlinear dynam-
ics in physics, control theory in engineering, state space modeling in statistics
and econometrics, and ergodic theory and dynamical systems in mathematics.
One purpose of this study is to present these various approaches in a common
language, with the hope of unifying some ideas and pointing towards interesting
avenues for further study. We focus here on theoretical results and methods for
inference, as a detailed presentation of applied work and example data sets lies
outside the scope of this survey.

We will concern ourselves with stochastic processes of the form (Xt, Yt)t,
where t runs over either R+ (continuous-time) or Z+ (discrete-time). In order
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to treat several cases, including examples such as ordinary differential equations,
with a single formalism, we allow either one or both of (Xt)t and (Yt)t to be
“deterministic,” in a sense made precise in Section 2. In the discrete-time setting,
we may write (Xn, Yn)n. We think of Xt as the true state of the system at time
t and Yt as an observation of the system at time t.

The case when no noise is present has been most often considered by math-
ematicians in the field of dynamical systems and ergodic theory. In this case,
all uncertainty in the system comes from the uncertainty in the initial state
of the system, and the ability to estimate any parameters in the system may
depend strongly on properties of the observation function f(Xt) = Yt. State
space models, considered most often by statisticians, lie at the other end of the
noise spectrum, where both Xt and Yt depend on some noise. Hidden Markov
models, which have received considerable attention, provide a broad class of
examples of these systems. In this setting, the statistical question of consistency
for methods of parameter estimation has been studied, and some general results
are available. The other two possible assumptions on the presence of noise (only
dynamical noise or only observational noise) have received relatively little at-
tention, especially from the statistical point of view. Let us mention that very
often both dynamical noise and observational noise arise in real data examples,
especially in biology and ecology [15, 35, 91, 96, 107, 164, 173]; nonetheless, as
the other settings arise in some physical models, we discuss each of the logical
possibilities for the noise structure.

As an example of the type of questions of interest, consider the question of pa-
rameter inference for models of gene regulatory networks [5, 151, 162, 171]. The
underlying model often favored by biologists consists of a system of ordinary
differential equations, with each variable in the state vector representing the
expression level of a particular gene in the network [5, 171]. For some networks
of interest, a significant amount of work has produced biological understand-
ing regarding the qualitative interactions between the genes in the network,
but the corresponding ODE models still contain several parameters necessary
for quantifying these interactions [32, 151]. Experimentalists are able to con-
duct experiments in which the expression levels of the genes in the network
are measured at regularly spaced instances of time. The resulting data may be
interpreted as time series data generated by a system of ODEs with noisy ob-
servations. The parameter inference problem in this setting consists of inferring
the parameters of the ODE model from the observed data, and to the best of
our knowledge there are still significant statistical challenges in this area [140].

Another example of interest involves identifying the behavior of a dynamical
system on a computer network. In a variety of applications one considers nodes in
a communication network and measures the states of these nodes (or properties
of the nodes) over time. In many settings, one would like to detect drastic
changes in the nature of the dynamic behavior of the system. This problem is of
vital importance to a variety of reliability and security applications on networks
[64, 88, 98, 132] and it can be formalized as the inference of large changes in the
parameters of the network – a change point model for a dynamic network.

The objective of this article is to survey methodology across a variety of fields
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for parameter inference in dynamical systems. We first state the various goals of
inference in dynamical systems. Our focus will be parameter inference, and we
provide a natural classification of parameter inference into four possible settings
defined by the structure of noise in the system. We then state what is known in
terms of rigorous results for parameter inference in these four settings. Of these
settings the case of deterministic dynamics with observational noise appears to
be the least developed in terms of sound statistical theory. We also mention
several important open problems for parameter inference.

There is an extremely large body of work stretching across many disciplines
that relates to the topic of statistical properties of dynamical systems. Although
we attempt to provide references when possible, we make no attempt to be
exhaustive, and we recognize that in fact many references have been omitted.
On the other hand, we hope that the references cited in this article may serve
as an appropriate starting point for further reading.

1.1. Goals of statistical inference

There are a variety of topics that can be considered part of “statistical inference
in dynamical systems.” In the interest of providing context for this survey, let
us mention the following topics:

1. parameter estimation, model identification or reconstruction;
2. state estimation, filtering, smoothing, or denoising;
3. feature estimation, where features often include invariant measures, di-

mensions, entropy, or Lyapunov exponents;
4. prediction or forecasting;
5. noise quantification, estimation, or detection.

In this paper we focus almost exclusively on the problems of parameter infer-
ence, system identification and reconstruction. Informally, we pose the param-
eter estimation problem as follows. Suppose the family of processes (Xt, Yt)t
under consideration can be parametrized by a set of parameters A, with a
serving as the “true” parameter controlling the system. Construct statistical
procedures for estimating the parameter a, given observations Yt1 , Yt2 , . . . , Ytn ,
and provide adequate theoretical support for the validity of the estimation pro-
cedure. This problem is often considered to have several components. First, one
would like to perform an identifiability analysis to understand in what sense,
if any, the parametrization is identifiable. Second, one would like to construct
asymptotically consistent estimation procedures. Third, one would like to study
finite sample properties and perhaps provide interval estimates to quantify un-
certainty. Lastly, one would like to understand how these results depend on the
modelling assumptions, including issues such as model misspecification.

Of course, the boundaries between the problems listed above are often quite
blurred. For example, if one can accurately estimate the hidden states (Xtk)

n−1
k=0

from the data (Ytk)
n−1
k=0 , then the problem of system identification often be-

comes significantly easier. For this reason, parameter inference methods may
simultaneously attempt some version of state estimation or denoising.
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1.2. Organization of the paper

We organize this survey according to the structure of the noise in the system.
This organization is motivated by the observation that methods and results for
parameter inference in dynamical systems tend to be specific to the type of noise
assumed in the model.

The remainder of the paper is organized as follows. In Section 2 we give some
essential definitions in the field of dynamical systems and make some general
statements regarding parameter inference that hold under any noise assump-
tions. In Section 3 we describe some results relevant to inference for dynamical
systems in the absence of noise. Section 4 contains a variety of proposed meth-
ods dealing with the case of dynamical systems contaminated by observational
noise only. Section 5 deals with the case of only dynamical noise, and Section 6
addresses the setting of general state space models–that is, systems with both
dynamical and observational noise. Lastly, we highlight some interesting open
questions in Section 7.

Ornstein and Weiss [127] have shown that in a certain sense it is impossible,
in general, to tell the difference between observational and dynamical noise. In
this sense, one might suggest that from the point of view of abstract ergodic
theory, we should not make distinctions on the basis of the type of noise present.
However, we are often interested in finer properties than those captured by the
equivalence relations considered in [127], and therefore the distinction between
observational and dynamical noise is still useful for our purposes.

1.3. Related surveys and books

There have been many other reviews related to the topics in this survey. An
incomplete list of such reviews is the following: [11, 18, 26, 49, 69, 73, 92, 156,
167]. Furthermore, let us mention the following books or monographs related
to the topics in this survey: [1, 14, 25, 48, 86, 89, 127, 161]. The relevance of
this survey is that we bring together approaches from many distinct fields and
discuss them in a common statistical setting. In particular we discuss parameter
estimation and inference for the full range of noise settings. This perspective is
rare, since the different noise settings often correspond to different research
areas, such as deterministic dynamics or state space methods based on hidden
Markov models. We bring these various approaches together and place them in
a common context.

2. Basic definitions and preliminaries

The most general setting that we will consider may be described as follows. Let
A, X , and Y be Polish spaces 1 (complete metric spaces with a countable dense
set), where each one is equipped with its Borel σ-algebra. The space A denotes

1This assumption is standard in dynamical systems and probability theory.
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the parameter space, the underlying dynamical system evolves in the space X ,
called the phase space or the state space, and the observations take values in
Y . For each a in A, we consider a stochastic process (Xt, Yt)t taking values in
X × Y with law Pa such that for t0 < · · · < tn < tn+1, we have

Pa(Xtn+1 | Xt0 , . . . , Xtn , Yt0 , . . . , Ytn) = Pa(Xtn+1 | Xn) (2.1)

Pa(Ytn | Xt0 , . . . , Xtn , Yt0 , . . . , Ytn−1) = Pa(Ytn | Xtn). (2.2)

We refer to the process (Xt)t as the underlying system (or trajectory) and
the process (Yt)t as the observation process. Note that the processes (Xt)t and
(Xt, Yt)t are both Markov, while the process (Yt)t is not Markov in general.

We now distinguish between the four possible noise regimes. Let Vara de-
note the variance operator with respect to the measure Pa. We say the process
(Xt, Yt)t has dynamical noise if for some s < t we have that

Vara(Xt | Xs) > 0.

We say the process (Xt, Yt)t has observational noise if for some t > 0 we have
that

Vara(Yt | Xt) > 0.

Thus, the four possible noise settings are: no noise, observational noise only,
dynamical noise only, or both dynamical and observational noise. Note that
the Markov structure of the system is particularly relevant in the presence of
dynamical noise (see Sections 5 and 6). Without dynamical noise, the fact that
the process (Xt)t can be written as a Markov chain is less relevant, since the
lack of variance makes it an especially degenerate chain. Thus, in the absence of
dynamical noise, the theory of (deterministic) dynamical systems plays a more
significant role.

We will have need to refer to stationary stochastic processes, which we define
here.

Definition 2.1. A stochastic process (Xt)t is stationary if for any k ∈ N, t > 0
and t1, . . . , tk, the joint distribution of (Xt1+t, . . . , Xtk+t) is equal to the joint
distribution of (Xt1 , . . . , Xtk).

Let us mention that there is a natural correspondence between stationary
stochastic processes and dynamical systems (see Remark 2.9 in Section 2.1 for
a discussion of this correspondence in the discrete-time setting).

2.1. Remarks on discrete-time systems

Consider a process (Xn, Yn)n satisfying Equations (2.1)–(2.2), with n in Z+.

Definition 2.2. An X -valued stationary stochastic process (Xn)n is said to be
ergodic if for every � ≥ 1 and every pair of Borel sets A,B ∈ X �,

lim
n→∞

1

n

n∑
k=1

P

(
(X1, . . . , X�) ∈ A, (Xk+1, . . . , Xk+�) ∈ B

)
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= P

(
(X1, . . . , X�) ∈ A

)
P

(
(X1, . . . , X�) ∈ B

)
.

Example 2.3. Many familiar processes are ergodic, including any i.i.d. process.
Indeed, if (Xn)n is i.i.d., then for any k and �, we have

P

(
(X1, . . . , X�) ∈ A, (Xk+1, . . . , Xk+�) ∈ B

)
= P

(
(X1, . . . , X�) ∈ A

)
P

(
(Xk+1, . . . , Xk+�) ∈ B

)
= P

(
(X1, . . . , X�) ∈ A

)
P

(
(X1, . . . , X�) ∈ B

)
,

which shows that (Xn)n is ergodic.

Definition 2.4. A measurable dynamical system is a triple (X ,F , T ), where
(X ,F) is a measurable space and T : X → X is measurable. A topological
dynamical system is a pair (X , T ), where X is a topological space and T : X → X
is a continuous map. In the study of topological dynamics, one often assumes
that X is compact and metrizable.

Example 2.5. Although there are many more elaborate examples of dynamical
systems, let us consider here a basic family of examples, called circle rotations.
Let X be the unit interval [0, 1] with the endpoints identified, making it a
topological circle, and let F be the σ-algebra of Borel measurable sets on X .
For any α in R, let Rα : X → X be defined by Rα(x) = x+ α mod 1, meaning
that Rα(x) is the fractional part of x+α. Then (X ,F , Rα) forms a measurable
dynamical system and (X , Rα) forms a topological dynamical system. Under
this system, points are rotated around the circle by an angle of 2πα at each
time step.

Definition 2.6. Ameasure-preserving system is a quadruple (X ,F , T, μ), where
(X ,F , μ) is a measure space, T : X → X is measurable, and μ

(
T−1(A)

)
= μ(A)

for each A in F . In this case, we say that T preserves the measure μ and μ is an
invariant measure for T . For the purpose of this article, we will always assume
that any invariant measure μ is a probability measure. Also, if X is Polish and
F is the Borel σ-algebra, then we may refer to (X , T, μ) as a measure-preserving
system.

Definition 2.7. A measure-preserving system (X ,F , T, μ) is ergodic if when-
ever T−1(A) = A up to sets of μ-measure zero for A in F , it happens that
μ(A) ∈ {0, 1}. We may say that T is ergodic for μ, or we may say that μ is
ergodic for T .

Example 2.8. Consider again the circle rotations from Example 2.5. Let μ be
Lebesgue measure on X . Then (X ,F , Rα, μ) is a measure-preserving system,
which can be seen by observing that Rα preserves the length and thus the
measure of each interval in X . Furthermore, one may check that (X ,F , Rα, μ)
is ergodic if and only if α is irrational.
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Remark 2.9. With the definitions given above, there is a correspondence be-
tween stationary stochastic processes and measure-preserving systems. Let us
describe this correspondence as follows. Suppose (Xn)n is an X -valued station-
ary stochastic sequence, where X is Polish. Let Y =

∏
n X , equipped with the

product σ-algebra induced by the Borel σ-algebra on X . Define T : Y → Y
by the left shift: if y = (xn)n, then (T (y))n = xn+1. Kolmogorov’s consistency
theorem gives that there is a unique probability measure μ on Y with the same
finite dimensional distributions as (Xn)n. In this case, the stationarity of (Xn)n
corresponds exactly to the invariance of μ with respect to T . Moreover, if (Xn)n
is ergodic, then μ is ergodic for T .

In the other direction, given any measure-preserving system (X , T, μ), we
may define a stationary stochastic process as follows. For any Polish space Y
and measurable map f : X → Y , let Xn(ω) = f(Tn(ω)). If (X , T, μ) is ergodic,
then so is (Xn)n.

Remark 2.10. In the discrete-time setting, any type of asymptotic analysis nec-
essarily relies on the limit as the number of observations (n) tends to infinity.
This limit, which involves observing the system over arbitrarily long time inter-
vals, is often referred to as “out fill” asymptotics in the statistics literature.

Remark 2.11. Outside of the setting of finite state hidden Markov models, there
seems to have been relatively little attention paid to the question of identifia-
bility in the discrete-time setting. One could make the following definition. Let
π : X×Y → Y be the projection onto the second coordinate. Then Pa◦π−1 gives
the law of the process (Yn)n. We say that the parametrization is identifiable if
Pa ◦π−1 = Pa′ ◦π−1 implies a = a′. In the case when the parametrization is not
identifiable, we could consider the problem of estimation up to the equivalence
relation given by a ∼ a′ whenever Pa ◦ π−1 = Pa′ ◦ π−1. We do not know of any
general treatment of identifiability (in this or any other sense) for discrete-time
systems.

2.2. Remarks on continuous-time systems

In the continuous-time setting, we restrict attention to the study of ordinary
differential equations (ODEs) and stochastic differential equations (SDEs), al-
lowing for the possibility of observational noise. Although many of the same
ideas and difficulties are relevant to statistical inference of partial differential
equations (see, for example, [175]), such systems lie outside the scope of the
survey. Here we make a few remarks concerning these continuous-time systems.

Remark 2.12. Given a continuous-time system (Xt, Yt)t and an interval length
Δt, one can associate a discrete-time system as follows. Let X ′

n = XnΔt and
Y ′
n = YnΔt, and then (X ′

n, Y
′
n)n is a discrete-time system as above. Unfor-

tunately, if the system does not have a closed form solution (as is typically
the case for nonlinear differential equations) and one is interested in parame-
ter estimation, then the associated discrete-time process will not be explicitly
parametrized. Thus, it seems necessary to develop methods of parameter esti-
mation that are particular to the case of ODEs and SDEs.
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Remark 2.13. There are two possible asymptotic regimes that may be considered
in the study of inference for differential equations: “in fill” asymptotics, and
“out fill” (also known as “expanding”) asymptotics. In the case of “in fill”
asymptotics, one prescribes a fixed interval of time on which the process will be
observed, say [a, b], and then one allows the number of observations in that time
interval to grow to infinity (often with conditions on the distribution of sample
times within the interval). In the case of “out fill” asymptotics, one obtains
observations sequentially according to some sampling scheme on arbitrarily large
(growing) time intervals.

Example 2.14. Here we discuss the system of ODEs that gives rise to the Lorenz
attractor, which is a basic example of chaotic behavior. In the process of study-
ing certain physical equations involved in modeling the weather, Lorenz made
several simplifications and arrived at the following system of equations:

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz,

where the state of the system at time t is given by (x(t), y(t), z(t)) and σ, ρ, and β
are physical parameters. In particular, Lorenz chose the parameters σ = 10, ρ =
28, and β = 8/3. With these parameter values, the system exhibits sensitivity
to initial conditions, which means that if the system is started at two distinct
positions, which might be arbitrarily close to each other, then the corresponding
trajectories will eventually diverge from each other by a substantial amount.
Such behavior is considered an indication of “chaos” in the system and is a
fundamental property of many dynamical systems. See Figure 1 for a sample
trajectory.

Fig 1. A sample trajectory from the Lorenz system with classical parameters

Example 2.15. Here we discuss mass-action stochastic kinetic models, a system
of ODEs that appears in applications across statistics [19], applied probability
[7], physical chemistry [158], and systems biology [170]. Given a set of chemical
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species we consider the following set of reactions over the k species X1, . . . , Xn

and r reactions R1, . . . ,Rr:

R1 : p11X1 + p12X2 + · · ·+ p1NXn → q11X1 + q12X2 + · · ·+ q1kXk

R2 : p21X1 + p22X2 + · · ·+ p2NXn → q21X1 + q22X2 + · · ·+ q2kXk

...
...

...

Rr : pr1X1 + pr2X2 + · · ·+ prkXn → qr1X1 + qr2X2 + · · ·+ qrkXN

where the coefficients pij correspond to the number of species consumed in
the reaction and the qij correspond to the number of species created in the
reaction, and each reaction has a kinetic constant ki associated to the reaction.
By mass-action we mean that the rate of a chemical reaction is proportional to
the product of the reactant numbers raised to the number of species created or
consumed. We consider Xt = (X1t . . . Xkt)

T as a vector of the counts of the k
species at time t. One can define a k by r matrix S = (P−Q)T with Pij = pij and
Qij = qij . Given the stoichiometry matrix S one can either model the discrete
problem ΔX = SΔR where ΔR is the vector of reaction events in a time step
or the continuos problem dXt = S dRt. In either the discrete or continuous
problem, a sequence of observations {Y1, . . . , YT } either with or without noise
are generated, and a common objective is to infer the kinetic constants as well
as the matrices P and Q. This example is of interest because variants of this
model have been used for continuous and discrete time dynamical systems with
and without noise [7, 170, 172].

3. No noise

If no noise is present in the model (2.1)–(2.2), then we are in the setting of
dynamical systems and ergodic theory (for general references, see [20, 87, 131,
168]). We first discuss the discrete-time setting and defer the material specific
to the continuous-time setting until Section 4.5. Although such systems are
deterministic in nature, there remains uncertainty regarding the initial condition
of the system and also regarding which system (or parameter) is controling the
observations. The long-range dependence inherent in such models is certainly
not appropriate to all settings, but it is nonetheless realistic for many physical
systems [3, 86, 110, 115, 128, 129, 139, 159, 178].

We will assume that the process (Xn, Yn)n may be written with the following
state-space formalism:

Yn = fa(Xn) (3.1)

Xn+1 = Ta(Xn), (3.2)

where T : A× X → X is a parametrized family of maps and f : A× X → Y is
a parametrized family of observation functions. Note that the model (3.1)–(3.2)
is one of the classical objects of study in dynamical systems and ergodic theory.
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3.1. Non-parametric system reconstruction from direct observations

Here we consider non-parametric estimation of a map T from direct observation
of a single trajectory. That is, we observe a sequence x0, . . . , xn, with xk =
T k(x0), and we would like to estimate the map T in some sense. Although the
methods discussed in this section do not directly involve parameter estimation,
they are nonetheless relevant for parameter estimation, since any non-parametric
method for estimation of a map immediately yields a method of parameter
estimation if the map to be estimated comes from a parametrized family.

Let us first consider a case when the system can be successfully reconstructed
from observations. If X is a manifold, T is continuous, the trajectory (xn)n
is dense in X , and we observe the trajectory directly (i.e. the observations
(yn)n satisfy xn = yn), then T can be consistently estimated from (yn)n using
locally linear functions of the data. More precisely, let us state a result from [4]
justifying this statement in the case X = [0, 1]. Let λ be Lebesgue measure on
[0, 1]. The map T : [0, 1] → [0, 1] is said to be an E{Ij , αj}-map if there exists at
most countably many disjoint open intervals Ij and real numbers αj such that
λ(∪Ij) = 1 and f ′(x) = αj for all x in Ij .

Proposition 3.1 ([4]). Let T be an E{Ij , αj}-map. Suppose the observed tra-

jectory (xn)n is dense in [0, 1]. Then there exists a sequence of estimates T̂n of
T such that for almost every x in [0, 1], it holds that T̂n(x) = T (x) for all but
finitely many n. In particular, T̂n converges to T pointwise almost everywhere,
and λ({x : T̂n �= T (x)}) tends to zero.

To get an idea about how to prove this proposition, notice that for any two
consecutive points xn and xn+1 in the trajectory, the pair (xn, xn+1) lies on the
graph of T . Therefore one may estimate T by linearly interpolating between
neighboring points on the graph of T .

When the map T is not assumed to be continuous but only measurable,
estimation of T from discrete observations of a single trajectory has been carried
out by Adams and Nobel [4]. Their main result may be stated as follows.

Theorem 3.2 ([4]). Suppose the system (X,F , μ, T ) is ergodic. Let μ0 be a ref-
erence probability measure on X that is assumed to be “known.” Also assume that
there is a “known” constant M such that 1/M ≤ dμ/dμ0 ≤ M . Let Meas(X ) de-
note the space of measurable functions from X to X . Then there is an estimation
scheme (Tn)n (whose definition uses M and μ0), where Tn : Xn → Meas(X ),
such that for μ0-a.e. initial condition x0, the map Tn(x0, . . . , xn−1) converges
to T in a weak topology (i.e. μ

(
T−1
n (A)
 T−1(A)

)
tends to zero as n tends to

infinity for each Borel set A).

The estimation scheme (Tn)n that appears in [4] is constructed using an
adaptive histogram method, which we discuss below. This paper also shows
that under the same hypotheses the conclusion of the theorem is false if one
requires that μ({x ∈ X : Tn(x) �= T (x)}) tends to zero as n tends to infinity.

Here we give an idea of the estimation scheme used in the proof of Theorem
3.2. The histogram method described here is actually from [122], which is very
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similar in spirit to the method used in the proof of Theorem 3.2. Assume that
X ⊂ R

d, and we fix a refining sequence (πk)k of finite partitions of X with
some additional properties (see [4] for details). Let πk(x) denote the cell in πk

containing x. Given the first n terms of the trajectory (xj)
n−1
j=0 , let

φn,k(x) =

∑n−1
j=0 xj+1I{xj∈πk(x)}∑n−1

j=0 I{xj∈πk(x)}
,

where I{xj∈πk(x)} is the indicator function of the event that xj is in πk(x), and
if the cell πk(x) contains no points xj , then φn,k(x) = 0. Now consider the
empirical loss of φn,k:

Δn,k =

(
1

n

n−2∑
j=0

(φn,k(xj)− xj+1)
2

)1/2

.

The estimates T̂n of T are adaptively chosen from among the φn,k according
to Δn,k (using μ0 and M). This method has the advantage that it works in
quite a general setting (the only assumptions involve ergodicity and the Radon-
Nikodym derivative with respect to a reference measure). On the other hand,
it relies on the ergodic theorem for convergence, and therefore it appears very
unlikely that it would have any general speed of convergence.

3.2. Non-parametric system reconstruction from general
observations

In this section we consider approaches to system reconstruction when the ob-
servations (yn)n are not necessarily equal to the trajectory (xn)n. There is a
vast amount of literature on the technique of system reconstruction via delay
coordinate embeddings. These system reconstructions may be thought of as non-
parametric inference of dynamical systems. Delay coordinate embeddings are a
well-studied inference procedure to reconstruct dynamical systems that satisfy
certain conditions. In this section we define delay coordinate embeddings, men-
tion some of the main uses of these techniques, and provide some representative
theorems that provide conditions under which these methods work. Note that
these reconstructions can help with the problems of feature estimation and pos-
sibly prediction, but they are not designed to help with parameter estimation
directly.

The eventual goal of delay coordinate embedding techniques is typically fea-
ture estimation, which we summarize as follows. If the underlying map T and
the observation function are both smooth, then under generic conditions, a de-
lay coordinate embedding allows one to construct a smooth map T̃ such that T̃
is related to T by a smooth change of coordinates. Under this scenario, T and
T̃ will share many features, including entropy, Lyapunov exponents, and fractal
dimensions of corresponding invariant measures. As these features are consid-
ered important in many physical settings, such delay coordinate reconstructions
have been extensively studied.
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To be specific, we consider a smooth map T : X → X of a manifold X , with a
smooth observation function f : X → R. The data are assumed to be generated
as follows: there is a trajectory (xn)n such that xn+1 = T (xn), and we observe
the data (yn)n such that yn = f(xn). The original idea to use delay coordinate
embeddings to construct a system equivalent to (X , T ) from the observations is
due to Ruelle, at least according to the influential paper [128].

Definition 3.3. A delay coordinate mapping of X into R
m is a mapping F :

X → R
m such that

F (x) = (f(x), f ◦ T τ (x), . . . , f ◦ T τ(m−1)(x)),

for some natural number τ . The mapping F is said to be an embedding if it is
a diffeomorphism from X to its image F (X ), that is if F is a smooth injection
and has a smooth inverse.

The well-known theorem of Takens [159] (often called the Takens Embedding
Theorem) may be stated as follows.

Theorem 3.4 ([159]). If T , f , and τ satisfy certain genericity conditions and
m > 2 dim(X ), then F is an embedding.

Let X̃ = F (X ) and T̃ = F ◦T ◦F−1. The fact that F is an embedding means
that the system (X , T ) is related to the system (X̃ , T̃ ) by a smooth change of
coordinates (given by F ). In particular, invariants of (X , T ) that depend on the
differential structure of T (such as Lyapunov exponents or fractal dimensions of
attractors) are equal to those of the system (X̃ , T̃ ).

This method of extracting invariants is typically carried out as follows. Given

the data (yk)
n−1
k=0 , we may build time series data (sk)

n−1−τ(m−1)
k=0 for the system

(X̃ , T̃ ) as follows: for k = 0, . . . , n− 1− τ(m− 1), let

sk = (yk, yk+τ , . . . , yk+τ(m−1)).

Then the new time series (sk)k may be used to estimate invariant features of
(X̃ , T̃ ), which will be the same as those features of (X , Q).

Takens’ theorem has been generalized in various directions, such as filtered
delay embeddings (see [149], for example) or delay embeddings for stochastic
systems (see [155]), but we do not attempt to record all such results. However,
the following generalization, due to Sauer, Yorke, and Casdagli, bears mention-
ing.

Theorem 3.5 ([149]). Let A be a compact subset of X with box-counting di-
mension d. Let m > 2d. Suppose T , f , τ , and A satisfy certain genericity
conditions. Then the delay coordinate map F given above is an injection on A
and an immersion on each compact subset of any smooth manifold contained
in A.

The advantage of this theorem over the Takens theorem is that the relevant
dimension d might be less than the ambient dimension of X , in which case the
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number of coordinates m required in the embedding space may be less than the
number of coordinates required by Takens’s theorem.

In order to use the delay coordinate method given only the data (yk)
n−1
k=0 , one

must choose an appropriate dimension m and an appropriate lag τ . A variety
of statistical techniques have been proposed to estimate the dimension m and
find a suitable lag τ (for example, see the book [86] or the collection [115]), but
further pursuit of these topics lies outside the scope of this survey.

3.3. Results from ergodic theory

In this section, we state some results from ergodic theory that are potentially
relevant for parameter inference.

One of the most general results in this area is due to Ornstein and Weiss
[126]. In this work, the authors consider the problem of estimation of stationary
ergodic processes. (Note that in the setting of (3.1)–(3.2), if X0 is distributed
according to an ergodic invariant measure for Ta, then the observation process
(Yn)n satisfies exactly these conditions, as in Remark 2.9.) To make this problem
precise, they consider the d metric on the space of such processes (see [126] for
the definition of the d metric). Their main results may be stated as follows.
First, they construct a procedure which, given a realization (Xk)

n−1
k=0 of a process

(Xk)k, constructs a process Zn = (Zn
k )k. Then they show that the sequence of

processes (Zn)n converges to (Xk)k in the d metric if and only if (Xk)k lies in a
certain class of processes, called Bernoulli processes. Thus, they have shown that
there is a consistent estimation procedure for the class of Bernoulli processes.
Furthermore, they show that no estimation procedure can be consistent for the
class of all stationary ergodic processes.

In another direction, Ornstein and Weiss [125] show that entropy is the only
finitely observable invariant in the following sense. Let J be a function from the
class of finite-valued stationary ergodic processes to a complete separable metric
space such that J is constant on isomorphism classes. The main result of [125]
states that if J is finitely observable, then it must be a continuous function of the
entropy. This result shows that there are strong restrictions on the possibilities
for inference of isomorphism invariants.

Gutman and Hochman [63] extend the results in [125] in several ways. They
give several rich families of classes C of stationary ergodic processes such that if J
is a finitely observable invariant on C, then J is constant. They also show that for
every finitely observable invariant J on the class of irrational circle rotations,
J is constant on the processes arising from a full measure set of angles. In
particular, there is no finitely observable invariant for irrational rotations which
is complete.

There is a large body of work, often categorized as smooth ergodic theory (see,
for example, [9]), that seeks to understand the statistical properties of smooth
(or piecewise smooth) dynamical systems. The typical setting is that one has
a compact Riemannian manifold M and a smooth self-map f : M → M . The
manifold typically has a distinguished probability measure λ, which one may
think of as volume measure on the manifold. The goal is to understand the
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asymptotic behavior of the trajectory {fn(x)}n for λ-a.e. x. For a wide class of
such systems [176], often called (non-uniformly) hyperbolic systems, there is an
invariant measure μ on M such that for x in a set of positive λ-measure, the
trajectories in x equidistribute with respect to μ. In such cases, the measure
μ is said to be a physical measure. Often the measure μ has some additional
properties (it has no zero Lyapunov exponents and absolutely continuous con-
ditional measures with respect to λ on unstable manifolds), and in this case μ
may be called an SRB (Sinai-Ruelle-Bowen) measure [177]. The ergodic theory
of SRB measures is fairly well-studied, and many of their statistical properties
have been analyzed.

Example 3.6. The horseshoe map provides a prototypical example of a smooth,
hyperbolic dynamical system. To describe the map, one begins with a topological
disk, as seen on the left in Figure 2. One then shrinks the disk vertically by some
factor λv < 1/2, expands the disk horizontally by a factor λh > 2, and wraps
the resulting set back around inside the original disk as shown on the right in
Figure 2. The set of points with interesting dynamics is the set of points that
remain in the central square inside X for all time, which we denote by C. Note
that C is a topological Cantor set. Furthermore, observe that if x is in C, then
locally around x, the vertical direction is contracted, whereas the horizontal
direction is expanded. Differentiable systems with this property (the tangent
space can be divided into contracting and expanding directions) are generally
called hyperbolic, and such systems tend to produce chaotic behavior.

Fig 2. Depiction of a horseshoe map. One begins with a topological disk, as seen on the left.
One then shrinks the disk vertically by some factor λv < 1/2, expands the disk horizontally
by a factor λh > 2, and wraps the resulting set back around inside the original disk as shown
on the right. Here we have chosen λv = 1

5
and λh = 11

5

A related topic that has received a great deal of attention recently is that
of statistical properties of dynamical systems (see, for example, [33]), especially
concentration inequalities for dynamical systems [27, 28, 29, 30, 31]. These in-
equalities are used to study the fluctuations of observables for dynamical systems
and have been shown to hold for sufficiently regular observables and a wide class
of non-uniformly hyperbolic dynamical systems. Using these inequalities, it is
possible to perform statistical estimation of various features of the dynamical
system. See the survey [27] for more details and precise statements.

3.4. Parameter inference via synchronization and control

Synchronization-based approaches to parameter estimation have appeared quite
often in the physics and control systems literature, cf. [3, 110, 129, 139, 178]
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and references therein. In situations when these methods are used, it is com-
mon that no particular noise model is assumed. Indeed synchronization-based
approaches are typically described as parameter inference methods in the noise-
less setting, although they may be applied in other settings. The main idea
of synchronization-based methods is to insert a “control” term in the defining
equations of the system that allows one to incorporate the data. The parameter
estimation may then be framed as a large optimization procedure in which one
tries to find trajectories of the system which are close to the data. We do not
know of rigorous theoretical justifications for this approach.

The topic of parameter estimation in a noiseless setting is discussed directly in
the work of Abarbanel, Creveling, Farsian, and Kostuk [2], and we review their
approach in this section. The main issue in this context is that one only has
access to the observations (Yn)n, which might “hide” some information about
the underlying system. The approach taken in [2] involves synchronization of
the observations and the output of a model over the relevant time window. This
approach may be summarized as follows.

Suppose that X is in R
d and the system (3.1)–(3.2) has the following form:

Yn = Xn,1

Xn+1,i = Ta,i(Xn),

where Xn,i denotes the i-th coordinate of Xn. The synchronization approach
taken in [2] is to add a “control” term of the form k(Yn−Xn,1) to first coordinate
of the model as follows:

X̃n+1,1 = Ta,1(X̃n) + k(Yn − X̃n,1)

X̃n+1,i = Ta,i(X̃n), i > 1.

For k > 0 large enough, the data Yn and the first coordinate X̃n,1 of the model
trajectory will “synchronize.” With a fixed k, the authors propose to estimate
the parameter a and the initial state X0 by minimizing the following function:

C(a,X0) =

n−1∑
j=0

(Yn − X̃n,1)
2,

where the trajectory X̃n is computed starting at X̃0 = X0. The purpose of
adding the control term is to regularize the function C so that its minimum may
be found efficiently. Of course, the trajectory X̃n associated with this minimum
is not a true trajectory of the original system. Therefore the authors propose
a synchronization method that allows the parameter k to depend on time. In
other words, they propose to minimize the cost function

C(a,X0) =

n−1∑
j=0

(Yj − X̃j,1)
2 + k2j ,

subject to the constraints

X̃j+1,1 = Ta,1(X̃j) + kj(Yj − X̃j,1)
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X̃j+1,i = Ta,i(X̃j), i > 1.

Variations of this method has been observed to work sufficiently well in practice.
For example in [2], they observed good performance of more sophisticated ver-
sions of this method on a chaotic Colpitts oscillator and on a Hodgkin-Huxley
neuron model. We also remark that to the best of our knowledge there are no
theoretical guarantees regarding the consistency or performance of this method.

4. Observational noise only

If only observational noise is present in the model (2.1)–(2.2), then the under-
lying (deterministic) dynamical system still plays a critical role in determining
the statistical properties of the system. We consider the following state-space
formulation:

Yn = fa(Xn, εn) (4.1)

Xn+1 = Ta(Xn), (4.2)

where (εn)n is a noise process, T : A × X → X is a parametrized family of
maps, and f : A × X × N → Y is a parametrized family of noisy observation
functions. Multiple authors explicitly argue for consideration of the observa-
tional noise model. For example, Judd [75] states that “the reality is that many
physical systems are indistinguishable from deterministic systems, there is no
apparent small dynamic noise, and what is often attributed as such is in fact
model error.” Furthermore, Lalley and Nobel [101] remark that “estimation
in the observational noise model has not been broadly addressed by statis-
ticians, though the model captures important features of many experimental
situations.” Additionally, applied works that take this point of view include
[37, 58, 92, 94, 105, 106, 133, 148].

A distinguishing feature of the observational noise model is that the pro-
cess (Xn)n is deterministic, and therefore in general it exhibits a long-range
dependence structure. Furthermore, this long-range dependence is still present
beneath the noise in the observation process (Yn)n. Such dependencies imply
that traditional statistical estimation techniques do not apply and might not
work. As Lalley and Nobel state in [101], “though some features of denoising
can be found in more traditional statistical problems such as errors in variables
regression, deconvolution, and measurement error modeling (cf. [23]), other fea-
tures distinguish it from these problems and require new methods of analysis.”
In particular, they cite the facts that the covariates Xn are deterministically
related (as opposed to i.i.d. or mixing), the noise is often bounded (as opposed
to Gaussian), and the noise distribution itself is often unknown.

Example 4.1. Let X = [0, 1], and let Ta : X → X be given by Ta(x) = ax(1−x),
with a in A = [0, 4]. This family of maps, known as the logistic family, has
been extensively studied in a variety of settings. For a ∈ [0, 1], it is known
that for all x in [0, 1], the iterates Tn

a (x) tend to 0 as n tends to infinity. We
say that a parameter value a has an attracting periodic orbit {p0, . . . , pN−1}
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if Ta(pi) = pi+1 (with indices interpreted modulo N) and |(TN
a )′(pi)| < 1.

For such parameter values, the iterates Tn
a (x0) of Lebesgue almost every initial

point x0 will tend to the periodic orbit {p0, . . . , pN−1} as n tends to infinity.
It is known [61, 103] that the set of parameter values that have an attracting
periodic orbit is open and dense in [0, 4]. On the other hand, there are parameter
values that give rise to very different asymptotic dynamics. In particular, we
say that a parameter value a has an absolutely continuous invariant measure
(acim) μa if μa is absolutely continuous with respect to Lebesgue and μa is
an invariant measure for Ta. In such cases, it can be shown that the iterates
Tn
a (x0) of Lebesgue almost every initial point x0 equidistribute with respect

to μa. Intuitively, the presence of μa produces seemingly stochastic behavior,
which is often referred to as chaos. Jakobson showed in [71] that the set of
parameter values that have an acim has positive measure in [0, 4], and Lyubich
later showed in [104] that Lebesgue almost every parameter in [0, 4] either has
an attracting periodic orbit or an acim.

In most of the papers cited in this section, this family of maps is taken as
a standard testing ground for parameter estimation methods. Generally, it is
assumed that the observational noise is additive (i.e. fa(x, ε) = x+ σ(a)ε).

4.1. Noise reduction

One basic approach to parameter estimation in the observational noise case
is to reduce the noise and then apply parameter estimation methods. If the
noise can be uniformly and sufficiently reduced, then these approaches will be
approximately as successful as the estimation method applied to the noiseless
case (but recall that there is very little statistical theory in the noiseless setting).
For example, the positive results in [99, 100, 101] might be combined with a
parameter estimation method in order to produce consistent estimates. Among
the results contained in these works, the main positive result of [101] is the most
general, and we state it as follows.

A homeomorphism F of a compact metric space (Λ, d) is said to be expansive
with separation threshold Δ if for every x �= y in Λ, there exists n in Z such that
d(Fn(x), Fn(y)) > Δ. In the work [101], the authors consider an initial condition
x and let xi = F i(x). Also, they define a particular denoising algorithm, which,
given observations (yi)

n−1
i=0 obtained under an additive noise model, produces

estimates x̂i,n of the true states xi. In this context, the main positive result may
be stated as the following theorem.

Theorem 4.2 ([101]). Let F : Λ → Λ be an expansive homeomorphism with
separation threshold Δ > 0. Suppose that the noise process (εn)n satisfies |εn| ≤
Δ/5 for every n. If k = k(n) → ∞ and k/ log(n) → 0 as n tends to infinity,
then

1

n− 2k

n−k∑
i=k

|x̂i,n − xi| → 0, as n → ∞
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with probability 1 for almost every initial point x in Λ (with respect to any F
invariant Borel probability measure).

By allowing a slight modification to their estimation scheme, the authors also
show that under the same hypotheses

max
log(n)≤i≤n−log(n)

|x̂i,n − xi| → 0, as n → ∞

with probability 1 for almost every initial point x in Λ.
Of course, the task of removing the noise might itself be difficult or in some

cases even impossible, as witnessed by the negative results in [99, 100, 101] and
the related results in [76, 77, 79, 80]. Here we state the main negative result
in [101]. A pair of points x and x′ is said to be strongly homoclinic for the
homeomorphism F if ∑

k∈Z

d(F k(x), F k(x′)) < ∞.

Theorem 4.3 ([101]). Suppose the stationary distribution for the noise process
(εn)n is unbounded (or has sufficiently large support). If x and x′ are strongly
homoclinic, then for every measurable function φ :

∏
n X → R

d,

E

[
|φ((yn)n)− x| − |φ((y′n)n)− x′|

]
> 0.

In other words, even with access to the entire observation sequence, any state
estimation or denoising scheme will fail with positive probability.

In addition to the works mentioned so far in this section, the following works
discuss methods and numerical simulations related to the problem of denoising
or smoothing data in the presence of only observational noise: [37, 58, 92, 94,
105, 106, 148].

4.2. Introduction to likelihoods and related methods

We begin with the work of Berliner [10, 11], which sets the stage for most of
the work that has followed. In [10], the author is mostly concerned with the
observational noise setting (4.1)–(4.2). The likelihood function is given by

L(x0, a) = p(yn−1
0 |x0, a),

where p(yn−1
0 |x0, a) denotes the likelihood of observing yn−1

0 given the parameter
choice a and the true initial condition x0 (i.e. p(·|x0, a) is the probability density
for the observation process conditional on x0 and a). Depending on the context,
there may be different parameter estimation methods that go by the name
maximum likelihood estimation. Some authors refer to the maximum likelihood
(ML) method for estimating the parameter a when considering the following
maximum likelihood estimator (MLE):

ân = argmax
a

max
x0

L(x0, a).
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On the other hand, if the parameter a also corresponds to an initial distribution
πa for x0, as in [111], then one may refer to the ML method when considering
the following marginalized MLE:

ân = argmax
a

∫
L(x0, a) dπa(x0).

It will be useful to find an explicit form for the likelihood function in the case
that (i) the observational noise sequence (εn)n is assumed to be i.i.d. normal
with zero mean and unit variance, and (ii) the observation function fa takes the
form fa(x, ε) = x + σ(a)ε. The function σ(a) allows one to set the variance of
the noise according to the parameter a. In this case, we have

L(x0, a) =
(
σ(a)

√
2π

)−n

exp

(
−

n−1∑
k=0

(yk − T k
a (x0))

2/(2σ2(a))

)
and the corresponding log-likelihood function is given by

logL(x0, a) = −n log
(
σ(a)

√
2π

)
−

n−1∑
k=0

(yk − T k
a (x0))

2/(2σ2(a)).

A significant portion of the work on parameter estimation following Berliner has
involved optimization of this log likelihood function, even when the noise is not
necessarily Gaussian and thus its interpretation as a log likelihood function is
no longer valid.

As discussed in [133], standard statistical results do not apply to the ML
method in this setting. With the above notation, the main difficulty in the
current setting is that T k

a is a non-stationary function of k. Standard statistical
results on the performance of the ML method apply when the likelihood function
has no such dependence on k (or is periodic with respect to k), but these results
do not apply a priori in the current setting.

Under suitable conditions on the dynamical systems and the observations,
it has recently been shown that (marginalized) maximum likelihood parameter
estimation is consistent [111]. The proof involves ideas from both information
theory and dynamical systems. Furthermore, in the same work, the authors
show how some well-studied properties of dynamical systems imply certain gen-
eral statistical properties related to maximum likelihood estimation. Lastly, the
authors exhibit classical families of dynamical systems for which maximum like-
lihood estimation is consistent. Examples include shifts of finite type with Gibbs
measures and Axiom A attractors with SRB measures.

The Bayesian approach assumes a prior distribution (density) for x0 and a,
written as π(x0, a). Given the data yn−1

0 , the posterior distribution is then

π(x0, a|yn−1
0 ) =

p(yn−1
0 |x0, a)π(x0, a)∫

p(yn−1
0 |x, a)π(x, a) dxda

.

With these basic definitions, Berliner considers three main methods of param-
eter estimation: maximum likelihood estimation, minimization of a cost func-
tion (which is often chosen to be the negative of the log likelihood function)
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and Bayesian estimation. One of Berliner’s main points is that when the system
(4.1)–(4.2) is chaotic, the likelihood function will also typically be chaotic, in
the sense that it will be extremely jagged. The rough nature of these likelihood
functions makes all three of the above methods of statistical estimation com-
putationally very expensive, and much of the work following Berliner has been
motivated by the need to mitigate this difficulty. Beyond these computational
difficulties, we remark that to our knowledge the only general theoretical results
concerning the consistency of any of these likelihood-based methods appears in
[111].

4.3. Variations on likelihood based methods

A common method of parameter estimation in practice is to minimize some cost
function C with respect to the parameters. Given the observations (yk)

n−1
k=0 , such

methods employ the following estimators:

ân = argmina min
x0

C
(
x0, a, (yk)

n−1
k=0

)
,

where C(x0, a, (yk)
n−1
k=0) somehow measures the discrepancy of the observations

and the system trajectory having parameter a and initial state x0.
As we mentioned in the previous section, the most basic cost function is the

least squares cost function

C
LS

(
x0, a, (yk)

n−1
k=0

)
=

n−1∑
k=0

(yk − T k
a (x0))

2.

Fig 3. Least Squares cost function for x0 in logistic family as a function of x ∈ [0, 1] given
n = 20 observations, true initial value x0 = .4 and true parameter a = 4

Due to the form of the cost function C
LS

, it might appear that the theory of
non-linear least squares (cf. [135] and references therein) could be used to prove
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Fig 4. Least Squares cost function for parameter a in logistic family as a function of a ∈ [0, 4]
given n = 20 observations, true initial value x0 = .4 and true parameter a = 4

consistency of the estimator that minimizes C
LS

. Unfortunately, the existing
results in this theory do not typically yield meaningful results when applied to
the sequence of maps {T k

a }k. In particular, by the product rule, one typically
expects that in hyperbolic dynamical systems the derivatives ∂aT

k
a (x) will grow

exponentially as a function of k, and such growth implies that the estimates of
[135] cannot be used even to show consistency. Therefore it remains an interest-
ing open question as to whether this theory can be adapted to the dynamical
systems setting.

Perhaps due to the sensitive dependence of C
LS

on x0 and the additional
computational expense incurred by minimizing C

LS
over x0, several authors

considered minimization of a one-step least squares cost function, given by

COSLS (a, (yk)
n−1
k=0) =

n−2∑
k=0

(yk+1 − Ta(yk))
2, (4.3)

which does not depend on any initial condition x0. This cost function may ap-
pear to be the familiar least squares function from regression analysis, but as
Kostelich [93] recognized, it suffers from the problem of errors in variables (cf.
[24, 57]). The problem of errors in variables is that the errors are not indepen-
dent, as is implicitly assumed in the form of the cost function. Viewing COSLS

from the perspective of traditional regression, we see that yk appears to play
the role of the independent variable and yk+1 plays the role of the dependent
variable, but both yk and yk+1 contain noise according to the model (4.1)–(4.2).
It is well-known that the problem of errors in variables can lead to asymptoti-
cally biased results, and therefore we should not expect minimization of COSLS

to give consistent estimates of the parameter a.

In response to the errors in variables problem, Jaeger and Kantz [70, 85]
propose a “solution” of the problem, which amounts to minimizing the following
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cost function that has since gone by the name “total least squares” cost function:

C
TLS

(a, (yk)
n−1
k=0) =

n−1∑
k=0

min
y∈X

‖(yk, yk+1)− (y, Ta(y))‖2.

Note that this approach essentially ignores the dynamics altogether, and instead
focuses on minimizing the sum of orthogonal distances between the graph of
Ta and the points (yk, yk+1) in X × X . In order to include some aspect of
the dynamics, they further modify their cost function to find local shadowing
trajectories by considering cost functions of the form

CMTLS (a) =

n−s−1∑
k=0

min
y

‖(yk, . . . , yk+s)− (y, . . . , T s
a (y))‖2.

Here s is a parameter of the method; it is the number of steps over which
one considers the local shadowing trajectories. If one asks for global shadowing
trajectories, corresponding to s = n − 2, then this modified total least squares
cost function is equivalent to the original least squares cost function C

LS
.

McSharry and Smith [114] consider the one step cost function C
OSLS

given by
(4.3). They prove that in the case of the logistic map with a specific parameter
value, the minimization of this cost function produces biased estimates, even
with infinitely many observations. Their proposed solution involves minimizing
the cost function given by

CMS (a) = −
n−1∑
k=0

log

(∫
exp

(
−d2k(x)

2ε2

)
μa(dx)

)
,

where d2k(x) = ‖(yk, yk+1) − (x, Ta(x))‖2, ε is the variance of the noise process
(εn)n, and μa is a particular invariant measure for the map Ta. They argue
that the minimum of C

MS
provides more reliable parameter estimates due to

its inclusion of information regarding the invariant measure μa. It is perhaps
a shortcoming of this method that one must know the variance of the noise
process and the invariant measure μa in order to calculate CMS (a). In practice,
the authors suggest approximating the integral with respect to μa by a sum
over a long piece of trajectory simulated from the model in the hopes that this
approximation will be close to the integral by the ergodic theorem. The authors
provide numerical evidence that C

MS
provides better parameter estimates than

either COSLS or CTLS , although again no theoretical results are available to
justify this comparison.

Meyer and Christensen [116], following up on the work of McSharry and
Smith [114], propose to model the system using a combined noise state-space
model of the form (2.1)–(2.2), and proceed via an MCMC algorithm for perform-
ing the inference. In particular, they take a Bayesian approach, modeling both
the true states Xn and the parameters a as unknown variables. They assume
that the process (Xn)n forms a Markov chain (by adding dynamical noise to the
model). Then they compute posterior probabilities of the unobserved variables
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using the Gibbs sampler and the Metropolis-Hastings algorithm. This approach
rasies the question of model misspecification: how do these estimators perform
when the model does not accurately represent the noise structure (see Question
7.3)?

Several further works build on this stream of research, proposing related
approaches for parameter estimation in the observational noise setting. For ex-
ample, there are gradient descent methods [75, 78, 144], methods that involve
cutting the time-series data into small subintervals and performing ML estima-
tion on each interval independently [133], methods involving backwards iteration
of the map [153], and iterative methods that alternate between estimating the
system states and the system parameters [121].

4.4. Method of moments

Here we mention a method of parameter estimation that has been shown to
be consistent at least for the logistic family, introduced in Example 4.1. For
the observational noise model, this method, discussed in [133], provides a rare
example of a method that has been proved to be consistent for at least one
non-trivial example.

We consider the model (4.1)–(4.2), where X = [−1, 1],A = [0, 2], and Ta(x) =
1− ax2, which is re-parametrization of the family in Example 4.1. Assume that
the underlying trajectory process (Xn)n is ergodic, which is the case if one
assumes that X0 is drawn from an ergodic invariant measure μa for the map
Ta. Alternatively, one may assume that a is chosen such that Ta has an acim
μa (as discussed in Example 4.1) and X0 is drawn from Lebesgue measure.
Also assume that the observational noise is additive (i.e. Yn = Xn + εn) and
(εn)n is i.i.d. Gaussian with mean 0 and variance ε2. For a sequence (zk)

n−1
k=0 , let

An(zk) =
1
n

∑n−1
k=0 zk and for any f : R → R, let Eμa(f) =

∫
f(x) dμa(x). Then

by the ergodic theorem

lim
n→∞

An(Yk) = Eμa(x) (4.4)

lim
n→∞

An(Y
2
k ) = Eμa(x

2) + ε2 (4.5)

lim
n→∞

An(Y
3
k ) = Eμa(x

3) + 3ε2Eμa(x) (4.6)

lim
n→∞

An(YkYk+1) = Eμa(x)− aEμa(x
3). (4.7)

Also, averaging the equation xn+1 = 1− ax2
n, we obtain that

Eμa(x) = 1− aEμa(x
2). (4.8)

Combining Equations (4.4)–(4.8), we arrive at the following estimates for the
unknown parameters a, Eμa(x), Eμa(x

2), Eμa(x
3), and ε:

ân =
An(YkYk+1) + 2An(Yk) + 3

(
An(Yk)

)2
3An(Yk)

(
An(Yk)

)2 −An(Y 3
k )
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Eμa(x̂)n = An(Yk)

Eμa(x̂
2)n = An(Y

2
k )− ε̂2n

Eμa(x̂
3)n =

1

ân

(
An(Yk)−An(YkYk+1)

)
ε̂n =

An(Y
3
k )− Eμa(x̂

3)n
3An(Yk)

These estimates are consistent by the ergodic theorem, but they might converge
quite slowly, as there is no general rate of convergence in the ergodic theorem.

4.5. Ordinary differential equations with observational noise

In this section we consider systems such that the state of the system satisfies
an ODE:

Ẋt = Fa(Xt) (4.9)

X0 = x0 (4.10)

where, for simplicity, x0 and Xt are in R
d and F : A × R

d → R
d satisfies

some regularity conditions depending on the context. Furthermore, one typically
assumes that observations are of the form

Ytk = Xtk + εk,

where 0 ≤ t0 < · · · < tn and the measurement errors (εk)k are i.i.d. with zero
mean.

In contrast to the discrete-time setting, the topic of identifiability for ODE
models has been widely studied. For a recent and comprehensive review of iden-
tifiability in ODEs, see [118]. Necessary and sufficient conditions for identifiabil-
ity are known in the case that the system of equations is linear in the unknown
parameters [36]. In many cases, especially in moderately large dimensions, struc-
tural identifiability may be difficult to establish. Thus, several recent works have
investigated methods for parameter estimation (possibly of sets of parameters)
in nonidentifiable settings [22, 97, 113, 143, 142, 154, 165].

To get an idea of the methods and difficulties involved, let us consider the
problem of parameter estimation. With the above notation, the most straight-
forward procedure for estimation of the true parameter a0 is the least-squares
method, which is defined as

ân = argmina

n∑
k=0

||Ytk − x(tk, a)||2,

where x(t, a) denotes the solution of Equations (4.9)–(4.10). In order to find
these estimates in practice, one generally uses an optimization procedure that
relies on numerical integration to find x(tk, a) for various choices of a. In [174],
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the theory of non-linear least squares estimation is adapted to the current setting
to show that under some regularity conditions, the (numerical) least-squares
estimator is consistent and asymptotically normal. We note that they consider
only “in fill” asymptotics for these results. Also, let us mention that despite
the good properties mentioned above, the least-squares estimator may be very
difficult or expensive to compute in practice.

Bayesian approaches have also been developed for parameter estimation in
ODEs (see, for example, [59, 60]). In general, though, there are no analytical
expressions for the posterior distribution, and therefore one must solve the (gen-
erally difficult) computational problem of numerically approximating potentially
high-dimensional integrals with complex integrands.

Perhaps due to the heavy computational burden required to perform the nu-
merical integration in the least-squares estimator or in the Bayesian approach,
another type of estimator has been developed, which avoids numerical inte-
gration. These estimators are often referred to as regularization or collocation
methods. Recent examples of such methods may be found in [62, 138, 140] (and
references therein). We mention here some recent results, which appear in [62].
First, define the following estimates of Xt: for t > 0, let

x̂(t) =

n∑
k=1

(tk − tk−1)
1

b
K

(
t− tk

b

)
Ytk ,

where K is a suitable kernel and b is a bandwidth. Now define

ân = argmina

∫ 1

0

||x̂′(t)− Fa(x̂(t))||2w(t)dt,

where x̂′(t) denotes the derivative of x̂(t) and w is a weight function. The main
results of the paper show that under “in fill” asymptotics, this estimator is con-
sistent with

√
n-rate. Despite these results, basic statistical properties of some

of the earliest collocation methods (e.g., [66, 166]) remain poorly understood.
Furthermore, the rigorous results of [36, 62] do not address the statistical effi-
ciency of their estimators, and such methods also typically require a choice of
the smoothing/regularization parameter, which makes them non-trivial to apply
to real data. Nonetheless, one of the advantages of such methods could be their
ability to perform effectively even in the presence of small dynamical noise (see
Question 7.3).

5. Dynamical noise only

In this section, we consider the case when only dynamical noise is present in the
system. In particular, we consider the the following setting:

Yn = fa(Xn)

Xn+1 = Ta(Xn, δn),
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where (δn)n is a noise process, T : A×X ×N → X is a parametrized family of
noisy maps, and f : A×X → Y is a parametrized family of observation functions.
The dynamical noise model has been studied in the dynamical systems literature
under the name “random dynamical systems” (see [90] and references therein).
The process (Xn)n forms a discrete-time Markov chain on the continuous state
space X (see the book of Meyn and Tweedie [117] and references therein). In
this case, some of the estimation methods from the statistical literature on time
series and state space models apply (see Section 6).

Without using this Markov structure, Adams and Nobel have studied the
non-parametric reconstruction of such systems from direct observations (i.e.
Yn = Xn) [122, 123]. In particular, they used adaptive histogram methods
to show results similar to those regarding non-parametric reconstructions of
systems with no noise, as in Section 3.1. These methods do not work in the
observational noise case precisely because in that setting they suffer from the
problem of errors in variables, as discussed in Section 4.3.

Let us also mention a topic, called stochastic stability, that is often discussed
in connection with random dynamical systems. A common setting for random
dynamical systems is to assume that there is a map T : X → X , where X
is a compact manifold and T is smooth, with a “natural” invariant probability
measure μ. In common examples, T might be a (non-uniformly) hyperbolic map
and μ might have the property that almost every initial condition with respect
a volume measure on the manifold equidistributes with respect to μ. In such
cases, one typically adds dynamical noise as follows. Let ε > 0. For each x in
X , let Pε(x, ·) be the uniform measure on the ball of radius ε about the point
T (x). Then the Markov chain corresponding to this random dynamical system
is determined by viewing Pε as the transition kernel for the chain. Under some
conditions, the chain corresponding to Pε will have a unique stationary distribu-
tion, με. A well-known result (see [90]) states that under certain conditions, the
measure με converges to μ weakly as ε tends to 0, in which case the system is
said to exhibit stochastic stability. To the best of our knowledge, no theoretical
work on parameter estimation has been conducted for this particular setting,
perhaps making it an area ripe for progress. On the other hand, this setting may
be viewed as a particular case of the general state-space setting, in which there
is no observational noise, and therefore methods described in Section 6 might
also be applicable here.

6. General state space models

In this section we consider the full system (2.1)–(2.2), where both dynamical
noise and observational noise are present. Specific versions of such models have
long been considered in the statistics literature, where they are known as state
space models [48]. The literature on state space models in both applied and
theoretical statistics is extensive and [65, 134] are two excellent texts covering
applied modeling on this topic. The models can be summarized as the study
of hidden Markov models (HMMs) in general state-spaces. (For an article dis-
cussing the connections between ergodic theory and finite state HMMs, see [18].)



Statistical inference for dynamical systems 235

Theoretical understanding of general HMMs has been a challenge and rigorous
statements on consistency in parameter estimation have only appeared recently
[44] (see Section 6.2). Most of the work in this area has been devoted to the
problem of state estimation or filtering, and even at a computational level the
problem of parameter estimation is still largely unsolved. In this section we
survey some of the most studied approaches to filtering and discuss parameter
estimation where there are results.

6.1. Kalman filter and some generalizations

The simplest such models assume that the dynamics are linear and the noise is
additive and Gaussian:

Xn+1 = AXn +Bδn+1

Yn = CXn +Dεn,

where here A, B, C, and D are all matrices of the appropriate dimension and
(δn)n and (ε)n are independent i.i.d. Gaussian processes. In this case, the optimal
solution to the state estimation or denoising problem is given by the well-known
Kalman filter [50, 83]. Generalizations of the ideas behind Kalman filtering to
non-parametric models have been an extensive area of research in Bayesian and
frequentist inference [48, 55, 56, 119].

Conceptually, the simplest generalization of the Kalman filter to nonlinear
models involves linearizing the models at each time point and then using the
Kalman filter. This method is often called the extended Kalman filter (EKF) [72,
6]. While the Kalman filter is optimal in the sense that it is the minimal-variance
unbiased estimator, the general EKF is known to be biased. Furthermore, due to
the linearization of the model, the propagation of the error covariance estimates
may behave quite poorly if the non-linear terms in the model are significant.

The unscented Kalman filter (UKF) [81, 82] provides a deterministic sam-
pling scheme that has been observed to outperform the EKF. The basic idea
behind the UKF is that instead of approximating the model by linearization,
one ought to use the exact model but approximate the posterior distributions
by Gaussian distributions. The sampling scheme is designed to insure that the
first two moments of the posterior distributions match the first two moments of
the approximating distributions. It is believed that the UKF outperforms the
EKF because it may be viewed as an unbiased second-order method, whereas
the EKF is a biased first-order method. Of course, the UKF is believed to have
shortcomings of its own; in particular, it assumes that the posterior distributions
are Gaussian, which is certainly not the case in general. Also, the number of
samples required for the UKF is at least the dimension of the state space, and in
high-dimensional settings this fact makes the UKF computationally intractable.
A wide variety of Monte Carlo (MC) methods have been proposed to overcome
these issues.

Another generalization of the Kalman filter is known as the ensemble Kalman
filter (EnKF) [21, 51, 52]. This method is a Monte Carlo method that is partic-
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ularly popular in the weather prediction community. In fact, this method may
be thought of as a type of particle filter (see Section 6.4.1).

6.2. MLE for HMMs

If one is willing to consider point estimates of unknown parameters in a setting
where the likelihood function is known, then one can consider the maximum
likelihood method (MLE) for parameter estimation. Let us now state the main
result of the paper [44], which gives sufficient conditions for the consistency of
MLE in this context. Let (Xk, Yk)

∞
k=1 be a hidden Markov model (HMM) of the

form (2.1)–(2.2). Let a∗ denote a fixed parameter value in A. Assume that the
HMM with parameter a∗ has a unique stationary distribution, and let Pa∗ be
the corresponding stationary HMM. Denote by pν(yn0 , a) the likelihood of the
observations Y n

0 with initial distribution X0 ∼ ν and parameter a. Consistency
of the maximum likelihood estimator (MLE) may now be stated in the following
form: if an = argmaxa p

ν(yn0 , a), then an converges Pa∗ -a.s. to a∗ as n tends to
infinity. The main result of [44] gives some general conditions under which the
MLE is consistent in this sense. A precise statement of these general conditions
is beyond the scope of this survey.

6.3. Bayesian inference

Recall the Bayesian formulation of state space estimation or filtering. Here one
assumes that the model (2.1)–(2.2) gives rise to probability densities μ(x0),
p(x|x′), and q(y|x), which define the initial distribution, transition kernel, and
marginal distribution of the observation process, respectively. The densities are
with respect to some fixed reference measures denoted dx and dy. In this frame-
work, we are given access to finitely many observations yn−1

0 , and we would
like to estimate the true trajectory xn−1

0 . Our assumptions define likelihood
functions

p(xn−1
0 ) = μ(x0)

n−2∏
k=0

p(xk+1 | xk),

and

p(yn−1
0 | xn−1

0 ) =

n−1∏
k=0

q(yk | xk).

Given the observations yn−1
0 , the posterior distribution for Xn−1

0 is given by

p(xn−1
0 | yn−1

0 ) =
p(xn−1

0 , yn−1
0 )

p(yn−1
0 )

,

where

p(xn−1
0 , yn−1

0 ) = p(xn−1
0 ) p(yn−1

0 | xn−1
0 )
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p(yn−1
0 ) =

∫
p(xn−1

0 , yn−1
0 )dxn−1

0 .

There are a few instances when these distributions may be calculated ana-
lytically, such as when the system is linear and the noise is Gaussian or when
{Xn}n is a finite state Markov chain. Outside of these cases, there is no analyt-
ical method for calculating the posterior distribution, and therefore one seeks
a numerical approximation for this distribution. With the significant advances
in computational power in recent years, there has been a remarkable amount of
research devoted to finding efficient computational approaches to approximat-
ing such posterior distributions. Section 6.4 discusses some of the more recent
computational approaches to filtering.

An interesting work in the Bayesian context is [150] where the author studies
posterior consistency for dependent data from an information theoretic point
of view. The author establishes posterior consistency for misspecified models
under the assumption of asymptotic equipartition property. For finite state space
ergodic models, this is implied by the Shannon-McMillan-Breiman theorem. It
could be interesting and useful to extend the ideas from [150] to prove posterior
consistency in parameter estimation for more general dynamical systems.

6.4. Inference for dynamical systems via simulation based methods

In the general non-linear, non-Gaussian state-space setting of (2.1)–(2.2), the
posterior distributions for xn−1

0 are not available in closed form, as they in-
volve some integrals for which no analytical evaluation methods exist. In order
to perform inference in this setting, a great deal of effort has been devoted to
developing sophisticated computational algorithms for sampling from these pos-
terior distributions. One general idea is to use Monte Carlo (MC) methods to
estimate the integrals of interest. It is worth emphasizing that there has been a
huge amount of work in this direction, and we do not claim to provide a compre-
hensive survey of all the relevant results. For an introduction to MC methods,
see the book [145].

6.4.1. MCMC methods, SMC and particle filters

If one cannot sample from the posterior distribution directly, then one often
turns to Markov chain Monte Carlo (MCMC) methods. For a discussion of such
methods, see the books [145, 169] and references therein. Such methods have
been used for parameter estimation in dynamical systems (e.g., [34]).

Traditional Monte Carlo or MCMC methods may be used to perform “batch”
inference, i.e. when all of the observations are available at once and one would
like to estimate p(xn−1

0 |yn−1
0 ) for fixed n, although even in this setting they

might be prohibitively computationally expensive. When the goal is to perform
“on-line” or sequential inference, or in an effort to try to reduce the computa-
tional expense, one might try sequential Monte Carlo methods (SMC) and their
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many variations. A particularly popular version of these methods is known as
particle filtering. For a well-written, thorough introduction to the principles of
sequential Monte Carlo (SMC) and particle filtering methods, see the recent tu-
torial by Doucet and Johansen [47]. For an incomplete list of works concerning
SMC and particle filtering, as well as their adaptations to parameter estimation,
see [21, 39, 41, 51, 52, 53, 68, 84, 102, 120, 124, 136, 157]. The basic idea is that
the posterior distributions of interest are approximated by a finite collection
of N samples, called particles, which are recursively propagated through the
model. The main theoretical advantage of these methods is that one is often
able to establish the convergence of the approximations to the true posterior
distributions as the number of particles N tends to infinity.

6.4.2. ABC methods

Most of the methods mentioned previously in this section rely on explicit knowl-
edge and evaluation of the likelihood function. In many situations, such as in
high dimensional complex models, the likelihood function may not be available
or is computationally expensive to evaluate. In such scenarios, a simple com-
putational method called approximate Bayesian computation (ABC) offers a
powerful alternative to conduct statistical inference. ABC was first proposed as
a philosophical argument in [147] and introduced to population genetics in [160].
Since then these methods have become extremely popular in many applied fields.
A partial list of references include [38, 40, 112, 130, 137, 141, 152, 163, 172]. A
good review with applications to filtering is [109]. Briefly, in ABC methods one
first draws a parameter value θ∗ from the prior distribution and generates syn-
thetic data from the likelihood model corresponding to θ∗. If the synthetic data
“is similar to” the observed data (measured in some metric) up to a prespeci-
fied tolerance then θ∗ is accepted as a draw from the (approximate) posterior
distribution. Choosing the metric and the tolerance level are difficult problems,
but partial results are known ([54]).

An important point to note is that in many examples, a summary statistic
instead of the original data set is used for matching. This clearly results in loss of
information (and sometimes even results in invalid inference; see [146]) and thus
raises the interesting question about when one can perform consistent model
selection using the ABC methodology. In [108] a sufficient criteria is worked
out, but clearly more needs to be done especially in the context of dynamical
systems.

6.5. Stochastic differential equations (SDE)

SDEs constitute an important class of modeling tool (see [12, 171, 67] and the
references within) given by

dXt = b(θ,Xt)dt+ σ(θ,Xt)dWt
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where θ is an unknown parameter, b, σ are known functions andWt is a Brownian
motion on R

n. The inference problem is to estimate θ from discrete observations
of Xt observed with or without measurement error. We will be brief in our re-
view for these class of models and point the reader to existing, comprehensive
references and recent key papers. The theory for parameter estimation for such
models is very mature for continuously observed Xt (where continuous obser-
vation means that one has access to Xt for all t ∈ [0, T ]); see [17] for a book
length treatment and an extensive list of references. The last decade witnessed a
few breakthroughs for discretely observed Xt (where discretely observed means
that one has access to Xt for discrete values t ∈ {t0, . . . , tN}) [13, 12]. In [13]
the authors develop an algorithm to “perfectly” sample the paths of Xt at any
finite number of points, i.e., sample the values of Xt at these points without
any discretization error typically associated with numerical schemes such as the
Euler scheme. Using this algorithm, the authors further develop a framework for
statistical inference [12]. The approach taken in [12] is computationally intensive
and might not scale well with dimension. See [95] for an alternative numerical
approach which may be scalable.

7. Open questions and future directions

Here we list some open questions related to parameter inference in dynamical
systems and discuss possible future research directions. In general, it seems
that most existing statistical inference methods make use of the presence of
dynamical noise in the system.

The first question concerns the topic of identifiability in discrete time. Re-
call that in contrast to the situation for discrete time, identifiability has been
studied in continuous time settings, and recent progress has been made on pa-
rameter estimation even in weakly identifiable or nonidentifiable settings (see
Section 4.5).

Question 7.1. Is there a particularly natural notion of identifiability in the
discrete-time setting? If so, what are general conditions that would guarantee
that a parametrized system is (or is not) identifiable? Furthermore, which prop-
erties of a system may be estimated in weakly identifiable or nonidentifiable
settings, and which inference methodologies are effective in such settings?

Recall that in [111], general sufficient conditions are given under which MLE
is shown to be strongly consistent in the observational noise setting. However,
even under these conditions, no finite sample properties are known. In order to
get finite sample error bounds, one would also like to know about the devia-
tions of the MLE from its average. This line of reasoning leads to the following
question.

Question 7.2. In the observational noise setting (4.1)–(4.2), under which con-
ditions on the system is it true that the MLE is asymptotically normal? More
generally, what are the finite sample properites of MLE in this setting?
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Even in settings where statistically efficient estimators may be known to
exist, there are questions and difficult issues surrounding model misspecification.
How do estimators perform in the presence of model misspecification? For some
results on this topic in the context of MLE for hidden Markov models, see [45].
In general, let us state the following question.

Question 7.3. Consider an estimator θn based on the model assumption that
there is no dynamical noise. How does θn perform when the true system has a
small amount of dynamical noise?

In the combined noise setting of Section 6, it is still the case that the issue
of parameter inference has not been satisfactorily resolved. Certainly any fil-
tering method may be trivially extended to a parameter estimation algorithm
by extending the state space to include the parameters, but in such cases the
degeneracy of the extended system typically causes the filtering methods to
fail. Furthermore, general statistically efficient methods may be available (see,
for example, [8]), but such methods are computationally intractable on large
problems. Let us paraphrase a question in [47].

Question 7.4. Under what conditions on the model are there both statistically
and computationally efficient algorithms for parameter estimation in the general
state space setting? What theoretical guarantees can be given to justify such
algorithms?

Compared to point estimation, much less is known about confidence inter-
vals and uncertainty estimation for dynamical systems. On the frequentist side,
the paper [16], shows asymptotic normality of the MLE for finite state HMMs.
A few recent papers [42, 43, 46, 74] show asymptotic normality of the esti-
mates of HMMs under increasingly general conditions. For statements regard-
ing asymptotic normality of some estimation schemes in some ODE settings, see
[138, 140, 174]. Bayesian methods, of course, automatically yield uncertainty in-
tervals. However, not much is rigorously known about the coverage properties
of Bayesian estimators for dynamical systems. On the contrary, uncertainty es-
timation for SDE models is well developed in both frequentist and Bayesian
literature as mentioned in Section 6.5. To summarize, producing interval esti-
mates with the right coverage is an important open area where much further
work needs to be done and we state this as an open problem.

Question 7.5. Identify and develop easily verifiable conditions for which central
limit theorems hold for various estimators for dynamical systems. Also derive
conditions under which the posterior distribution concentrates around the true
parameter at an optimal rate.

The range of applications of statistical inference methods for deterministic
dynamical systems seems to be increasing rapidly. These systems present signif-
icant new challenges, since the deterministic systems may have very long-range
dependency structures. It would be a significant breakthrough if one could de-
velop asymptotically consistent algorithms for parameter estimation; moreover,
one would like to have finite-size sample bounds on the accuracy of these algo-
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rithms. Given the difficulty of dealing with the long-range dependencies present
in general in the observational noise model, it appears likely that the traditional
methods of parameter inference may not work particularly well in this setting,
and therefore new ideas and methods should be developed.

One possible approach would be to consider a weakened notion of consis-
tency. For example, one could consider a parameter estimation method to be
consistent if it returns a set of plausible parameters that asymptotically contains
the true parameter. Such weakened notions of consistency might be necessary
for providing some theoretical justification of parameter estimation algorithms
when achieving strong consistency appears out of reach.

Let us close by mentioning once again a recent development in the field of
dynamical systems and ergodic theory that might be useful in obtaining asymp-
totic results in the absence of dynamical noise. The concentration inequalities
mentioned at the end of Section 3.3 provide a powerful method for obtaining fi-
nite sample error bounds for a wide class of statistical estimators for a wide class
of dynamical systems. One might hope that these concentration inequalities can
be used to get rigorous error bounds for parameter estimation algorithms.
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