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Abstract: We consider a finite mixture of Gaussian regression models for
high-dimensional data, where the number of covariates may be much larger
than the sample size. We propose to estimate the unknown conditional
mixture density by a maximum likelihood estimator, restricted on relevant
variables selected by an �1-penalized maximum likelihood estimator. We
get an oracle inequality satisfied by this estimator with a Jensen-Kullback-
Leibler type loss. Our oracle inequality is deduced from a general model
selection theorem for maximum likelihood estimators on a random model
subcollection. We can derive the penalty shape of the criterion, which de-
pends on the complexity of the random model collection.
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1. Introduction

The goal of clustering methods is to discover a structure among individuals
described by several variables. Specifically, in regression case, given n observa-
tions (x,y) = ((x1, y1), . . . , (xn, yn)) which are realizations of random variables
(X,Y ) with X ∈ Rp and Y ∈ Rq, one aims at grouping the data into clusters
such that the observations Y conditionally to X in the same cluster are more
similar to each other than those from the other clusters. Different methods could
be considered, more geometric or more statistical. We are dealing with model-
based clustering, in order to have a rigorous statistical framework to assess the
number of clusters and the role of each variable. This method is known to have
good empirical performance relative to its competitors, see for instance [20].

Often, datasets are described by a lot of explicative variables, sometimes
much more than the sample size. All the information should not be relevant for
the clustering. To solve this problem, we propose a procedure which provides a
data clustering from variable selection. In a density estimation way, we could
refer to Pan and Shen, in [15], who focus on mean variable selection, Zhou
and Pan, in [25], who use the Lasso estimator to regularize Gaussian mixture
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model with general covariance matrices, Sun and Wand, in [19], who propose
to regularize the k-means algorithm to deal with high-dimensional data, Guo et
al. in [10], who propose a pairwise variable selection method. All those methods
deal with penalized model-based clustering.

In a regression framework, the Lasso estimator, introduced by Tibshirani in
[21], is a classical tool. Working well in practice, many efforts have been made
recently on this estimator to get some theoretical results. Under a variety of
different assumptions on the design matrix, we could get oracle inequalities
for the Lasso estimator. For example, we can state the restricted eigenvalue
condition, introduced by Bickel, Ritov and Tsybakov in [4], who get an oracle
inequality with this assumption. For an overview of existing results, refer for
example to [22].

Whereas focus on the estimation, the Lasso estimator could be used to se-
lect variables, and, for this goal, many results without strong assumptions are
proved. The first result in this way is from Meinshausen and Bühlmann, in [13],
who prove that, for neighborhood selection in Gaussian graphical models, under
a neighborhood stability condition, the Lasso estimator is consistent. Under dif-
ferent assumptions, as the irrepresentable condition, described in [24], one get
the same kind of result: true variables are selected consistently.

Thanks to those results, one could refit the estimation, after the variable
selection, with an estimator with better properties. In this article, we focus on
the maximum likelihood estimator on the estimated relevant set. In a linear
regression framework, we could refer to Massart and Meynet, in [12], or Belloni
and Chernozhukov, in [3], or also Sun and Zhang, [18] for using this idea.

In our case of finite mixture regression, we propose a procedure which is
based on a modeling that recasts variable selection and clustering problems
into a model selection problem. In mixture models, the choice of the number
of components is often solved by a model selection criterion. In this paper, we
select also the relevant variables by this criterion. Indeed, in practice, in high-
dimension, we do not have access to the whole model collection. It is then a
well-used procedure to restrict ourselves to a random subcollection of the whole
collection. This procedure is developed in [7], with methodology, computational
issues, simulations and data analysis. First, for some data-driven regulariza-
tion parameters, we construct a relevant variables set. Then, restricted on those
sets, we compute the maximum likelihood estimator. Considering the model
collection with various number of components and various sparsities, we select
a model thanks to the slope heuristic. Then, we get a clustering of the data
thanks to the maximum a posteriori principle. This procedure could be used to
cluster heterogeneous multivariate regression data and understand which vari-
ables explain the clustering, in high-dimension. Consider a regression clustering
could refine a clustering, and it could be more adapted for instance for pre-
diction. In this article, we focus on the theoretical point of view. We define a
penalized criterion which allows to select a model as good as possible, from
a non-asymptotic point of view. Penalizing the empirical contrast is an idea
emerging from the seventies. Akaike, in [1], proposed the Akaike’s Information
Criterion (AIC) in 1973, and Schwarz in 1978 in [16] suggested the Bayesian
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Information Criterion (BIC). Those criteria are based on asymptotic heuristics.
To deal with non-asymptotic observations, Birgé and Massart in [5] and Bar-
ron et al. in [23], define a penalized data-driven criterion, which leads to oracle
inequalities for model selection. In our context of regression, Cohen and Le Pen-
nec, in [6], proposed a general model selection theorem for maximum likelihood
estimation, adapted from Massart’s Theorem in [11]. Nevertheless, we can not
use it directly, because it is stated for a deterministic model collection, whereas
our data-driven model collection is random, constructed by the Lasso estimator.
It is important to consider a random subcollection model rather than the whole
collection because the whole collection is not tractable in practice, due to the
high-dimension. As Maugis-Rabusseau and Meynet have done in [14] to gener-
alize Massart’s Theorem, we extend the theorem to cope with the randomness
of our model collection. By applying this general theorem to the finite mixture
regression random model collection constructed by our procedure, we derive a
convenient theoretical penalty as well as an associated non-asymptotic penal-
ized criteria and an oracle inequality fulfilled by our Lasso-MLE estimator. The
advantage of this procedure is that it does not need any restrictive assumption.

To obtain the oracle inequality, we use a general theorem proposed by Massart
in [11], which gives the form of the penalty and associated oracle inequality in
term of the Kullback-Leibler and Hellinger loss. In our case of regression, Cohen
and Le Pennec, in [6], generalize this theorem in term of Kullback-Leibler and
Jensen-Kullback-Leibler loss. Those theorems are based on the centred process
control with the bracketing entropy, allowing to evaluate the size of the models.
Our setting is more general, because we work with a random family. We have
to control the centred process thanks to Bernstein’s inequality.

The rest of this article is organized as follows. In the Section 2, we define
the multivariate Gaussian mixture regression model, and we describe the main
steps of the procedure we propose. We also illustrate the requirement of refitting
by some simulations. We present our oracle inequality in the Section 3. In Sec-
tion 4, we illustrate the procedure on simulated dataset and benchmark dataset.
Finally, in Section 5, we give some tools to understand the proof of the oracle
inequality, with a global theorem of model selection with a random collection
in Section 5.1 and sketch of proofs after. All the technical details are given in
Appendix.

2. The Lasso-MLE procedure

In order to cluster high-dimensional regression data, we work with the multivari-
ate Gaussian mixture regression model. This model is developed in [17] in the
scalar response case. We generalize it in Section 2.1. Moreover, we want to con-
struct a model collection, with more or less components, and which is more or
less sparse, to solve the estimation issue. We propose, in Section 2.2, a procedure
called Lasso-MLE which constructs a model collection, with various sparsities
and various number of components, of Gaussian mixture regression models. The
different sparsities solve the high-dimensional problem. We conclude this section
with simulations, which illustrate the advantage of refitting.
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2.1. Gaussian mixture regression model

We observe n independent couples (xi, yi)1≤i≤n realizing the random variables
(X,Y ), where X ∈ Rp, and Y ∈ Rq comes from a probability distribution with
unknown conditional density denoted by s∗. To solve the clustering problem,
we use a finite mixture regression model. In particular, we approximate the
density of Y conditionally to X with a mixture of K multivariate Gaussian
regression models. If the observation i belongs to the cluster k, we are looking
for βk ∈ R

q×p such that yi = βkxi + ε, where ε ∼ Nq(0,Σk). Remark that we
also have to estimate the number of clusters K.

Thus, the random response variable Y ∈ R
q depends on a set of random

explanatory variables, written X ∈ R
p, through a regression-type model. Give

more precisions on the assumptions on the model we use.

• The variables Yi, conditionally toXi, are independent for all i ∈ {1, . . . , n};
• Yi|Xi = xi ∼ sKξ (y|xi)dy, with

sKξ (y|x) =
K∑

k=1

πk

(2π)q/2det(Σk)1/2
exp

(
− (y − βkx)

tΣ−1
k (y − βkx)

2

)
(1)

ξ = (π1, . . . , πK , β1, . . . , βK ,Σ1, . . . ,ΣK) ∈ ΞK

ΞK =
(
ΠK × (Rq×p)K × (S++

q )K
)

ΠK =

{
(π1, . . . , πK);πk > 0 for k ∈ {1, . . . ,K} and

K∑
k=1

πk = 1

}

S
++
q is the set of symmetric positive definite matrices on R

q.

We want to estimate the conditional density function sKξ from the observa-
tions. For all k ∈ {1, . . . ,K}, βk is the matrix of regression coefficients, and Σk is
the covariance matrix in the mixture component k. The πks are the mixture pro-
portions. In fact, for a regressor x, for all k ∈ {1, . . . ,K}, for all z ∈ {1, . . . , q},
[βkx]z =

∑p
j=1[βk]z,jxj is the zth component of the mean of the mixture com-

ponent k. To deal with high-dimensional data, we select relevant variables.

Definition 2.1. A variable (z, j) ∈ {1, . . . , q}×{1, . . . , p} is said to be irrelevant
if, for all k ∈ {1, . . . ,K}, [βk]z,j = 0. A variable is relevant if it is not irrelevant.

A model is said to be sparse if there are a few of relevant variables.

We denote by A[J] the matrix A with 0 on the set cJ , and S(K,J) the model
with K components and with J for relevant variables set:

S(K,J) =
{
y ∈ R

q �→ s
(K,J)
ξ (y|x)

}
(2)

where

s
(K,J)
ξ (y|x) =

K∑
k=1

πk

(2π)q/2det(Σk)1/2
exp

(
− (y − β

[J]
k x)tΣ−1

k (y − β
[J]
k x)

2

)
.
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This is the main model used in this article. To construct the set of relevant
variables J , we use the Lasso estimator. Rather than select only one regulariza-
tion parameter, we consider a grid of regularization parameter, then it leads to
a model collection. Detail the procedure.

2.2. The Lasso-MLE procedure

The procedure we propose, which is particularly interesting in high-dimension,
could be decomposed into three main steps. First, we construct a model collec-
tion, with models more or less sparse and with more or less components. Then,
we refit estimations with the maximum likelihood estimator. Finally, we select
a model thanks to the slope heuristic. It leads to a clustering according to the
MAP principle on the selected model.

Model collection construction The first step consists of constructing a
collection of models {S(K,J)}(K,J)∈M in which the model S(K,J) is defined by
equation (2), and the model collection is indexed by M = K×J . We denote by
K ⊂ N

∗ the possible number of components, and by J a collection of subsets of
{1, . . . , q} × {1, . . . , p}.

To detect the relevant variables, and construct the set J for each model, we
generalize the Lasso estimator. Indeed, we penalize the empirical contrast by an
�1-penalty on the mean parameters proportional to

||Pkβk||1 =

p∑
j=1

q∑
z=1

|[Pkβk]z,j |,

where P t
kPk = Σ−1

k for all k ∈ {1, . . . ,K}. Then, we consider

ξ̂LassoK (λ) = argmin
ξ=(π,β,Σ)∈ΞK

{
− 1

n

n∑
i=1

log(sKξ (yi|xi)) + λ

K∑
k=1

πk||Pkβk||1

}
.

This leads to penalize simultaneously the �1-norm of the mean coefficients
and small variances. Computing those estimators lead to construct the relevant
variables set. For a fixed number of mixture components K ∈ K, denote by GK

a candidate of regularization parameters. Fixing a parameter λ ∈ GK , we could
then use an EM algorithm to compute the Lasso estimator, and construct the
set of relevant variables J(λ,K), saying the non-zero coefficients. We denote by
J the random collection of all these sets, J =

⋃
K∈K

⋃
λ∈GK

J(λ,K).

Refitting The second step consists of approximating the maximum likelihood
estimator

ŝ(K,J) = argmin
t∈S(K,J)

{
− 1

n

n∑
i=1

log(t(yi|xi))

}

using an EM algorithm for each model (K,J) ∈ K×J . Remark that we estimate
all parameters, to reduce bias induced by the Lasso estimator.
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Model selection The third step is devoted to model selection. We get a model
collection, and we need to select the best one. Because we do not have access to
s∗, we can not take the one which minimizes the risk. The Theorem 3.2 solves
this problem: we get a penalty achieving to an oracle inequality. Then, even if
we do not have access to s∗, we know that we can do almost like the oracle.

2.3. Why refit the Lasso estimator?

In order to illustrate the refitting, we compute multivariate data, the restricted
eigenvalue condition being not satisfied, and run our procedure. We consider an
extension of the model studied in Giraud et al. article [2] in the Section 6.3.
Indeed, this model is a linear regression with a scalar response which does not
satisfy the restricted eigenvalues condition. Then, we define different classes, to
get a finite mixture regression model, which does not satisfied the restricted
eigenvalues condition, and extend the dimension for multivariate response. We
could compare the result of our procedure with the Lasso estimator, to illustrate
the oracle inequality we get. Let precise the model.

Let [x]1, [x]2, [x]3 be three vectors of Rn defined by

[x]1 = (1,−1, 0, . . . , 0)t/
√
2

[x]2 = (−1, 1.001, 0, . . . , 0)t/
√
1 + 0.0012

[x]3 = (1/
√
2, 1/

√
2, 1/n, . . . , 1/n)t/

√
1 + (n− 2)/n2

and for 4 ≤ j ≤ n, let [x]j be the jth vector of the canonical basis of Rn. We
take a sample of size n = 20, and vectors of size p = q = 10. We consider two
classes, each of them defined by [β1]z,j = 10 and [β2]z,j = −10 for j ∈ {1, . . . , 2},
z ∈ {1, . . . , 10}. Moreover, we define the covariance matrix of the noise by a
diagonal matrix with 0.01 for diagonal coefficients in each class.

We run our procedure on this model, and compare it with the Lasso estimator,
without refitting. We compute the model selected by the slope heuristic over
the model collection constructed by the Lasso estimator. In Figure 1 stand the
boxplots of each procedure, running 20 times. The Kullback-Leibler divergence
is computed over a sample of size 5000.

Fig 1. Boxplot of the Kullback-Leibler divergence between the true model and the one con-
structed by each procedure, the Lasso-MLE procedure and the Lasso estimator.



2648 E. Devijver

We could see that a refitting after variable selection by the Lasso estimator
leads to a better estimation, according to the Kullback-Leibler loss.

3. An oracle inequality for the Lasso-MLE model

Before state the main theorem of this article, we need to precise some definitions
and notations.

3.1. Notations and framework

We assume that the observations (xi, yi)1≤i≤n are i.i.d. realizations of random
variables (X,Y ), where X ∈ R

p and Y ∈ R
q.

For (K,J) ∈ K × J , for a model S(K,J), we denote by ŝ(K,J) the maximum
likelihood estimator

ŝ(K,J) = argmin
s
(K,J)
ξ ∈S(K,J)

(
−

n∑
i=1

log s
(K,J)
ξ (yi|xi)

)
.

The best model in this collection is the one with the smallest risk. However,
because we do not have access to the true density s∗, we can not select the
best model, which we call the oracle. Thereby, there is a trade-off between a
bias term measuring the closeness of s∗ to the set S(K,J), and a variance term
depending on the complexity of the set S(K,J) and on the sample size. A good
set S(K,J) is one for which this trade-off leads to a small risk bound. Because
we are working with a maximum likelihood approach, the most natural quality
measure is thus the Kullback-Leibler divergence denoted by KL.

KL(s, t) =

⎧⎪⎨
⎪⎩

∫
R

log

(
s(y)

t(y)

)
s(y)dy if sdy << tdy;

+∞ otherwise;

(3)

for s and t two densities.
As we deal with conditional densities, the previous divergence should be

adapted. We define the tensorized Kullback-Leibler divergence by

KL⊗n(s, t) = E

[
1

n

n∑
i=1

KL(s(.|xi), t(.|xi))

]
.

Namely, we use the Jensen-Kullback-Leibler divergence JKLρ with ρ ∈ (0, 1),
which is defined by

JKLρ(s, t) =
1

ρ
KL(s, (1− ρ)s+ ρt);

and the tensorized one

JKL⊗n
ρ (s, t) = E

[
1

n

n∑
i=1

JKLρ(s(.|xi), t(.|xi))

]
.
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This divergence is studied in [6]. We use this divergence rather than the Kullback-
Leibler one because we need a boundedness assumption on the controlled func-

tions that is not satisfied by the log-likelihood differences− log(s
(K,J)
ξ /s∗). When

considering the Jensen-Kullback-Leibler divergence, those ratios are replaced by
ratios

−1

ρ
log

(
(1− ρ)s∗ + ρs

(K,J)
ξ

s∗

)

that are close to the log-likelihood differences when s
(K,J)
ξ are close to s∗ and

always upper bounded by − log(1 − ρ)/ρ. Indeed, this bound is needed to use
deviation inequalities for sum of random variables and its supremum, which is
the key of the proof of oracle type inequality.

3.2. Oracle inequality

We denote by (S(K,J))(K,J)∈K×JL the model collection constructed by the Lasso-

MLE procedure, with J L a random subcollection of P({1, . . . , q} × {1, . . . , p})
constructed by the Lasso estimator. The grid of regularization parameter con-
sidered is data-driven, then random. Because we work in high-dimension, we
could not look at all subsets of P({1, . . . , q}×{1, . . . , p}). Considering the Lasso
estimator through its regularization path is the solution chosen here, but it
needs more control because of the random family. To get theoretical results,
we need to work with restricted parameters. Assume that Σk is diagonal, with
Σk = diag([Σk]1,1, . . . , [Σk]q,q), for all k ∈ {1, . . . ,K}. We define

SB
(K,J) =

{
s
(K,J)
ξ ∈ S(K,J)

∣∣∣ for all k ∈ {1, . . . ,K}, β[J]
k ∈ [−Aβ , Aβ ]

q×p,

aΣ ≤ [Σk]z,z ≤ AΣ for all z ∈ {1, . . . , q}, for all k ∈ {1, . . . ,K}
}
. (4)

Moreover, we assume that the covariates X belong to an hypercube. Without
any restriction, we could assume that X ∈ [0, 1]p.

Remark 3.1. We have to denote that in this article, the relevant variables
set is designed by the Lasso estimator. Nevertheless, any tool could be used to
construct this set, and we obtain similar results. We could work with any random
subcollection of P({1, . . . , q} × {1, . . . , p}), the controlled size being required in
high-dimension case.

Theorem 3.2. Let (xi, yi)1≤i≤n the observations, with unknown conditional
density s∗. Let S(K,J) defined by (2). For (K,J) ∈ K×J L, J L being a random
subcollection of P({1, . . . , q} × {1, . . . , p}) constructed by the Lasso estimator,
denote by SB

(K,J) the model defined by (4).
Consider the maximum likelihood estimator

ŝ(K,J) = argmin
s
(K,J)
ξ ∈SB

(K,J)

{
− 1

n

n∑
i=1

log s
(K,J)
ξ (yi|xi)

}
.
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Denote by D(K,J) the dimension of the model SB
(K,J), D(K,J) = K(|J |+q+1)−1.

Let s̄(K,J) ∈ SB
(K,J) such that

KL⊗n(s∗, s̄(K,J)) ≤ inf
t∈SB

(K,J)

KL⊗n(s∗, t) +
δKL

n
;

and let τ > 0 such that

s̄(K,J) ≥ e−τs∗. (5)

Let pen : K × J → R+, and suppose that there exists an absolute constant
κ > 0 and an absolute constant B(Aβ , AΣ, aΣ) such that, for all (K,J) ∈ K×J ,

pen(K,J) ≥ κ
D(K,J)

n

[
B2(Aβ , AΣ, aΣ)− log

(
D(K,J)

n
B2(Aβ , AΣ, aΣ) ∧ 1

)

+(1 ∨ τ) log

(
4epq

(D(K,J) − q) ∧ pq

)]
.

Then, the estimator ŝ(K̂,Ĵ), with

(K̂, Ĵ) = argmin
(K,J)∈K×JL

{
− 1

n

n∑
i=1

log(ŝ(K,J)(yi|xi)) + pen(K,J)

}
,

satisfies

E
[
JKL⊗n

ρ (s∗, ŝ(K̂,Ĵ))
]

≤C1 E

(
inf

(K,J)∈K×JL

(
inf

t∈SB
(K,J)

KL⊗n(s∗, t) + pen(K,J)

))
+ C2

(1 ∨ τ)

n
;

for some absolute positive constants C1 and C2.

This oracle inequality compares performances of our estimator with the best
model in the collection. Nevertheless, as we consider mixture of Gaussian, if
we take enough clusters, we could approximate well a lot of densities, then
the term in the right-hand side is small for K well-chosen. This result could
be compared with the oracle inequality get in [17], Theorem 4. Indeed, under
restricted eigenvalues condition and fixed design, they get an oracle inequality
for the Lasso estimator in finite mixture regression model, with scalar response
and high-dimension regressors. Note that they control the divergence with the
true parameters. We get a similar result for the Lasso-MLE estimator. Moreover,
our procedure work in a more general framework, the only assumption needed
is to be bounded.

Remark that the penalty is proportional to the dimension of the model, up to
a logarithm. This term is needed for two reasons. First, for the proof, we compute
the bracketing entropy of the whole model rather than the local bracketing
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entropy, which is not optimal. Moreover, this penalty takes into account the
model collection complexity. Perhaps, because of the high-dimension, a large
number of models have the same dimension. Remark that the penalty is the same
as if we have considered the whole collection, but it is not tractable in practice.
The only assumption needed for the random subcollection is the Assumption (5).
Nevertheless, it is not really restrictive, see Section 5.1 for more discussion about
this Assumption.

4. Numerical experiments

To illustrate this procedure, we study some simulations and real data. The
main algorithm is a generalized version of the EM algorithm, which is used
many times for the procedure. We first use it to compute maximum likelihood
estimator, to construct the regularization parameter grid. Then, we use it to
compute the Lasso estimator for each regularization parameter belonging to
the grid, and we are able to construct the relevant variables set. Finally, we
could compute the maximum likelihood estimator, restricted to those relevant
variables in each model. Among this model collection, we select one using the
Capushe package. More details, as initialization rule, stopping rule, and more
numerical experiments, are available in [7].

4.1. Simulation illustration

We illustrate the procedure on a simulated dataset, adapted from [17].
Let x be a sample of size n = 100 distributed according to multivariate

standard Gaussian. We consider a mixture of two components, and we fix the
dimension of the regressor and of the response variables to p = q = 10. Besides,
we fix the number of relevant variables to 4 in each cluster. More precisely, the
first four variables of Y are explained respectively by the four first variables of

X. Fix π = ( 12 ,
1
2 ), β

[J]
1 = 3, β

[J]
2 = −2 and Pk = 3Iq for all k ∈ {1, 2}.

The difficulty of the clustering is partially controlled by the signal-to-noise
ratio. In this context, we could extend the natural idea of the SNR with the
following definition, where Tr(A) denotes the trace of the matrix A.

SNR =
Tr(Var(Y ))

Tr(Var(Y |βk = 0 for all k ∈ {1, . . . ,K})) = 1.88.

We take a sample of Y knowing X = x according to a Gaussian mixture,
centered in βkx and with covariance matrix Σk = (P t

kPk)
−1 = σIq, for the

cluster k ∈ {1, 2}. We run our procedure with the number of components varying
in K = {2, . . . , 5}.

To compare our procedure with others, we compute the Kullback-Leibler
divergence with the true density, the ARI (the Adjusted Rand Index measures
the similarity between two data clusterings, knowing that the closer to 1 the
ARI, the more similar the two partitions), and how many clusters are selected.
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Fig 2. Boxplots of the Kullback-Leibler divergence between the true model and the one selected
by the procedure over the 20 simulations, for the Lasso-MLE procedure (LMLE), the oracle
(Oracle), and the BIC estimator (BIC).

Fig 3. Boxplots of the ARI over the 20 simulations, for the Lasso-MLE procedure (LMLE),
the oracle (Oracle), the BIC estimator (BIC) and the MLE (MLE).

From the Lasso-MLE model collection, we construct two models, to compare
our procedure with. We compute the oracle (the model which minimizes the
Kullback-Leibler divergence with the true density), and the model which is se-
lected by the BIC criterion instead of the slope heuristic. Thanks to the oracle,
we know how good we could be from this model collection for the Kullback-
Leibler divergence, and how this model, as good it is possible for the contrast,
performs the clustering. The third procedure we compare with is the maxi-
mum likelihood estimator, assuming that we know how many clusters there
are, fixed to 2. We use this procedure to show that variable selection is neces-
sary.

Results are summarized in Figure 2 and in Figure 3. The Kullback-Leibler
divergence is smaller for models coming from our model collection (either by
BIC, or by slope heuristic, or the oracle) than for the model constructed by the
MLE, which we do not plot in Figure 2 for easier reading. The ARI is closer to 1
in those cases. We could conclude that the model collection is well constructed,
selecting relevant variables, and also that the model is well selected among this
collection, near the oracle.
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Fig 4. Summarized results for the model 1. The graph on the left is a candidate for repre-
senting each cluster, constructed by the mean of reconstructed spectrum over an a posteriori
probability greater than 0.6. On the right side, we present the boxplot of the fat values in each
class, for observations with an a posteriori probability greater than 0.6.

4.2. Real data

We also illustrate the procedure on the Tecator dataset, which deals with spec-
trometric data. We summarize here results which are described in [7]. This data
has been studied in a lot of articles, refer for example to Ferraty and Vieu’s book
[8]. The data consists of a 100-channel spectrum of absorbances in the wave-
length range 850− 1050 nm, and of the percentage of fat. We observe a sample
of size 215. In this work, we focus on clustering data according to the reliance
between the fat content and the absorbance spectrum. The sample is split into
two subsamples, 165 observations for the learning set, and 50 observations for
the test set. We split it to have the same marginal distribution of the response
in each sample.

The spectrum is a function, which we decompose into the Haar basis, at
level 6.

The procedure selects two models, which we describe here. In Figure (4)
and Figure (5), we represent clusters done on the training set for the different
models.

The graph on the left is a candidate for representing each cluster, constructed
by the mean of spectrum over an a posteriori probability greater than 0.6. We
plot the curve reconstruction, keeping only relevant variables in the wavelet
decomposition. On the right side, we present the boxplot of the fat values in
each class, for observations with an a posteriori probability greater than 0.6.
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Fig 5. Summarized results for the model 2. The graph on the left is a candidate for repre-
senting each cluster, constructed by the mean of reconstructed spectrum over an a posteriori
probability greater than 0.6. On the right side, we present the boxplot of the fat values in each
class, for observations with an a posteriori probability greater than 0.6.

The first model has two clusters, which could be distinguish in the absorbance
spectrum by the bump on wavelength around 940 nm. The first class is domi-
nating, with π̂1 = 0.95. The fat content is smaller in the first class than in the
second class. According to the signal reconstruction, we could see that almost
all variables have been selected. This model seems consistent according to the
classification goal.

The second model has 3 clusters, and we could remark several wavelengths
which explain the clustering. Around 940 nm, there are some differences between
clusters, corresponding to the bump underline in the first model. Moreover,
around 970 nm, there are also some differences. The first class is dominating,
with π̂1 = 0.89. Just a few of variables have been selected, which give to this
model the understanding property of which coefficients are discriminating.

We could discuss about those models. The first selects only two clusters,
but almost all variables, whereas the second model has more clusters, and less
variables: there is a trade-off between clusters and variable selection for the
dimension reduction.

5. Tools for proof

In this section, we present the tools needed to understand the proof. First, we
present a general theorem for model selection in regression among a random
collection. Then, in Subsection 5.2, we present the proof of this theorem, and
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in the Subsection 5.3 we explain how we could use the main theorem to get the
oracle inequality. All details are available in Appendix.

5.1. General theory of model selection with the maximum likelihood
estimator.

To get an oracle inequality for our clustering procedure, we have to use a gen-
eral model selection theorem. Because the model collection constructed by our
procedure is random, because of the Lasso estimator which selects variables ran-
domly, we have to generalize Cohen and Le Pennec’s theorem. Begin by some
general model selection theory.

Before state the general theorem, begin by talk about the assumptions. We
work here in a more general context, (X,Y ) ∈ X × Y , and (Sm)m∈M defining
a model collection indexed by M. First, we impose a structural assumption on
each model indexed by m ∈ M. It is a bracketing entropy condition on the
model Sm with respect to the Hellinger divergence, defined by

(d⊗n

H )2(s, t) = E

[
1

n

n∑
i=1

d2H(s(.|xi), t(.|xi))

]
.

A bracket [l, u] is a pair of functions such that for all (x, y) ∈ X × Y , l(y, x) ≤
s(y|x) ≤ u(y, x). The bracketing entropy H[.](ε, S, d

⊗n

H ) of a set S is defined

as the logarithm of the minimum number of brackets [l, u] of width d⊗n

H (l, u)
smaller than ε such that every function of S belongs to one of these brackets. It
leads to the Assumption 1.

Assumption 1. There exists a non-decreasing function φm such that � �→
1
�φm(�) is non-increasing on (0,+∞) and for every � ∈ R+ and every sm ∈
Sm, ∫ �

0

√
H[.](ε, Sm(sm, �), d⊗n

H )dε ≤ φm(�);

where Sm(sm, �) = {t ∈ Sm, d⊗n

H (t, sm) ≤ �}. The model complexity Dm is
then defined as n�2

m with �m the unique root of

1

�
φm(�) =

√
n�. (6)

Remark that the model complexity depends on the bracketing entropies not
of the global models Sm but of the ones of smaller localized sets. This is a weaker
assumption.

For technical reason, a separability assumption is also required.

Assumption 2. There exists a countable subset S
′

m of Sm and a set Y ′

m with
λ(Y \ Y ′

m) = 0 such that for every t ∈ Sm, there exists a sequence (tl)l≥1 of

elements of S
′

m such that for every x and every y ∈ Y ′

m, log(tl(y|x)) goes to
log(t(y|x)) as l goes to infinity.

This assumption leads to work with a countable family, which allows to cope
with the randomness of ŝm. We also need an information theory type assumption
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on our collection. We assume the existence of a Kraft-type inequality for the
collection.

Assumption 3. There is a family (wm)m∈M of non-negative numbers such that∑
m∈M

e−wm ≤ Ω < +∞.

The difference with Cohen and Le Pennec’s Theorem is that we consider a
random collection of models M̌, included in the whole collection M. In our
procedure, we deal with high-dimensional models, and we cannot test all the
models: we have to restrict ourselves to a smaller subcollection of models, which
is then random. In the proof of the theorem, we have to be careful with the
recentred process of − log(s̄m/s∗). Because we conclude by taking the expecta-
tion, if M is fixed, this term is equal to zero, but if we consider a random family,
we have to use the Bernstein inequality to control this quantity, and then we
have to make the assumption (7).

Let state our main global theorem.

Theorem 5.1. Assume we observe (xi, yi)1≤i≤n with unknown conditional den-
sity s∗. Let the model collection S = (Sm)m∈M be at most countable collection
of conditional density sets. Assume Assumption 3 holds, while Assumption 1
and Assumption 2 hold for every m ∈ M. Let δKL > 0, and s̄m ∈ Sm such that

KL⊗n(s∗, s̄m) ≤ inf
t∈Sm

KL⊗n(s∗, t) +
δKL

n
;

and let τ > 0 such that
s̄m ≥ e−τs∗. (7)

Introduce (Sm)m∈M̌ some random subcollection of (Sm)m∈M. Consider the
collection (ŝm)m∈M̌ of η-log-likelihood minimizer in Sm, satisfying, for all m ∈
M̌,

n∑
i=1

− log(ŝm(yi|xi)) ≤ inf
sm∈Sm

(
n∑

i=1

− log(sm(yi|xi))

)
+ η.

Then, for any ρ ∈ (0, 1) and any C1 > 1, there are two constants κ0 and C2

depending only on ρ and C1 such that, as soon as for every index m ∈ M,

pen(m) ≥ κ(Dm + (1 ∨ τ)wm) (8)

with κ > κ0, and where the model complexity Dm is defined in (6), the penalized
likelihood estimate ŝm̂ with m̂ ∈ M̌ such that

−
n∑

i=1

log(ŝm̂(yi|xi)) + pen(m̂) ≤ inf
m∈M̌

(
−

n∑
i=1

log(ŝm(yi|xi)) + pen(m)

)
+ η

′

satisfies

E(JKL⊗n
ρ (s∗, ŝm̂)) ≤C1 E

(
inf

m∈M̌

(
inf

t∈Sm

KL⊗n(s∗, t)

)
+ 2

pen(m)

n

)

+ C2(1 ∨ τ)
Ω2

n
+

η′ + η

n
. (9)



Finite mixture regression 2657

Obviously, one of the models minimizes the right hand side. Unfortunately,
there is no way to know which one without knowing s∗. Hence, this oracle model
can not be used to estimate s∗. We nevertheless propose a data-driven strategy
to select an estimate among the collection of estimates {ŝm}m∈M̌ according to a
selection rule that performs almost as well as if we had known this oracle, accord-
ing to the absolute constant C1. Using simply the log-likelihood in each model as
a criterion is not sufficient. It is an underestimation of the true risk of the esti-
mate and this leads to select models too complex. By adding an adapted penalty
pen(m), one hopes to compensate for both the variance term and the bias term
between −1/n

∑n
i=1 log(ŝm̂(yi|xi)/s

∗(yi|xi)) and infsm∈Sm KL⊗n(s∗, sm). For a
given choice of pen(m), the best model Sm̂ is chosen as the one whose index is
a minimizer of the penalized η-log-likelihood.

Talk about the assumption (7). If s is bounded, with a compact support, this
assumption is satisfied. It is also satisfied in other cases, more particular. Then
it is not a strong assumption, but it is needed to control the random family.

This theorem is available for whatever model collection constructed, whereas
Assumption 1, Assumption 2 and Assumption 3 are satisfied. In the following,
we use this theorem for the procedure we propose to cluster high-dimensional
data. Nevertheless, this theorem is not specific for our context, and could be
used whatever the problem.

Remark that the constant associated to the Assumption 3 appears squared in
the bound. It is due to the random subcollection M̌ ofM, if the model collection
is fixed, we get a linear bound. Moreover, the weights wm appear linearly in the
penalty bound.

5.2. Proof of the general theorem

For any model Sm, we have denoted by s̄m a function such that

KL⊗n(s∗, s̄m) ≤ inf
sm∈Sm

KL⊗n(s∗, sm) +
δKL

n
.

Fix m ∈ M such that KL⊗n(s∗, s̄m) < +∞. Introduce

M(m) =

{
m′ ∈ M

∣∣∣∣∣Pn(− log ŝm′ ) +
pen(m

′
)

n

≤ Pn(− log ŝm) +
pen(m)

n
+

η
′

n

}
;

where Pn(g) = 1/n
∑n

i=1 g(yi|xi). We define the functions kl(s̄m), kl(ŝm) and
jklρ(ŝm) by

kl(s̄m) = − log
( s̄m
s∗

)
; kl(ŝm) = − log

(
ŝm
s∗

)
;

jklρ(ŝm) = −1

ρ
log

(
(1− ρ)s∗ + ρŝm

s∗

)
.
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For every m
′ ∈ M(m), by definition,

Pn(kl(ŝm′ )) +
pen(m

′
)

n
≤Pn(kl(ŝm)) +

pen(m) + η
′

n

≤Pn(kl(s̄m)) +
pen(m) + η

′
+ η

n
.

Let ν⊗n
n (g) denotes the recentred process Pn(g) − P⊗n(g). By concavity of

the logarithm,
kl(ŝm′ ) ≥ jklρ(ŝm′ ),

and then

P⊗n(jklρ(ŝm′ ))− ν⊗n
n (kl(s̄m))

≤P⊗n(kl(s̄m)) +
pen(m)

n
− ν⊗n

n (jklρ(ŝm′ )) +
η

′
+ η

n
− pen(m

′
)

n
,

which is equivalent to

JKL⊗n
ρ (s∗, ŝm′ )− ν⊗n

n (kl(s̄m)) ≤KL⊗n(s∗, s̄m) +
pen(m)

n
− ν⊗n

n (jklρ(ŝm′ ))

+
η

′
+ η

n
− pen(m

′
)

n
. (10)

Mimic the proof as done in Cohen and Le Pennec in [6], we could obtain that
except on a set of probability less than e−w

m
′ −w, for all w, for all zm′ > σm′ ,

there exist absolute constants κ
′

0, κ
′

1, κ
′

2 such that

−ν⊗n
n (jklρ(ŝm′ ))

z2
m′ + κ

′
0(d

⊗n

H )2(s∗, ŝm′ )
≤ κ

′

1σm′

zm′
+ κ

′

2

√
wm′ + w

nz2
m′

+
18

ρ

wm′ + w

nz2
m′

. (11)

To obtain this inequality we use Assumption 1 and Assumption 2. This con-
trol is derived from maximal inequalities, described in [11].

Our purpose is now to control ν⊗n
n (kl(s̄m)). This is the difference with the

Theorem of Cohen and Le Pennec: we work with a random subcollection M̌
of M.

By definition of kl and ν⊗n
n ,

ν⊗n
n (kl(s̄m)) = − 1

n

n∑
i=1

log

(
s̄m(yi|xi)

s∗(yi|xi)

)
+ E

[
1

n

n∑
i=1

log

(
s̄m(Yi|Xi)

s∗(Yi|Xi)

)]
.

We want to apply Bernstein’s inequality, which is recalled in Appendix.

If we denote by Zi the random variable Zi = − 1
n log( s̄m(Yi|Xi)

s∗(Yi|Xi)
), we get

ν⊗n
n (kl(s̄m)) =

n∑
i=1

(Zi − E(Zi)).

We need to control the moments of Zi to apply Bernstein’s inequality.
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Lemma 5.2. Let s∗ and s̄m two conditional densities with respect to the Lebesgue
measure. Assume that there exists τ > 0 such that log(|| s∗s̄m

||∞) ≤ τ . Then,

E

(
1

n

n∑
i=1

∫
Rq

(
log

(
s∗(y|xi)

s̄m(y|xi)

))2

s∗(y|xi)dy

)
≤ τ2

e−τ + τ − 1
KL⊗n(s∗, s̄m).

We prove this lemma in Appendix A.2.

Because τ2

e−τ+τ−1 ∼
τ→∞

τ , there exists A such that τ2

e−τ+τ−1 ≤ 2τ for all

τ ≥ A. For τ ∈ (0, A], because this function is continuous and equivalent to 2

in 0, there exists B > 0 such that τ2

e−τ+τ−1 ≤ B. We obtain that
∑n

i=1 E(Z
2
i ) ≤

1
nδ(1 ∨ τ)KL⊗n(s∗, s̄m), where δ = 2 ∨B.

Moreover, for all integers K ≥ 3,

n∑
i=1

E((Zi)
K
+ ) ≤

n∑
i=1

1

nK

∫
Rq

(
log

(
s∗(y|xi)

s̄m(y|xi)

))K

+

s∗(y|xi)dy

≤ n

nK

∫
Rq

log

(
s∗(y|x)
s̄m(y|x)

)K−2

log

(
s∗(y|x)
s̄m(y|x)

)2

× 1s∗(y|x)≥s̄m(y|x)s
∗(y|x)dy

≤ n

nK
τK−2δ(1 ∨ τ)KL⊗n(s∗, s̄m).

Assumptions of Bernstein’s inequality are then satisfied, with

v =
δ(1 ∨ τ)KL⊗n(s∗, s̄m)

n
, c =

τ

n
,

thus, for all u > 0, except on a set with probability less than e−u,

ν⊗n
n (kl(s̄m)) ≤

√
2vu+ cu.

Thus, for all z > 0, for all u > 0, except on a set with probability less than e−u,

ν⊗n
n (kl(s̄m))

z2 +KL⊗n(s∗, s̄m)
≤

√
2vu+ cu

z2 +KL⊗n(s∗, s̄m)
≤

√
vu

z
√

2KL⊗n(s∗, s̄m)
+

cu

z2
. (12)

We apply this bound to u = w + wm + wm′ . We get that, except on a set
with probability less than e−(w+wm+wm′ ), using that a2 + b2 ≥ a2, from the
inequality (11),

−ν⊗n
n (jklρ(ŝm′)) ≤

(
z2m′ + κ′

0(d
⊗n

H )2(s∗, ŝm′)
)(κ′

1 + κ′
2

θ
+

18

θ2ρ

)
,

and, from the inequality (12),

ν⊗n
n (kl(s̄m)) ≤ (β + β2)

(
z2m,m′ +KL⊗n(s, sm)

)
,
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where we have chosen

zm′ = θ

√
σ2
m′ +

wm′ + w

n
,

with θ > 1 to fix later, and

zm,m′ = β−1

√(
v

2KL⊗n(s∗, s̄m)
+ c

)
(w + wm + wm′),

with β > 0 to fix later.
Coming back to the inequality (10),

JKL⊗n
ρ (s∗, ŝm′) ≤KL⊗n(s∗, s̄m) +

pen(m)

n

+ (z2m′ + κ′
0(d

⊗n

H )2(s∗, ŝm′))

(
κ′
1 + κ′

2

θ
+

18

θ2ρ

)

+
η′ + η

n
− pen(m′)

n
+ (β + β2)(z2m,m′ +KL⊗n(s∗, s̄m)).

Recall that s̄m is chosen such that

KL⊗n(s∗, s̄m) ≤ inf
sm∈Sm

KL⊗n(s∗, sm) +
δKL

n
.

Put κ(β) = 1+(β+β2), and let ε1 > 0, we define θ1 by κ′
0(

κ′
1+κ′

2

θ1
+ 18

θ2
1ρ
) = Cρε1

where Cρ is defined by Cρ(d
⊗n

H )2(s∗, ŝm′) ≤ JKL⊗n
ρ (s∗, ŝm′), and put κ2 =

Cρε1
κ0

.
We get that

(1− ε1) JKL⊗n
ρ (s∗, ŝm′) ≤κ(β)KL⊗n(s∗, sm) +

pen(m)

n
− pen(m′)

n

+ κ(β)
δKL

n
+

η′ + η

n
+ z2m′κ2 + (β + β2)z2m,m′ .

Since τ ≤ 1 ∨ τ , if we choose β such that (β + β2)(δ/2 + 1) = αθ−2
1 β−2, and

if we put κ1 = αγ−2(β−2 + 1), since 1 ≤ 1 ∨ τ , using the expressions of zm′

and zm,m′ , we get that

(1− ε1) JKL⊗n
ρ (s∗, ŝm′) ≤κ(β)KL⊗n(s∗, sm) +

pen(m)

n
− pen(m′)

n

+ κ(β)
δKL

n
+

η′ + η

n

+ κ2θ
2
1

(
σ2
m′ +

w + wm′

n

)

+ κ1(1 ∨ τ)
w + wm + wm′

n

≤κ(β)KL⊗n(s∗, sm) +

(
pen(m)

n
+ κ1(1 ∨ τ)

wm

n

)
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− pen(m′)

n
+ κ2θ

2
1

(
σ2
m′ +

wm′

n

)
+ κ1(1 ∨ τ)

wm′

n

+
δKL

n
+

η′ + η

n
+ (κ2θ

2
1 + κ1(1 ∨ τ))

w

n
.

Now, assume that κ1 ≥ κ in inequality (8), we get

(1− ε1) JKL⊗n
ρ (s∗, ŝm′) ≤κ(β)KL⊗n(s∗, sm) + 2

pen(m)

n
+

δKL

n
+

η + η′

n

+ (κ2θ
2
1 + κ1(1 ∨ τ))

w

n
.

It only remains to sum up the tail bounds over all the possible values of m ∈ M
and m′ ∈ M(m) by taking the union of the different sets of probability less
than e−(w+wm+wm′ ),∑

m∈M
m′∈M(m)

e−(w+wm+wm′ ) ≤ e−w
∑

(m,m′)∈M×M
e−(wm+wm′ )

= e−w

( ∑
m∈M

e−wm

)2

= Ω2e−w

from the Assumption 3.
We then have simultaneously for all m ∈ M, for all m′ ∈ M(m), except on

a set with probability less than Ω2e−w,

(1− ε1) JKL⊗n
ρ (s∗, ŝm′) ≤κ(β)KL⊗n(s∗, sm) + 2

pen(m)

n
+

δKL

n

+
η + η′

n
+
(
κ2θ

2
1 + κ1(1 ∨ τ)

) w
n
.

It is in particular satisfied for allm ∈ M̌ andm′ ∈ M̌(m), and, since m̂ ∈ M̌(m)
for all m ∈ M̌, we deduce that except on a set with probability less than Ω2e−w,

JKL⊗n
ρ (s∗, ŝm̂) ≤ 1

(1− ε1)
×
(

inf
m∈M̌

{
κ(β)KL⊗n(s∗, sm) + 2

pen(m)

n

}

+
δKL

n
+

η + η′

n
+
(
κ2θ

2
1 + κ1(1 ∨ τ)

) w
n

)
.

By integrating over all w > 0, because for any non negative random variable Z
and any a > 0, E(Z) = a

∫
z≥0

P (Z > az)dz, we obtain that

E

(
JKL⊗n

ρ (s∗, ŝm̂)− 1

(1− ε1)
inf

m∈M̌

(
κ(β)KL⊗n(s∗, sm) + 2

pen(m)

n

)

− 1

(1− ε1)

δKL + η + η′

n
κ0θ

2

)

≤
(
κ2θ

2
1 + κ1(1 ∨ τ)

) Ω2

n
.
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As δKL can be chosen arbitrary small, this implies that

E(JKL⊗n(s∗, ŝm̂)) ≤ 1

1− ε1
E

(
inf

m∈M̌
κ(β)KL⊗n(s∗, sm) +

pen(m)

n

)

+
η + η′

n
+ (κ2θ

2
1 + κ1(1 ∨ τ))

Ω2

n

≤C1 E

(
inf

m∈M̌

(
inf

t∈Sm

KL⊗n(s∗, t)

)
+

pen(m)

n

)

+ C2(1 ∨ τ)
Ω2

n
+

η′ + η

n

with C1 = 2
1−ε1

and C2 = κ2θ
2
1 + κ1.

5.3. Sketch of the proof of the oracle inequality 3.2

To prove the Theorem 3.2, we have to apply the Theorem 5.1. Then, our model
collection has to satisfy all the assumptions. Here, the model is defined by m =
(K,J). The Assumption 2 is true when we consider Gaussian densities. If s∗ is
bounded, with compact support, the assumption defined by (7) is satisfied. It is
also true in other particular cases. Our model has o satisfy Assumption 1 and
Assumption 3. Here we present only the main steps to prove these assumptions.
All the technical details stand in Appendix.

5.3.1. Assumption 1

We could take φm(�) =
∫�

0

√
H[.](ε, Sm, d⊗n

H )dε for all � > 0. It could be

better to consider more local version of the integrated square root entropy, but
the global one is enough in this case to define the penalty. As done in Cohen
and Le Pennec in [6], we could decompose the entropy by

H[.](ε,SB
(K,J), d

⊗n

H ) ≤ H[.](ε,ΠK , d⊗n

H ) +KH[.](ε,FJ , d
⊗n

H )

where

SB
(K,J) =

⎧⎪⎨
⎪⎩

y ∈ R
q|x ∈ R

p �→ s
(K,J)
ξ (y|x) =

∑K
k=1 πkϕ(y|β[J]

k x,Σk)

ξ =
{
π1, . . . , πK , β

[J]
1 , . . . , β

[J]
K ,Σ1, . . . ,ΣK

}
∈ Ξ̃(K,J)

Ξ̃(K,J) = ΠK × ([−Aβ , Aβ ]
q×p)K × ([aΣ, AΣ]

q)K

⎫⎪⎬
⎪⎭

ΠK =

{
(π1, . . . , πK) ∈ (0, 1)K ;

K∑
k=1

πk = 1

}

FJ =
{
ϕ(.|β[J]X,Σ);β[J] ∈ [−Aβ , Aβ ]

q×p,

Σ = diag([Σ]1,1, . . . , [Σ]q,q) ∈ [aΣ, AΣ]
q
}

where ϕ denote the Gaussian density, and Aβ , aΣ, AΣ are absolute constants.
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Calculus for the proportions We could apply a result proved byWasserman
and Genovese in [9] to bound the entropy for the proportions. We get that

H[.](ε,ΠK , d⊗n

H ) ≤ log

(
K(2πe)K/2

(
3

ε

)K−1
)
.

Calculus for the Gaussian The family

Bε(FJ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

l(y, x) = (1 + δ)−p2q−3q/4ϕ(y|νJx, (1 + δ)−1/4B[1])

u(y, x) = (1 + δ)p
2q+3q/4ϕ(y|νJx, (1 + δ)B[2])

B[a] = diag(bi(1), . . . , bi(q)),
with i a permutation, for a ∈ {1, 2},

and

⎧⎨
⎩

bl = (1 + δ)1−l/2AΣ, l ∈ {2, . . . , N}
∀(z, j) ∈ Jc, νz,j = 0
∀(z, j) ∈ J, νz,j =

√
cδAΣuz,j

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)

is an ε-bracket covering for FJ , where uz,j is a net for the mean, N is the
number of parameters needed to recover all the variance set, δ = 1√

2(p2q+3/4q)
ε,

and c = 5(1−2−1/4)
8 .

We obtain that

|Bε(FJ)| ≤ 2

(
2Aβ√
cAΣ

)|J|(
AΣ

aΣ
+

1

2

)
δ−1−|J|;

and then we get

H[.](ε,FJ , d
⊗n

H ) ≤ log

(
2

(
2Aβ√
cAΣ

)|J|(
AΣ

aΣ
+

1

2

)
δ−1−|J|

)
.

Proposition 5.3. Put D(K,J) = K(1 + |J |). For all ε ∈ (0, 1),

H[.](ε,SB
(K,J), d

⊗n

H ) ≤ log(C) +D(K,J) log

(
1

ε

)
;

with

C = 2K(2πe)K/2

(
2Aβ√
cAΣ

)K|J|
3K−1

(
AΣ

aΣ
+

1

2

)K

.

Determination of a function φ We could take

φ(K,J)(�) =
√
D(K,J)�

[
B(Aβ , AΣ, aΣ) +

√
log

(
1

� ∧ 1

)]
.

This function is non-decreasing, and � �→ φ(K,J)(�)

� is non-increasing.



2664 E. Devijver

The root �(K,J) is the solution of φ(K,J)(�(K,J)) =
√
n�2

(K,J). With the
expression of φ(K,J), we get

�2
(K,J) =

√
D(K,J)

n
�

[
B(Aβ , AΣ, aΣ) +

√
log

(
1

�(K,J) ∧ 1

)]
.

Nevertheless, we know that �∗ =

√
D(K,J)

n B(Aβ , AΣ, aΣ) minimizes �(K,J): we
get

�2
(K,J) ≤

D(K,J)

n

[
2B2(Aβ , AΣ, aΣ) + log

(
1

D(K,J)

n B2(Aβ , AΣ, aΣ) ∧ 1

)]
.

5.3.2. Assumption 3

We want to group models by their dimension.

Lemma 5.4. The quantity

card{(K,J) ∈ N
∗ × P({1, . . . , q} × {1, . . . , p}), D(K,J) = D}

is upper bounded by {
2pq if pq ≤ D − q(

epq
D−q

)D−q

otherwise.

Proposition 5.5. Consider the weight family {w(K,J)}(K,J)∈K×J defined by

w(K,J) = D(K,J) log

(
4epq

(D(K,J) − q) ∧ pq

)
.

Then we have
∑

(K,J)∈K×J e−w(K,J) ≤ 2.

Appendix: Technical results

In this appendix, we give more details for the proofs.

A.1. Bernstein’s lemma

Lemma A.6 (Bernstein’s inequality). Let (X1, . . . , Xn) be independent real
valued random variables. Assume that there exists some positive numbers v and
c such that

∑n
i=1 E(X

2
i ) ≤ v, and, for all integers K ≥ 3,

∑n
i=1 E((Xi)

K
+ ) ≤

K!
2 vcK−2. Let S =

∑n
i=1(Xi − E(Xi)). Then, for every positive x,

P (S ≥
√
2vx+ cx) ≤ exp(−x).
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A.2. Proof of Lemma 5.2

This proof is adapted from the one of Maugis-Rabusseau and Meynet in [14].
Begin by a lemma.

Lemma A.7. Let τ > 0. For all x > 0, consider

f(x) = x log(x)2, h(x) = x log(x)− x+ 1, φ(x) = ex − x− 1.

Then, for all 0 < x < eτ , we get

f(x) ≤ τ2

φ(−τ)
h(x).

To prove this, we have to show that y �→ φ(y)
y2 is non-decreasing. We omit the

proof here.

We want to apply this inequality, in order to derive the Lemma 5.2. As
log(|| s∗s̄m

||∞) ≤ τ , ∣∣∣∣
∣∣∣∣ s∗s̄m

∣∣∣∣
∣∣∣∣
∞

≤ eτ ;

and we could apply the previous inequality to s∗/s̄m. We get, for all x, for all
y,

f

(
s∗(y|x)
s̄m(y|x)

)
≤ τ2

φ(−τ)
h

(
s∗(y|x)
s̄m(y|x)

)
.

Integrating with respect to the density s̄m, we get that

∫
Rq

s∗(y|.)
s̄m(y|.) log

(
s∗(y|.)
s̄m(y|.)

)2

s̄m(y|.)dy

≤
∫
Rq

τ2

e−τ − τ − 1

(
s∗(y|.)
s̄m(y|.) log

s∗(y|.)
s̄m(y|.) −

s∗(y|.)
s̄m(y|.) + 1

)
s̄m(y|.)dy

⇐⇒ 1

n

n∑
i=1

∫
s∗(y|xi) log

(
s∗(y|xi)

s̄m(y|xi)

)2

dy

≤ τ2

e−τ − τ − 1

1

n

n∑
i=1

∫
s∗(y|xi) log

s∗(y|xi)

s̄m(y|xi)
dy.

It concludes the proof.

A.3. Determination of a net for the mean and the variance

In this subsection, we work with a Gaussian density. We denote by β ∈ R
q×p

the conditional mean and by Σ the diagonal covariance.
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• Step 1: construction of a net for the variance

Let ε ∈ (0, 1], and δ = 1√
2(p2q+ 3

4 q)
ε. Let bj = (1+δ)1−

j
2AΣ. For 2 ≤ j ≤ N ,

we have [aΣ, AΣ] = [bN , bN−1]
⋃
. . .

⋃
[b3, b2], where N is chosen to recover

everything. We want that

aΣ = (1 + δ)1−N/2AΣ

⇔ log
aΣ
AΣ

=

(
1− N

2

)
log(1 + δ)

⇔ N =
2 log(AΣ

aΣ

√
1 + δ)

log(1 + δ)
.

We want N to be an integer, then N = � 2 log(
AΣ
aΣ

√
1+δ)

log(1+δ) �. We get a net

for the variance. We could let B = diag(bi(1), . . . , bi(q)), close to Σ (and
deterministic, independent of the values of Σ), where i is a permutation
such that bi(z)+1 ≤ [Σ]z,z ≤ bi(z) for all z ∈ {1, . . . , q}. Remember that
bj+1

bj
= 1√

1+δ
.

• Step 2: construction of a net for the mean vectors
We select only the relevant variables detected by the Lasso estimator. For
λ ≥ 0,

Jλ =
{
(z, j) ∈ {1, . . . , q} × {1, . . . , p}|β̂Lasso

z,j (λ) �= 0
}
.

Let f = ϕ(.|βx,Σ) ∈ FJλ
.

– Definition of the brackets

Define the bracket by the functions l and u:

l(y, x) = (1 + δ)−p2q−3q/4ϕ
(
y|νJx, (1 + δ)−1/4B[1]

)
;

u(y, x) = (1 + δ)p
2q+3q/4ϕ

(
y|νJx, (1 + δ)B[2]

)
.

We have chosen i such that [B[1]]z,z ≤ Σz,z ≤ [B[2]]z,z for all z ∈
{1, . . . , q}.
We need to define ν such that [l, u] is an ε-bracket for f .

– Proof that [l, u] is a bracket for f

We are looking for a condition on νJ to have f
u ≤ 1 and l

f ≤ 1.

We use the following lemma to compute these ratios.

Lemma A.8. Let ϕ(.|μ1,Σ1) and ϕ(.|μ2,Σ2) be two Gaussian den-
sities. If their variance matrices are assumed to be diagonal, with
Σa = diag([Σa]1,1, . . . , [Σa]q,q) for a ∈ {1, 2}, such that [Σ2]z,z >
[Σ1]z,z > 0 for all z ∈ {1, . . . , q}, then, for all y ∈ R

q,

ϕ(y|μ1,Σ1)

ϕ(y|μ2,Σ2)
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≤
q∏

z=1

√
[Σ2]z,z√
[Σ1]z,z

e
1
2 (μ1−μ2)

t diag
(

1
[Σ2]1,1−[Σ1]1,1

,..., 1
[Σ2]q,q−[Σ1]q,q

)
(μ1−μ2)

.

For the ratio f
u we get:

f(y|x)
u(y, x)

=
1

(1 + δ)p2q+3q/4

ϕ(y|βx,Σ)
ϕ(y|νJx, (1 + δ)B[2])

≤ 1

(1 + δ)p2q+3q/4

q∏
z=1

bz
[Σ]z,z

× (1 + δ)q/2e
1
2 (βx−νJx)

t((1+δ)B[2]−Σ)−1(βx−νJx)

≤(1 + δ)p
2q−q/4(1 + δ)q/4e

1
2 (βx−νJx)

t(δB[2])−1(βx−νJx)

≤(1 + δ)p
2qe

1
2δ (βx−νJx)

t[B[2]]−1(βx−νJx). (14)

For the ratio l
f we get:

l(y, x)

f(y|x) =
1

(1 + δ)p2q+3q/4

ϕ(y|νJx, (1 + δ)−1/4B[1])

ϕ(y|βx,Σ)

≤ 1

(1 + δ)p2q+3q/4

q∏
z=1

Σz,z

bz

× (1 + δ)q/8e
1
2 (βx−νJx)

t(Σ−B[1])−1(βx−νJx)

≤(1 + δ)−p2q−3q/8(1 + δ)q/4

× e
1
2 (βx−νJx)

t((1−(1+δ)−1/4)B[1])−1(βx−νJx)

≤(1 + δ)−p2q−3q/8e
1

2(1−(1+δ)−1/4)
(βx−νJx)

t[B[1]]−1(βx−νJx)
.
(15)

We want to bound the ratios (14) and (15) by 1. Put c = 5(1−2−1/4)
8 ,

and develop these calculus. A necessary condition to obtain those
bounds is

||βx− νJx||22 ≤ pqδ2(1− 2−1/4)A2
Σ.

Indeed, we want

(1 + δ)−p2q−3q/8e
1

2(1−(1+δ)−1/4)
(βx−νJx)

t[B[2]]−1(βx−νJx) ≤ 1

(1 + δ)−p2qe
1

2δAΣ
(βx−νJx)

t[B[1]]−1(βx−νJx) ≤ 1;

which is equivalent to

||βx− νJx||22 ≤ p2q
δ2

2
A2

Σ;

||βx− νJx||22 ≤
(
p2q +

3

4
q

)
δ2(1− 2−1/4)AΣ.
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As ||βx− νJx||22 ≤ p||β − νJ ||22||x||∞, and x ∈ [0, 1]p, we need to get
||β − νJ ||22 ≤ pqδ2(1− 2−1/4)A2

Σ to have the wanted bound. Put

U := Z ∩
[⌊

−Aβ√
cδAΣ

⌋
,

⌊
Aβ√
cδAΣ

⌋]
.

For all (z, j) ∈ J , choose

uz,j = argmin
vz,j∈U

∣∣βz,j −
√
cδAΣvz,j

∣∣ . (16)

Define ν by

for all (z, j) ∈ Jc, νz,j = 0;

for all (z, j) ∈ J , νz,j =
√
cδAΣuz,j .

Then, we get a net for the mean vectors.

– Proof that dH(l, u) ≤ ε

We work with the Hellinger distance.

d2H(l, u) =
1

2

∫
Rq

(
√
l −

√
u)2

=
1

2

∫
Rq

l + u− 2
√
lu

=
1

2

[
(1 + δ)−p2q−3q/4 + (1 + δ)p

2q+3q/4
]
−
∫
Rq

√
ϕlϕu

=
1

2

[
(1 + δ)−p2q−3q/4 + (1 + δ)p

2q+3q/4
]

−
(

q∏
z=1

√
2bi(z)+1bi(z)(1 + δ)1/2(1 + δ)−1/8

(1 + δ)bi(z)+1 + (1 + δ)−1/4bi(z)

2)1/2

∗ 1.

We have used the following lemma:

Lemma A.9. The Hellinger distance of two Gaussian densities with
diagonal variance matrices is given by the following expression:

d2H(ϕ(.|μ1,Σ1), ϕ(.|μ2,Σ2))

= 2− 2

(
q∏

z=1

2
√

[Σ1]z,z[Σ2]z,z
[Σ1]z,z + [Σ2]z,z

)1/2

× e
− 1

4 (μ1−μ2)
t diag

((
1

[Σ1]2z,z+[Σ2]2z,z

)
z∈{1,...,q}

)
(μ1−μ2)

As bi(z)+1 = (1 + δ)−1/2bi(z), we get that

2
(1 + δ)3/8bi(z)

bi(z)+1

[
(1 + δ)−1/4 + (1 + δ)1/2(1 + δ)

]
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=2
(1 + δ)5/8

(1 + δ)−1/4 + (1 + δ)3/2

=
2

(1 + δ)−7/8 + (1 + δ)7/8
.

Then

d2H(l, u) =
1

2

[
(1 + δ)−(p2q+3q/4) + (1 + δ)p

2q+3q/4
]

−
(

2

(1 + δ)−7/8 + (1 + δ)7/8

)q/2

=cosh((p2q + 3q/4) log(1 + δ))− 2 cosh(7/8 log(1 + δ))−q/2

=cosh((p2q + 3q/4) log(1 + δ))− 1 + 1

− 2−q/2 cosh(7/8 log(1 + δ))−q/2.

We want to apply the Taylor formula to f(x) = cosh(x)−1 to obtain
an upper bound, and to g(x) = 1− 2−q/2 cosh(x)−q/2. Indeed, there

exists c such that, on the good interval, f(x) ≤ cosh(c)x
2

2 and g(x) ≤
q2 x2

2 . Then, and because log(1 + δ) ≤ δ,

d2H(l, u) ≤ cosh((p2q + 3q/4) log(1 + δ))− 2 cosh(7/8 log(1 + δ))−q/2

≤ (p2q + 3q/4)2δ2
(
cosh(α) +

49

128

)
≤ 2(p2q + 3q/4)2δ2 ≤ ε2;

where ε ≥
√
2(p2q + 3

4q)δ.

• Step 3: Upper bound of the number of ε-brackets for FJ .
From Step 1 and Step 2, the family

Bε(FJ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l(y, x) = (1 + δ)−(p2q+3q/4)ϕ(y|νJx, (1 + δ)−1/4B[1])

u(y, x) = (1 + δ)p
2q+3q/4ϕ(y|νJx, (1 + δ)B[2])

B[a] = diag(b
[a]
i(1), . . . , b

[a]
i(q))

where ia is a permutation, for a ∈ {1, 2},

with

⎧⎨
⎩

bl = (1 + δ)1−l/2AΣ for all l ∈ {1, . . . , q}
∀(z, j) ∈ Jc, νz,j = 0
∀(z, j) ∈ J, νz,j =

√
cδAΣuz,j

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(17)

is an ε-bracket for FJ , for uz,j defined by (16). Therefore, an upper bound
of the number of ε-brackets necessary to cover FJ is deduced from an
upper bound of the cardinal of Bε(FJ).

|Bε(FJ)| ≤
N∑
l=2

∏
(z,j)∈J

(
2Aβ√
cδAΣ

)
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≤
(

2Aβ√
cδAΣ

)|J| N∑
l=2

1 ≤
(

2Aβ√
cδAΣ

)|J|
(N − 1).

As N ≤ 2(AΣ/aΣ+1/2)
δ , we get

|Bε(FJ)| ≤ 2

(
2Aβ√
cAΣ

)|J|(
AΣ

aΣ
+

1

2

)
δ−1−|J|.

A.4. Calculus for the function φ

From the Proposition 5.3, we obtain, for all � > 0,

∫ �

0

√
H[.](ε,SB

(K,J), d
⊗n

H )dε ≤ �
√

log(C) +
√
D(K,J)

∫ �∧1

0

√
log

(
1

ε

)
dε (18)

We need to control
∫�

0

√
log( 1ε )dε, which is done by Maugis-Rabusseau and

Meynet in [14].

Lemma A.10. For all � > 0,

∫ �

0

√
log

(
1

ε

)
dε ≤ �

[
√
π +

√
log

(
1

�

)]
.

Then, according to (18),∫ �

0

√
H[.](ε,SB

(K,J), d
⊗n

H )dε

≤�
√

log(C) +
√
D(K,J)(� ∧ 1)

[
√
π +

√
log

(
1

� ∧ 1

)]

≤�
√

D(K,J)

[√
log(C)

D(K,J)
+

√
π +

√
log

(
1

� ∧ 1

)]

Nevertheless,

log(C) ≤ log(2) + log(K) +
K

2
log(2πe)

+K|J | log
(

2Aβ√
cAΣ

)
+K log

(
AΣ

aΣ
+

1

2

)
+ (K − 1) log(3)

≤D(K,J)

[
log(2) + log(

√
2πe) + 1 + log(3)

+ log

(
AΣ

aΣ
+

1

2

)
+ log

(
2Aβ√
cAΣ

)]
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≤D(K,J)

[
1 + log

(
Aβ

AΣ

(
AΣ

aΣ
+

1

2

))
+ log

(
25/23

√
πe

c

)]
.

Then ∫ �

0

√
H[.](ε,SB

(K,J), d
⊗n

H )dε

≤�
√

D(K,J)

⎡
⎣
√
1 + log

(
Aβ

AΣ

(
aΣ
AΣ

+
1

2

))
+ log

(
25/23

√
πe

c

)

+
√
π +

√
log

(
1

� ∧ 1

)]

≤�
√

D(K,J)

[
1 +

√
log

(
Aβ

AΣ

(
AΣ

aΣ
+

1

2

))
+ a+

√
log

(
1

� ∧ 1

)]

≤�
√

D(K,J)

[
B(Aβ , AΣ, aΣ) +

√
log

(
1

� ∧ 1

)]
;

with

B(Aβ , AΣ, aΣ) = 1 +

√
log

(
Aβ

AΣ

(
AΣ

aΣ
+

1

2

))
+ a;

and a =
√
π +

√
log(25/23

√
πe
c ).

A.5. Proof of the Proposition 5.5

We are interested in
∑

(K,J)∈K×J e−w(K,J) . Considering

w(K,J) = D(K,J) log

(
4epq

(D(K,J) − q2) ∧ pq

)
,

we could group models by their dimensions to compute this sum. Denote by CD

the cardinal of models of dimension D.

∑
K∈N∗

J∈P({1,...,q}×{1,...,p})

e
−D(K,J) log

(
4epq

(D(K,J)−q2)∧pq

)
=
∑
D≥1

CDe
−D log

(
4epq

(D−q2)∧pq

)

=

pq+q2∑
D=1

e
−D log

(
4epq

(D−q2)

) (
epq

D − q2

)D−q2

+

+∞∑
D=pq+q2+1

e−D log( 4epq
pq )2pq

=

pq+q2∑
D=1

4−D

(
epq

D − q2

)−q2

+

+∞∑
D=pq+q2+1

e−D(log(4)+1)+pq log(2)

≤
pq+q2∑
D=1

2−D +

+∞∑
D=pq+q2+1

2−D = 2.
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A.6. Proof of the Lemma 5.4

We know that D(K,J) = K − 1 + |J |K +Kq. Then,

CD = card{(K,J) ∈ N
∗ × P({1, . . . , q} × {1, . . . , p}), D(K,J) = D}

≤
∑

K∈N∗

∑
1≤z≤q
1≤j≤p

(
pq

|J |

)
1K(|J|+q+1)−1=D

≤
∑

|J|∈N∗

(
pq

|J |

)
1|J|≤pq∧(D−q).

If pq < D − q, ∑
|J|>0

(
pq

|J |

)
1|J|≤pq∧(D−q) = 2pq.

Otherwise, according to the Proposition 2.5 in Massart, [11],

∑
|J|>0

(
pq

|J |

)
1|J|≤pq∧(D−q) ≤ f(D − q)

where f(x) = (epq/x)x is an increasing function on {1, . . . , pq}. As pq is an
integer, we get the result.
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[17] Städler, N., Bühlmann, P., and van de Geer, S. �1-penalization for

mixture regression models. Test, 19(2):209–256, 2010. MR2677722
[18] Sun, T. and Zhang, C.-H. Scaled sparse linear regression. Biometrika,

99(4):879–898, 2012. ISSN 0006-3444. URL http://dx.doi.org/10.

1093/biomet/ass043. MR2999166
[19] Sun, W., Wang, J., and Fang, Y. Regularized k-means clustering of

high-dimensional data and its asymptotic consistency. Electronic Jour-
nal of Statistics, 6:148–167, 2012. URL http://dx.doi.org/10.1214/

12-EJS668. MR2879675
[20] Thalamuthu, A., Mukhopadhyay, I., Zheng, X., and Tseng, G.

Evaluation and comparison of gene clustering methods in microar-

https://hal.inria.fr/inria-00575462
http://opac.inria.fr/record=b1128550
http://www.ams.org/mathscinet-getitem?mr=2229687
http://dx.doi.org/10.1214/aos/1015956709
http://www.ams.org/mathscinet-getitem?mr=1810921
http://www.ams.org/mathscinet-getitem?mr=2758215
http://opac.inria.fr/record=b1122538
http://www.ams.org/mathscinet-getitem?mr=2319879
http://dx.doi.org/10.1214/11-EJS623
http://www.ams.org/mathscinet-getitem?mr=2820635
http://dx.doi.org/10.1111/j.1467-9868.2010.00740.x
http://dx.doi.org/10.1111/j.1467-9868.2010.00740.x
http://www.ams.org/mathscinet-getitem?mr=2758523
https://hal.inria.fr/hal-00734316
http://dl.acm.org/citation.cfm?id=1314498.1314537
http://dl.acm.org/citation.cfm?id=1314498.1314537
http://www.ams.org/mathscinet-getitem?mr=0468014
http://www.ams.org/mathscinet-getitem?mr=2677722
http://dx.doi.org/10.1093/biomet/ass043
http://dx.doi.org/10.1093/biomet/ass043
http://www.ams.org/mathscinet-getitem?mr=2999166
http://dx.doi.org/10.1214/12-EJS668
http://dx.doi.org/10.1214/12-EJS668
http://www.ams.org/mathscinet-getitem?mr=2879675


2674 E. Devijver

ray analysis. Bioinformatics, 22(19):2405–2412, 2006. URL http://

bioinformatics.oxfordjournals.org/content/22/19/2405.abstract.
[21] Tibshirani, R. Regression shrinkage and selection via the lasso. Journal

of the Royal Statistical Society. Series B., 58(1):267–288, 1996. MR1379242
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