
Electronic Journal of Statistics
Vol. 9 (2015) 2675–2688
ISSN: 1935-7524
DOI: 10.1214/15-EJS1087

On signal detection and confidence sets

for low rank inference problems

Alexandra Carpentier∗

Institut für Mathematik
Universität Potsdam
Am Neuen Palais 10

14469 Potsdam
Germany

e-mail: carpentier@maths.uni-potsdam.de

and

Richard Nickl

Statistical Laboratory
Center for Mathematical Sciences

University of Cambridge
Wilberforce Road

CB3 0WB Cambridge
United Kingdom

e-mail: r.nickl@statslab.cam.ac.uk

Abstract: We consider the signal detection problem in the Gaussian de-
sign trace regression model with low rank alternative hypotheses. We derive
the precise (Ingster-type) detection boundary for the Frobenius and the nu-
clear norm. We then apply these results to show that honest confidence sets
for the unknown matrix parameter that adapt to all low rank sub-models
in nuclear norm do not exist. This shows that recently obtained positive re-
sults in [5] for confidence sets in low rank recovery problems are essentially
optimal.
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1. Introduction

Consider the Gaussian design trace regression model

Yi = tr(Xiθ) + εi, i = 1, . . . , n, (1)

where ε ∼ N(0, In) is an i.i.d. vector of Gaussian noise. Here the matrices Xi are
d × d square matrices with i.i.d. entries Xi

mk ∼ N(0, 1), and θ is the unknown
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d× d matrix we want to make inference on. We are interested in the case where
the model dimension d2 is possibly large compared to sample size n, but where
θ has low rank k, in which case we write θ ∈ R(k), 1 ≤ k ≤ d. This setting serves
as a prototype for various matrix inference problems such as those occurring in
compressed sensing [4] or in quantum tomography [7]. We consider here a high-
dimensional regime where min(d, n) → ∞, reflecting contemporary statistical
challenges.

The first problem we study in this paper is the signal detection problem with
low-rank alternatives: We want to test the hypothesis

H0 : θ = 0 vs. H1 : θ �= 0, θ ∈ R(k), ‖θ‖ ≥ ρ,

where ‖ · ‖ equals either the Frobenius norm ‖ · ‖F or the nuclear norm ‖ · ‖∗
(defined in detail below), and where ρ should be the minimal ‘signal strength’
condition for the above hypothesis testing problem to have a consistent solu-
tion (in the sense of Ingster, see [10]). We will show that the minimax optimal
detection boundary in Frobenius norm is of the form

ρ ≈ min

(√
d

n
, n−1/4

)

whereas in nuclear norm it is

ρ ≈ min

(√
kd

n
,

√
k

n1/2

)
.

A remarkable feature is that for the Frobenius norm the detection rate does
not depend at all on the complexity of the alternative hypothesis (the rank k),
whereas for the nuclear norm it does. The phase transition between the two
regimes in these rates depends precisely on whether the sample size n exceeds
the dimension d2 of the maximal parameter spaceR(d) or not. The upper bounds
in our proofs are related to the papers [9, 1] about the detection boundary in
the sparse regression setting, and our main contribution consists in deriving the
matching lower bounds for low rank alternatives.

Our interest in the detection boundary is triggered by the second problem we
investigate here: the question of existence and non-existence of adaptive con-
fidence sets for low rank parameters. It follows from general decision-theoretic
principles (see Chapter 8.3 in [6] and also [8, 2]) that the answer to this ques-
tion is closely related to a ‘composite version’ of the detection problem (see (15)
below). This approach was employed in [14] to prove that adaptive and honest
confidence sets for the parameter θ do not exist in sparse regression models if an
�2-risk performance beyond O(n−1/4) is desired. In contrast in the recent paper
[5] it was shown that if sparsity constraints are replaced by low rank conditions,
then adaptive and fully honest confidence sets exist over the entire parameter
space R(d). Adaptation means here that the expected Frobenius norm diam-
eter of the confidence set reflects the minimax risk over arbitrary low rank
sub-models R(k), 1 ≤ k ≤ d. The fact that the detection rates obtained here
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in Frobenius norm are independent of the rank constraint θ ∈ R(k) provides
another heuristic explanation of the result in [5].

Moreover [5] constructed another confidence set whose diameter adapts to low
rank sub-models in the stronger nuclear norm distance, and that is honest for all
θ’s that are non-negative definite and have trace equal to one, that is, whenever
θ is the density matrix of a quantum state. Such a constraint on θ is natural in
a quantum physics context considered in [5], but not in general. The question
arises whether it is essentially necessary or not. In the present paper we show
that indeed the existence results of [5] are specific to the geometry induced by
the Frobenius norm or to the quantum state constraint, and that nuclear-norm
adaptive and honest confidence sets over general low rank parameter spaces do
not exist in the model (1). For example, our results imply that if one requires
coverage of a confidence set over all of R(d) then the worst case nuclear norm
diameter for rank-one parameters can be off the minimax estimation rate over
R(1) by as much as

√
d. Our results thus further illustrate the subtleties involved

in the theory of confidence sets for high-dimensional parameters, and that the
positive results in [5] are of a rather specific nature.

Our proofs are given in the simplest model where both the design and the
noise are Gaussian, and the matrices involved are of square type. As usual,
our results extend without major difficulty to sub-Gaussian design and noise,
to certain correlated random designs, and also to non-square matrices, at the
expense of slightly more technical proofs. Generalisations of our results to the
matrix completion problem are currently under investigation.

2. Main results

2.1. Notation

We write Md for the set of d × d matrices with real elements. If X : Md → R
n

denotes the ‘sampling operator’

θ �→ X θ =
(
tr(X1θ), . . . , tr(Xnθ)

)T
,

then the model (1) can be written as

Y = X θ + ε,

where Y = (Y1, . . . , Yn)
T and ε = (ε1, . . . , εn)

T . We write EX for the expectation
over the distribution of X only, and Eθ for the expectation conditional on X .
The full expectation is denoted by Eθ = EXEθ. The corresponding probability
laws are denoted by PX , Pθ,Pθ and we employ the usual o/O/oP /OP -notation
with min(n, d) → ∞.

We denote the standard norm on Euclidean space by ‖·‖2, and the associated
inner product by 〈·, ·〉2. Let ‖.‖F be the Frobenius norm over Md, i.e.

‖M‖F =
√

tr(MTM) =

√∑
j≤d

λ2
j ,
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where λ2
i are the eigenvalues of MTM . The associated inner product is

〈U, V 〉F = tr(UTV ).

We also define the nuclear norm of M as

‖M‖∗ =
∑
j≤d

|λj |.

These two norms are in fact defined also for matrices that are not of square
type. Finally we recall that for any matrix M ∈ R(k), we have

‖M‖F ≤ ‖M‖∗ ≤
√
k‖M‖F .

2.2. Signal detection for low rank alternatives

We consider first the following hypothesis testing problem, also known as the
signal detection problem:

H0 : θ = 0 vs. H1 : θ ∈ R(k), ‖θ‖ ≥ ρ. (2)

Here the alternative space is restricted to a ‘low rank’ hypothesis θ ∈ R(k)
for some 1 ≤ k ≤ d. Moreover, for a separation constant ρ > 0, the detection
boundary is described by a ‘signal strength’ condition measured in terms of
the size ‖θ‖ ≥ ρ of the Frobenius-, or of the nuclear norm of θ. In the high-
dimensional regime where min(n, d) → ∞, we want to find the minimal sequence
ρ ≡ ρn,d such that for any α > 0 a level α-test Ψ = Ψ(Y,X , α) exists:[

E0[Ψ] + sup
θ∈H1

Eθ[1−Ψ]

]
= P0(reject H0) + sup

θ∈H1

Pθ(accept H0) ≤ α. (3)

Recall that a test is simply a random indicator function ψ = 1A where the
rejection event A depends only on Y,X , α, and we require the sum of the type-
one and the type-two error of the test to be controlled at any fixed level α > 0.

Theorem 1. Consider the testing problem (2) with norm ‖ · ‖. Define

rn,d =

{
min(

√
d/n, n−1/4) if ‖ · ‖ = ‖ · ‖F

min(
√

kd/n,
√
k/n1/4) if ‖ · ‖ = ‖ · ‖∗.

1) Suppose ρ ≥ Drn,d. Then for every α > 0 there exists a test Ψ =
Ψ(Y,X , α) and finite constants D = Dα > 0, nα ∈ N such that (3) holds
for every n ≥ nα.

2) Conversely, suppose ρ = o(rn,d) and k = o(d) as min(n, d) → ∞. Then
no test satisfying (3) for every α > 0 exists. In fact

lim inf
n,d

inf
Ψ

[
E0[Ψ] + sup

θ∈H1

Eθ[1−Ψ]

]
≥ 1 (4)

where the infimum extends over all test functions Ψ = Ψ(Y,X ).
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The tests Ψ constructed in the proof are given in (9) below and straightfor-
ward to implement. Note also that the ‖ · ‖∗-separated alternatives are a subset
of the ‖ · ‖F -separated alternatives (see (10) below), and our results imply that
an optimal test for the case ‖ · ‖ = ‖ · ‖F is essentially optimal also for ‖ · ‖∗.

2.3. Confidence sets for low rank recovery

Low rank recovery algorithms are well-studied in compressed sensing and high-
dimensional statistics, see e.g., [4, 7, 11, 12, 13, 3] and the references therein. In
the setting of model (1) they provide minimax optimal estimators θ̃ of θ ∈ R(k)
with (high probability) performance guarantees

‖θ̃ − θ‖2F � kd

n
, ‖θ̃ − θ‖∗ � k

√
d

n
. (5)

The question we study here is whether associated uncertainty quantification
methodology exists, that is, whether we can find confidence sets Cn ⊂ Md such
that

inf
θ∈Md

Pθ(θ ∈ Cn) ≥ 1− α, (6)

at least for min(n, d) large enough, and such that the diameter |Cn| of Cn reflects
the accuracy of adaptive estimation in the sense that |Cn| shrinks, with high
probability, at the optimal rates from (5) whenever θ ∈ R(k). We insist here
on an adaptive confidence set that does not require knowledge of the unknown
rank k of θ.

A first result that is proved in the paper [5] is that such adaptive confidence
sets do exist in the model (1) if the diameter is measured in Frobenius distance.
The construction of this set is straightforward, see [5] for details.

Theorem 2 (Theorem 2 in [5]). For every α > 0 there exists a confidence set
Cn = Cn(Y,X , α) such that for all n ∈ N, (6) holds, and such that uniformly
in θ ∈ R(k0) for any 1 ≤ k0 ≤ k, with high Pθ-probability the Frobenius-norm
diameter |Cn|F of Cn satisfies

|Cn|F �
√

k0
d

n
.

A second result that is proved in the paper [5] is that an (asymptotic) adaptive
confidence set exists also in nuclear norm provided that the “quantum state con-
straint” is satisfied, namely, provided it is known a priori that θ is non-negative
definite and has nuclear norm one, and provided the coverage requirement in
(6) is relaxed to hold only over a maximal model R(k) in which asymptotically
consistent estimation of θ is possible (i.e., k

√
d/n = o(1)). Define

R+(k) = R(k) ∩ {θ is non-negative definite, tr(θ) = 1},

the set of quantum state density matrices of rank at most k.
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Theorem 3 (Theorem 4 in [5]). Assume k
√

d/n = o(1) for some 1 ≤ k ≤ d,
and let α > 0 be given. Then there exists a confidence set Cn = Cn(Y,X , α)
such that

lim inf
min(n,d)→∞

inf
θ∈R+(k)

Pθ(θ ∈ Cn) ≥ 1− α,

and such that uniformly in θ ∈ R+(k0) for any 1 ≤ k0 ≤ k, with high Pθ-
probability the nuclear norm diameter |Cn|∗ of Cn satisfies

|Cn|∗ � k0

√
d

n
.

In fact it is not difficult to generalise the above theorem to the case where
the condition tr(θ) = 1 is relaxed to ‖θ‖∗ ≤ 1.

The next theorem, which is the main result of this subsection, implies that no
analogue of Theorem 2 can hold true if the Frobenius norm there is replaced by
the nuclear norm, and it also shows that Theorem 3 cannot hold true if R+(k)
is replaced by R(k), that is, if the ‘quantum state constraint’ is relaxed. More
precisely, we show that if a confidence set Cn is required to have coverage over
the maximal model R(k1), then the worst case expected nuclear norm diameter
of Cn over arbitrary sub-models R(k0), k0 = o(k1), depends on the maximal
model dimension k1 and does not improve as k0 ↓ 1. The proof of Theorem 4
is based on Part 2) of Theorem 1 and lower bound techniques for adaptive
confidence sets from [8, 2].

Theorem 4. Let k1 → ∞ such that k1 = o(d) as min(n, d) → ∞. Suppose
that for any 0 < α < 1/3 the confidence set Cn = Cn(Y,X , α) is asymptotically
honest over the maximal model R(k1), that is, it satisfies

lim inf
min(n,d)→∞

inf
θ∈R(k1)

Pθ(θ ∈ Cn) ≥ 1− α. (7)

Then for every k0 = o(k1) and some constant c > 0 depending on α, we have

sup
θ∈R(k0)

Eθ|Cn|∗ ≥ c

√
k1d

n
(8)

for every min(n, d) large enough. In particular no confidence set exists that is
honest over all of Md and that adapts in nuclear norm to any model R(k0), k0 =
o(
√
d).

For notational simplicity we have lower bounded the expected diameter |Cn|∗
in (8), but the proof actually contains a stronger ‘in probability version’ of this
lower bound.

Remark 1. A few remarks on Theorem 4 are in order:

i) In the least favourable case where one wants coverage over the entire
R(d) = Md while still adapting to rank-one matrices (i.e., k0 = 1), the
performance of any honest confidence set is off the minimax optimal adap-
tive estimation rate

√
d/n over R(1) by a diverging factor that can be as

close to
√
d as desired.
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ii) Even if one restricts coverage to hold only for ‘consistently estimable mod-
els’ R(k1) with k1

√
d/n → 0 (as in Theorem 3), the diameter |Cn|∗ can

be off the minimax rate of estimation over R(1) by a factor of
√
k1.

iii) We also note that the above result does not disprove the existence of
adaptive confidence sets for sub-models R(k0) of ‘moderate rank’ where
k0 ≥

√
d. While more of technical interest – note that this rules out n < d2

for consistent recovery to be possible – this regime currently remains open
(it is related to the apparently hard problem of finding optimal separation
rates in the composite testing problem (15) below).

3. Proofs

3.1. Proof of Theorem 1, upper bounds

When n < d2 then define

r̂n =
1

n
‖Y ‖22 − 1, τn = n−1/2

but when n ≥ d2 set

r̂n =
2

n(n− 1)

∑
i<j

∑
1≤m≤d,1≤k≤d

YiX
i
mkYjX

j
mk, τn = d/n.

The test statistic is
Ψn = 1 {r̂n ≥ zατn} (9)

where zα are quantile constants chosen below.
These tests work for Frobenius norm separation, by effectively the same proofs

as in [9], using that we can embed the matrix regression model into a vector
regression model with p = d2 parameters, and since the separation rates only
depend on the model dimension (and not on low rank or sparsity degrees).
However, to provide intuition, we give some details, first for the case n < d2:
Under H0 we have Y = ε and so

E0Ψn = Pr

(
1√
n

n∑
i=1

(ε2i − Eε2i ) > zα

)
≤ α/2

for every n ∈ N and zα large enough (using either Chebyshev’s inequality and
Eε4i = 3, or Theorem 4.1.9 in [6] for a more precise non-asymptotic bound).
Now for the alternatives θ ∈ H1 we use the basic concentration result Lemma
1a) in [5] which implies that for any fixed θ the event

E =
{∣∣(1/n)‖X θ‖22 − ‖θ‖2F

∣∣ ≤ ‖θ‖2F /2
}

has PX -probability at least 1 − 2 exp(−n/24), and so, for n ≥ nα such that
2 exp(−n/24) < α/6,
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Eθ(1−Ψn) =Pθ (r̂n < zατn)

=Pr

(
1

n
‖X θ + ε‖22 − 1 <

zα√
n

)

=Pr

(
1

n
‖X θ‖22 −

zα√
n
< − 2

n
εTX θ − 1

n

n∑
i=1

(ε2i − 1)

)

≤Pr

(
‖θ‖2F
2

− zα√
n
< − 2

n
εTX θ − 1

n

n∑
i=1

(ε2i − 1), E
)

+ 2 exp(−n/24)

≤Pr

(∣∣∣∣ 2nεTX θ

∣∣∣∣ > ‖θ‖2F /8, E
)
+ Pr

(
1√
n

n∑
i=1

(ε2i − Eε2i ) > zα/3

)

+ α/6,

since, by the hypothesis on ρ, we have for D large enough that

‖θ‖2F
2

− zα√
n
≥ ‖θ‖2F

4
≥

2zα/3

n1/2
.

The last probability is bounded by α/6 as under H0 and the last but one prob-
ability is also bounded by α/6 by a direct (conditional on X ) Gaussian tail
inequality (restricting to the event E : just as in term II of the proof of Theo-
rem [5] with θ̃ = 0 there), so that in total we have bounded the testing errors
in (3) by α/2 + (3/6)α = α, as desired. The case n ≥ d2 follows from similar
but slightly more technical arguments, adapting the arguments from proof of
Theorem 3 in [5], or arguing directly as in Theorem 4.3 in [9] with p = d2.

The test (9) also works for nuclear-norm separation since

H∗
1 = θ ∈ R(k) : ‖θ‖∗ ≥ c

√
kρ

is a subset of
HF

1 = θ ∈ R(k) : ‖θ‖F ≥ cρ

in view of the inequality

‖θ‖F ≥ (1/
√
k)‖θ‖∗ ∀θ ∈ R(k), (10)

so that

E0Ψn + sup
θ∈H∗

1

Eθ(1−Ψn) ≤ E0Ψn + sup
θ∈HF

1

Eθ(1−Ψn) ≤ α.

We now turn to the more difficult lower bounds.

3.2. Proof of Theorem 1, lower bounds

Let Ψ be any test – any measurable function of Y,X that takes values in {0, 1}.
Assume ρ = o(rn,d) as min(n, d) → ∞ and let H1 = H1(ρ) be the corresponding
alternative hypothesis.
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Step I: Reduction to averaged likelihood ratios: Let π = πn,d be a sequence of
finitely supported probability distributions on Md such that πn,d(H1) → 1, and
denote by π|H1 that measure restricted to H1 and re-normalised to unit mass.
Define

Z = Eθ∼π

∏
i≤n

dP
(θ)
i

dP
(0)
i

≡
∫ ∏

i≤n

dP
(θ)
i

dP
(0)
i

dπ(θ),

where dP
(θ)
i is the distribution of Yi|X when the parameter generating the data

is θ, and dP
(0)
i is the distribution of Yi|X when the parameter generating the

data is 0. Then, by a standard testing lower bound (e.g., (6.23) in [6]), for any
η > 0,

E0Ψ+ sup
θ∈H1

Eθ(1−Ψ) ≥ E0Ψ+ Eθ∼π|H1
Eθ(1−Ψ)

≥ E0Ψ+ Eθ∼πEθ(1−Ψ)− o(1)

= EX [E0Ψ+ Eθ∼πEθ(1−Ψ)]− o(1)

≥ (1− η)

[
1−
[√

E0(Z − 1)2

η

]]
− o(1).

Now since
E0[Z − 1]2 = E0[Z

2]− 1,

if we show that E0[Z
2] ≤ 1 + o(1) as min(n, d) → ∞ for a suitable choice of

π, then the lower bound (4) will follow by letting η → 0. Recall the notation
Eθ = EXEθ.

Step II: Computation of E0[Z
2]: The (Yi) are independent with distribution

N ((X θ)i, 1) conditional on the design X , hence

Z = Eθ∼π

[∏
i≤n

exp(−1
2 (yi − (X θ)i)

2)

exp(−1
2y

2
i )

]

= Eθ∼π

[∏
i≤n

exp(yi(X θ)i) exp(−
1

2
((X θ)i)

2)

]

and can hence write

E0

[
Z2
]
=

∫
Rn

(
Eθ∼π

[∏
i≤n

exp(yi(X θ)i) exp(−
1

2
((X θ)i)

2)
])2

×
∏
i≤n

1√
2π

exp(−y2i
2
)dy1 . . . dyn

=

∫
Rn

(
Eθ∼π

[
exp(−1

2
‖X θ‖22)

∏
i≤n

exp(yi(X θ)i

])2
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×
∏
i≤n

1√
2π

exp(−y2i
2
)dy1 . . . dyn.

Thus, if θ, θ′ are independent copies of joint law π2, then we have

E0

[
Z2
]

=

∫
Rn

Eπ2

[
exp(−1

2
(‖X θ‖22 −

1

2
(‖X θ′‖22)

∏
i≤n

1√
2π

exp
(
yi(X (θ + θ′))i −

y2i
2

)]

× dy1 . . . dyn

= Eπ2

[
exp(−1

2
‖X θ‖22 −

1

2
‖X θ′‖22)

×
∏
i≤n

∫
yi

( 1√
2π

exp
(
− 1

2

(
yi − (X (θ + θ′))i)

2
)
dyi exp

(1
2
(X (θ + θ′))2i

)]

= Eπ2

[
exp

(
1

2
‖X (θ + θ′)‖22 −

1

2
‖X θ‖22 −

1

2
‖X θ′‖22

)]

Step III: Integrating over X : The EX -expectation of the last expression can
be bounded by

Eπ2

[
exp
(n
2
(‖θ + θ′‖2F − ‖θ‖2F − ‖θ′‖2F )

)
EX exp

(
1

2
(Z1 − Z2 − Z3)

)]

where

Z� = ‖Xϑ�‖22 − n‖ϑ�‖2F , with ϑ1 = θ + θ′, ϑ2 = θ, ϑ3 = θ′.

The last factor can be bounded, by applying the Cauchy-Schwarz inequality
twice, by

(EX exp(Z1))
1/2(EX exp(2Z2))

1/4(EX exp(2Z3))
1/4. (11)

Since Xϑ� ∼ N(0, ‖ϑ�‖2F In) the distribution of Z� is the one of ‖ϑ�‖2F
∑n

i=1(g
2
i −

1) where the gi are i.i.d. N(0, 1). Applying Theorem 3.1.9 in [6] with τi ≡ 1 and
λ = ‖ϑ1‖2F or λ = 2‖ϑ�‖2F , � = 2, 3, (and hence setting ‖A‖ = 1, ‖A‖HS = n in
that theorem) we see that if max� ‖ϑ�‖2F ≤ 1/4 then

EX exp(Z1) ≤ exp

(
n‖ϑ1‖4F

1− 2‖ϑ1‖2F

)
, and

EX exp(2Z�) ≤ exp

(
2n‖ϑ�‖4F

1− 4‖ϑ�‖2F

)
, � = 2, 3.

As a consequence if
max

�=1,2,3
‖ϑ�‖F = o(n−1/4) (12)
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then the the product (11) is bounded above by 1+o(1). We conclude that if the
prior π satisfies (12) almost surely then

E0[Z
2] = EXE0[Z

2] ≤ (1 + o(1))× Eπ2 exp
(n
2
(‖θ + θ′‖2F − ‖θ‖2F − ‖θ′‖2F )

)
= (1 + o(1))× Eπ2 exp (n〈θ, θ′〉F ) .

Step IV: Construction of π and bounds for E0[Z
2]: Assume for notational sim-

plicity that d is an integer multiple of k, the general case needs only minor
notational adjustment. Pick independent random d× 1 vectors v� : � = 1, . . . , k
each of which consists of i.i.d. Rademacher entries (i.e., taking values ±1 with
probability 1/2). Create a matrix W as follows: In the first d/k columns insert
v1 times a random sign B1,j , j = 1, . . . , d/k. Then, in the �-th block repeat the
same with v1 replaced by v�, and random signs B�,j , j = 1, . . . , d/k. If ‖·‖ = ‖·‖F
let γn = ρn/d and if ‖ · ‖ = ‖ · ‖∗ set γn = 2ρn/(

√
kd), so that in either case

γn = o
(
min(

√
1/dn, d−1n−1/4)

)
.

Define the random matrix θ = γnW and let θ′ be an independent copy of it.
Thus

n〈θ, θ′〉F = nγ2
n

k∑
�=1

d∑
m=1

d/k∑
j=1

v�,mB�,jv
′
�,mB′

�,j

= nγ2
n

∑
�

∑
m

v�,mv′�,m
∑
j

B�,jB
′
�,j .

As products of Rademacher variables are again Rademacher variables we have,
for ε�,m, ε̃�,j i.i.d. Rademacher variables (all defined on a suitable product prob-
ability space),

Eπ2 exp (n〈θ, θ′〉F ) = EεEε̃ exp

⎛
⎝nγ2

n

∑
�

∑
m

ε�,m
∑
j

ε̃�,j

⎞
⎠

=

⎛
⎝EεEε̃ exp

⎛
⎝nγ2

n

∑
m

ε�,m
∑
j

ε̃�,j

⎞
⎠
⎞
⎠

k

. (13)

Conditional on the values of ε we set λ = nγ2
n

∑d
m=1 ε�,m and note that

|λ| ≤ ndγ2
n = o(1).

By Taylor expansion or standard properties of the hyperbolic cosine (as, e.g., in
the proof of Theorem 6.2.9 in [6])

Eε̃ exp

⎛
⎝λ

d/k∑
j=1

ε̃�,j

⎞
⎠ = cosh(λ2)d/k ≤ exp

(
λ2d/k

)
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and thus, since [EU ]k ≤ E[Uk] for any non-negative random variable U , the
right hand side in (13) is bounded above by

(
Eε exp

(
λ2d/k

))k ≤ Eε exp
(
λ2d
)

= Eε exp

⎛
⎝n2γ4

nd

(
d∑

m=1

εm

)2
⎞
⎠ ≡ E exp

(
Z2/c2

)
,

where the Rademacher sum Z =
∑d

m=1 εm is a sub-Gaussian random variable
with variance proxy σ2 = d (cf. Section 2.3 in [6]). Thus by (2.24) in [6] we have

E exp
(
Z2/c2

)
≤ 1 +

2

c2/2σ2 − 1
= 1 + o(1)

since
c2

σ2
=

1

d2n2γ4
n

→ ∞

as n, d → ∞. Summarising all steps so far we conclude

0 ≤ EXE0[Z − 1]2 = E[Z2]− 1 ≤ 1− 1 + o(1) = o(1)

noting that (12) holds π-almost surely in view of

‖θ‖2F = γ2
n‖W‖2F = γ2

nd
2 = o(n−1/2).

Step V: Asymptotic concentration of π on H1: Finally we show that for the
above prior we have indeed Π(H1) → 1. First since θ consists of columns that
are linear combinations of at most k distinct vectors v� we immediately have
θ ∈ R(k) almost surely. Moreover, for the case ‖ · ‖ = ‖ · ‖F we have from the
last display and by definition of γn that ‖θ‖2F = ρ2n, so Π(H1) = 1 follows.

For the case ‖ · ‖ = ‖ · ‖∗ we have to show that

πn,d(‖θ‖∗ ≥ ρn) → 1

as min(n, d) → ∞. We can transform θ into the d × k matrix θU consisting of
k column vectors γn

√
d/kv�, � = 1, . . . , k. The corresponding d × k matrix U

consists of k column vectors, the �-th of which has zero entries except for the
indices m ∈ [�d/k, . . . ,−1 + (�+ 1)d/k], where it equals

√
k/dB�,m. Thus, U is

an orthonormal projection matrix and we deduce that

‖θ‖∗ ≥ ‖θU‖∗.

We can renormalise the column vectors of θU so that

θU = γn
d√
k

(
. . .

1√
d
v� . . .

)
≡ γn

d√
k
V.

The d× k matrix V consists of scaled i.i.d. Rademacher entries, and hence the
proof of Lemma 1 in [14] (with n = d, k = k1 = p in the first display on p.2868
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there) implies that, if k/d → 0, then with probability as close to one as desired,
the smallest singular value of V is bounded below by 1/2 for d large enough. As
a consequence ‖V ‖∗ ≥ k/2 and so, with probability approaching one,

‖θ‖∗ ≥ γnd
√
k/2 = ρn.

Note that the same lower bound holds for

‖θ −R(k0)‖∗ = inf
θ′∈R(k0)

‖θ − θ′‖∗ ≥
k∑

j=k0+1

|λj | ≥ (k − k0)/2 (14)

for any k0 < k, if the absolute eigenvalues in the last display are assumed to be
in decreasing order.

3.3. Proof of Theorem 4

Consider the composite testing problem

H0 : θ ∈ R(k0) vs. Hc
1 : θ ∈ R(k1), ‖θ −R(k0)‖∗ = inf

θ′∈R(k0)
‖θ − θ′‖∗ ≥ ρ.

(15)
From (14) with k = k1 and k0 = o(k1) we see that for min(n, d) large enough
such that (k1 − k0)/2 ≥ k1/4, the prior π from the previous proof with γn =
4ρn/(

√
kd) asymptotically concentrates on Hc

1 . As a consequence testing (15) is
no easier than when H0 = {0}, so that when ρ = o(

√
k1d/n) then the proof of

Part 2 of Theorem 1 implies

lim inf
n,d

inf
Ψ

[
sup
θ∈H0

EθΨ+ sup
θ∈Hc

1

Eθ(1−Ψ)

]
≥ 1. (16)

Now assume by way of contradiction that there exists Cn that satisfies (7) with
α < 1/3 and such that for every c > 0 there exist infinitely many n, d such that

sup
θ∈H0

Eθ|Cn|∗ < c
√
k1d/n.

Passing to the infinite subsequence min(n, d) → ∞ along which the last inequal-
ities hold, we deduce from Markov’s inequality that

sup
θ∈R(k0)

Pθ(|Cn|∗ ≥ α
√
k1d/n) ≤ c/α < α

for c small enough depending only on α. Then, by Proposition 8.6.3 in [6] we
can construct a test for (15) for which the testing errors in (16) are no more
than 3α < 1 along the chosen subsequence, a contradiction that completes the
proof.
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