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Institute of Computer Science
Polish Academy of Sciences

Jana Kazimierza 5
01-248 Warsaw

Poland
e-mail: a.maj@phd.ipipan.waw.pl

Piotr Pokarowski†

Faculty of Mathematics, Informatics and Mechanics
University of Warsaw

Banacha 2
02-097 Warsaw

Poland
e-mail: pokar@mimuw.edu.pl

and

Agnieszka Prochenka∗

Institute of Computer Science
Polish Academy of Sciences

Jana Kazimierza 5
01-248 Warsaw

Poland
e-mail: a.prochenka@phd.ipipan.waw.pl

Abstract: We consider a problem of linear model selection in the presence
of both continuous and categorical predictors. Feasible models consist of
subsets of numerical variables and partitions of levels of factors. A new
algorithm called delete or merge regressors (DMR) is presented which is
a stepwise backward procedure involving ranking the predictors according
to squared t-statistics and choosing the final model minimizing BIC. We
prove consistency of DMR when the number of predictors tends to infinity
with the sample size and describe a simulation study using a pertaining R

package. The results indicate significant advantage in time complexity and
selection accuracy of our algorithm over Lasso-based methods described in
the literature. Moreover, a version of DMR for generalized linear models is
proposed.

MSC 2010 subject classifications: Primary 62F07; secondary 62J07.
Keywords and phrases: ANOVA, consistency, BIC, merging levels, t-
statistic, variable selection.

Received May 2015.

∗Study was supported by research fellowship within “Information technologies: research
and their interdisciplinary applications” agreement number POKL.04.01.01-00-051/10-00.

†Study was supported by Polish National Science Center grant 2011/01/B/NZ2/00864.

1749

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/15-EJS1050
mailto:a.maj@phd.ipipan.waw.pl
mailto:pokar@mimuw.edu.pl
mailto:a.prochenka@phd.ipipan.waw.pl


1750 A. Maj-Kańska et al.
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1. Introduction

Model selection is usually understood as selection of continuous explanatory
variables. However, when a categorical predictor is considered, in order to reduce
model’s complexity, we can either exclude the whole factor or merge its levels.

A traditional method of examining the relationship between a continuous
response and categorical variables is analysis of variance (ANOVA). After de-
tecting the overall importance of a factor, pairwise comparisons of group means
are used to test significance of differences between its levels. Typically post-hoc
analysis such as Tukey’s honestly significant difference (HSD) test or multiple
comparison adjustments (Bonferroni, Scheffe) are used. A drawback of pairwise
comparisons is non-transitivity of conclusions.

For example, let us consider data barley from R library lattice discussed
already in Bondell and Reich (2009). Total yield of barley for 5 varieties at 6
sites in each of two years is modeled. The dependence between the response
and the varieties variable with the use of Tukey’s HSD analysis (Figure 1) gives
inconclusive answers: βP = βM , βP = βT , but βT �= βM .
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Fig 1. Results of Tukey’s HSD.

In this work we introduce a novel procedure called delete or merge regressors
(DMR), which enables an efficient search among partitions of factor levels, for
which the issue of non-transitivity does not occur. If we apply DMR to the
barley data, we get the following partition of varieties: {{S,M, V, P}, {T}}.
Detailed description of the data set and the characteristics of the chosen model
can be found in Section 5.5.

The idea of partitioning a set of levels of a factor into non-overlapping groups
has already been discussed in the literature. In the article Tukey (1949) a step-
wise backward procedure based on the studentized range which gives grouping
of means for samples from normal distributions was proposed. Other methods of
clustering of sample means were described in Scott and Knott (1974), where the
set of means is partitioned from coarsest to finest, and in Caliński and Corsten
(1985) whose algorithm adapts hierarchical clustering to the problem. In more
recent articles Porreca and Ferrari-Trecate (2010) and Ciampi et al. (2008) effi-
cient algorithms for datasets partitioning using generalized likelihood ratio test
can be found. However, all the mentioned methods assume an arbitrary choice of
significance level for the underlying tests. In our procedure we avoid the problem
by selecting the final partition according to the minimal value of information
criterion.

Information criterion as an objective function for partition selection is used
in the procedures described in Dayton (2003). Dayton’s SAS procedure, called
paired comparisons information criteria (PCIC), computes AIC and BIC val-
ues for all ordered subsets of independent means for both homogeneous and
heterogeneous models. In contrast to DMR these methods do not allow for si-
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multaneous factor partitioning and selection of continuous variables.

A method introduced in Bondell and Reich (2009) called collapsing and
shrinkage ANOVA (CAS-ANOVA) solves the same problem as DMR with the
use of the least absolute shrinkage and selection operator (Lasso; Tibshirani
(1996)), where the L1 penalty is imposed on differences between parameters
corresponding to levels of each factor. This algorithm can be interpreted as a
generalization of fused Lasso (Tibshirani et al. (2004)) to data with categorical
variables. In Gertheiss and Tutz (2010) one can find a modification of CAS-
ANOVA, which is more computationally efficient because of using the least an-
gle regression algorithm (LARS; Efron et al. (2004)). Another algorithm, based
on regularized model selection with categorical predictors and effect modifiers
(Oelker, Gertheiss and Tutz (2014)) is implemented in R package gvcm.cat. It
generalizes the Lasso approach to simultaneous factor partitioning and selection
of continuous variables to generalized linear models. The algorithm is based on
local quadratic approximation and iterated reweighted least squares.

We propose a backward selection procedure called delete or merge regressors
(DMR), which combines deleting continuous variables with merging levels of
factors. The method employs a greedy search among linear models with a set
of constraints of two types: either a parameter for a continuous variable is set
to zero or parameters corresponding to two levels of a factor are set to equal
each other. In each step the choice of constraint is based on the order of squared
t-statistics. As a result a nested family of linear models is obtained and the final
decision is made by minimization of Bayesian information criterion (BIC). The
method adapts agglomerative clustering, where squared t-statistics define the
dissimilarity measure. This procedure generalizes concepts introduced in Zheng
and Loh (1995) and Ciampi et al. (2008).

In the article we show that the DMR algorithm is a consistent model selec-
tion method under rather weak assumptions when p tends to infinity with n.
Furthermore, thanks to using a recursive formula for RSS in a nested family of
linear models, the time complexity of the DMR algorithm is just O(np2). This
makes the algorithm much faster than the competitive Lasso-based methods. In
the article we describe a simulation study and discuss a pertaining R package.
The simulations show that DMR in comparison to adaptive Lasso methods de-
scribed in the literature gives better results in terms of accuracy without the
troublesome choice of the λ grid.

The remainder of the article proceeds as follows. The class of feasible models
considered when performing model selection is defined in Section 2. DMR proce-
dure is introduced in Section 3, while its asymptotic properties are discussed in
Section 4. Simulations and real data examples are given in Section 5 to illustrate
the method. All proofs are given in the Appendix.

2. Feasible models

In this section we first introduce some definitions regarding the form of the
data and models considered. In particular, we define the set of feasible models,
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which are linear spaces of parameters with linear constraints and we show how by
change of variables the constrained problem can be replaced by an unconstrained
one. Later we indicate that properties of OLS (ordinary least squares) estimators
transfer to feasible models.

2.1. Definitions

Let us consider data generated by a full rank linear model with n observations
and p < n parameters:

y = Xβ∗ + ε = 1β∗
00 +X0β

∗
0 +X1β

∗
1 + . . .+Xlβ

∗
l + ε, (1)

where:

1. ε is a vector of iid zero-mean gaussian errors, ε ∼ N (0, σ2I).
2. X = [1,X0,X1, . . . ,Xl] is a model matrix organized as follows: X0 is a

matrix corresponding to continuous regressors and X1, . . . ,Xl are zero-
one matrices encoding corresponding factors with the first level set as the
reference.

3. β∗ = [β∗
00,β

∗T
0 ,β∗T

1 , . . . ,β∗T
l ]T ∈ Rp is a parameter vector organized as

follows: β∗
00 is the intercept, β∗

0 = [β∗
10, . . . , β

∗
p00]

T is a vector of coefficients

for continuous variables and β∗
k = [β∗

2k, . . . , β
∗
pkk

]T is a vector of parame-
ters corresponding to the k-th factor, k = 1, . . . , l, hence the length of the
parameter vector is p = 1 + p0 + (p1 − 1) + . . .+ (pl − 1).

Denote sets of indexes: N = {0, 1, . . . , l}, N0 = {0, 1, . . . , p0} and Nk =
{2, 3, . . . , pk} for k ∈ N \ {0}. Let us define an elementary constraint for linear
model (1) as a linear constraint of one of two types:

Hjk : β∗
jk = 0 where j ∈ Nk \ {0}, k ∈ N, (2)

Hijk : β∗
ik = β∗

jk where i, j ∈ Nk, i �= j, k ∈ N \ {0}. (3)

A feasible model can be defined as a sequence M = (P0, P1, ..., Pl), where
P0 denotes a subset of indexes of continuous variables and Pk is a particular
partition of levels of the k-th factor. Such a model can be encoded by a set of
elementary constraints. A set of all feasible models is denoted by M. Let us
denote a model F ∈ M without constraints of types (2) or (3) as the full model.

Example 1. For illustration, let us consider a model with one factor and one
continuous variable:

y = Xβ∗ + ε = 1 · 1 +X0 · 2 +X1 ·

⎡⎣ −2
−2
0

⎤⎦+ ε
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=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1
1
1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
· 1 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.96
−0.29
0.26
−1.15
0.2
0.03
0.09
1.12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
· 2 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎣ −2
−2
0

⎤⎦+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.22
1.27
−0.74
−1.13
−0.72
0.25
0.15
−0.31

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4)

where X0 and ε are vectors of length 8 generated independently from standard
normal distribution, N (0, I). Then β∗ = [1, 2,−2,−2, 0]T . The full model F =
(P0 = {1}, P1 = {{1}, {2}, {3}, {4}}) with p0 = 1, p1 = 4, p = 5. The model
corresponding to β∗ is (P0 = {1}, P1 = {{1, 4}, {2, 3}}) and is the same as F
with two elementary constraints: β∗

41 = 0 and β∗
21 = β∗

31.

2.2. Unconstrained parametrization of feasible models

A feasible model can be defined by a linear space of parameters

LM = {β ∈ Rp : A0Mβ = 0} , (5)

where A0M is a (p−q)×p matrix encoding q elementary constraints induced by
the model. Such a constraint matrix can be expressed in many ways. In particu-
lar, every linear space can be spanned by different vectors. The number of such
vectors can be greater than the dimension of the space when they are linearly
dependent. In order to unify the form of a constraint matrix, we introduce the
notion of regular form, which is described in the Appendix A. We assume that
A0M is in regular form. Let A1M be a q × p complement of A0M to invertible
matrix AM , that is:

AM =

[
A1M

A0M

]
.

Denote:
A−1

M =
[
A1

M A0
M

]
, (6)

whereA1
M is a p×q matrix. In order to replace a constrained by an unconstrained

parametrization change of variables in model M is performed. Let βM ∈ LM

and ξM = A1MβM . We have:

βM = A1
MξM . (7)

Indeed,

βM = A−1
M AMβM = A−1

M

[
A1MβM

A0MβM

]
=

[
A1

M A0
M

] [ ξM
0

]
= A1

MξM .

From equation (7) we obtain XβM = Z1MξM , where Z1M = XA1
M and LM =

{A1
Mξ : ξ ∈ Rq}. Let us notice that LM is a linear space spanned by columns
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of A1
M . The dimension of space LM will be called the size of model M and

denoted by |M |. Note that |M | = q.

Example 1 continued. Matrices AM ,A1
M ,Z1M and ξM are:

AM =

⎡⎢⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 −1 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎦ , A1
M =

⎡⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0 1
0 0 1
0 0 0

⎤⎥⎥⎥⎥⎦ , Z1M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −0.96 0
1 −0.29 0
1 0.26 1
1 −1.15 1
1 0.2 1
1 0.03 1
1 0.09 0
1 1.12 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

ξM = (ξ1, ξ2, ξ3)
T , ξ1 = β∗

00, ξ2 = β∗
10 , ξ3 = β∗

21 = β∗
31.

One can see that a change from a constrained to an unconstrained problem
was done by adding and deleting columns of the model matrix.

The OLS estimator of β∗ constrained to LM is given by the following expres-
sion:

β̂M = A1
M ξ̂M , where ξ̂M =

(
ZT

1MZ1M

)−1
ZT

1My. (8)

Note that A0M β̂M = A0MA1
M ξ̂M = 0 and thus indeed β̂M ∈ LM . We define

the inclusion relation between two models M1 and M2 by inclusion of linear
spaces

M1 ⊆ M2 denotes LM1 ⊆ LM2 (9)

and intersection of two models M1 and M2 by intersection of linear spaces:

M1 ∩M2 as a model defined by LM1 ∩ LM2 . (10)

A feasible model M will be called a true model if β∗ ∈ LM . A true model with
minimal size will be denoted by T . Observe that T is unique because X is a full
rank matrix.

Example 1 continued. For the illustrative example the true model T is T =
({1}, {{1, 4}, {2, 3}}). The dimensions of the considered models are |F | = p = 5,
|T | = 3.

2.3. Residual sum of squares and bayesian information criterion
for feasible models

Let HM = Z1M

(
ZT

1MZ1M

)−1
ZT

1M . Observe that HMXβ∗ = Xβ∗ for M ⊇ T .

We define residual sum of squares for model M as RSSM = ‖y−Xβ̂M‖2. From
equation (8) we have:

RSSM = ‖y − Z1M ξ̂M‖2 = ‖(I−HM )y‖2.
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Let us denote:

ΔM = β∗TXT (I−HM )Xβ∗ = ‖Xβ∗ −Xβ∗
M‖2, (11)

where β∗
M = argminβ∈LM

‖Xβ∗−Xβ‖2. Notice that β̂M
P−−→ β∗

M with n → ∞.
The following decomposition of RSS in linear models is trivial, hence we omit
the proof:

Proposition 1.

RSSM = ΔM + 2β∗TXT (I−HM )ε+ εT (I−HM )ε.

In particular for M ⊇ T

RSSM = εT (I−HM )ε ∼ σ2χ2
n−|M |.

Therefore, the predictions for a constrained problem can be obtained through
projecting the observations on the space spanned by columns of the model
matrix for the equivalent unconstrained problem. Hence, decompositions and
asymptotic properties of residual sums of squares for feasible models are inher-
ited from the unconstrained linear models.

Bayes Information Criterion for model M is defined as:

BICM = n logRSSM + log(n)|M |.

The goal of our method is to find the best feasible model according to BIC,
taking into account that the number of feasible models grows exponentially
with p. Since for the k-th factor the number of possible partitions is the Bell
number B(pk), the number of all feasible models is 2p0

∏l
k=1 B(pk). In order to

significantly reduce the amount of computations, we propose a greedy backward
search.

3. DMR algorithm

In this section we introduce the DMR algorithm. Because of troublesome no-
tations, in order to make the description of the algorithm more intuitive, we
present here a general idea of the algorithm. In particular, we give the details
of step 3 of the algorithm in the Appendix B.

Assuming that X is of full rank the QR decomposition of the model matrix
is X = QR, where Q is n×p orthogonal matrix and R is p×p upper triangular
matrix. Denote the minimum variance unbiased estimators of β and σ2 for the
full model F as:

β̂ = R−1z and σ̂2 =
‖y‖2 − ‖z‖2

n− p
, where z = QTy. (12)

Let us denote
β̂ = [β̂jk]j ∈ Nk

k ∈ N

, R−1 = [rjk,st] j ∈ Nk
s ∈ Nt
k, t ∈ N

,
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then
β̂jk = rTjkz, where j ∈ Nk, k ∈ N

and rjk is a row of R−1.

Algorithm 1 DMR (Delete or Merge Regressors)
Input: y, X
1. Computation of t-statistics
Compute the QR decomposition of the full model matrix, obtaining matrix R−1, vector z
and variance estimator σ̂2 as in equation (12). Calculate squared t-statistics:

1. for all elementary constraints defined in (2):

t21jk =
β̂2
jk

V̂ ar(β̂jk)
=

(rTjkz)
2

σ̂2‖rjk‖2
for j ∈ Nk \ {0}, k ∈ N,

2. for all elementary constraints defined in (3):

t2ijk =
(β̂ik − β̂jk)

2

V̂ ar(β̂ik − β̂jk)
=

((rik − rjk)
T z)2

σ̂2‖rik − rjk‖2

for i, j ∈ Nk, i �= j, k ∈ N \ {0}.
2. Agglomerative clustering for factors (using complete linkage clustering)
For each factor perform agglomerative clustering using Dk =

[
dijk

]
ij

as dissimilarity matrix

for k ∈ N \ {0}:
1. d1jk = dj1k = t21jk for j ∈ Nk,

2. dijk = t2ijk for i, j ∈ Nk, i �= j,

3. diik = 0 for i ∈ Nk.

We denote cutting heights obtained from the clusterings as hT
1 ,hT

2 , . . . ,hT
l .

3. Sorting constraints (hypotheses) according to the squared t-statistics
Combine vectors of cutting heights: h = [0,hT

0 ,hT
1 , . . . ,hT

l ]T , where h0 is a vector of
squared t-statistics for constraints concerning continuous variables and 0 corresponds to the
full model. Sort elements of h in increasing order and construct a corresponding (p− 1)× p
matrix A0 of consecutive constraints.
4. Computation of RSS using a recursive formula in a nested family of models
Perform QR decomposition of the matrix R−TAT

0 obtaining the orthogonal matrix W =
[w1, . . . ,wp−1]. Set RSSM0 = ‖y‖2 − ‖z‖2 for a model without constraints. For m =
1, . . . , p− 1

RSSMm = RSSMm−1
+ (wT

mz)2,

where Mm denotes a model with constraints defined by m first rows of A0. The last formula
is derived in the Appendix C, see equation (22).
5. Choosing the best model according to BIC
Calculate

BICMm = n log RSSMm + (p−m) log(n)

for m = 0, . . . , p− 1. Selected model T̂ is the model minimizing BIC among models on the
nested path:

T̂ = argmin
m

0≤m≤p−1

BICMm .

Output: T̂

The time complexities of successive steps of the DMR algorithm are O(np2)
for QR decomposition in step 1, O(p2) for hierarchical clustering in step 2, O(p3)



1758 A. Maj-Kańska et al.

Fig 2. Dendrogram for Example 1.

for QR decomposition used in step 4. The dominating operation in the described
procedure is the QR decomposition of the full model matrix. Hence, the overall
time complexity of the DMR algorithm is O(np2).

Example 1 continued. For the illustrative example we have:

t2110 = 9.35 , D1 =

⎡⎢⎢⎣
0 t2121 t2131 t2141

t2121 0 t2231 t2241
t2131 t2231 0 t2341
t2141 t2241 t2341 0

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0 8.01 4.52 0.20

8.01 0 0.15 3.09
4.52 0.15 0 2.91
0.20 3.09 2.91 0

⎤⎥⎥⎦ ,

h = [0, 0.15, 0.20, 8.01, 9.33]T , A0 =

β00 β10 β21 β31 β41⎡⎢⎣
⎤⎥⎦

0 0 −1 1 0
0 0 0 0 1
0 0 1 0 0
0 1 0 0 0

,

BIC = [28.33, 26.65, 25.36, 34.68, 39.59]T .

Observe that the selected model T̂ is the true model T . The dendrogram and
cutting heights for the illustrative example obtained from clustering in step 2
are shown in Figure 2. The horizontal dashed line corresponds to the optimal
partition chosen by BIC.
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4. Asymptotic properties of the DMR algorithm

In Algorithm 1 and all the simulations and examples we assumed complete
linkage in hierarchical clustering and BIC for selection in the nested family of
models. The proof of consistency is more general: the linkage criterion has to be
a convex combination of the minimum and maximum of the pairwise distances
between clusters (see equation 24 in Appendix D) and generalized information
criterion is used for final model selection:

GICM = n logRSSM + rn|M |,

where rn is the penalty for model size. Note that well known criteria AIC and
BIC are special cases of GIC, if rn = 2 and rn = log(n), respectively.

In this section we use fn ≺ gn to denote fn = o(gn). We allow the number of
predictors pn to grow monotonically with the number of observations n under
the condition pn ≺ n.

We distinguish the following subsets of the set of all feasible models M:

1. Uniquely defined model T , which is fixed and does not depend on the
sample size. We assume that the model consists of a finite number of
continuous variables and a finite number of factors with finite numbers of
levels.

2. A set MV of models with one constraint imposed which is false:

MV = {M ⊆ F : |M | = |F | − 1 and T � M},

3. A set MT of models with one constraint imposed which is true:

MT = {M ⊆ F : |M | = |F | − 1 and T ⊆ M}.

We denote:
Δ = min

M∈MV
ΔM , (13)

where ΔM was defined in equation (11). Let us notice that from equation (8)
we get

Var
(
β̂M

)
= A1

MVar
(
ξ̂M

)
A1T

M = A1
M

(
A1T

M XTXA1
M

)−1
A1T

M .

Then
Var

(√
n
(
β̂M − β∗

))
= nA1

M

(
A1T

M XTXA1
M

)−1
A1T

M .

Additionally, for finite p, independent of n, if 1
nX

TX → Σ > 0 then

Var
(√

n
(
β̂M − β∗

))
→ ΣM = A1

M

(
A1T

M ΣA1
M

)−1
A1T

M .

Theorem 1. Assume that X is of full rank and pn ≺ rn ≺ min(n,Δ). Let T̂ be
the model selected by DMR, where linkage criterion for hierarchical clustering
is a convex combination of minimum and maximum of the pairwise distances
between clusters. Then
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(a) limn→∞ P(T̂ = T ) = 1,

(b)
√
n
(
β̂T̂ − β∗

)
d−−→ N (0, σ2ΣT ) if additionally p is finite, independent of

n and 1
nX

TX → Σ > 0.

Proof can be found in the Appendix D.

5. Numerical experiments

All experiments were performed using functions implemented in R package called
DMR, which is available at the CRAN repository. The main function in the package
is called DMR and implements the DMR algorithm with an optional method of
hierarchical clustering (default is complete) and a value of rn in GIC (default is
log(n)). The package also contains other functions that are modifications of the
DMR algorithm, such as stepDMR which assumes recalculation of t-statistics
after accepting every new elementary constraint and DMR4glm which can be
used for model selection in generalized linear models.

We compared 2 groups of algorithms. The first one contains 3 stepwise pro-
cedures stepBIC, ffs BIC and DMR. The second group are 2 Lasso-based meth-
ods: CAS-ANOVA and gvcm. Procedure stepBIC is implemented in the function
stepAIC in R package MASS and does not perform factor partitions but either
deletes or keeps any of categorical predictors. A factor forward stepwise pro-
cedure (ffs BIC), implemented in R package gvcm.cat is similar to DMR but
differs in the search direction (DMR is backward and ffs BIC is forward) and in
the criterion of selection of the best step (DMR uses t-statistics calculated only
once and hierarchical clustering and ffs BIC recalculates criterion in every step).
For DMR the complete linkage method of clustering and BIC were used. Algo-
rithm gvcm is implemented in R package gvcm.cat where by default there are
no adaptive weights and crossvalidation is used for choosing the λ parameter.
We used adaptive weights and BIC criterion for choosing the tuning parameter
since we got better results then. Implementation of CAS-ANOVA can be found
on the website http://www4.stat.ncsu.edu/~bondell/Software/CasANOVA/

CasANOVA.R. Here the default BIC was used for choosing the λ parameter mak-
ing all the methods dependent on the same criterion of choosing the tuning
parameters. Adaptive weights are also default in CAS-ANOVA. When using
the two Lasso-based algorithms we found difficult the selection of the λ grid. In
all the experiments we tried different grids: the default ones and ours both on
linear and logarithmic scales presenting only the best results.

We describe three simulation experiments. In Section 5.2 results regarding
an experiment constructed in the same way as in Bondell and Reich (2009)
is presented. The model consists of three factors and no continuous variables.
As a continuation, simulations based on data containing one factor and eight
correlated continuous predictors were carried out, the results can be found in
Section 5.3. In Section 5.4 we summarize the results of an experiment regarding
generalized linear models. In this experiment only 4 algorithms were compared
since CAS-ANOVA applies only to normal distribution.

http://www4.stat.ncsu.edu/~bondell/Software/ CasANOVA/CasANOVA.R
http://www4.stat.ncsu.edu/~bondell/Software/ CasANOVA/CasANOVA.R
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In Section 5.1 we introduce measures of performance which are generaliza-
tions of popular true positive rate and false discovery rate on categorical pre-
dictors. We call them TPR∗ and FDR∗. In comparison to generalizations in-
troduced in Gertheiss and Tutz (2010) and Bondell and Reich (2009), which we
call TPR and FDR, our measures don’t diminish the influence of continuous
predictors and factors with a small number of levels. Hence, for evaluation of the
model selection methods we used following criteria: true model (TM) represents
the percentage of times the procedure chose the entirely correct model. Correct
factors (CF) represents the percentage of times the non-significant factors were
eliminated and the true factor was kept. 1−TPR, FDR, 1−TPR∗ and FDR∗

are averaged errors made by selectors described in Section 5.1. MSEP stands
for mean squared error of prediction for new data and MD is mean dimension
of the selected model, both with standard deviations.

The last Section 5.5 refers to two real data examples where barley yield and
prices of apartments in Munich were modeled.

5.1. Measures of performance

When performing simulations, results are usually compared to the underlying
truth. Traditionally, for model selection with only continuous predictors mea-
sures such as true positive rate (TPR) or false discovery rate (FDR) are used.
In the literature (Gertheiss and Tutz (2010), Bondell and Reich (2009)) their
generalization to both continuous and categorical predictors can be found.

Let us consider sets of elementary constraints corresponding to the true and
selected models determined by sets of indexes:

B = {(i, j, k) : i �= j, i, j ∈ Nk, k ∈ N \ {0}, (β∗)ik = (β∗)jk}

∪{(j, k) : j ∈ Nk, k ∈ N, (β∗)jk = 0}
and

B̂ = {(i, j, k) : i �= j, i, j ∈ Nk, k ∈ N \ {0}, (β̂T̂ )ik = (β̂T̂ )jk}

∪{(j, k) : j ∈ Nk, k ∈ N, (β̂T̂ )jk = 0}.
True positive rate is the proportion of true differences which were correctly
identified to all true differences, meaning ratio of the number of true elemen-
tary constraints which were found by the selector to the number of all true
elementary constraints TPR = |B ∩ B̂|/|B|. False discovery rate is the propor-
tion of false differences which were classified as true to all differences classified
as true, meaning ratio of the number of false elementary constraints which were
accepted by the selector to the number of all accepted elementary constraints
FDR = 1− |B ∩ B̂|/|B̂|.

However, measures defined in this way diminish the influence of the continu-
ous variables and factors with a small number of levels. As an example, consider
a model with 5 continuous predictors and one factor with 5 levels. Then the
number of parameters for continuous predictors is 5 and the number of possible
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elementary constraints equals 5. The number of parameters for the categori-
cal variable is also 5, whereas the number of possible elementary constraints is(
5
2

)
= 10.
We introduce a different generalization of the traditional performance mea-

sures using dimensions of linear spaces which define the true and selected models.
We consider two models: true model T and selected model T̂ .

We define true positive rate coefficient as TPR∗ = |T ∩ T̂ |/|T | and false

discovery rate coefficient as FDR∗ = 1 − |T ∩ T̂ |/|T̂ |, where T ∩ T̂ is defined
according to equation (10). This generalization is more fair since the influence
of every parameter on the coefficients is equal. In the article the attention is
focused on values: 1− TPR∗ and FDR∗, which correspond to the errors made
by selector.

5.2. Experiment 1

The layout of this experiment is the same as in Bondell and Reich (2009).
Despite using different λ grids, we weren’t able to obtain as good results for
CAS-ANOVA as in the original paper. However, the results for DMR are much
better in terms of TM than those for CAS-ANOVA originally reported in Bondell
and Reich (2009). The experimental model consists of three factors having eight,
four and three levels, respectively. The true model is T = (P1, P2, P3), where

P1 = ({1, 2} , {3, 4, 5, 6} , {7, 8}), P2 = {1, 2, 3, 4} , P3 = {1, 2, 3} .

The response y was generated using the true model:

y = μ+ ε, ε ∼ N (0, I),

where

μ = 1nβ
∗
00 +X1β

∗
1 +X2β

∗
2 +X3β

∗
3

= 1n · 2 +X1(0,−3,−3,−3,−3,−2,−2)T +X2(0, 0, 0)
T +X3(0, 0)

T .

A balanced design was used with c observations for each combination of factor
levels, which gives n = 96 · c, c = 1, 2, 4.

The data was generated 1000 times. The best results for λCAS-ANOVA =
(0.1, 0.2, . . . , 3)T and λgvcm = (0.01, 0.02, . . . , 3)T together with outcomes from
other methods are summarized in Table 1. The results of Experiment 1 indicate
that DMR and ffs BIC algorithms performed almost twice better than CAS-
ANOVA and gvcm in terms of choosing the true model. Our procedure and ffs
BIC chose approximately smaller models with dimension closer to the dimen-
sion of the underlying true model, whose number of parameters is three. There
were no significant differences between mean squared errors of prediction for all
considered algorithms. The main conclusion, that DMR and ffs BIC procedures
choose models which are smaller and closer to the proper one, is supported by
the obtained values of 1 - TPR∗ and FDR∗.
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Table 1

Results of the simulation study, Experiment 1

n Algorithm TM(%) CF(%) 1-TPR FDR 1-TPR∗ FDR∗ MSEP±sd MD±sd

96 DMR 44 73 0.05 0.09 0.1 0.19 1.091±.179 3.4±.7
ffs BIC 42 73 0.04 0.09 0.1 0.2 1.091±.179 3.5±.7

CAS-ANOVA 17 83 0.04 0.14 0.06 0.33 1.104±.175 5.5± 1.7
gvcm 11 49 0.08 0.15 0.1 0.34 1.118±.179 4.5±1.6

stepBIC 0 97 0 0.29 0 0.63 1.089±.171 8.1±.4

192 DMR 66 82 0.01 0.05 0.02 0.1 1.036±.11 3.3±.6
ffs BIC 67 83 0.01 0.05 0.02 0.1 1.035±.11 3.3±.5

CAS-ANOVA 33 93 0 0.09 0.01 0.24 1.049±.109 4.9±1.3
gvcm 27 60 0.01 0.11 0.02 0.27 1.049±.11 4.3±1.2

stepBIC 0 99 0 0.29 0 0.63 1.046±.109 8±.2

384 DMR 80 89 0 0.03 0 0.05 1.013±.074 3.2±.4
ffs BIC 79 89 0 0.03 0 0.05 1.013±.074 3.2±.4

CAS-ANOVA 50 97 0 0.06 0 0.17 1.022±.074 4.2±1.2
gvcm 49 77 0 0.06 0 0.16 1.02±.074 3.8±1

stepBIC 0 100 0 0.29 0 0.63 1.022±.074 8±.1

Fig 3. An examplary run of the DMR algorithm for Experiment 1.

Table 2

Computation times divided by the computation time of lm.fit, results obtained using
system.time function

c n DMR ffs BIC CASANOVA gvcm stepBIC
1 96 87 883 234 250 71
4 384 36 526 89 245 31
20 1920 19 394 21 739 16

An exemplary run of the DMR algorithm is shown in Figure 3. The horizontal
dotted line indicates the cutting height for the best model chosen by BIC.

In Table 2 the computation times of the algorithms are summarized. All
values are divided by the computation time of lm.fit function, which fits the
linear model with the use of QR decomposition of the model matrix.

The results for CAS-ANOVA and gvcm are given for only one value of λ. By
default, the searched lambda grid is of length 50 and 5001, respectively. One
can see that DMR is significantly faster than ffs BIC, CAS-ANOVA and gvcm.
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Table 3

Results of the simulation study, Experiment 2

n Algorithm TM(%) 1-TPR FDR 1-TPR∗ FDR∗ MSEP±sd MD±sd
128 DMR 68 0 0.03 0 0.05 1.076±.148 7.4±.6

ffs BIC 60 0.01 0.04 0.01 0.06 1.081±.15 7.3±.8
CAS-ANOVA 17 0 0.13 0 0.21 1.11±.153 9.9±1.6

gvcm 12 0.02 0.11 0.01 0.23 1.113±.154 8.2±1.5
stepBIC 0 0 0.25 0 0.42 1.101±.148 12.1±.4

256 DMR 78 0 0.02 0 0.03 1.033±.093 7.2±.5
ffs BIC 54 0 0.03 0 0.07 1.034±.093 7.4±.8

CAS-ANOVA 27 0 0.1 0 0.16 1.049± .096 9.2±1.4
gvcm 24 0 0.07 0 0.17 1.047±.096 7.5±1.3

stepBIC 0 0 0.25 0 0.42 1.049±.095 12.1±.3
512 DMR 88 0 0.01 0 0.02 1.015±.066 7.1±.4

ffs BIC 85 0 0.01 0 0.02 1.016±.066 6.9±.6
CAS-ANOVA 46 0 0.06 0 0.1 1.024±.067 8.4±1.2

gvcm 35 0 0.05 0 0.12 1.021±.067 7±1.1
stepBIC 0 0 0.25 0 0.42 1.023±.067 12±.2

5.3. Experiment 2

In the second experiment a model containing not only categorical predictors,
but also continuous variables is considered. The response y was generated from
the model with one factor with eight levels and eight continuous variables:

y = V0α0 +V1α1 + ε

= V0(1, 0, 1, 0, 1, 0, 1, 0)
T +V1(0, 0,−2,−2,−2,−2, 4, 4)T + ε,

where V0 was generated from the multivariate normal distribution with autore-
gressive correlation structure with ρ = 0.8. The first 2 ·16 ·c rows were generated
using mean vector (1, 1, 0, 0, 0, 0, 0, 0)T , then 4 · 16 · c observations using mean
vector (0, 0, 1, 1, 1, 1, 0, 0)T and the last 2 · 16 · c observations using mean vector
(0, 0, 0, 0, 0, 0, 1, 1)T , according to the underlying true partition of the factor.
c = 1, 2, 4, hence n = 128 · c. V1 is a matrix of dummy variables encoding
levels of the factor and ε was generated from zero-mean normal distribution,
ε ∼ N (0, I). The data was generated 1000 times.

The best results for λCAS-ANOVA = (0.1, 0.2, . . . , 3)T and λgvcm = (0.01, 0.02,
. . . , 5)T together with outcomes from other methods are summarized in Table 3.
Despite the fact that additional continuous variables were correlated, the ob-
tained results show a considerable advantage of the DMR algorithm over other
methods.

5.4. Experiment 3

Simultaneous deleting continuous variables and merging levels of factors can
also be considered in the framework of generalized linear models. The prob-
lem has already been discussed in Oelker, Gertheiss and Tutz (2014), where
L1 regularization was used. After replacing squared t-statistics with squared
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Table 4

Results of the simulation study for logistic regression, Experiment 3

n Algorithm TM CF 1-TPR FDR 1-TPR∗ FDR∗ MSEP±sd MD±sd
96 DMR 6 62 0.21 0.15 0.38 0.35 0.304±.049 3.1±1.2

ffs BIC 7 72 0.21 0.14 0.37 0.35 0.302±.049 3.1±.8
gvcm 0 21 0.18 0.32 0.27 0.61 0.317±.062 6.4±2.9

stepBIC 0 96 0.00 0.29 0.00 0.63 0.299±.049 8±.6
192 DMR 25 81 0.16 0.09 0.25 0.23 0.296±.036 3±.7

ffs BIC 21 82 0.17 0.10 0.28 0.26 0.293±.034 3±.7
gvcm 1 26 0.15 0.26 0.19 0.52 0.296±.038 5.8±2.6

stepBIC 0 99 0.00 0.29 0.00 0.63 0.291±.034 8±.2
384 DMR 55 88 0.06 0.06 0.12 0.14 0.29±.023 3.1±.5

ffs BIC 51 88 0.06 0.06 0.12 0.16 0.29±.023 3.2±.5
gvcm 6 37 0.08 0.20 0.10 0.43 0.289±.022 5.5±2.5

stepBIC 0 100 0.00 0.29 0.00 0.63 0.289±.022 8±.2
768 DMR 79 92 0.01 0.03 0.03 0.07 0.29±.016 3.1±.4

ffs BIC 79 92 0.01 0.03 0.03 0.06 0.29±.016 3.1±.4
gvcm 20 48 0.01 0.16 0.02 0.36 0.289±.016 5.2±2.2

stepBIC 0 100 0.00 0.29 0.00 0.63 0.29±.016 8±.1

Table 5

Computation times divided by the computation time of glm.fit, results obtained using
system.time function

c n DMR ffs BIC gvcm stepBIC
1 96 103 399 101 40
4 384 68 398 74 28
20 1920 49 377 101 23

Wald’s statistics, the DMR algorithm can be easily modified to generalized lin-
ear models. Simulation results for the DMR algorithm for logistic regression
are presented below. Let us consider a logistic regression model whose linear
part consists of three factors defined as in Experiment 1. The response y was
independently sampled from binomial distribution:

yi ∼ B

(
1,

exp(μi)

1 + exp(μi)

)
, i = 1, . . . , n,

where μi are elements of μ defined as in Experiment 1, μ = (μ1, . . . , μn)
T and

n = 96 · c for c = 1, 2, 4, 8.
The results of the experiment are summarized in Table 4. The best out-

comes for gvcm, presented in the table, were obtained for λ grids λgvcm =
(0.01, 0.02, . . . , 5)T . Again, DMR and ffs BIC show considerable advantage over
other model selection methods.

In Table 5 the computation times of the algorithms are summarized. All
values are divided by the computation time of glm.fit function. The results
for gvcm are given for only one value of λ, while by default the searched lambda
grid is of length 5001. DMR is again significantly faster than ffs BIC and gvcm.
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Table 6

Characteristics of the chosen models for Barley data set

algorithm model dim R2 adj. R2 BIC
full model 11 .68 .61 416
stepBIC 11 .68 .61 416

CAS-ANOVA λ2 9 .66 .61 411
gvcm λ2 7 .66 .6 403

CAS-ANOVA λ1 6 .61 .58 407
ffs BIC 5 .64 .61 399
DMR 5 .64 .61 399

5.5. Real data examples

Example 1: Barley The data set barley from R library lattice has already
been discussed in the literature, for example in Bondell and Reich (2009). The
response is the barley yield for each of 5 varieties (Svansota, Manchuria, Velvet,
Peatland and Trebi) at 6 experimental farms in Minnesota for each year of the
years 1931 and 1932 giving a total of 60 observations. The characteristics of the
chosen models using different algorithms are presented in Table 6. The results
for the full model which is least squares estimator with all variables were given as
a benchmark. For the two Lasso-based algorithms we find difficult the selection
of the λ grid. Therefore, the results for CAS-ANOVA are given for two different
grids: the first one chosen so that the chosen model was the same as the one
described in Bondell and Reich (2009), λ1 = (25, 25.01, 25.02, . . . , 35)T , and the
second wider superset of the first one, λ1 = (0.1, 0.2, 0.3, . . . , 35)T . We used λ2

grid also for gvcm.
The results show that stepwise methods give smaller models with smaller

BIC values than the Lasso-based methods. The additional advantage of DMR
and ffs BIC is lack of a troublesome tuning parameter.

Example 2: Miete The data set miete03 comes from http://www.statistik.

lmu.de/service/datenarchiv. The data consists of 2053 households inter-
viewed for the Munich rent standard 2003. The response is monthly rent per
square meter in Euros. 8 categorical and 3 continuous variables give 36 and 4
(including the intercept) parameters. The data is described in detail in Gertheiss
and Tutz (2010).

Model selection was performed using five methods: DMR, ffs BIC, CAS-
ANOVA, gvcm and stepBIC. Characteristics of the chosen models are shown in
Table 7 with results for the full model added for comparison.

The reason of the lack of results for ffs BIC in the part of Table 7 is that the
algorithm required to allocate too much memory (factor urban district has 25
levels).

We can conclude that DMR procedure and ffs BIC chose much better models
than other compared methods in terms of BIC. However, DMR method can be
applied to problems with larger number of parameters.

http://www.statistik.lmu.de/service/datenarchiv
http://www.statistik.lmu.de/service/datenarchiv
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Table 7

Characteristics of the chosen models for Miete data set

Selection Model R2 adj.R2 BIC
method dimension
Full model 40 .94 .94 23037
CAS-ANOVA 31 .94 .94 22972
gvcm 26 .94 .94 22933
DMR 12 .94 .94 22833
stepBIC 11 .94 .94 22847

6. Discussion

We propose the DMR method which combines deleting continuous variables and
merging levels of factors in linear models. DMR relies on ordering of elementary
constraints using squared t-statistics and choosing the best model according to
BIC in the nested family of models. A slightly modified version of the DMR
algorithm can be applied to generalized linear models.

We proved that DMR is a consistent model selection method. The main
advantage of our theorem over the analogous one for the Lasso based methods
(CAS-ANOVA, gvcm) is that we allow the number of predictors to grow to
infinity.

We show in simulations that DMR and ffs BIC are more accurate than the
Lasso-based methods. However, DMR is much faster and less memory demand-
ing in comparison to ffs BIC. Our results are not exceptional in comparison to
others in the literature. In Example 1 in Zou and Li (2008) a similar simula-
tion setup to our Experiment 1, n = 96, has been considered. The adaptive
Lasso method (denoted there as one-step LOG) was outperformed by exhaus-
tive BIC with 66 to 73 percent of true model selection accuracy. We repeated
the simulations and got similar results with 76 percent for the Zheng-Loh algo-
rithm (described in Zheng and Loh (1995)), which is DMR with just continuous
variables. Thus, in the Zou and Li experiment the advantage of the Zheng-Loh
algorithm over the adaptive Lasso is not as large as in our work, but Zou and
Li used a better local linear approximations (LLA) of the penalty function in
the adaptive Lasso implementation. Recall that both CAS-ANOVA and gvcm
employ the local quadratic approximation (LQA) of the penalty function.

The superiority of DMR over the Lasso based methods in our experiments
not only comes from weakness of LQA used in the adaptive Lasso implementa-
tion. Greedy subset selection methods similar to the Zheng-Loh algorithm have
been proposed many times. Recently, in Pokarowski and Mielniczuk (2015) a
combination of screening of predictors by the Lasso with the Zheng-Loh greedy
selection for high-dimensional linear models has been proposed. The authors
showed both theoretically and experimentally that such combination is compet-
itive to the Multi-stage Convex Relaxation described in Zhang (2010), which is
least squares with capped l1 penalty implemented via LLA.
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Appendix A: Regular form of constraint matrix

We say that A0M is in regular form if it can be complemented to AM so that:

AM =

[
A1M

A0M

]
=

[
I 0

BM I

]
, (14)

where BM is a matrix consisting of 0,−1, 1. Then, using Schur complement we
get:

A−1
M =

[
I 0

−BM I

]
=

[
A1

M A0
M

]
. (15)

Constraint matrix in regular form can always be obtained by a proper permu-
tation of model’s parameters. Let us denote clusters in each partition: PMk =
(CMik)

ik
i=1, where ik is the number of clusters, k ∈ N \{0} and minimal elements

in each cluster as jMik = min{j ∈ CMik}. Let PM0 denote the set of continuous
variables in the model. Sort model’s parameters in the following order:

1. β00,
2. βj0: j ∈ PM0 \ {0},
3. βjMikk for i = 1, . . . , ik, i �= 1, k ∈ N \ {0},
4. βj0: j ∈ N0 \ PM0,
5. βjk, j ∈ CMik \ {jMik}, k ∈ N \ {0}.

Sort columns of model matrix X in the same way as vector β.

Example 1. As an illustrative example consider a full model F = (PF0, PF1,
PF2), where

PF0 = {1, 2}, PF1 = ({1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}) ,
PF2 = ({1}, {2}, {3})

and p0 = 2, p1 = 8, p2 = 3, p = 12. We denote a feasible model with 7 elementary
constraints: β10 = 0, β21 = 0, β71 = 0, β31 = β51, β41 = β61, β41 = β81, β22 =
0 as M = (PM0, PM1, PM2), where:

PM0 = {2}, PM1 = ({1, 2, 7} , {3, 5} , {4, 6, 8}) , PM2 = ({1, 2} , {3}) .

Constraint matrix in regular form for model M , where each row corresponds to
one of the 7 elementary constraints, is:

A0M =

β00 β20 β31 β41 β32 β10 β21 β71 β51 β61 β81 β22⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
−1
0
0
0

0
0
0
0
−1
−1
0

0
0
0
0
0
0
0

1
0
0
0
0
0
0

0
1
0
0
0
0
0

0
0
1
0
0
0
0

0
0
0
1
0
0
0

0
0
0
0
1
0
0

0
0
0
0
0
1
0

0
0
0
0
0
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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and after inverting matrix A−1
M is obtained

A−1
M =

[
A1

M A0
M

]

=

β00 β20 β31 β41 β32 β10 β21 β71 β51 β61 β81 β22⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

Notice that for regular constraint matrix ZM is the full model matrix X with
appropriate columns deleted or added to each other.

Appendix B: Detailed description of step 3 of the DMR algorithm

Since step 3 of the DMR algorithm needs complicated notations concerning
hierarchical clustering, we decided to present them in the Appendix for the
interested reader. In particular, we show here how the cutting heights vector h
and matrix of constraints A0 are built.

Let us define vectors a(1, j, k) and a(i, j, k) (corresponding to the elementary
constraints, being building blocks for A0) such that:

a(1, j, k) = [ast(j, k)]s ∈ Nt
t ∈ N

, ast(j, k) = 1(s = j, t = k), (16)

a(i, j, k) = [ast(i, j, k)]s ∈ Nt
t ∈ N

, ast(i, j, k) = 1(s = i, t = k)−1(s = j, t = k). (17)

For each step s of the hierarchical clustering algorithm we use the following
notation for the partitions of set {1} ∪Nk = {1, 2, . . . , pk}:

Psk = {Cisk}pk−s+1
i=1 , s = 1, . . . , pk.

We assume complete linkage clustering:

d
(
Cis+1,s+1,k = Cissk ∪ Cjssk, Cjs+1,s+1,k = Cossk

)
= max {d (Cissk, Cossk) , d (Cjssk, Cossk)} .

Cutting heights in steps s = 1, . . . , pk − 1 are defined as:

hsk = min
i �=j

d (Cisk, Cjsk) .
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Let us denote vector ãsk as an elementary constraint corresponding to cutting
height hsk, where:

ãsk = a(i∗, j∗, k), i∗ = min
i∈Ci1sk

i, j∗ = min
j∈Cj1sk

j and (i1, j1)

= argmin
i �=j

d (Cisk, Cjsk) .

Step 3 of the algorithm can be now rewritten:
Combine vectors of cutting heights: h = [0,hT

0 ,h
T
1 , . . . ,h

T
l ]

T , where h0 is
vector of cutting heights for constraints concerning continuous variables and 0
corresponds to model without constraints:

hk = [hsk]
pk−1
s=1 , k ∈ N \ {0} and h0 = [0, t2110, t

2
120, . . . , t

2
1p00]

T .

Sort elements of h in increasing order getting h: = [hm:p]
p
m=1 and construct

(p− 1)× p matrix of constraints

A0 = [ã2:p, ã3:p, . . . , ãp:p]
T ,

where ãm:p is the elementary constraint corresponding to cutting height hm:p.
Then proceed as described in Algorithm 1.

Appendix C: Recursive formula for RSS in a nested family of linear
models

In this section we show some implementation facts concerning the DMR algo-
rithm. In particular an effective way of calculation of residual sums of squares
for nested models using QR decompositions is discussed.

Let us consider a linear model with linear constraints:

L = {β ∈ Rp,A0β = 0} , (18)

where A0 is (p− q)× p constraint matrix. The objective is to calculate residual

sum of squares RSS = ‖y −Xβ̂‖2. QR decomposition of the model matrix is
performed

X = QR,

where Q is n× p orthogonal matrix and R is p× p upper triangular matrix. Let
us denote S = R−TAT

0 , then

QTy = Rβ∗ +QT ε and STRβ∗ = 0.

After substitution z = QTy, γ∗ = Rβ∗, η = QT ε we get

z = γ∗ + η and UTWTγ∗ = 0, (19)

whereW andU are respectively p×(p−q) orthogonal matrix and (p−q)×(p−q)
upper triangular matrix from the QR decomposition of matrix S. We have

WTγ∗ = UUTWTγ∗ = 0.
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Let us denote W as orthogonal complement of W to matrix with dimensions
p× p. We multiply equation (19) by [W,W]:

[W,W]T z = [W,W]Tγ∗ + [W,W]Tη and WTγ∗ = 0.

Therefore the OLS estimator γ̂ of γ∗ with constraints satisfies the following
equation [

W
T
z

0

]
= [W,W]T γ̂. (20)

Multiplying (20) by [W,W], we obtain WW
T
z = γ̂, then

(I−WWT )z = γ̂ = Rβ̂.

Let Q be an orthogonal complement of Q to matrix with dimensions n×n. The
residual sum of squares for the model with linear constraints (18) can now be
written as

RSSM = ‖QT
y‖2 + ‖QT (y −Xβ̂M )‖2 = ‖y‖2 − ‖z‖2 + ‖QTy −Rβ̂M‖2

= ‖y‖2 − ‖z‖2 + ‖WWT z‖2 = ‖y‖2 − ‖z‖2 + ‖WT z‖2

=‖y‖2 − ‖z‖2 +
p−q∑
m=1

(wT
mz)2,

(21)

where wm is the m-th column of W.
Denote by (A0)m,p,Sm,p,Wm,p and Um,p submatrices of A0,S,W and U

respectively, obtained by retaining first m rows and p columns. Let us consider
a nested family of feasible models Mm, m = 0, . . . , p− q defined as

LMm = {β ∈ Rp, (A0)m,pβ = 0} .

For m = 0, . . . , p− q we have

Sp,m = Wp,mUm,m,

because matrix Um,m is upper triangular. Since WT
p,mWp,m = I, then

Wp,mUm,m is QR decomposition of Sp,m. Then from equation (21) we get
a recursive formula for residual sum of squares for nested models:

RSSM0 = ‖y‖2 − ‖z‖2,
RSSMm = RSSMm−1 + (wT

mz)2 for m = 1, . . . , p− 1.
(22)

Appendix D: Proof of Theorem 1

D.1. Properties of orthogonal projection matrices

For a feasible model M let us define a following orthogonal projection matrix:

HM = X(XTX)−1AT
0M

(
A0M (XTX)−1AT

0M

)−1
A0M (XTX)−1XT .
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Lemma 1. We have
HM = HF −HM .

Proof. For simplicity of notations in the remainder of this subsection we omit
subscript M . Let Z1 = XA1, Z = XA−1 and Z0 = XA0. We denote

G =

[
G11 G10

G01 G00

]
=

[
ZT

1 Z1 ZT
1 Z0

ZT
0 Z1 ZT

0 Z0

]
= ZTZ and G−1 =

[
G11 G10

G01 G00

]
.

Note that

HF = X(XTX)−1XT = XA−1(A−TXTXA−1)−1A−TXT = Z(ZTZ)−1ZT .

Moreover

(A0(X
TX)−1AT

0 )
−1 =

(
A0A

−1
(
A−TXTXA−1

)−1
A−TAT

0

)−1

=

[[
0 I

]
(ZTZ)−1

[
0
I

]]−1

= (G00)−1

and

A0(X
TX)−1XT = A0A

−1(ZTZ)−1A−TXT = A0A
−1(ZTZ)−1ZT .

Then we get from the Schur complement:

HF −HM = Z(ZTZ)−1ZT − Z1(Z
T
1 Z1)

−1ZT
1 = ZG−1ZT − Z1G

−1
11 Z

T
1

= ZG−1ZT − Z1(G
11 −G10(G00)−1G10)ZT

1

=
[
Z1 Z0

] [ G11 G10

G01 G00

] [
ZT

1

ZT
0

]
−
[
Z1 Z0

] [ G11 −G10(G00)−1G10 0
0 0

] [
ZT

1

0T

]
= Z

[
G10

G00

]
(G00)−1

[
G01 G00

]
ZT

= Z(ZTZ)−1

[
0
I

]
(G00)−1

[
0 I

]
(ZTZ)−1ZT

= X(XTX)−1AT
M

(
AM (XTX)−1AT

M

)−1
AM (XTX)−1XT = HM .

D.2. Asymptotics for residual sums of squares

Lemmas concerning dependencies between residual sums of squares have similar
construction to those described in Chen and Chen (2008). Let us introduce some
simplifying notations. For two sequences of random variables Un and Vn we write
that Un <P Vn if limn→∞ P (Un < Vn) = 1.
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Residual sum of squares for model M can be decomposed into three parts

RSSM = ‖y −HMy‖2 = (Xβ∗ + ε)T (I−HM )(Xβ∗ + ε)

= β∗TXT (I−HM )Xβ∗ + 2β∗TXT (I−HM )ε+ εT (I−HM )ε.

When T ⊆ M we have HMXβ∗ = Xβ∗ and RSSM = εT (I−HM )ε.

Lemma 2. Assuming p ≺ n and p ≺ rn, we have

log
RSST

RSSF
<P

rn
n
.

Proof. Observe that

RSST

RSSF
= 1 +

RSST −RSSF

RSSF
= 1 +

p

n
En,

where

En =
εT (HF −HT )ε

εT (I−Hf )ε
· n
p
.

Let us notice that HF −HT is a matrix of an orthogonal projection with rank
p− |T |. Therefore W1 = εT (HF −HT )ε ∼ σ2χ2

p−|T | and W2 = εT (I−HF )ε ∼
σ2χ2

n−p. Then we get

E

(
W1

p

)
=

σ2(p− |T |)
p

, Var

(
W1

p

)
=

2σ4(p− |T |)
p2

and since p grows monotonically with n we have either p
n→∞−−−−→ ∞, then

Var
(

W1

p

)
n→∞−−−−→ 0 and from Chebyshev’s inequality W1

p

n→∞−−−−→ σ2 in prob-

ability or p is bounded, then W1

p is bounded in probability. Analogously for W2

we have

E

(
W2

n

)
=

σ2(n− p)

n
, Var

(
W2

n

)
=

2σ4(n− p)

n2

and since p ≺ n from Chebyshev’s inequality W2

n

n→∞−−−−→ σ2 in probability.

Therefore En = OP

(
1
)
and RSST

RSSF
= 1 +OP

(
p
n

)
. Hence

log

(
RSST

RSSF

)
= log

(
1 +

p

n
En

)
≤ p

n
En = OP

(
p

n

)
<P

rn
n
.

Lemma 3. Assuming that p ≺ Δ (Δ is defined in equation (13)) we have for
all δ > 1

min
M∈MV

(
log

(
RSSM

RSST

))
≥P log

(
1 +

Δ

δσ2 · n

)
.
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Proof. Using the fact that

1

n
RSST =

εT (I−HT )ε

n
= σ2 + oP

(
1
)

and denoting
RSSM −RSST = ΔM + SM +WT −WM ,

where

ΔM = β∗TXT (I−HM )Xβ∗, SM = 2β∗TXT (I−HM )ε, WT = εTHT ε

and WM = εTHMε.

Note that

ΔM ≥ Δ, SM ∼ N (0, 4σ2ΔM ), WT ∼ σ2χ2
|T | and WM ∼ σ2χ2

p−1.

Using assumption, SM

ΔM
, WT

ΔM
and WM

ΔM
are oP

(
1
)
from Chebyshev’s inequality.

Since the dimension of the true model T is finite and independent of n, so is the
number of models in MV and we have

RSSM −RSST = ΔM

(
1 +

SM

ΔM
+

WT

ΔM
− WM

ΔM

)
= ΔM

(
1 + oP

(
1
))

≥ Δ
(
1 + oP

(
1
))

.

As a result

log
RSSM

RSST
= log

(
1 +

RSSM −RSST

RSST

)
>P log

(
1 +

Δ

δσ2n

)
for δ > 1.

Lemma 4. Assuming that p ≺ Δ we have

max
M∈MT

(
logRSSM

)
<P min

M∈MV

(
logRSSM

)
,

Proof. For δ > 1 let us denote a = log
(
1 + Δ

δσ2n

)
, then from Lemma 3 we get

min
M∈MV

(
logRSSM

)
>P logRSST + a ≥ max

M∈MT

(
logRSSM

)
+ a

≥ max
M∈MT

(
logRSSM

)
.

D.3. Ordering of squared t-statistics

In this section we show that ordering of models M ∈ MT ∪MV with respect
to squared t-statistics is equivalent to ordering them with respect to the values
of residual sum of squares.

Let tM , where M ∈ MT ∪MV denote t-statistic for the full model with one
elementary constraint A0Mβ = 0.
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Lemma 5. If p ≺ Δ, then

max
M∈MT

t2M <P min
M∈MV

t2M .

Proof. From Lemma 1 we get that

RSSM −RSSF = yT (HF −HM )y = β̂
T
AT

0M (A0M (XTX)−1AT
0M )−1A0M β̂,

where β̂ = (XTX)−1XTy. Hence for for each M ∈ MT ∪MV

t2M =
(A0M β̂)2

V̂ar(A0M β̂)
=

(A0M β̂)2

A0M V̂ar(β̂)AT
0M

=
(A0M β̂)2

σ̂2A0M (XTX)−1AT
0M

=
RSSM −RSSF

σ̂2
,

where σ̂2 = RSSF

n−|F | . Observe that A0M is 1× |F | matrix, thus

t2M = (n− |F |)RSSM −RSSF

RSSF
,

and from Lemma 4 we get the conclusion.

D.4. Correct ordering of constraints using hierarchical clustering

In this subsection we state conditions under which the true model T belongs to
the path of nested models obtained in step 4 of the DMR algorithm.

Temporarily let us limit the analysis to a model consisting of one factor and
no continuous variables. The true partition of set {1, . . . , p1} will be denoted by

P ∗
1 = (C∗

i1)
|T |
i=1. We say that distance matrix D = [dij ]ij is consistent with the

true partition if dissimilarity measures for elements within the same clusters are
smaller than for elements from different clusters:

max
l∈{1,...,|T |}

max
i,j∈C∗

l1

dij = dtrue < dfalse = min
l1,l2∈{1,...,|T |}

l1 �=l2

min
i∈C∗

l11,j∈C∗
l21

dij . (23)

Let Ps1 = (Cis1)
p1−s+1
i=1 denote a partition of set {1, . . . , p1} in step s of hi-

erarchical clustering algorithm, s = 1, . . . , p1. We will name aggregation of
Ciss1 and Cjss1 in step s compatible with the true partition P ∗

1 if there ex-
ist l ∈ {1, . . . , |T |}, is+1 ∈ {1, . . . , p1 − s} and is �= js, is, js ∈ {1, . . . p1 − s+ 1}
such that

Cis+1s+11 = Ciss1 ∪ Cjss1 , Cis+1s+11 ⊆ C∗
l1.

Cutting height in step s is defined as hs1 = d(Ciss1, Cjss1) if Ciss1 and Cjss1

are aggregated in this step, h1 = (h11, . . . , hp1−1,1).
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Lemma 6. Assuming that the linkage criterion of hierarchical clustering algo-
rithm satisfies:

d
(
Cis+1s+1k = Cissk ∪ Cjssk, Cjs+1s+1k = Cossk

)
= bmin {d (Cissk, Cossk) , d (Cjssk, Cossk)}
+ (1− b)max {d (Cissk, Cossk) , d (Cjssk, Cossk)} ,

(24)

where b ∈ [0, 1] and the dissimilarity matrix has property (23), then the cutting
heights for aggregations compatible with P ∗

1 are lower than dtrue and cutting
heights for aggregations not compatible with P ∗

1 are larger than dfalse.

Proof. From (23) if |T | = p1 the statement holds trivially and if |T | < p1
aggregation in the first step is compatible with P ∗

1 . We assume that in step s
aggregation is compatible with the true partition with cutting height not greater
than dtrue. If aggregation of Cis+1s+1,1 = Ciss1 ∪ Cjss1 and Cjs+1s+1,1 = Coss1

is compatible with P ∗
1 then

hs1 = d
(
Cis+1s+11, Cjs+1s+11

)
≤ max (d (Ciss1, Coss1) , d (Cjss1, Coss1)) ≤ dtrue.

If aggregation of Cis+1s+11 = Ciss1 ∪ Cjss1 and Cjs+1s+11 = Coss1 is not
compatible with P ∗

1 then

hs1 = d
(
Cis+1s+11, Cjs+1s+11

)
≥ min (d (Ciss1, Coss1) , d (Cjss1, Coss1)) ≥ dfalse.

Hence, cutting heights h11, . . . , hp1−|T |,1 not greater than dtrue are used until
all aggregations compatible with P ∗

1 are performed. We have Cp1−|T |+11 = P ∗
1

and in steps s = p1 − |T | + 2, . . . , p1 the true partition P ∗
1 is a subpartition of

Cs1 and cutting heights hp1−|T |+11, . . . , hp1−11 are not less than dfalse.

Note that linkage criteria: single, complete and average satisfy assumption
(24).

Proof of Theorem 1a. Let us denote the path of nested models from step 4 of
the DMR algorithm by J = {M0, . . . ,Mp−1}. The event of erroneous selection
of the model by the DMR algorithm is a subset of a sum of three events:

{T̂ �= T} ⊆ {T /∈ J} ∪ {T ∈ J,GICT ≥ min
M�T

GICM}

∪ {T ∈ J,GICT ≥ min
T�M

GICM}

⊆ {T /∈ J} ∪ {GICT ≥ min
M�T

GICM} ∪ {GICT ≥ min
T�M

GICM}.

We will show that the probability of each of them tends to zero when n → ∞.
Using Lemma 5 let us consider constant h∗ such that

max
M∈MT

t2M <P h∗ <P min
M∈MV

t2M .

It is obvious that cutting heights for true constraints for continuous variables
are smaller than h∗ and for false ones greater than h∗. It also follows from
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Lemma 5 that dissimilarity matrices used in the algorithm are consistent with
the partitions for model T . Then, applying Lemma 6 for each factor, we get
that the cutting heights for aggregations compatible with the true partitions
are not greater than h∗ and for incompatible ones not smaller than h∗. Hence,
in the DMR algorithm accepting true constraints precede accepting false ones,
for large n the probability that the true model lies on the path of nested models
tends to 1.

Since minT�M RSSM ≥ RSSF we have

{GICT ≥ min
T�M

GICM} ⊆ {logRSST ≥ logRSSF +
rn
n
}

and from Lemma 2 we know that

P
(
logRSST ≥ logRSSF +

rn
n

)
P−−→ 0.

It is obvious that

{GICT ≥ min
M�T

GICM} ⊆ {logRSST ≥ min
M∈MV

logRSSM − |T |rn
n

}.

Let us notice from assumptions of theorem that |T |rn
n ≺ Δ

δσ2n+Δ ≤ log
(
1+ Δ

δσ2n

)
.

Then{
|T |rn
n

≥ min
M∈MV

log
RSSM

RSST

}
⊇

{
log

(
1 +

Δ

δσ2n

)
≥ min

M∈MV
log

RSSM

RSST

}
and from Lemma 3 we know that

P

(
log

(
1 +

Δ

δσ2n

)
≥ min

M∈MV
log

RSSM

RSST

)
P−−→ 0.

Hence, the DMR algorithm is a consistent model selection method.

Proof of Theorem 1b. Let us denote

gn =
√
n
(
β̂T − β∗

)
and bn =

√
n
(
β̂T̂ − β∗

)
,

Notice that gn = bn if T̂ = T . From Theorem 1a

P
(
1(T̂ �= T ) = 0

)
P−−→ 1.

Since {
1(T̂ �= T ) = 0

}
⊆

{
bn1(T̂ �= T ) = 0

}
,

hence bn1(T̂ �= T )
P−−→ 0. From properties of the OLS estimator we have

gn1(T̂ = T )
d−−→ N(0, σ2ΣT ).

Henceforth, from multidimensional Slutsky’s theorem we get

bn = bn1(T̂ �= T )+bn1(T̂ = T ) = bn1(T̂ �= T )+gn1(T̂ = T )
d−−→ N(0, σ2ΣT ).
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