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Abstract: We consider here together the inference questions and the chan-
ge-point problem in a large class of Poisson autoregressive models (see
Tjøstheim, 2012 [34]). The conditional mean (or intensity) of the process is
involved as a non-linear function of it past values and the past observations.
Under Lipschitz-type conditions, it can be written as a function of lagged
observations. For the latter model, assume that the link function depends on
an unknown parameter θ0. The consistency and the asymptotic normality
of the maximum likelihood estimator of the parameter are proved. These
results are used to study change-point problem in the parameter θ0. From
the likelihood of the observations, two tests are proposed. Under the null
hypothesis (i.e. no change), each of these tests statistics converges to an
explicit distribution. Consistencies under alternatives are proved for both
tests. Simulation results show how those procedures work in practice, and
applications to real data are also processed.
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1. Introduction

Time series of counts appear as natural for modeling count events. Some ex-
amples can be found in epidemiology (number of new infections), in finance
(number of transactions per minute), in industrial quality control (number of
defects), just to name a few. We refer the reader to Held et al. (2005) [23],
Brännäs and Quoreshi (2010) [5], Lambert (1992) [30] among others, for more
details.

Real advances have been made in count time series modeling during the
last two decades. Let Y = (Yt)t∈Z be an integer-valued time series; denote
Ft = σ(Ys, s ≤ t) the σ-field generated by the whole past at time t and
L(Yt/Ft−1) the conditional distribution of Yt given the past. A model is char-
acterized by the type of marginal distribution L(Yt/Ft−1), and the dependence
structure between L(Yt/Ft−1) and the past. Models with various marginal dis-
tributions and dependence structures have been studied; see for instance Kedem
and Fokianos (2002) [26], Davis et al. (2005) [8], Ferland et al. (2006) [15], Davis
and Wu (2009) [10], Weiß (2009) [35].

Fokianos et al. (2009) [19] considered the Poisson autoregression such that,
L(Yt/ Ft−1) is Poisson distributed with an intensity λt which is a function of
λt−1 and Yt−1. Under linear autoregression, they proved both the consistency
and the asymptotic normality of the maximum likelihood estimator of the re-
gression parameter, by using a perturbation approach, which allows to use the
standard Markov ergodic setting. Fokianos and Tjøstheim (2012) [20] extended
the method to nonlinear Poisson autoregression with; λt = f(λt−1) + b(Yt−1)
for nonlinear measurable functions f and b. In the same vein, Neumann (2011)
[31] studied a much more general model where λt = f(λt−1, Yt−1). He focused
on the absolute regularity and the specification test for the intensity function,
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while the recent works of Fokianos and Neumann (2013) [18] studied goodness-
of-fit tests which are able to detect local alternatives. Doukhan et al. (2012)
[13], considered a more general model with infinitely many lags. Stationarity
and the existence of moments are proved by using a weak dependent approach
and contraction properties.

Later, Davis and Liu (2012) [9] studied the model where, the distribution
L(Yt/Ft−1) belongs to a class of one-parameter exponential family with finite
order dependence. This class contains Poisson and negative binomial (with fixed
number of failures) distribution. From the theory of iterated random functions,
they established the stationarity and the absolute regularity properties of the
process. They also proved the consistency and asymptotic normality of the max-
imum likelihood estimator of the parameter of the model.

Douc et al. (2013) [11] considered a class of observation-driven time series
which covers linear, log-linear, and threshold Poisson autoregressions. Their ap-
proach is based on a recent theory for Markov chains based upon Hairer and
Mattingly (2006) [22] recent work; this allows existence and uniqueness of the
invariant distribution for Markov chains without irreducibility. Further, they
proved the consistency of the conditional likelihood estimator of the model (even
for mis-specified models); the asymptotic normality is not yet considered in this
setting.

Asymptotic theory for inference on time series models usually needs the sta-
tionarity properties of the process. But in practice, real data often suffer from
non-stationarity which may be due to structural changes occur during the data
generating period. Several ways to consider such structural changes are possible,
as this was demonstrated during the thematic cycle Nonstationarity and Risk
Management held in Cergy-Pontoise during year 20121. In the context of count
models, Kang and Lee (2009) [25] proposed a CUSUM procedure for testing
of parameter changes in a first-order random coefficient integer-valued autore-
gressive model defined through thinning operator. Fokianos and Fried (2010,
2012) [16, 17] studied mean shift in linear and log-linear Poisson autoregres-
sion. Dependence between the level shift and time allows their model to detect
several types of interventions effects such as outliers. Franke et al. (2012) [21],
considered parameter change in Poisson autoregression of order one. Their tests
are based on the cumulative sum of residuals using conditional least-squares
estimator.

Here, we shall first consider a time series of counts Y = (Yt)t∈Z satisfying:

Yt/Ft−1 ∼ Poisson(λt) with λt = F ((λt−1, Yt−1), (λt−2, Yt−2) . . .) (1)

where Ft = σ(Ys, s ≤ t) and F a measurable non-negative function. The
properties of the general class of Poisson autoregressive model (1) have been
investigated in Doukhan et al. [13]. Such infinite order processes provided a large
way to take into account dependence on the past observations. Proceeding as

1http://www.u-cergy.fr/en/advanced-studies-institute/thematic-cycles/thematic-cycle-
2012/finance-cycle.html

http://www.u-cergy.fr/en/advanced-studies-institute/thematic-cycles/thematic-cycle-2012/finance-cycle.html
http://www.u-cergy.fr/en/advanced-studies-institute/thematic-cycles/thematic-cycle-2012/finance-cycle.html
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in Doukhan and Wintenberger (2008) [12], we show that under some Lipschitz-
type conditions on F , the conditional mean λt can be written as a function of
the past observations.

This yields to consider the model

Yt/Ft−1 ∼ Poisson(λt) with λt = f(Yt−1, Yt−2 . . .) (2)

where f is a measurable non-negative function. We assume that f is know up
to a parameter θ0 belonging to some compact set Θ ⊂ R

d with d ∈ N − {0}.
That is

Yt/Ft−1 ∼ Poisson(λt) with λt = fθ0(Yt−1, Yt−2 . . .) and θ0 ∈ Θ. (3)

Many classical integer-valued time series satisfying (3) (see examples below).
Remark that, model (3) (as well as models (1) and (2)) can be represented

in terms of Poisson processes. Let {Nt(·) ; t = 1, 2, . . .} be a sequence of inde-
pendent Poisson processes of unit intensity. Yt can be seen as the number (say
Nt(λt)) of events of Nt(·) in the time interval [0, λt]. So, we have the represen-
tation

Yt = Nt(λt) with λt = fθ0(Yt−1, Yt−2 . . .). (4)

The Poisson autoregressive models are known to capture the overdispersion phe-
nomenon in counts data, meaning if the process (Yt)t∈Z is stationary it always
occurs that Var(Yt) ≥ E (Yt).

The paper first works out the asymptotic properties of the maximum like-
lihood estimator of the model (3). Under some Lipschitz-type assumption on
the function fθ, we investigate sufficient conditions for the consistency and the
asymptotic normality of the maximum likelihood estimator of θ0. Note that,
Doukhan et al. [13] have used weak dependence approach to prove the existence
of stationary and ergodic solution of (1). By using their results, some assump-
tions (such as increasing condition on fθ(·) or four times differentiability on the
function θ �→ fθ) that often needed for perturbation technique (see for instance
Fokianos et al. [19] or Fokianos et al. [20]) are relaxed. Although the models
studied by Davis and Liu [9] and Douc et al. [11] allow large classes of marginal
distributions, the infinitely many lags of model (1) (or model (3)) enables a
higher order dependence structure.

The second contribution of this work is the two tests for change detection
in model (3). We propose a new idea to take into account the change-point al-
ternative. This implies that, the procedures proposed will be numerically easy
applied than those proposed by Kengne (2012) [27]. The consistency under the
alternative is proved. Contrary to Franke et al. [21], the multiple change alter-
native has been considered and independence between the observations before
and after the change-point is not assumed. Note that, the intervention prob-
lem studied by Fokianos and Fried [16, 17] is intended to sudden shift in the
conditional mean of the process. Such outlier could in some case be seen as a
particular case of structural change problem that we develop here for a large
class of models. However, if the intervention affects only a few data points, in
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the classical change-point setting (where the length of each regime tends to in-
finity with the same rate as the sample size), such effects will be asymptotically
negligible.

The forthcoming Section 2 provides some assumptions on model with exam-
ples. Section 3 is devoted to the definition of the maximum likelihood estimator
with its asymptotic properties. In Section 4, we propose the tests for detecting
change in parameter of model (3). Some simulation results and real data ap-
plications for inference and change-point detection are presented in Sections 5
and 6, lastly the proofs of the main results are provided in Section 7.

2. Assumptions and examples

2.1. Assumptions

We will use the following classical notations:

1. ‖y‖ :=
∑p

j=1 |yj | for any y ∈ R
p;

2. for any compact set K ⊆ R
d and for any function g : K −→ R

d′
, ‖g‖K =

supθ∈K(‖g(θ)‖);
3. if Y is a random variable with finite moment of order r > 0, then ‖Y ‖r =

(E |Y |r)1/r;
4. for any set K ⊆ R

d,
◦
K denotes the interior of K.

A classical Lipschitz-type conditions is assumed on the model (1).

Assumption AF . There exists a sequence of non-negative real numbers (αj)j≥1

satisfying
∞∑
j=1

αj < 1/(1 + ε)

for some ε > 0 and such that for any x, x′ ∈ ((0,∞)× N)N,

|F (x)− F (x′)| ≤
∞∑
j=1

αj‖xj − x′
j‖.

Under assumption (AF ), Doukhan et al. [13, 14] prove that the above equation
has a strictly stationary solution (Yt, λt)t∈Z; moreover this solution is τ -weakly
dependent with finite moment of any order. The following proposition show that
the conditional mean λt of model (1) can be expressed as a function of only the
past observations of the process.

Proposition 2.1. Under (AF ), the conditional mean of the strictly stationary
and ergodic solution of (1) can be written as

λt = f(Yt−1, Yt−2 . . . )

where f : N → R
+ is a measurable function.

From Proposition 2.1, it appears that the information on the unobservable
process (λt−j) can be captured by the observable process (Yt−j). Hence, we will
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focus on the model (3); with the advantage to easily compute the derivative
∂λt/∂θ (very useful to derive the asymptotic covariance matrix in the inference
study). Note that, if one carries inference on the model (1) by assuming that
λt = Fθ0((λt−1, Yt−1), (λt−2, Yt−2), . . .), then it will not be easy (or not possible)
to compute ∂λt/∂θ or to express it as a function of ∂Fθ/∂θ in the general case.

We focus on the model (3) with the following assumptions. For i = 0, 1, 2 and
for any compact set K ⊂ Θ, we introduce

Assumption Ai(K). ‖∂ifθ(0)/∂θ
i‖Θ < ∞ and there exists a sequence

of non-negative real numbers (α
(i)
k (K))k≥1 satisfying

∑∞
j=1 α

(0)
k (K) < 1 or∑∞

j=1 α
(i)
k (K) < ∞ (for i = 1, 2) such that∥∥∥∂ifθ(y)

∂θi
− ∂ifθ(y

′)

∂θi

∥∥∥
K
≤

∞∑
k=1

α
(i)
k (K)|yk − y′k| for all y, y′ ∈ (R+)N.

The Lipschitz-type condition A0(Θ) is the parametric version of the assumption
AF . It is classical when studying the existence of solutions of such model (see
for instance [12, 1] or [13]). In particular, A0(Θ) implies that for all θ ∈ Θ and
y ∈ (R+)N,

fθ(y) ≤ fθ(0) +
∞∑
k=1

α
(i)
k (Θ)yk.

The latter relation is a useful tool for proving that the stationary solution of (3)
admits finite moments (see the proof of Theorem 2.1 of [13]). The assumptions
A1(K) and A2(K) as well as the following assumptions D(Θ), Id(Θ) and Var(Θ)
are needed to define and to study the asymptotic properties of the maximum
likelihood estimator of the model (3).

Assumption D(Θ). ∃c > 0 such that infθ∈Θ fθ(y) ≥ c for all y ∈ (R+)N.

Assumption Id(Θ). For all (θ, θ′) ∈ Θ2,(
fθ(Yt−1, . . . ) = fθ′(Yt−1, . . . ) a.s. for some t ∈ Z

)
⇒ θ = θ′.

Assumption Var(Θ). For all θ ∈ Θ and t ∈ Z, the components of the vector
∂fθ
∂θi (Yt−1, . . . ) are a.s. linearly independent.

2.2. Examples

2.2.1. Linear Poisson autoregression

We consider an integer-valued time series (Yt)t∈Z satisfying for any t ∈ Z

Yt/Ft−1 ∼ Poisson(λt) with λt = φ0(θ0) +
∑
k≥1

φk(θ0)Yt−k (5)

where θ0 ∈ Θ ⊂ R
d, the functions θ �→ φk(θ) are positive and satisfying∑

k≥1 ‖φk(θ)‖Θ < 1. This model is also called an INARCH(∞), due to its
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similarity with the classical ARCH(∞) model. Assumptions A0(Θ) holds au-
tomatically. If the function φk are twice continuously differentiable such that∑

k≥1 ‖φ′
k(θ)‖Θ < ∞ and

∑
k≥1 ‖φ′′

k(θ)‖Θ < ∞ then A1(Θ) and A2(Θ) hold.

If infθ∈Θ φ0(θ) > 0 then D(Θ) holds. Moreover, if there exists a finite subset
I ⊂ N − {0} such that the function θ �→ (φk(θ))k∈I is injective, then assump-
tion Id(Θ) holds i.e. model (5) is identifiable. Finally, assumption Var(Θ) holds
if for any θ ∈ Θ there exists d functions φk1 , . . . , φkd

such that the matrix

(
∂φkj

∂θi )1≤i,j≤d (computed at θ) has a full rank.

Particular case of INGARCH(p, q) processes Assume that

Yt/Ft−1 ∼ Poisson(λt) with λt = α∗
0 +

p∑
k=1

α∗
kλt−k +

q∑
k=1

β∗
kYt−k (6)

where θ0 = (α∗
0, α

∗
1, . . . , α

∗
p, β

∗
1 , . . . , β

∗
q ) ∈ Θ with

Θ =
{
θ = (α0, α1, . . . , αp, β1, . . . , βq) ∈ ]0,∞[×[0,∞[p+q,

p∑
k=1

αk +

q∑
k=1

βk < 1
}
.

Hence, the Lipschitz-type condition (AF ) is satisfied. In this case, we can find
for any θ ∈ Θ, a sequence of non-negative real numbers (ψk(θ))k≥0 satisfying∑

k≥1 ‖ψk(θ)‖Θ < 1 such that

λt = ψ0(θ0) +
∑
k≥1

ψk(θ0)Yt−k.

Therefore, assumptions A0(Θ) holds. Moreover, the functions ψk(θ) are twice
continuously differentiable with respect to θ and its derivatives decay exponen-
tially, hence A1(Θ) and A2(Θ) hold. If infθ∈Θ(α0) > 0 then D(Θ) holds. For this
particular case, Id(Θ) holds automatically. See [15] and [35]) for more details on
this model.

The adequacy of this linear model to the number of transactions per minute
for the stock Ericsson B during July 2, 2002 has been proved by Fokianos and
Neumann [18].

2.2.2. Threshold Poisson autoregression

We consider a threshold Poisson autoregression model defined by:

Yt/Ft−1 ∼ Poisson(λt) with

λt = φ0(θ0) +
∑
k≥1

(
φ+
k (θ0)max(Yt−k − �, 0) + φ−

k (θ0)min(Yt−k, �)
)

(7)

where φ0(θ0) > 0, φ+
k (θ0), φ

−
k (θ0) ≥ 0 and � ∈ N. We can also write

λt = φ0(θ0) +
∑
k≥1

(
φ−
k (θ0)Yt−k +

(
φ+
k (θ0)− φ−

k (θ0)
)
max(Yt−k − �, 0)

)
.
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This example of nonlinear model is also called an integer-valued threshold
ARCH (or INTARCH) due to its definition like the threshold ARCH model
proposed by Zaköıan (1994) [36]; see also [21] for INTARCH(1) model. In
the INTARCH(∞) model, the regression coefficient at lag t − k is φ−

k (θ0) if
Yt−k ≤ � and φ+

k (θ0) if Yt−k > �; such model can then be used to cap-
ture a piecewise phenomenon. � is the threshold parameter of the model. If∑

k≥1 max
(
‖φ+

k (θ)‖Θ, ‖φ
−
k (θ)‖Θ

)
< 1 then A0(Θ) holds. Furthermore, if the

functions θ �→ φ+
k (θ) and θ �→ φ−

k (θ) are twice continuously differentiable such

that
∑

k≥1 max
(
‖ ∂
∂θφ

+
k (θ)‖Θ, ‖ ∂

∂θφ
−
k (θ)‖Θ

)
< ∞ and

∑
k≥1 max

(
‖ ∂2

∂θ2φ
+
k (θ)‖Θ,

‖ ∂2

∂θ2φ
−
k (θ)‖Θ

)
< ∞, then A1(Θ) and A2(Θ) hold. Conditions on D(Θ), Id(Θ)

and Var(Θ) are obtained as above. A special case is the INTGARCH(p, q) model,
see Section 5.

Remark 2.1. An association argument can be used to show that the INGARCH
and INTGARCH models capture only positive dependence in time series count
data. It is a frequent phenomenon in transactions data (see for instance the
subsection 5.3 for the number of transactions for the stock Ericsson B).

3. Likelihood inference

Assume that the trajectory (Y1, . . . , Yn) is observed. The conditional (log)-
likelihood of model (3) computed on T ⊂ {1, . . . , n}, is given (up to a constant)
by

Ln(T, θ) =
∑
t∈T

(Yt log λt(θ)−λt(θ)) =
∑
t∈T

�t(θ) with �t(θ) = Yt log λt(θ)−λt(θ)

where λt(θ) = fθ(Yt−1, . . . ). In the sequel, we use the notation f t
θ := fθ(Yt−1, . . .).

Since only Y1, . . . , Yn are observed, the (log)-likelihood is approximated by

L̂n(T, θ) =
∑
t∈T

(Yt log λ̂t(θ)− λ̂t(θ)) =
∑
t∈T

�̂t(θ) with �̂t(θ) = Yt log λ̂t(θ)− λ̂t(θ)

(8)

where λ̂t(θ) := f̂ t
θ := fθ(Yt−1, . . . , Y1, 0, . . . ) and λ̂1(θ) = fθ(0, . . . ). The maxi-

mum likelihood estimator (MLE) of θ0 computed on T is defined by

θ̂n(T ) = argmaxθ∈Θ(L̂n(T, θ)). (9)

For any k, k′ ∈ Z such as k ≤ k′, denote

Tk,k′ = {k, k + 1, . . . , k′}.

Theorem 3.1. Let (jn)n≥1 and (kn)n≥1 be two integer valued sequences such

that jn ≤ kn, kn → +∞ and kn − jn → +∞ as n → +∞. Assume θ0 ∈
◦
Θ and

D(Θ), Id(Θ) and A0(Θ) hold with∑
j≥1

√
j × α

(0)
j (Θ) < ∞. (10)
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It holds that
θ̂n(Tjn,kn)

a.s.−−−−−→
n→+∞

θ0.

The following theorem regarding the asymptotic normality of the MLE of
model (3) holds.

Theorem 3.2. Let (jn)n≥1 and (kn)n≥1 be two integer valued sequences such
that jn ≤ kn, kn → +∞ and kn−jn → +∞ as n → +∞. Under the assumptions
of Theorem 3.1 and Var(Θ), if for i = 1, 2 Ai(Θ) hold with∑

j≥1

√
j × α

(i)
j (Θ) < ∞ (11)

then √
kn − jn(θ̂n(Tjn,kn)− θ0)

D−−−−−→
n→+∞

N (0,Σ−1)

where Σ = E
(

1
f0
θ0

( ∂
∂θf

0
θ0
)( ∂

∂θf
0
θ0
)′
)
.

According to the Lemma 7.2 and the proof of Theorem 3.2, the matrix

( 1

kn − jn

kn∑
t=jn

1

f̂ t
θ

( ∂

∂θ
f̂ t
θ

)( ∂

∂θ
f̂ t
θ

)′)∣∣∣
θ=θ̂n(Tjn,kn )

and

(
− 1

kn − jn

∂2

∂θ∂θ′
L̂n(Tjn,kn , θ)

)∣∣∣
θ=θ̂n(Tjn,kn )

are both consistent estimators of Σ.

Remark 3.1. 1. Theorem 3.1 still holds if we replace (10) by the much
weaker condition ∑

j≥1

log j × α
(0)
j (Θ) < ∞

(see the proof of the theorem).
2. In Theorems 3.1 and 3.2, the typical sequences jn = 1 and kn = n, ∀n ≥ 1

can be chosen. This choice is the case where the estimator is computed
with all the observations. But in the change-point study and depending
on the procedure used, one might need to compute the estimator on each
regime. Results are written this way to cover this situation.

3. If the Lipschitz coefficients (α
(i)
j (Θ))j≥1 satisfy α

(i)
j (Θ) = O(j−γ) with

γ > 3/2, then conditions (10) and (11) hold.

4. Testing for parameter changes

We consider the observations Y1, . . . , Yn generated as in model (3) and assume
that the parameter θ0 may change over time. More precisely, we assume that

∃K ≥ 1, θ∗1 , . . . , θ
∗
K ∈ Θ, 0 = t∗0 < t∗1 < · · · < t∗K−1 < t∗K = n such that Yt = Y

(j)
t

for t∗j−1 < t ≤ t∗j , where the process (Y
(j)
j )t∈Z is a stationary solution of (3)

depending on θ∗j . The case where the parameter does not change corresponds
to K = 1. This problem leads to the following test hypotheses:
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H0: Observations (Y1, . . . , Yn) are a trajectory of a process (Yt)t∈Z solution
of (3), depending on θ0 ∈ Θ.

H1: There exists K ≥ 2, θ∗1 , θ
∗
2 , . . . , θ

∗
K with θ∗1 �= θ∗2 �= · · · �= θ∗K , 0 = t∗0 <

t∗1 < · · · < t∗K−1 < t∗K = n such that the observations (Yt)t∗j−1<t≤t∗j
are a

trajectory of the process (Y
(j)
t )t∈Z solution of (3), depending on θ∗j .

Let us note that, contrary to Franke et al. [21], the independence between the
observations before and after the change-point is not assumed. Moreover, their
assumption (A9) impose a change in the mean of the marginal distribution of
the observed process. In the case of linear Poisson autoregression, this condition
leads to a change in the unconditional mean. The procedures developed here
include the situation where parameter can change but not the mean of the
marginal distribution (see an example of empirical results in the Section 6).
Therefore, the present change-point problem is more general.

Remark 4.1. Let λ
(j)
t be the conditional mean on the segment T ∗

j = {t∗j−1, t
∗
j−1+

1, . . . , t∗j}. By using the representation (4), we can write

Y
(j)
t = Nt(λ

(j)
t ) with λ

(j)
t = fθ∗

j
(Y

(j)
t−1, . . .).

We can also write
Y

(j)
t = F̃ (Y

(j)
t−1, . . . ;Nt) where

F̃ (y1, y2, . . . ;Nt) = Nt(fθ∗
j
(y1, y2, . . .)) for any yk ∈ N, k ≥ 1. Hence for any

y = (yk)k≥1 and y′ = (y′k)k≥1:

E |F̃ (y;Nt)− F̃ (y′;Nt)| = E |Nt(fθ∗
j
(y))−Nt(fθ∗

j
(y′))| = |fθ∗

j
(y)− fθ∗

j
(y′)|

≤
∑
k≥1

α
(0)
k |yk − y′k|, (12)

where the second equality follows by seeing |Nt(fθ∗
j
(y))−Nt(fθ∗

j
(y′))| as a num-

ber of events Nt that occur in the time interval [0, |fθ∗
j
(y)− fθ∗

j
(y′)|].

Let (Ỹt, λ̃t)t∗j−1<t≤t∗j
be the nonstationary approximation of the process (Y

(j)
t ,

λ
(j)
t )t∈Z on the segment T ∗

j ; i.e.

Ỹt = Nt(λ̃t) with λ̃t = fθ∗
j
(Y

(j)
t−1, . . . , Y

(j)
t−t∗j−1

, Y
(j−1)
t−t∗j−1−1, . . . , Y

(1)
1 , 0, . . .).

By using assumption A0(Θ) and relation (12), one can show that the approxi-

mated process (Ỹt, λ̃t)t∗j−1<t≤t∗j
converges (in Lr for any r ≥ 1) to the stationary

regime (see for instance Bardet et al. [2] where similar approximation has been
made for a class of causal time series models). So, the results of Section 4.2
can be extended (after an approximation study) by relaxing the stationarity
assumption after change.

Recall that under H0, the likelihood function of the model computed on
T ⊂ {1, . . . , n} is given by

L̂n(T, θ) =
∑
t∈T

(Yt log f̂
t
θ − f̂ t

θ)
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where f̂ t
θ = fθ(Yt,1, . . . ) and the maximum likelihood estimator is given by

θ̂n(T ) = argmaxθ∈Θ L̂n(T, θ). It holds from Theorem 3.2 that, under H0, the

asymptotic covariance matrix of θ̂n(T1,n) is Σ̂
−1
n where

Σ̂n =
( 1
n

n∑
t=1

1

f̂ t
θ

( ∂

∂θ
f̂ t
θ

)( ∂

∂θ
f̂ t
θ

)′)∣∣∣
θ=θ̂n(T1,n)

.

Σ̂n is a consistent estimator of

Σ = E
( 1

f0
θ0

( ∂

∂θ
f0
θ0

)( ∂

∂θ
f0
θ0

)′)
under H0 (see the proof of Theorem 3.2). The consistency of Σ̂n under H1 is

not ensured. Σ̂n does not take into account the change-point alternative. So, the
consistency under H1 of any test based on Σ̂n will not be easy to prove.

Let (un)n≥1 and (vn)n≥1 be two integer valued sequences satisfying un, vn →
+∞, un

n , vn
n → 0 as n → +∞. Our test statistic is based on the following matrix

Σ̂n(un) =
1

2

[( 1

un

un∑
t=1

1

f̂ t
θ

( ∂

∂θ
f̂ t
θ

)( ∂

∂θ
f̂ t
θ

)′)∣∣∣
θ=θ̂n(T1,un )

+
( 1

n− un

n∑
t=un+1

1

f̂ t
θ

( ∂

∂θ
f̂ t
θ

)( ∂

∂θ
f̂ t
θ

)′)∣∣∣
θ=θ̂n(Tun+1,n)

]
.

Theorem 3.1 and Lemma 7.2 show that Σ̂n(un) is consistent under H0. Under
H1, we will use the classical assumption that the breakpoint gown at the rate n.
This will allow us to show that the first component of Σ̂n(un) converges to the
covariance matrix of the stationary model of the first regime. It will be a key to
prove the consistency under H1.

Another way to deal is to consider the matrix

Σ̃n(un) =
1

2

[( 1

n− un

n−un∑
t=1

1

f̂ t
θ

( ∂

∂θ
f̂ t
θ

)( ∂

∂θ
f̂ t
θ

)′)∣∣∣
θ=θ̂n(T1,n−un )

+
( 1

un

n∑
t=n−un+1

1

f̂ t
θ

( ∂

∂θ
f̂ t
θ

)( ∂

∂θ
f̂ t
θ

)′)∣∣∣
θ=θ̂n(Tn−un+1,n)

]
.

Asymptotically, both the matrices Σ̂n(un) and Σ̃n(un) have the same behavior
under H0. In the case of non stationarity after change, the procedure based on
Σ̃n(un) can provide more distortion; because, according to the dependence on

the past, the second component of Σ̃n(un) will converge very slowly than the

first component of Σ̂n(un).
In the sequel, we will use a weight function q : (0, 1) → (0,∞) assuming to

non-decreasing in a neighborhood of zero, non-increasing in a neighborhood of
one and satisfying infη<τ<1−η q(τ) > 0 for all 0 < η < 1/2.

Let us define now the test statistics:
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• Ĉn = maxvn≤k≤n−vn Ĉn,k where

Ĉn,k

=
1

q2( kn )

k2(n− k)2

n3

(
θ̂n(T1,k)−θ̂n(Tk+1,n)

)′
Σ̂n(un)

(
θ̂n(T1,k)−θ̂n(Tk+1,n)

)
where q is a weight function define on (0, 1), see bellow;

• Q̂
(1)
n = maxvn≤k≤n−vn Q̂

(1)
n,k where

Q̂
(1)
n,k =

k2

n

(
θ̂n(T1,k)− θ̂n(T1,n)

)′
Σ̂n(un)

(
θ̂n(T1,k)− θ̂n(T1,n)

)
;

• Q̂
(2)
n = maxvn≤k≤n−vn Q̂

(2)
n,k where

Q̂
(2)
n,k =

(n− k)2

n

(
θ̂n(Tk+1,n)− θ̂n(T1,n)

)′
Σ̂n(un)

(
θ̂n(Tk+1,n)− θ̂n(T1,n)

)
.

The first procedure is based on the statistic Ĉn and the other one is based on
Q̂n defined by

Q̂n := max(Q̂(1)
n , Q̂(2)

n ).

The weight function q is used to increase the power of the test based on the
statistic Ĉn. Its behavior can be controlled at the neighborhood of zero and one
by the integral

I0,1(q, c) =

∫ 1

0

1

t(1− t)
exp

(
− cq2(t)

t(1− t)

)
dt, c > 0

see Csörgo et al. [6] or Csörgo and Horváth [7]. The natural choice is q(t) =(
t(1− t)

)γ
with 0 ≤ γ < 1/2.

Furthermore, in practice the sequences (un)n≥1 and (un)n≥1 are chosen to

ensure the convergence of the numerical algorithm used to compute θ̂n(T1,un)

and θ̂n(T1,vn). Hence, these procedures might not be accurate for smaller sample
size (i.e. when n < 200). For Poisson INGARCH model, un = vn = [(logn)δ0 ]
(with 5/2 ≤ δ0 ≤ 3) can be chosen (see also Remark 1 of [27]).

4.1. Asymptotic behavior under the null hypothesis

The asymptotic distributions of these statistics under H0 are given in the next
theorem.

Theorem 4.1. Assume D(Θ), Id(Θ), Var(Θ) and Ai(Θ) i = 0, 1, 2 hold with∑
j≥1

√
j × α

(i)
j (Θ) < ∞.

Under H0 with θ0 ∈
◦
Θ,
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1. if I(q, c) < ∞ for some c > 0, then

Ĉn
D−−−−−→

n→+∞
sup

0<τ<1

‖Wd(τ)‖2

q2(τ)
;

2. for j = 1, 2,

Q̂(j)
n

D−−−−−→
n→+∞

sup
0<τ<1

‖Wd(τ)‖2 ,

where Wd is a d-dimensional Brownian bridge.

The distribution of sup0≤τ≤1‖Wd(τ)‖2 is explicitly known. In the general
case, the quantile values of the limit distribution of the first procedure (based

on Ĉn) can be computed through Monte-Carlo simulations. In the sequel, we

will take q ≡ 1. The Theorem 4.2 below implies that the statistics Ĉn and Q̂n are
too large under the alternative. For any α ∈ (0, 1), denote cα the (1−α)-quantile
of the distribution of sup0≤τ≤1‖Wd(τ)‖2. Then at a nominal level α ∈ (0, 1),

take (Ĉn > cα) as the critical region of the test procedure based on Ĉn. This
test has correct size asymptotically. On the other hand, it holds that

lim sup
n→∞

P
(
Q̂n > cα/2

)
≤ α.

So we can use cα/2 as the critical value of the test based on Q̂n i.e. (Q̂n > cα/2)
as the critical region. This leads to an asymptotically conservative procedure. To
get correct asymptotic size in the procedure based on Q̂n, we have to study the

asymptotic distribution of (Q̂
(1)
n , Q̂

(2)
n ). This seems to be a very difficult problem

in view of the dependence structure of the model and the general structure of
the parameter. In the problem of discriminating between long-range dependence
and changes in mean, Berkes et al. [3] have studied the limit distribution of such
statistic (i.e. the maximum of the maximum between the statistic based on the
estimator computed with the observations until the time k (X1, . . . , Xk) and
the one computed with the observations after k (Xk+1, . . . , Xn)). This problem
is the topic of a different research project.

4.2. Asymptotic under the alternative

Under H1, we assume

Assumption B. There exist τ∗1 , . . . , τ
∗
K−1 with 0 < τ∗1 < · · · < τ∗K−1 < 1 such

that for j = 1, . . . ,K, t∗j = [nτ∗j ] (where [x] is the integer part of x).

The asymptotic behaviors of these test statistics are given by the following
theorem.

Theorem 4.2. Assume B, D(Θ), Id(Θ), Var(Θ) and Ai(Θ) i = 0, 1, 2 hold
with ∑

j≥1

√
j × α

(i)
j (Θ) < ∞.
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1. Under H1 with K = 2, if θ∗1 �= θ∗2 and θ∗1 , θ
∗
2 ∈

◦
Θ then

Ĉn
P−−−−−→

n→+∞
+∞.

2. Under H1, if θ
∗
1 �= θ∗K and θ∗1 , θ

∗
2 , . . . , θ

∗
K ∈

◦
Θ then

Q̂n
P−−−−−→

n→+∞
+∞.

It follows that the procedure based on Ĉn is consistent under a single change
alternative while the statistic Q̂n diverges to infinity even under multiple change-
points alternative. So, combined with an iterated cumulative sums of squares
type algorithm (see [24]), the latter procedure can be used to estimate the
number and the break points in the multiple change-points problem.

The Figure 1 is an illustration of these tests for the linear Poisson autore-
gressive model of order 1

Yt/Ft−1 ∼ Poisson(λt) with λt = α0 + β1Yt−1. (13)

One can see that, under H0, the statistics Ĉn,k, Q̂
(1)
n,k and Q̂

(2)
n,k are all below the

horizontal line (see c-), e-), g-)) which represents the limit of the critical region.
These statistics are greater than the critical value in the neighborhood of the
breakpoint under H1 (see d-), f-), h-)). In several situations, only one of the

statistics Q̂
(1)
n and Q̂

(2)
n is greater than the critical value under the alternative;

so the use of Q̂n := max(Q̂
(1)
n , Q̂

(2)
n ) is needed to get more powerful procedure

(see for instance the real data application in Subsection 6.2).

5. Some numerical results for inference in INTGARCH model

We consider the integer-valued threshold GARCH(p, q) (or INTGARCH(p, q))
process Y = (Yt)t∈Z which satisfying

Yt/Ft−1 ∼ Poisson(λt) with

λt = α0 +

p∑
k=1

αkλt−k +

q∑
k=1

(
β+
k max(Yt−k − �, 0) + β−

k min(Yt−k, �)
)

where α0 > 0, αk, β
+
k , β−

k ≥ 0 and
∑p

k=1 αk +
∑q

k=1 max(β+
k , β−

k ) < 1.
Denote θ0 = (α0, α1, . . . , αp, β

+
1 , β−

1 , . . . , β+
q , β−

q ) the true parameter of the
model. This model is a special case of the INTARCH(∞) see (7).

5.1. Estimation and identification

Assume that a trajectory (Y1, . . . , Yn) of Y is observed. If the orders (p, q) and
the threshold � are known, then the parameter θ0 can be estimated by maximiz-
ing the conditional log-likelihood defined in (8) and Theorem 3.1 and Theorem
3.2 are applied.
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Fig 1. Typical realization of 1000 observations of two Poisson INARCH(1) processes and the

corresponding statistics Ĉ
(1)
n,k, Q̂

(1)
n,k and Q̂

(2)
n,k. a-) is a Poisson INARCH(1) process without

change, where the parameter θ0 = (1, 0.2) is constant. b-) is a Poisson INARCH(1) process
where the parameter θ0 = (1, 0.2) changes to (1, 0.45) at k∗ = 500. c-), d-), e-), f-), g-) and

h-) are their corresponding statistics Ĉn,k, Q̂
(1)
n,k and Q̂

(2)
n,k. The horizontal line represents the

limit of the critical region of the test.
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The order (p, q) can be estimated by using an information criterion such as
AIC or BIC; and the treshold � is estimated by maximizing the log-likelihood
over a set of integer values {0, 1, . . . , �max} where �max is an upper bound of the
true threshold �. In practice, we can choose an adapted �max = max(Y1, . . . , Yn).

Let pmax and qmax be the upper bound of the orders p and q respectively.
Hence, the estimation of θ0, (p, q) and � can be done in the following three steps:

• Step 1: For each (p, q, �) ∈ {0, . . . , pmax} × {0, . . . , qmax} × {0, . . . , �max}
fixed, compute the estimation θ̂p,q,
 as in (9).

• Step 2: for each � ∈ {0, . . . , �max} fixed, select the “best” order (p̂
, q̂
) by
minimizing the AIC or the BIC criteria.

• Step 3: Estimate the threshold by maximizing the log-likelihood as follows

�̂n = argmax

∈{0,...,
max}

L(T1,n, θ̂p̂�,q̂�,
).

Therefore, the final estimated parameters of the model are �̂n, (p̂
̂n , q̂
̂n) and

θ̂p̂�̂n
,q̂�̂n ,
̂n

. We have implemented this procedure on the R-software (developed

by the CRAN project).

5.2. Some simulations results

We consider an INTGARCH(1, 1) process Y = (Yt)t∈Z defined by

Yt/Ft−1 ∼ Poisson(λt) with

λt = 1 + 0.7λt−1 + 0.2max(Yt−1 − 6, 0) + 0.1min(Yt−1, 6). (14)

This scenario is close to the real data example (see below). Note that, the
INTGARCH(1, 1) model can be seen as a nonlinear Poisson autoregressive model
with one knot. The MLE is reasonably good, as discussed in Davis and Liu [9].
We will focus on the estimation of the threshold � and the order (p, q) of an
INTGARCH((p, q)) model.

Let (Y1, . . . , Yn) be a trajectory generated according to (14). We fit an
INTGARCH(p, q) model from these observations; p, q and � are assumed to
be unknown and are estimated as described above. For the problem of selecting
the order (p, q), Table 1 indicates the proportions of the true order (1, 1), low
and high order models selected (using AIC and BIC) based on 200 replications

Table 1

Frequencies of the true order, low and high order models selected (using AIC and BIC)
based on 200 replications with n = 500 and n = 1000

Criteria (p̂n, q̂n) = (1, 1) p̂n + q̂n < 2 (p̂n, q̂n) �= (1, 1) & p̂n + q̂n > 2
(true order) (low order) (high order)

n = 500 AIC 0.705 0.040 0.255
BIC 0.670 0.250 0.080

n = 1000 AIC 0.870 0 0.13
BIC 0.915 0.02 0.065
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Table 2

Some elementary statistics of the estimator �̂n for the model selected using AIC and BIC

�̂n Mean SD Min Q1 Med Q3 Max

n = 500 AIC 5.645 1.905 0 4 6 8 11
BIC 4.245 2.759 0 2 5 6 10

n = 1000 AIC 5.920 1.625 1 5 6 7 9
BIC 5.770 1.873 0 5 6 7 9

with n = 500 and n = 1000. We have used pmax = qmax = 5. Some empirical
statistics of the estimator of (the threshold) �̂n are reported in Table 2.

These results show that, the (empirical) probability of selecting the true
order increases as n increases for both AIC and BIC. Even when n = 500
(this length is close to the real data example, see below) this proportion is
reasonably acceptable. It also appears that the BIC leads to select low orders
models and less selects high orders models than the AIC; this is not surprising,
since the penalty term of the BIC is greater than that of the AIC. Note that,
the consistency of the BIC and the efficiency of the AIC have been proved in
many situations in model selection theory; even if such results have not yet
been proved in our model here, we can nevertheless see that the (empirical)
probability to select the true model with the BIC increases (with n) than that
of the AIC.

The empirical statistics of �̂n displayed in Table 2 show that the estimation
of the threshold is reasonably good (for both the AIC and the BIC) in terms
of mean and quantiles. For example, when n = 1000 for more than 60% of the
replications, the estimation of the threshold belongs to the set {5, 6, 7} while
the true value of the threshold is 6.

5.3. Application to real data

We consider the number of transactions per minute for the stock Ericsson B
during July 2, 2002. There are 460 available observations which represent the
transaction of approximately 8 hours (from 09:35 to 17:14), see Figure 2. The
empirical mean and variance of the series are 9.909 and 32.836 respectively. That
is the data are overdispersed and the positive dependence (see ACF in Figure 2)
suggest that the models studied here are candidates for fitting these data.

Fokianos et al. [19] have fitted these data using linear Poisson autoregression
and exponential autoregressive model with one lag autoregression. These two
models describe the data reasonably well and the Pearson residuals provided
appear to be white. The linear Poisson autoregression pass the goodness-of-fit
test proposed by Fokianos and Neumann [18]. The nonlinear Poisson autore-
gression with one knot applied by Davis and Liu [9] seems also to describe well
the data according to the Pearson residuals analysis.

Nevertheless, the autocorrelation function of the observations displays strong
dependence between transactions. Therefore, we apply an INTGARCH(p, q)
(with p and q unknown) and select the “best” model as described above. AIC
leads to INTGARCH(2, 1) model and BIC to INTGARCH(1, 1). The conditional
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Fig 2. Number of transactions per minute for the stock Ericsson B during July 2, 2002 and
the autocorrelation function of the observations.

means of these models are:

(AIC) : λ̂t = 1.165
(0.371)

+ 0.351
(0.163)

λ̂t−1 + 0.433
(0.148)

λ̂t−2 + 0.207
(0.028)

max(Yt−1 − 6, 0)

+0.012
(0.068)

min(Yt−1, 6)

(BIC) : λ̂t = 0.866
(0.281)

+ 0.840
(0.022)

λ̂t−1 + 0.153
(0.020)

max(Yt−1 − 6, 0)

+0.010
(0.052)

min(Yt−1, 6)

with the standard errors figure underneath. Figure 3(a) and 3(c) display the
fitted results of the INTGARCH(2, 1) and INTGARCH(1,1) models. See the
previous subsection (Table 2) for the efficiency of this model selection procedure.
It appears that the AIC and the BIC globally work well.

To examine the adequacy of the fitted model, we consider the estimated
counterparts of the Pearson residuals (see for instance [26]) given by ξ̂t =

(Yt− λ̂t)/

√
λ̂t. If the model is correctly specified, then these residuals should be

close to a white noise sequence. The autocorrelation function displayed on Fig-
ure 3(b) and 3(d) shows that the Pearson residuals for both INTGARCH(2, 1)
and INTGARCH(1, 1) models do not exhibit a significant autocorrelation. The
whiteness of these residuals are deduced from the cumulative periodogram (which
we have not represented here to keep the length of this Subsection reasonable).

Now, the natural question is: for the Poisson INTGARCH(2, 1),
INTGARCH(1, 1) (fitted bellow) and the linear INGARCH(1, 1) (that have been
used by Fokianos et al. [19] and tested by Fokianos and Neumann [18]), what is
the best model for such data? This question is not easy to answer, because even



Inference and structural change for Poisson autoregression 1285

Fig 3. (a) Observed and fitted (thick line) values of the number of transactions of the stock
Ericsson B on July 2, 2002 using INTGARCH(2, 1) model; (b) is the corresponding auto-
correlation function of the Pearson residuals. (c) Observed and fitted (thick line) values of
the number of transactions of the stock Ericsson B on July 2, 2002 using INTGARCH(1, 1)
model; (d) is the corresponding autocorrelation function of the Pearson residuals.

if the Poisson INGARCH(1, 1) pass the test proposed by Fokianos and Neu-
mann, some doubt have been pointed about the linearity assumption of these
data (see the test based on Hn in [18]) and the Poisson INTGARCH(2, 1) and
INTGARCH(1, 1) models seem to well describe the data. Let us make some
discussion according to the AIC, BIC and the Pearson residuals.

• First not that, the INGARCH(1, 1) model can be seen as a particular case
of the INTGARCH(p, q) with the threshold � = 0. Thus the INTGARCH(2,
1) and INTGARCH(1, 1) models outperform the INGARCH(1, 1) in terms
of the AIC and BIC respectively; see also Table 3 (the likelihood have been
computed up to some constants).
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Table 3

Model selection for the stock Ericsson B on July 2, 2002

INGARCH(1, 1) INTGARCH(1, 1) INTGARCH(2, 1)

AIC −12170.80 −12175.09 −12176.63
BIC −12158.41 −12158.56 −12155.97

MSE (Pearson residuals) 2.36 2.31 2.33

• The Pearson residuals of these three models seem to be white (see [19]
for the case of the INGARCH(1, 1)). The mean square error of the Pear-

son residuals (defined by
∑n

t=1 ξ̂
2
t /(n − d) where d is the number of es-

timated parameters) displayed in Table 3 show a slight gain with the
INTGARCH(1, 1) model.

In conclusion, it appears that the Poisson INGARCH(1, 1), INTGARCH(1, 1)
and INTGARCH(2, 1) fit the data adequately. None of these models outper-
forms the others, according to the three criteria (AIC, BIC and the MSE of the
Pearson residuals). INTGARCH(1, 1) is more accurate in terms of the MSE of
the Pearson residuals, INTGARCH(2, 1) outperforms in terms of AIC whereas
INTGARCH(1, 1) and INGARCH(1, 1) models are preferable in terms of BIC.

6. Some numerical results for parameter change in INGARCH
model

6.1. Testing for parameter change in INGARCH model

We provide some simulations results to show the empirical performance of
the tests procedures described above. We consider the Poisson INGARCH(1,1)
model:

Yt/Ft−1 ∼ Poisson(λt) with λt = α0 + α1λt−1 + β1Yt−1. (15)

For sample sizes n = 500, 1000, the statistics Ĉn and Q̂n are computed with un =
vn = [(log n)5/2]. The empirical levels and powers reported in the followings
table are obtained after 200 replications at the nominal level α = 0.05.

1. Poisson INGARCH(1,1) with one change-point alternative.
Denote by θ = (α0, α1, β1) the parameter of the model (15). Table 4
indicates the empirical levels computed when the parameter is θ0 and the
empirical powers computed when θ0 changes to θ1 at n/2.

2. Poisson INARCH(1) with two change-points alternative.
We assume in (15) that α1 = 0 and denote by θ = (α0, β1) the parameter
of the model. Table 5 indicates the empirical levels computed when the
parameter is θ0 and the empirical powers computed when θ0 changes to
θ1 at 0.3n which changes to θ2 at 0.7n. The second alternative scenario
is a case where the change in the parameters does not induce a change in
the mean of the marginal distribution.
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Table 4

Empirical levels and powers at the nominal level 0.05 of test for parameter change in
Poisson INGARCH(1,1) model with one change-point alternative

Procedure n = 500 n = 1000

Empirical levels

θ0 = (1, 0.1, 0.2) Ĉn statistic 0.020 0.040

Q̂n statistic 0.035 0.045

θ0 = (0.3, 0.5, 0.1) Ĉn statistic 0.065 0.060

Q̂n statistic 0.080 0.055
Empirical powers

θ0 = (1, 0.1, 0.2); θ1 = (0.7, 0.1, 0.2) Ĉn statistic 0.415 0.840

Q̂n statistic 0.595 0.910

θ0 = (0.3, 0.5, 0.1); θ1 = (0.3, 0.3, 0.4) Ĉn statistic 0.695 0.960

Q̂n statistic 0.865 0.995

Table 5

Empirical levels and powers at the nominal level 0.05 of test for parameter change in
Poisson INARCH(1) model with two change-points alternative

Procedure n = 500 n = 1000

Empirical levels

θ0 = (1, 0.2) Ĉn statistic 0.065 0.050

Q̂n statistic 0.060 0.040

θ0 = (0.2, 0.5) Ĉn statistic 0.080 0.055

Q̂n statistic 0.095 0.060
Empirical powers

θ0 = (1, 0.2); θ1 = (1, 0.45); θ2 = (1, 0.15) Ĉn statistic 0.680 0.975

Q̂n statistic 0.565 0.985

θ0 = (0.2, 0.5); θ1 = (0.3, 0.25); θ2 = (0.1, 0.75) Ĉn statistic 0.705 0.990

Q̂n statistic 0.740 0.995

It appears in Tables 4, 5 that these two procedures display a size distortion
when n = 500; but the empirical levels are close to the nominal one when n =
1000. One can also see that the empirical powers of these procedures increase
with n and are more accurate even for the case that the break does not induce
a change in the mean of the marginal distribution. Although the procedure
based on Q̂n is little more powerful, the test based on Ĉn provides satisfactory
empirical powers even in the case of two change-points alternative. This could
be a starting point for investigation of the consistency of this procedure under
multiple change-points alternative.

6.2. Real data application

We consider the number of transactions per minute for the stock Ericsson B
during July 16, 2002. There are 460 observations which represent trading from
09:35 to 17:14. Figure 4 displays the data and its autocorrelation function.

Several works (see for instance Fokianos et al. [19], Davis and Liu [9]) on the
series of July 2, 2002 led to use an INGARCH(1,1) model (on the series of July

2, 2002). This model provides α̂1 + β̂1 close to unity. It can be seen in the slow



1288 P. Doukhan and W. Kengne

Fig 4. Number of transactions per minute for the stock Ericsson B during July 16, 2002 and
their autocorrelation function.

decay of the autocorrelation function (see Figure 2). The series in the period 2–
22 July 2002 have been studied by Brännäs and Quoreshi [5]. They have pointed
out the presence of long memory in these data and applied INARMA model to
both level and first difference forms.

For the transaction during July 16, 2002, we test the adequacy of the Pois-
son INGARCH(1,1) model by applying the goodness-of-fit test proposed by

Fokianos and Neumann [18]. Let θ̂n = (α̂0,n, α̂1,n, β̂1,n) be the maximum like-

lihood estimator computed on the observations. Denote Ît = (λ̂t, Yt) where

λ̂t = α̂0,n + α̂1,nλ̂t−1 + β̂1,nYt−1. Recall that the estimated Pearson residuals is

given by ξ̂t = (Yt − λ̂t)/

√
λ̂t. The goodness-of-fit test is based on the statistic

T̂n = sup
x∈Π

|Ĝn(x)| with Ĝn(x) =
1√
n

n∑
t=1

ξ̂tw(x− Ît−1)

where Π = [0,∞)2 and w(x) = w(x1, x2) = K(x1)K(x2) whereK(·) is a univari-
ate kernel. A parametric bootstrap procedure can be used to compute p-values
of this test. See [18] for more detail on this test procedure.

We have applied this test with B = 300 bootstrap replications and the p-
values 0.032 and 0.05 have been obtained respectively for uniform and Epanech-
nikov kernel. So, the linear Poisson INGARCH(1,1) model is rejected.

The previous test for change detection have been applied to the series.
A change has been detected around the midday at t∗ = 12:05. See the statistics

Ĉn,k, Q̂
(1)
n,k and Q̂

(2)
n,k as well as the breakpoint and the autocorrelation function

of each regime on Figure 5.
To assess the adequacy of the linear Poisson INGARCH(1,1) on each regime,

we apply the goodness-of-fit test of Fokianos and Neumann [18]. The p-values
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Fig 5. Break detection in the transactions per minute of the stock Ericsson B on July 16,

2002. a-), b-), c-) the corresponding statistics Ĉn,k, Q̂
(1)
n,k and Q̂

(2)
n,k. d-) Breakpoint in the

data; e-), f-) the autocorrelation functions of each regime.

obtained are displayed in Table 6. These results point to the adequacy of the
linear Poisson INGARCH(1,1) on of the first regime and raises some doubt about
the linearity on the second regime. This shows that, the model structure of the
transactions in the morning may be different to the structure of the transactions
in the afternoon. Moreover, Figure 5 shows that, the autocorrelation function
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Table 6

p-values when testing adequacy of the Poisson INGARCH(1,1) on each regime after break
detection in the transactions per minute of the stock Ericsson B on July 16, 2002. Results

are based on B=300 bootstrap replications

Uniform kernel Epanechnikov kernel

First regime (from 09:35 to 12:05) 0.250 0.213
Second regime (from 12:06 to 17:14) 0.006 0.006

of each regime decreases fast; this rules out the idea of the long memory in the
series.

7. Proofs of the main results

Proof of the Proposition 2.1. We will use the same techniques as in [12].
Let p, q two fixed non-negative integers. Definite the sequence (λp,q

t )t∈Z by

λp,q
t =

{
0 if t ≤ −q

F (λp,q
t−1, . . . , λ

p,q
t−p, 0, . . . ;Yt−1, . . .) otherwise.

(16)

The existence of moment of any order of the process (Yt, λt)t∈Z (see [13]) and
assumption (AF ) imply the existence of moment of any order of (λp,q

t )t∈Z. Let
us show that (λp,q

0 )q≥0 is a Cauchy sequence in L1. By using (AF ), we have

E|λp,q+1
0 − λp,q

0 | ≤
p∑

j=1

αjE|λp,q+1
−j − λp,q

−j |.

By definition and the strictly stationarity of (Yt)t∈Z, we can easily see that for
j = 1 . . . , p, the couples (λp,q+1

−j , λp,q+1
−j ) and (λp,q+1−j

0 , λp,q−j
0 ) have the same

distribution. Hence,

E|λp,q+1
0 − λp,q

0 | ≤
p∑

j=1

αjE|λp,q+1−j
0 − λp,q−j

0 |.

For any fixed p, denote vq = E|λp,q+1
0 − λp,q

0 | for all q > p. It holds that

vq ≤
p∑

j=1

αjvq−j .

By applying the Lemma 5.4 of [12], we obtain

vq ≤ αq/pv0 where α =

∞∑
j=1

αj .

Hence, vq → 0 as q → ∞. Thus, for any p > 0, the sequence (λp,q
0 ) is a

Cauchy sequence in L1. Therefore, it converges to some limit denoted λp
0. More-

over, since the sequence (λp,q
0 )q≥1 is measurable w.r.t to σ(Yt, t < 0), it is
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the case of the limit λp
0. So, there exists a measurable function f (p) such that

λp
0 = f (p)(Y−1, . . .). By going along similar lines, it holds that for any t ∈ Z,

the sequence (λp,q
t )q≥1 converges in L1 to some λp

t = f (p)(Yt−1, . . .) and since
(Yt)t∈Z, is stationary and ergodic, the process (λp

t )t∈Z is too stationary and
ergodic.

Let p and t fixed. For q large enough, we have

λp,q
t = F (λp,q

t−1, . . . , λ
p,q
t−p, 0, . . . ;Yt−1, . . .)

(see (16)). By using the continuity (which comes from Lipschitz-type condi-
tions) of (Y1, . . . , Yp) �→ F (Y1, . . . , Yp, 0 . . . ; y) for any fixed y = (y1)i≥1 and by
carrying q to infinity, it holds that

λp
t = F (λp

t−1, . . . , λ
p
t−p, 0, . . . ;Yt−1, . . .). (17)

Denote μp = Eλp
t , μ = supp≥1 μp, Δp,t = E|λp+1

t − λp
t | and Δp = supt∈Z Δp,t.

By going the same lines as in [12], we obtain Δp ≤ Cαp+1. Therefore, Δp → 0
as p → ∞. This shows that for any fixed t ∈ Z, (λp

t )p≥1 is a Cauchy sequence in

L1. Thus it converges to some random λ̃t ∈ L1. Moreover, λ̃t is measurable w.r.t
σ(Yj , j < t) (because it is the case of (λp

t )p≥1). Thus, there exists a measurable

function f such that λ̃t = f(Yt−1, . . .) for any t ∈ Z. This implies that (λ̃t)t∈Z

is strictly stationary and ergodic. Finally, by using equation (17) and continuity
of F , it comes that

λ̃t = F (λ̃t−1, . . . ;Yt−1, . . .), for any t ∈ Z. (18)

Hence, the process (Yt, λ̃t)t∈Z is strictly stationary ergodic and satisfying (1).

By the uniqueness of the solution, it holds that λ̃t = λt a.s.
Thus λt = f(Yt−1, . . .) for any t ∈ Z.

Proof of the Theorem 3.1. Without loss of generality, for simplifying no-
tation, we will make the proof with Tjn,kn = T1,n. The proof is divided into

two parts. We will first show that ‖ 1
n

∑
t∈T1,n

�̂t(θ) − L(θ)‖Θ a.s.−−−−−→
n→+∞

0 where

L(Θ) := E(�0(θ)); secondly, we will show that the function θ �→ L(Θ) has a
unique maximum in θ0.

(i) Let θ ∈ Θ, recall that �t(θ) = Yt log λt(θ) − λt(θ) = Yt log f
t
θ − f t

θ. Since
(Yt)t∈Z is stationary and ergodic, for any θ ∈ Θ, (�t(θ))t∈Z is also a sta-
tionary and ergodic sequence. Moreover, we have for any θ ∈ Θ,

|�t(θ)| ≤ |Yt|
∣∣log f t

θ

∣∣+ ∣∣f t
θ

∣∣
≤ |Yt|

∣∣∣ log (f t
θ

c
× c

)∣∣∣+ ∣∣f t
θ

∣∣
≤ |Yt|

(∣∣∣f t
θ

c
− 1

∣∣∣+ |log c|
)
+
∣∣f t

θ

∣∣ ( for x > 1, |log x| ≤ |x− 1|)

≤ |Yt|
(
1

c

∣∣f t
θ

∣∣+ 1 + |log c|
)
+
∣∣f t

θ

∣∣ .
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Hence,

sup
θ∈Θ

|�t(θ)| ≤ |Yt|
(1
c

∥∥f t
θ

∥∥
Θ
+ 1 + |log c|

)
+
∥∥f t

θ

∥∥
Θ
.

We will show that, for any r > 0, E(‖f t
θ‖

r

Θ) < ∞. Since A0(Θ) holds, we
have∥∥f t

θ

∥∥
Θ
≤
∥∥f t

θ − fθ(0)
∥∥
Θ
+ ‖fθ(0)‖Θ ≤

∑
j≥1

α
(0)
j (Θ) |Yt−j |+ ‖fθ(0)‖Θ .

Thus, by using the stationarity of the process (Yt)t∈Z, it follows that(
E (

∥∥f t
θ

∥∥r
Θ
)
)1/r

≤ ‖Y0‖r
∑
j≥1

α
(0)
j (Θ) + ‖fθ(0)‖Θ < ∞.

Therefore, we have

E
(
sup
θ∈Θ

|�t(θ)|
)
≤ 1

c
(E |Yt|2)1/2 ·

(
E
∥∥f t

θ

∥∥2
Θ

)1/2
+ (1 + |log c|)E |Yt|+ E

∥∥f t
θ

∥∥
Θ
< ∞.

By the uniform strong law of large number applied on (�t(θ))t≥1 (see
Straumann and Mikosch (2006) [33]), it holds that∥∥∥ 1

n

∑
t∈T1,n

�t(θ)− E�0(θ)
∥∥∥
Θ

a.s.−−−−−→
n→+∞

0. (19)

Now let us show that

1

n

∥∥∥ ∑
t∈T1,n

�t(θ)−
∑

t∈T1,n

�̂t(θ)
∥∥∥
Θ

a.s.−−−−−→
n→+∞

0.

We have

1

n

∥∥∥ ∑
t∈T1,n

�t(θ)−
∑

t∈T1,n

�̂t(θ)
∥∥∥
Θ
≤ 1

n

∑
t∈T1,n

∥∥∥�t(θ)− �̂t(θ)
∥∥∥
Θ
.

We will apply the Corollary 1 of Kounias and Weng (1969) [29]. So, it
suffices to show that

1

n

∑
t≥1

1

t
E
(∥∥∥�t(θ)− �̂t(θ)

∥∥∥
Θ

)
< ∞.

For t ∈ T1,n and θ ∈ Θ, we have

�t(θ)− �̂t(θ) = Yt log f
t
θ−f t

θ−Yt log f̂
t
θ+ f̂ t

θ = Yt(log f
t
θ− log f̂ t

θ)−(f t
θ− f̂ t

θ).

By using the relation | log f t
θ − f̂ t

θ| ≤ 1
c |f t

θ − f̂ t
θ|, it comes that∥∥∥�t(θ)− �̂t(θ)

∥∥∥
Θ
≤ 1

c
|Yt|

∥∥∥f t
θ − f̂ t

θ

∥∥∥
Θ
+
∥∥∥f t

θ − f̂ t
θ

∥∥∥
Θ
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≤
(1
c
|Yt|+ 1

)∥∥∥f t
θ − f̂ t

θ

∥∥∥
Θ
.

By Cauchy-Schwartz inequality,

E
(∥∥∥�t(θ)− �̂t(θ)

∥∥∥
Θ

)
≤ E

[(1
c
|Yt|+ 1

)∥∥∥f t
θ − f̂ t

θ

∥∥∥
Θ

]
≤
(
E
(1
c
|Yt|+ 1

)2)1/2
×
(
E
∥∥∥f t

θ − f̂ t
θ

∥∥∥2
Θ

)1/2
.

We have (by Minkowski inequality),(
E
(1
c
|Yt|+ 1

)2)1/2
≤ 1

c
(E |Yt|2)1/2 + 1 < ∞.

Thus, it comes that

E
(∥∥∥�t(θ)− �̂t(θ)

∥∥∥
Θ

)
≤ C

(
E
∥∥∥f t

θ − f̂ t
θ

∥∥∥2
Θ

)1/2
.

But, we have ‖f t
θ − f̂ t

θ‖Θ ≤
∑

j≥t α
(0)
j (Θ)|Yt−j |. By using Minkowski in-

equality, it comes that(
E
∥∥∥f t

θ − f̂ t
θ

∥∥∥2
Θ

)1/2
≤ (E |Y0|2)1/2

∑
j≥t

α
(0)
j (Θ).

Hence (
E
∥∥∥f t

θ − f̂ t
θ

∥∥∥2
Θ

)1/2
≤ C

∑
j≥0

α
(0)
j (Θ).

Thus

E
(∥∥∥�t(θ)− �̂t(θ)

∥∥∥
Θ

)
≤ C

∑
j≥t

α
(0)
j (Θ).

Therefore∑
t≥1

1

t
E
∥∥∥�t(θ)− �̂t(θ)

∥∥∥
Θ
≤ C

∑
t≥1

1

t

∑
j≥t

α
(0)
j (Θ) = C

∑
t≥1

∑
j≥t

1

t
α
(0)
j (Θ)

≤
∑
j≥1

j∑
t=1

1

t
α
(0)
j (Θ) = C

∑
j≥1

α
(0)
j (Θ)

j∑
t=1

1

t

≤ C
∑
j≥1

α
(0)
j (Θ) · (1 + log j)

≤ C
∑
j≥1

α
(0)
j (Θ) + C

∑
j≥1

α
(0)
j (Θ)

√
j

< ∞ (according to A0(Θ) and (10)).
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Hence, it follows that

1

n

∥∥∥ ∑
t∈T1,n

�t(θ)−
∑

t∈T1,n

�̂t(θ)
∥∥∥
Θ

a.s.−−−−−→
n→+∞

0. (20)

From (19) and (20), we deduce that∥∥∥ 1
n

∑
t∈T1,n

�̂t(θ)− E�0(θ)
∥∥∥
Θ

a.s.−−−−→
n→∞

0.

(ii) We will now show that the function θ �→ L(θ) = E�0(θ) has a unique
maximum at θ0. We will proceed as in [9]. Let θ ∈ Θ, with θ �= θ0. We
have

L(θ0)− L(θ) = E�0(θ0)− E�0(θ)

= E(Y0 log f
0
θ0 − f0

θ0)− E(Y0 log f
0
θ − f0

θ )

= E
[
f0
θ0(log f

0
θ0 − log f0

θ0)
]
− E(f0

θ0 − f0
θ0).

By applying the mean value theorem at the function x �→ log x defined
on [c,+∞[, there exists ξ between f0

θ0
and f0

θ such that log f0
θ0
− log f0

θ0
=

(f0
θ0

− f0
θ0
) 1ξ . Hence, it comes that

L(θ0)− L(θ) = E
(1
ξ
f0
θ0(f

0
θ0 − f0

θ )
)
− E(f0

θ0 − f0
θ )

= E
((f0

θ0

ξ
− 1

)(
f0
θ0 − f0

θ

))
= E

(1
ξ
(f0

θ0 − ξ)(f0
θ0 − f0

θ )
)
.

Since θ �= θ0, it follows from assumption Id(Θ) that 1
ξ (f

0
θ0
−ξ)(f0

θ0
−f0

θ ) �= 0
a.s. Moreover

• if f0
θ0

< f0
θ , then f0

θ0
< ξ < f0

θ and hence 1
ξ (f

0
θ0

− ξ)(f0
θ0

− f0
θ ) > 0;

• if f0
θ0

> f0
θ , then f0

θ < ξ < f0
θ0

and hence 1
ξ (f

0
θ0

− ξ)(f0
θ0

− f0
θ ) > 0.

We deduce that 1
ξ (f

0
θ0

− ξ)(f0
θ0

− f0
θ ) > 0 a.s.. Hence L(θ0) − L(θ) =

E( 1ξ (f
0
θ0

− ξ)(f0
θ0

− f0
θ )) > 0. Thus, the function θ �→ L(θ) has a unique

maximum at θ0.

(i), (ii) and standard arguments lead to the consistency of θ̂n(T1,n).

The following lemma are needed to prove the Theorem 3.2.

Lemma 7.1. Let (jn)n≥1 and (kn)n≥1 two integer valued sequences such that
(jn)n≥1 is increasing, jn → ∞ and kn − jn → ∞ as n → ∞. Let n ≥ 1, for any
segment T = Tjn,kn ⊂ {1, . . . , n}, it holds under assumptions of Theorem 3.2
that

E
( 1√

kn − jn

∥∥∥ ∂

∂θ
Ln(T, θ)−

∂

∂θ
L̂n(T, θ)

∥∥∥
Θ

)
−→ 0
n→∞

.
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Proof. Let i ∈ {1, . . . , n}. We have

∂

∂θi
Ln(T, θ) =

∑
t∈T

∂

∂θi
(Yt log f

t
θ − f t

θ) =
∑
t∈T

(
Yt

1

f t
θ

∂

∂θi
f t
θ −

∂

∂θi
f t
θ

)
=
∑
t∈T

∂

∂θi
�t(θ)

and
∂

∂θi
L̂n(T, θ) =

∑
t∈T

(
Yt

1

f̂ t
θ

∂

∂θi
f̂ t
θ −

∂

∂θi
f̂ t
θ

)
=
∑
t∈T

∂

∂θi
�̂t(θ).

Hence∣∣∣∣ ∂

∂θi
�t(θ)−

∂

∂θi
�̂t(θ)

∣∣∣∣ =
∣∣∣∣∣Yt

1

f t
θ

∂

∂θi
f t
θ −

∂

∂θi
f t
θ − Yt

1

f̂ t
θ

∂

∂θi
f̂ t
θ +

∂

∂θi
f̂ t
θ

∣∣∣∣∣
≤ |Yt|

∣∣∣∣∣ 1f t
θ

∂

∂θi
f t
θ −

1

f̂ t
θ

∂

∂θi
f̂ t
θ

∣∣∣∣∣+
∣∣∣∣ ∂

∂θi
f t
θ −

∂

∂θi
f̂ t
θ

∣∣∣∣ . (21)

Using the relation |a1b1 − a2b2| ≤ |a1 − a2| |b2|+ |b1 − b2| |a1|, we have∣∣∣∣∣ 1f t
θ

∂

∂θi
f t
θ −

1

f̂ t
θ

∂

∂θi
f̂ t
θ

∣∣∣∣∣ ≤
∣∣∣∣∣ 1f t

θ

− 1

f̂ t
θ

∣∣∣∣∣
∣∣∣∣ ∂

∂θi
f̂ t
θ

∣∣∣∣+ ∣∣∣∣ ∂

∂θi
f t
θ −

∂

∂θi
f̂ t
θ

∣∣∣∣ ∣∣∣∣ 1f t
θ

∣∣∣∣
≤ 1

c2

∣∣∣f t
θ − f̂ t

θ

∣∣∣ ∣∣∣∣ ∂

∂θi
f̂ t
θ

∣∣∣∣+ 1

c

∣∣∣∣ ∂

∂θi
f t
θ −

∂

∂θi
f̂ t
θ

∣∣∣∣ .
Hence, (21) implies∥∥∥∥ ∂

∂θi
�t(θ)−

∂

∂θi
�̂t(θ)

∥∥∥∥ ≤ |Yt|
(

1

c2

∥∥∥f t
θ − f̂ t

θ

∥∥∥
Θ

∥∥∥∥ ∂

∂θi
f̂ t
θ

∥∥∥∥
Θ

+
1

c

∥∥∥∥ ∂

∂θi
f t
θ −

∂

∂θi
f̂ t
θ

∥∥∥∥
Θ

)
+

∥∥∥∥ ∂

∂θi
f t
θ −

∂

∂θi
f̂ t
θ

∥∥∥∥
Θ

≤ C |Yt|
∥∥∥∥ ∂

∂θi
f̂ t
θ

∥∥∥∥
Θ

∥∥∥f t
θ − f̂ t

θ

∥∥∥
Θ
+ C(1 + |Yt|)

∥∥∥∥ ∂

∂θi
f t
θ −

∂

∂θi
f̂ t
θ

∥∥∥∥
Θ

.

Let r > 0. Using the Minkowski and Hölder’s inequalities, it holds that

(
E

[∥∥∥∥ ∂

∂θi
�t(θ)−

∂

∂θi
�̂t(θ)

∥∥∥∥r
Θ

]) 1
r

≤ C

(
E

[
|Yt|r

∥∥∥∥ ∂

∂θi
f̂ t
θ

∥∥∥∥r
Θ

∥∥∥f t
θ − f̂ t

θ

∥∥∥r
Θ

])1/r

+ C

(
E

[
(1 + |Yt|)r

∥∥∥∥ ∂

∂θi
f t
θ −

∂

∂θi
f̂ t
θ

∥∥∥∥r
Θ

])1/r

≤ C

⎛⎝(E |Yt|3r)1/3
(
E

∥∥∥∥ ∂

∂θi
f̂ t
θ

∥∥∥∥3r
Θ

)1/3(
E
∥∥∥f t

θ − f̂ t
θ

∥∥∥3r
Θ

)1/3
⎞⎠1/r
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+ C

⎛⎝(E(1 + |Yt|)2r
)1/r (

E

∥∥∥∥ ∂

∂θi
f t
θ −

∂

∂θi
f̂ t
θ

∥∥∥∥2r
)1/2

⎞⎠1/r

≤ C ‖Yt‖3r
∥∥∥∥∥∥∥∥ ∂

∂θi
f̂ t
θ

∥∥∥∥
Θ

∥∥∥∥
3r

·
(
E
∥∥∥f t

θ − f̂ t
θ

∥∥∥3r
Θ

)1/3r

+ C ‖1 + |Yt|‖2r ·
(
E

∥∥∥∥ ∂

∂θi
f t
θ −

∂

∂θi
f̂ t
θ

∥∥∥∥2r
Θ

)1/2r

.

But we have ‖Yt‖3r = C < ∞ and ‖1 + |Yt|‖1r < ∞. Hence∥∥∥∥ ∂

∂θi
f̂ t
θ

∥∥∥∥
Θ

≤
∥∥∥∥ ∂

∂θi
fθ(0)

∥∥∥∥
Θ

+

∥∥∥∥ ∂

∂θi
f̂ t
θ −

∂

∂θi
fθ(0)

∥∥∥∥
Θ

≤ C +
∑
j≥1

α
(1)
j (Θ) |Yt−j | .

Thus,∥∥∥∥∥∥∥∥ ∂

∂θi
f̂ t
θ

∥∥∥∥
Θ

∥∥∥∥
3r

≤ C + ‖Y0‖3r
∑
j≥1

α
(1)
j (Θ) ≤ C(1 +

∑
j≥1

α
(1)
j (Θ)) < ∞.

We also have ‖f t
θ − f̂ t

θ‖Θ ≤
∑

j≥t α
(0)
j (Θ)|Yt−j |. Hence(

E
∥∥∥f t

θ − f̂ t
θ

∥∥∥3r
Θ

)1/3r

=
∥∥∥∥∥∥f t

θ − f̂ t
θ

∥∥∥
Θ

∥∥∥
3r

≤ C
∑
j≥t

α
(0)
j (Θ).

The same argument gives(
E

∥∥∥∥ ∂

∂θi
f t
θ −

∂

∂θi
f̂ t
θ

∥∥∥∥2r
Θ

)1/2r

=

∥∥∥∥∥∥∥∥ ∂

∂θi
f t
θ −

∂

∂θi
f̂ t
θ

∥∥∥∥
Θ

∥∥∥∥
2r

≤ C
∑
j≥t

α
(1)
j (Θ).

Hence,(
E

[∥∥∥∥ ∂

∂θi
�t(θ)−

∂

∂θi
�̂t(θ)

∥∥∥∥r
Θ

])1/r

≤ C
∑
j≥t

(
α
(0)
j (Θ) + α

(1)
j (Θ)

)
.

Therefore, we have (with r = 1)

E

(
1√

kn − jn

∥∥∥∥ ∂

∂θi
Ln(T, θ)−

∂

∂θi
L̂n(T, θ)

∥∥∥∥
Θ

)
≤ 1√

kn − jn

∑
t∈T

E
∥∥∥�t(θ)− �̂t(θ)

∥∥∥
Θ

≤ C
1√

kn − jn

∑
t∈T

⎛⎝∑
j≥t

(
α
(0)
j (Θ) + α

(1)
j (Θ)

)⎞⎠
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≤ C
1√

kn − jn

∑
t∈T

⎡⎣ kn∑
j=t

(
α
(0)
j (Θ) + α

(1)
j (Θ)

)
+
∑
j≥kn

(
α
(0)
j (Θ) + α

(1)
j (Θ)

)⎤⎦
≤ C

1√
kn − jn

⎡⎣ kn∑
t=jn

kn∑
j=t

(
α
(0)
j (Θ) + α

(1)
j (Θ)

)
+

kn∑
t=jn

∑
j≥kn

(
α
(0)
j (Θ) + α

(1)
j (Θ)

)⎤⎦
≤ C

1√
kn − jn

⎡⎣ kn∑
j=jn

j∑
t=jn

(
α
(0)
j (Θ) + α

(1)
j (Θ)

)

+(kn − jn)
∑
j≥kn

(
α
(0)
j (Θ) + α

(1)
j (Θ)

)⎤⎦
≤ C

1√
kn − jn

⎡⎣ kn∑
j=jn

(j − jn)
(
α
(0)
j (Θ) + α

(1)
j (Θ)

)

+(kn − jn)
∑
j≥kn

(
α
(0)
j (Θ) + α

(1)
j (Θ)

)⎤⎦
≤ C

1√
kn − jn

kn∑
j=jn

(j − jn)
(
α
(0)
j (Θ) + α

(1)
j (Θ)

)
+ C

√
kn − jn

∑
j≥kn

(
α
(0)
j (Θ) + α

(1)
j (Θ)

)

≤ C√
kn − jn

jn+log(kn−jn)∑
j=jn

(j − jn)
(
α
(0)
j (Θ) + α

(1)
j (Θ)

)

+
C√

kn − jn

kn∑
j=jn+log(kn−jn)

(j − jn)
(
α
(0)
j (Θ) + α

(1)
j (Θ)

)
+ C

∑
j≥kn

√
j
(
α
(0)
j (Θ) + α

(1)
j (Θ)

)
≤ C log(kn − jn)√

kn − jn

∑
j≥1

(
α
(0)
j (Θ) + α

(1)
j (Θ)

)
+ C

∑
j≥jn+log(kn−jn)

√
j − jn

(
α
(0)
j (Θ) + α

(1)
j (Θ)

)
+ C

∑
j≥kn

√
j
(
α
(0)
j (Θ) + α

(1)
j (Θ)

)
−−−−−→
n→+∞

0.

This holds for any coordinate i = 1 . . . , d; and completes the proof of the lemma.
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Lemma 7.2. Let (jn)n≥1 and (kn)n≥1 two integer valued sequences such that
(jn)n≥1 is increasing, jn → ∞ and kn − jn → ∞ as n → ∞. Let n ≥ 1, for any
segment T = Tjn,kn ⊂ {1, . . . , n}, it holds under assumptions of Theorem 3.2,

(i)
∥∥∥ 1
kn−jn

∂2

∂θ∂θ′Ln(T, θ)− E
(

∂2
0(θ)
∂θ∂θ′

)∥∥∥
Θ

a.s.−→ 0
n→∞

;

(ii)
∥∥∥ 1
kn−jn

∑
t∈T

1

f̂t
θ

(
∂
∂θ f̂

t
θ

)(
∂
∂θ f̂

t
θ

)′ − E
(

1
f0
θ

(
∂
∂θf

0
θ

)(
∂
∂θf

0
θ

)′)∥∥∥
Θ

a.s.−→ 0
n→∞

.

Proof.

(i) For i, j ∈ {1, . . . , d}, we have

∂2

∂θi∂θj
�t(θ) =

∂

∂θj
(Yt

1

f t
θ

∂

∂θi
f t
θ −

∂

∂θi
f t
θ)

= Yt

[
∂

∂θj

(
1

f t
θ

)
× ∂

∂θi
f t
θ +

1

f t
θ

× ∂2

∂θi∂θj
f t
θ

]
− ∂2

∂θi∂θj
f t
θ

= Yt

[
− 1

(f t
θ)

2

(
∂f t

θ

∂θj

)
× ∂f t

θ

∂θi
+

1

f t
θ

× ∂2

∂θi∂θj
f t
θ

]
− ∂2f t

θ

∂θi∂θj

= − Yt

(f t
θ)

2

(
∂

∂θi
f t
θ

)(
∂

∂θj
f t
θ

)
+

(
Yt

f t
θ

− 1

)
∂2

∂θi∂θj
f t
θ. (22)

We will show that E[‖ ∂2

∂θi∂θj
�t(θ)‖] < +∞. From the Hölder’s inequality,

we have

E

[∥∥∥∥ ∂2

∂θi∂θj
�t(θ)

∥∥∥∥
Θ

]
≤ 1

c2
‖Yt‖3

∥∥∥∥∥∥∥∥ ∂

∂θi
f t
θ

∥∥∥∥
Θ

∥∥∥∥
3

∥∥∥∥∥∥∥∥ ∂

∂θj
f t
θ

∥∥∥∥
Θ

∥∥∥∥
3

+ C(‖Yt‖2 + 1)

∥∥∥∥∥∥∥∥ ∂2

∂θi∂θj
f t
θ

∥∥∥∥
Θ

∥∥∥∥
2

.

But, we have ‖Yt‖3 = ‖Y0‖3 < ∞, and ‖Yt‖2 < ∞.∥∥∥∥∥∥∥∥ ∂

∂θi
f t
θ

∥∥∥∥
θ

∥∥∥∥
3

≤
∥∥∥∥∥∥∥∥ ∂

∂θi
fθ(0)

∥∥∥∥
Θ

∥∥∥∥
3

+

∥∥∥∥∥∥∥∥ ∂

∂θi
f t
θ −

∂

∂θi
fθ(0)

∥∥∥∥
Θ

∥∥∥∥
3

≤
∥∥∥∥ ∂

∂θi
fθ(0)

∥∥∥∥
Θ

+

∥∥∥∥∥∥
∑
j≥1

α
(1)
j (Θ) |Yt−j |

∥∥∥∥∥∥
3

≤
∥∥∥∥ ∂

∂θi
fθ(0)

∥∥∥∥
Θ

+ ‖Y0‖3
∑
j≥1

α
(1)
j (Θ) < +∞.

Similarly, we have ‖‖ ∂
∂θj

f t
θ‖Θ‖3 < +∞. Using the same argument, we

obtain ∥∥∥∥∥∥∥∥ ∂2

∂θi∂θj
f t
θ

∥∥∥∥
Θ

∥∥∥∥
2

≤ ‖Y0‖2
∑
j≥1

α
(2)
j (Θ) < +∞.
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Hence, E[‖ ∂2

∂θi∂θj
�t(θ)‖Θ] < +∞. Thus, for the stationary ergodicity of the

sequence ( ∂2

∂θi∂θj
�t(θ))t∈Z and the uniform strong law of large numbers, it

holds that ∥∥∥∥ 1

kn − jn

∂2

∂θi∂θj
�t(θ)− E

∂2

∂θi∂θj
�0(θ)

∥∥∥∥
Θ

a.s.−−−−−→
n→+∞

0.

This completes the proof of (i).
(ii) Goes the same lines as in (i) and as in Lemma 7.1.

Proof of Theorem 3.2. Here again, without loss of generality, we will make
the proof with Tjn,kn = T1,n. Recall that Θ ⊂ R

d. Let T ⊂ {1, . . . , n}; for
any θ ∈ Θ and i = 1, . . . , n, by applying the Taylor expansion to the function
θ �→ ∂

∂θLn(T, θ), there exists θn,i between θ and θ0 such that

∂

∂θi
Ln(T, θ) =

∂

∂θi
Ln(T, θ0) +

∂2

∂θ∂θi
Ln(T, θn,i) · (θ − θ0).

Denote

Gn(T, θ) = − 1

Card(T )

( ∂2

∂θ∂θi
Ln(T, θn,i)

)
1≤i≤d

.

It comes that

Card(T )Gn(T, θ) · (θ − θ0) =
∂

∂θ
Ln(T, θ0)−

∂

∂θ
Ln(T, θ). (23)

By applying (23) with θ = θ̂n(T ) we obtain

Card(T )Gn(T, θ̂n(T )) · (θ̂n(T )− θ0) =
∂

∂θ
Ln(T, θ0)−

∂

∂θ
Ln(T, θ̂n(T )). (24)

(24) holds for any T ⊂ {1, . . . , n}, thus

√
nGn(T1,n, θ̂n(T1,n)) · (θ̂n(T1,n)− θ0) =

1√
n

(
∂

∂θ
Ln(T1,n, θ0)

− ∂

∂θ
Ln(T1,n, θ̂n(T1,n))

)
. (25)

We can rewrite (25) as

√
nGn(T1,n, θ̂n(T1,n))(θ̂n(T1,n)− θ0) =

1√
n

∂

∂θ
Ln(T1,n, θ0)

− 1√
n

∂L̂n(T1,n, θ̂n(T1,n))

∂θ
+

1√
n

(
∂L̂n(T1,n, θ̂n(T1,n))

∂θ
− ∂Ln(T1,n, θ̂n(T1,n))

∂θ

)
.

For n large enough, ∂
∂θ L̂n(T1,n, θ̂n(T1,n)) = 0, because θ̂n(T1,n) is a local maxi-

mum of θ �→ L̂(T1,n, θ).
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Moreover, according to Lemma 7.1, it holds that

E

(
1√
n

∣∣∣∣ ∂∂θLn(T1,n, θ̂n(T1,n))−
∂

∂θ
L̂n(T1,n, θ̂n(T1,n))

∣∣∣∣)
≤ E

(
1√
n

∥∥∥∥ ∂

∂θ
Ln(T1,n, θ)−

∂

∂θ
L̂n(T1,n, θ)

∥∥∥∥
Θ

)
−−−−−→
n→+∞

0.

So, for n large enough, we have

√
nGn(T1,n, θ̂n(T1,n))(θ̂n(T1,n)− θ0) =

1√
n

∂

∂θ
Ln(T1,n, θ0) + oP (1). (26)

To complete the proof of Theorem 3.2, we have to show that

(a) ( ∂
∂θ �t(θ0),Ft)t∈Z is a stationary ergodic martingale difference sequence

and E(‖ ∂
∂θ �t(θ0)‖2) < ∞;

(b) Σ = −E( ∂2

∂θ∂θ′ �0(θ0)) and Gn(T1,n, θ̂n(T1,n))
a.s.−−−−−→

n→+∞
Σ;

(c) Σ = E[ 1
f0
θ0

( ∂
∂θf

0
θ0
)( ∂

∂θf
0
θ0
)′] is invertible.

(a) Recall that ∂
∂θ �t(θ0) = ( Yt

ft
θ0

− 1) ∂
∂θf

t
θ0

and Ft = σ(Ys, s ≤ t). Since the

functions f t
θ0

and ∂
∂θf

t
θ0

are Ft−1-measurable, we have

E
( ∂

∂θ
�t(θ0)

∣∣Ft−1

)
=
( 1

f t
θ0

E(Yt|Ft−1)− 1
) ∂

∂θ
f t
θ0 = 0.

Moreover, since |Yt| and ‖ ∂
∂θf

t
θ‖ have moment of any order, we have

E
(∣∣ ∂

∂θ
�t(θ0)

∣∣2) ≤ E
(( |Yt|

c
+ 1

)2∥∥ ∂

∂θ
f t
θ

∥∥2
Θ

)
< ∞.

(b) According to (22), we have

∂2

∂θ∂θ′
�t(θ) = − Yt(

f t
θ

)2( ∂

∂θ
f t
θ

)( ∂

∂θ
f t
θ

)′
+
(Yt

f t
θ

− 1
) ∂2

∂θ∂θ′
f t
θ. (27)

But by using the same argument as in (a), we obtain

E
(( Yt

f0
θ0

− 1
) ∂2

∂θ∂θ′
f0
θ0

∣∣Ft−1

)
= 0.

Hence, (27) implies

E
( ∂2

∂θ∂θ′
�t(θ0)

)
= −E

(
Yt

(f0
θ0
)2

( ∂

∂θ
f0
θ0

)( ∂

∂θ
f0
θ0

)′)

= −E

(
1

f0
θ0

( ∂

∂θ
f0
θ0

)( ∂

∂θ
f0
θ0

)′)
= −Σ.
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Moreover, recall that

Gn(T1,n, θ̂n(T1,n)) = − 1

n

(
∂2

∂θ∂θi
L(T1,n, θn,i)

)
1≤i≤d

= − 1

n

(
n∑

t=1

∂2

∂θ∂θi
�t(θn,i)

)
1≤i≤d

.

For any j = 1, . . . , d, we have∣∣∣∣∣ 1n
n∑

t=1

∂2

∂θj∂θi
�t(θn,i)− E

(
∂2

∂θj∂θi
�0(θ0)

)∣∣∣∣∣
≤
∣∣∣∣∣ 1n

n∑
t=1

∂2

∂θj∂θi
�t(θn,i)− E

(
∂2

∂θj∂θi
�0(θn,i)

)∣∣∣∣∣
+

∣∣∣∣E (
∂2

∂θj∂θi
�0(θn,i)

)
− E

(
∂2

∂θj∂θi
�0(θ0)

)∣∣∣∣
≤
∣∣∣∣E (

∂2

∂θj∂θi
�0(θn,i)

)
− E

(
∂2

∂θj∂θi
�0(θ0)

)∣∣∣∣
+

∥∥∥∥∥ 1n
n∑

t=1

∂2

∂θj∂θi
�t(θ)− E

(
∂2

∂θj∂θi
�0(θ)

)∥∥∥∥∥
Θ

a.s.−−−−−→
n→+∞

0.

This holds for any 1 ≤ i, j ≤ d. Thus,

Gn(T1,n, θ̂n(T1,n)) = − 1

n

(
∂2

∂θ∂θi
�t(θn,i)

)
1≤i≤d

a.s.−−−−−→
n→+∞

−E

(
∂2

∂θ∂θ′
�0(θ0)

)
= E

[
1

f0
θ0

(
∂

∂θ
f0
θ0

)(
∂

∂θ
f0
θ0

)′]
= Σ.

(c) If U is a non-zero vector of Rd, according to assumption Var, it holds that
U ∂

∂θf
0
θ0

�= 0 a.s. Hence

UΣU ′ = E

(
1

f0
θ0

U

(
∂

∂θ
f0
θ0

)(
∂

∂θ
f0
θ0

)′
U ′

)
> 0.

Thus Σ is positive definite.

From (a), apply the central limit theorem for stationary ergodic martingale
difference sequence, it follows that

1√
n

∂

∂θ
Ln(T1,n, θ0) =

1√
n

n∑
t=1

∂

∂θ
�t(θ0)

D−−−−−→
n→+∞

N
(
0, E

[(
∂

∂θ
�0(θ0)

)(
∂

∂θ
�0(θ0)

)′])
. (28)
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Recall that for i = 1, . . . , d, ∂
∂θi

�t(θ) = (Yt

ft
θ
− 1) ∂

∂θi
f t
θ. For 1 ≤ i, j ≤ d, we have

E
( ∂

∂θi
�t(θ0)×

∂

∂θj
�t(θ0)

)
= E

[
E
(( Yt

f t
θ0

− 1
)2 ∂

∂θi
f t
θ0 ×

∂

∂θj
f t
θ0

∣∣Ft−1

)]
= E

[
E
(( Yt

f t
θ0

− 1
)2∣∣Ft−1

)
× ∂

∂θi
f t
θ0 ×

∂

∂θj
f t
θ0

]
.

We have,

E
[( Yt

f t
θ0

− 1
)2∣∣Ft−1

]
=

1

(f t
θ0
)2
E(Y 2

t |Ft−1)−
2

f t
θ0

× f t
θ0 + 1

=
1

(f t
θ0
)2
E(Y 2

t |Ft−1)− 1 =
1

(f t
θ0
)2

(
Var(Yt|Ft−1) + (E(Yt|Ft−1))

2
)
− 1

=
1

(f t
θ0
)2
(f t

θ0 + (f t
θ0)

2)− 1 =
1

f t
θ0

.

Thus,

E
[( ∂

∂θi
�t(θ0)

)
×
( ∂

∂θj
�t(θ0)

)′]
= E

[ 1

f t
θ0

( ∂

∂θi
f t
θ0

)
×
( ∂

∂θj
f t
θ0

)′]
.

Hence,

E
[( ∂

∂θ
�t(θ0)

)
×
( ∂

∂θ
�t(θ0)

)′]
= E

[ 1

f t
θ0

( ∂

∂θ
f t
θ0

)
×
( ∂

∂θ
f t
θ0

)′]
= Σ.

Thus, (28) becomes

1√
n

∂

∂θ
Ln(T1,n, θ0) =

1√
n

n∑
t=1

∂

∂θ
�t(θ0)

D−−−−−→
n→+∞

N (0,Σ). (29)

(b) and (c) implies that the matrix Gn(T1,n, θ̂n(T1,n)) converges a.s. to Σ and

Gn(T1,n, θ̂n(T1,n)) is invertible for n large enough. Hence, from (26) and (29),
we have

√
n(θ̂n(T1,n)− θ0) =

1√
n

(
Gn(T1,n, θ̂n(T1,n))

)−1 ∂

∂θ
Ln(T1,n, θ0) + oP (1)

=
1√
n
Σ−1 ∂

∂θ
Ln(T1,n, θ0) + oP (1)

D−−−−−→
n→+∞

N (0,Σ−1).

Before proving the Theorem 4.1, let us prove some preliminary lemma. Under
H0, recall

Σ = E
[ 1

f0
θ0

( ∂

∂θ
f0
θ0

)( ∂

∂θ
f0
θ0

)′]
= E

[( ∂

∂θ
�0(θ0)

)( ∂

∂θ
�0(θ0)

)′]
.

Define the statistics

• Cn = maxvn≤k≤n−vn Cn,k where
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Cn,k

=
1

q2
(
k
n

) k2(n− k)2

n3

(
θ̂n(T1,k)− θ̂n(Tk+1,n)

)′
Σ
(
θ̂n(T1,k)− θ̂n(Tk+1,n)

)
• Q

(1)
n = maxvn≤k≤n−vn Q

(1)
n,k where

Q
(1)
n,k =

k2

n

(
θ̂n(T1,k)− θ̂n(T1,n)

)′
Σ
(
θ̂n(T1,k)− θ̂n(T1,n)

)
;

• Q
(2)
n = maxvn≤k≤n−vn Q

(2)
n,k where

Q
(2)
n,k =

(n− k)2

n

(
θ̂n(Tk+1,n)− θ̂n(T1,n)

)′
Σ
(
θ̂n(Tk+1,n)− θ̂n(T1,n)

)
.

Lemma 7.3. Under assumptions of Theorem 4.1, as n → +∞,

(i) maxvn≤k≤n−vn |Ĉn,k − Cn,k| = oP (1);

(ii) for j = 1, 2,maxvn≤k≤n−vn |Q̂(j)
n,k −Q

(j)
n,k| = oP (1).

Proof.

(i) For any vn ≤ k ≤ n− vn, we have as n → ∞

∣∣∣Ĉn,k − Cn,k

∣∣∣ = 1

q2
(
k
n

) k2(n− k)2

n3

×
∣∣∣ (θ̂n(T1,k)− θ̂n(Tk+1,n)

)′ (
Σ̂n(un)− Σ

)(
θ̂n(T1,k)− θ̂n(Tk+1,n)

) ∣∣∣
≤ 1

q2
(
k
n

) k2(n− k)2

n3

∥∥∥Σ̂n(un)− Σ
∥∥∥ ∥∥∥θ̂n(T1,k)− θ̂n(Tk+1,n)

∥∥∥2
≤ C

1

q2
(
k
n

) k(n− k)

n2

∥∥∥Σ̂n(un)− Σ
∥∥∥(∥∥∥√k(θ̂n(T1,k)− θ0)

∥∥∥2
+
∥∥∥√n− k(θ̂n(Tk+1,n)− θ0)

∥∥∥2 )
≤ C

1

q2
(
k
n

) k(n− k)

n2
o(1)OP (1).

Thus, as n → ∞, it holds that

max
vn≤k≤n−vn

∣∣∣Ĉn,k − Cn,k

∣∣∣ ≤ oP (1) max
vn≤k≤n−vn

1

q2
(
k
n

) k(n− k)

n2

≤ oP (1) max
vn
n ≤ k

n≤1− vn
n

1

q2
(
k
n

) k
n
(1− k

n
)

≤ oP (1) sup
0<τ<1

(√τ(1− τ)

q(τ)

)2
= oP (1).
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The last equality above holds because sup0<τ<1

√
τ(1−τ)

q(τ) < ∞; it is a

consequence of the properties of the function q when I0,1(q, c) is finite for
some c > 0.

(ii) Goes the same lines as in (i).

Proof of Theorem 4.1.

1. According to Lemma 7.3, it suffices to show that

Cn
D−→

n→∞
sup

0<τ<1

‖Wd(τ)‖2

q2(τ)
.

Let vn ≤ k ≤ n− vn. By applying (24) with T = T1,k and Tk+1,n, we have

Gn(T1,k, θ̂n(T1,k))(θ̂n(T1,k)− θ0)

=
1

k

(
∂

∂θ
Ln(T1,k, θ0)−

∂

∂θ
Ln(T1,k, θ̂n(T1,k))

)
and

Gn(Tk+1,n, θ̂n(Tk+1,n))(θ̂n(Tk+1,n)− θ0)

=
1

n− k

(
∂

∂θ
Ln(Tk+1,n, θ0)−

∂

∂θ
Ln(Tk+1,n, θ̂n(Tk+1,n))

)
.

As n → +∞, we have∥∥∥Gn(T1,k, θ̂n(T1,k))− Σ
∥∥∥ =

∥∥∥Gn(Tk+1,n, θ̂n(Tk+1,n))− Σ
∥∥∥ = o(1)

√
k(θ̂n(T1,k)− θ0) = OP (1) and

√
n− k(θ̂n(Tk+1,n)− θ0) = OP (1).

Thus, we have

√
k Σ(θ̂n(T1,k)− θ0) =

1√
k

(
∂

∂θ
Ln(T1,k, θ0)−

∂

∂θ
Ln(T1,k, θ̂n(T1,k))

)
−
√
k(Gn(T1,k, θ̂n(T1,k))− Σ)(θ̂n(T1,k)− θ0)

=
1√
k

(
∂

∂θ
Ln(T1,k, θ0)−

∂

∂θ
Ln(T1,k, θ̂n(T1,k))

)
+ oP (1)

i.e.

Σ(θ̂n(T1,k)− θ0) =
1

k

(
∂

∂θ
Ln(T1,k, θ0)−

∂

∂θ
Ln(T1,k, θ̂n(T1,k))

)
+ oP

(
1√
k

)
.
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Moreover we have (as n → +∞)

1√
k

∥∥∥∥ ∂

∂θ
Ln(T1,k, θ̂n(T1,k))

∥∥∥∥ =
1√
k

∥∥∥∥ ∂

∂θ
Ln(T1,k, θ̂n(T1,k))− 0

∥∥∥∥
≤ 1√

k

∥∥∥∥ ∂

∂θ
Ln(T1,k, θ̂n(T1,k))−

∂

∂θ
L̂n(T1,k, θ̂n(T1,k))

∥∥∥∥
≤ 1√

k

∥∥∥∥ ∂

∂θ
Ln(T1,k, θ)−

∂

∂θ
L̂n(T1,k, θ)

∥∥∥∥
Θ

= oP (1).

Hence

Σ(θ̂n(T1,k)− θ0) =
1√
k

(
1

k

∂

∂θ
Ln(T1,k, θ0)−

1√
k

∂

∂θ
Ln(T1,k, θ̂n(T1,k))

)
+ oP

(
1√
k

)
=

1

k

∂

∂θ
Ln(T1,k, θ0) +

1√
k
oP (1) + op

(
1√
k

)
=

1

k

∂

∂θ
Ln(T1,k, θ0) + oP (

1√
k
).

Thus, we have

Σ(θ̂n(T1,k)− θ0) =
1

k

∂

∂θ
Ln(T1,k, θ0) + oP

(
1√
k

)
.

Using the same ideas we also get:

Σ(θ̂n(Tk+1,n)− θ0) =
1

n− k

∂

∂θ
Ln(Tk+1,n, θ0) + oP

(
1√

n− k

)
.

By subtracting the two above equalities, it follows that

Σ(θ̂n(T1,k)− θ̂n(Tk+1,n))

=
1

k

∂

∂θ
Ln(T1,k, θ0)−

1

n− k

∂

∂θ
Ln(Tk+1,n, θ0) + oP

( 1√
k
+

1√
n− k

)
=

1

k

∂

∂θ
Ln(T1,k, θ0)−

1

n− k

( ∂

∂θ
Ln(T1,n, θ0)−

∂

∂θ
Ln(T1,k, θ0)

)
+ oP

( 1√
k
+

1√
n− k

)
=

n

k(n− k)

( ∂

∂θ
Ln(T1,k, θ0)−

n

k

∂

∂θ
Ln(T1,n, θ0)

)
+ oP

( 1√
k
+

1√
n− k

)
i.e.

k(n− k)

n
3
2

Σ(θ̂n(T1,k)− θ̂n(Tk+1,n))
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=
1√
n

(
∂

∂θ
Ln(T1,k, θ0)−

k

n

∂

∂θ
Ln(T1,n, θ0)

)
+ oP

(√k(n− k)

n

√
k +

√
n− k√
n

)
=

1√
n

(
∂

∂θ
Ln(T1,k, θ0)−

k

n

∂

∂θ
Ln(T1,n, θ0)

)
+ oP (1).

Thus

k(n− k)

n
3
2

Σ−1/2Σ(θ̂n(T1,k)− θ̂n(Tk+1,n))

=
Σ−1/2

√
n

(
∂

∂θ
Ln(T1,k, θ0)−

k

n

∂

∂θ
Ln(T1,n, θ0)

)
+ oP (1). (30)

For 0 < τ < 1, we have

1√
n

∂

∂θ
Ln(T1,[nτ ], θ0) =

1√
n

[nτ ]∑
t=1

∂

∂θ
�t(θ0).

We have shown (see the proof of Theorem 3.2) that
(

∂
∂θ �t(θ0),Ft

)
t∈Z

is
a stationary ergodic square integrable martingale difference process with
covariance matrix Σ. By the Central limit theorem for the martingale
difference sequence (see Billingsley, 1968 [4]), it holds that

1√
n

(
∂

∂θ
Ln(T1,[nτ ], θ0)−

[nτ ]

n

∂

∂θ
Ln(T1,n, θ)

)

=
1√
n

⎛⎝[nτ ]∑
t=1

∂

∂θ
�t(θ0)−

[nτ ]

n

n∑
t=1

∂

∂θ
�t(θ0)

⎞⎠ D−−−−−→
n→+∞

BΣ(τ)− τBΣ(1)

where BΣ is a Gaussian process with covariance matrix min(s, τ)Σ. Thus
it follows that

1√
n
Σ−1/2

(
∂

∂θ
Ln(T1,[nτ ], θ0)−

[nτ ]

n

∂

∂θ
Ln(T1,n, θ0)

)
D−−−−−→

n→+∞
Bd(τ)− τBd(1) = Wd(τ)

in D([0, 1]), where Bd is a d-dimensional standard Brownian motion, and
Wd is a d-dimensional Brownian bridge.
So, we have (see (30))

Cn,[nτ ] =
[nτ ]2(n− [nτ ])2

n3

× (θ̂n(T1,[nτ ])− θ̂n(T[nτ ]+1,n))
′Σ(θ̂n(T1,[nτ ])− θ̂n(T[nτ ]+1,n))



Inference and structural change for Poisson autoregression 1307

=
∥∥∥ [nτ ](n− [nτ ])

n3/2
Σ−1/2Σ(θ̂n(T1,[nτ ])− θ̂n(T[nτ ]+1,n))

∥∥∥2
=
∥∥∥ 1√

n
Σ−1/2

( [nτ ]∑
t=1

∂

∂θ
�t(θ0)−

[nτ ]

n

n∑
t=1

∂

∂θ
�t(θ0)

)∥∥∥2 + oP (1)

D−−−−−→
n→+∞

‖Wd(τ)‖2 in D([0, 1]).

Hence, according to the properties of q, we have for any 0 < ε < 1/2

max
[nε]≤k≤n−[nε]

Cn,k

= max
[nε]≤k≤n−[nε]

( 1

q2
(
k
n

) k2(n− k)2

n3

×
(
θ̂n(T1,k)− θ̂n(Tk+1,n)

)′
Σ
(
θ̂n(T1,k)− θ̂n(Tk+1,n)

))
= sup

ε≤τ≤1−ε

( 1

q2
( [nτ ]

n

) [nτ ]2(n− [nτ ])2

n3

×
(
θ̂n(T1,[nτ ])− θ̂n(T[nτ ]+1,n)

)′
Σ
(
θ̂n(T1,[nτ ])− θ̂n(T[nτ ]+1,n)

)
= sup

ε≤τ≤1−ε

∥∥∥ 1

q
(

[nτ ]
n

) [nτ ](n− [nτ ])

n3/2
Σ1/2

(
θ̂n(T1,[nτ ])− θ̂n(T[nτ ]+1,n)

)∥∥∥2

= sup
ε≤τ≤1−ε

∥∥∥ 1

q
(

[nτ ]
n

) 1√
n

⎛⎝[nτ ]∑
t=1

∂

∂θ
�t(θ0)−

[nτ ]

n

n∑
t=1

∂

∂θ
�t(θ0)

⎞⎠∥∥∥2 + oP (1)

D−−−−−→
n→+∞

sup
ε≤τ≤1−ε

‖Wd(τ)‖2

q2(τ)
.

Therefore, we have shown that

Cn,[nτ ]
D−−−−−→

n→+∞

‖Wd(τ)‖2

q2(τ)
in D([0, 1])

and that for all ε ∈ (0, 1/2),

max
[nε]≤k≤n−[nε]

Cn,k = sup
ε≤τ≤1−ε

Cn,[nτ ]
D−−−−−→

n→+∞
sup

ε≤τ≤1−ε

‖Wd(τ)‖2

q2(τ)
.

Moreover, since I0,1(q, c) < +∞ for some c > 0, one can show that

limτ→0
‖Wd(τ)‖

q(τ) < ∞ and limτ→1
‖Wd(τ)‖

q(τ) < ∞ almost surely (see for in-

stance [6]). Hence, for n large enough we have

Cn = max
vn≤k≤n−vn

Cn,k = sup
vn
n ≤τ≤1− vn

n

Cn,[nτ ]
D−−−−−→

n→+∞
sup

0≤τ≤1

‖Wd(τ)‖2

q2(τ)
.

2. Apply Lemma 7.3 and goes along similar lines as in the proof of Theorem
1 of [27].
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Proof of Theorem 4.2.

1. Assume the alternative with one change at t∗1 = [τ∗1n] with 0 < τ∗1 < 1.
The observations satisfy

Yt =

{
Y

(1)
t for t ≤ t∗1,

Y
(2)
t for t > t∗1

where (Y
(1)
t ) and Y

(2)
t satisfy the main model (3) i.e.

Y
(i)
t

/
F (i)

t−1 ∼ P(λ
(i)
t )

with λ
(i)
t = fθ∗

i
(Y

(i)
t−1, Y

(i)
t−2, . . . ), θ

∗
1 �= θ∗2 , and F (i)

t = σ(Y
(i)
s , s ≤ t).

Recall that Ĉn = maxvn≤k≤n−vn Ĉn,k ≥ Ĉn,t∗1
. It suffices to show that

Ĉn,t∗1

P−−−−−→
n→+∞

+∞. We have

Ĉn,t∗1
=

1

q
(

t∗1
n

) t∗1
2(n− t∗1)

2

n3

×
(
θ̂n(T1,t∗1

)− θ̂n(Tt∗1+1,n)
)′

Σ̂(un)
(
θ̂n(T1,t∗1

)− θ̂n(Tt∗1+1,n)
)
.

Recall that the likelihood function computed on any subset T ⊂ {1, . . . , n}
is defined by

L̂n(T, θ) =
∑
t∈T

�̂t(θ)

where �̂t(θ) = Yt log �̂
t
θ − �̂tθ with f̂ t

θ = fθ(Yt−1, Yt−2, . . . , Y1, 0, . . . ). So,

for any t ∈ {1, . . . , t∗1}, f̂ t
θ = fθ(Y

(1)
t−1, Y

(1)
t−2, . . . , Y

(1)
1 , 0, . . . ). Then θ �→

L̂(T1,t∗1
, θ) is the likelihood function of the stationary process (Y

(1)
t )t∈Z

computed on {1, . . . , t∗1}. According to Theorem 3.1, it holds that θ̂n(T1,t∗1
)

a.s.−−−−−→
n→+∞

θ∗1 . Recall that

Σ̂n(un) =
1

2

⎡⎣( 1

un

un∑
t=1

1

f̂ t
θ

(
∂

∂θ
f̂ t
θ

)(
∂

∂θ
f̂ t
θ

)′)∣∣∣∣∣
θ=θ̂n(T1,un )

+

(
1

n− un

n∑
t=un+1

1

f̂ t
θ

(
∂

∂θ
f̂ t
θ

)(
∂

∂θ
f̂ t
θ

)′)∣∣∣∣∣
θ=θ̂n(Tun+1,n)

⎤⎦ .

Denote lt,1(θ) = Y
(1)
t log f t,1

θ − f t,1
θ where

f t,1
θ = fθ(Y

(1)
t−1, Y

(1)
t−2, . . . , Y

(1)
1 , 0 . . . ).
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We have, θ̂n(T1,un)
a.s.−−−−−→

n→+∞
θ∗1 and, from Lemma 7.2, it holds that

1

un

un∑
t=1

1

f̂ t
θ

(
∂

∂θ
f̂ t
θ

)(
∂

∂θ
f̂ t
θ

)′
a.s.−−−−−→

n→+∞
Σ(1)

where Σ(1) = E

[
1

f0,1

θ∗1

(
∂
∂θf

0,1
θ∗
1

)(
∂
∂θf

0,1
θ∗
1

)′]
. Also, we have

L̂n(Tt∗1+1,n, θ) =

n∑
t=t∗1+1

�̂t(θ) where �̂t(θ) = Yt log f̂
t
θ − f̂ t

θ,

with

f̂ t
θ = fθ(Yt−1, Yt−2, . . . , Y1, 0, . . . ) = fθ(Y

(1)
t−1, Y

(1)
t−2, . . . , Y

(1)
1 , 0, . . . ).

Define

L̂n,2(Tt∗1+1,n, θ) =

n∑
t=t∗1+1

�̂t,2(θ), where �̂t,2(θ) = Y
(2)
t log f̂ t,2

θ − f̂ t,2
θ ,

with f̂ t,2
θ = fθ(Y

(2)
t−1, Y

(2)
t−2, . . . , Y

(2)
1 , 0, . . . ).

Remarks that the difference between f̂ t
θ and f̂ t,2

θ lies on the dependence

with the past. f̂ t
θ can contain Y

(1)
t−1, but not f̂ t,2

θ . θ �→ L̂n,2(Tt∗1+1,n, θ)
is the approximated likelihood of the stationary model after change. By
Theorem 3.1, it holds that

θ̂(2)n (Tt∗1+1,n) = argmaxθ∈Θ L̂n,2(Tt∗1+1,n, θ)
a.s.−−−−−→

+→+∞
θ∗2 .

Let us show that

1

n− t∗1

∥∥∥L̂n(Tt∗1+1,n, θ)− L̂n,2(Tt∗1+1,n, θ)
∥∥∥
Θ

a.s.−−−−−→
n→+∞

0.

According to

1

n− t∗1

∥∥∥L̂n(Tt∗1+1,n, θ)− L̂n,2(Tt∗1+1,n, θ)
∥∥∥
Θ
≤

1

n− t∗1

n−t∗1∑
k=1

∥∥∥�̂t∗1+k(θ)− �̂t∗1+k,2(θ)
∥∥∥
Θ
,

by using again Kounias and Weng (1969) [29], it suffices to show that∑
k≥1

1

k
E
∥∥∥�̂t∗1+k(θ), �̂t∗1+k,2(θ)

∥∥∥
Θ
=
∑
k≥1

1

t− t∗1
E
∥∥∥�̂t(θ)− �̂t,2(θ)

∥∥∥
Θ
< ∞.
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For t ≥ t∗1 + 1, we have

E
[∥∥∥�̂t(θ)− �̂t,2(θ)

∥∥∥
Θ

]
= E

[∥∥∥Y (2)
t log f̂ t

θ − f̂ t
θ − Y

(2)
t log f̂ t,2

θ + f̂ t,2
θ

∥∥∥
Θ

]
≤ E

[∣∣∣Y (2)
t

∣∣∣ ∥∥∥log f̂ t
θ − log f̂ t,2

θ

∥∥∥
Θ
+
∥∥∥f̂ t

θ − f̂ t,2
θ

∥∥∥
Θ

]
.

We can show, as in the proof of Theorem 3.1, that
∥∥∥log f̂ t

θ − log f̂ t,2
θ

∥∥∥
Θ
≤

1
c

∥∥∥f̂ t
θ − f̂ t,2

θ

∥∥∥
Θ
. Hence

E
[ ∥∥∥�̂t(θ)− �̂t,2(θ)

∥∥∥
Θ

]
≤ E

[( |Y (2)
t |
c

+ 1
)∥∥∥f̂ t

θ − f̂ t,2
θ

∥∥∥
Θ

]
≤
(
E
[( |Y (2)

t |
c

+ 1
)2])1/2

×
(
E
∥∥∥f̂ t

θ − f̂ t,2
θ

∥∥∥2
Θ

)1/2

≤ C

(
E
∥∥∥f̂ t

θ − f̂ t,2
θ

∥∥∥2
Θ

)1/2

.

But, for t ≥ t∗1 + 1, we have∥∥∥f̂ t
θ − f̂ t,2

θ

∥∥∥
Θ

=
∥∥∥fθ(Y (2)

t−1, . . . , Y
(2)
t∗1+1, Y

(1)
t∗1

, . . . , Y
(1)
1 , 0, . . . )− fθ(Y

(2)
t−1, . . . , Y

(2)
t∗1+1, 0, . . . )

∥∥∥
≤

t∑
j=t−t∗1+1

α
(0)
j (Θ)|Y (1)

t−j |.

Thus, by using Minkowski’s inequality, it holds that

E
[ ∥∥∥�̂t(θ)− �̂t,2(θ)

∥∥∥
Θ

]
≤ C

(
E
∥∥∥f̂ t

θ − f̂ t,2
θ

∥∥∥2
Θ

)1/2
≤ C

(
E
[( t∑

j=t−t∗1+1

α
(0)
j (Θ)|Y (1)

t−j |
)2])1/2

≤
t∑

j=t−t∗1+1

α
(0)
j (Θ)

(
E
[
|Y (1)

t−j |2
])1/2

≤ C

t∑
j=t−t∗1+1

α
(0)
j (Θ).

Thus, it comes that

∑
t≥t∗1+1

1

t− t∗1

∥∥∥�̂t(θ)− �̂t,2(θ)
∥∥∥
Θ
≤ C

∑
t≥t∗1+1

1

t− t∗1

t∑
j=t−t∗1+1

α
(0)
j (Θ)
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≤
∑

t≥t∗1+1

t∑
j=t−t∗1+1

1

t− t∗1
α
(0)
j (Θ).

Set l = t− t∗1, we have

∑
t≥t∗1+1

t∑
j=t−t∗1+1

1

t− t∗1
α
(0)
j (Θ) =

∑
l≥1

l+t∗1∑
j=l+1

1

l
α
(0)
j (Θ) ≤

∑
l≥1

l+t∗1∑
j=l

1

l
α
(0)
j (Θ)

≤
t∗1∑
j=1

j∑
l=1

1

l
α
(0)
j (Θ) +

+∞∑
j=t∗1+1

j∑
l=j−t∗1

1

l
α
(0)
j (Θ)

≤ C

t∗1∑
j=1

α
(0)
j (Θ) log j +

+∞∑
j=t∗1+1

α
(0)
j (Θ)

j∑
l=1

1

l

≤ C
∑
j≥1

α
(0)
j (Θ) log j < +∞.

So, we have ∑
t≥t∗1+1

1

t− t∗1

∥∥∥�̂t(θ)− �̂t,2(θ)
∥∥∥
Θ
≤ C < ∞ a.s.

Hence,
1

n− t∗1

∥∥∥L̂n(Tt∗1 ,n
, θ)− L̂n,2(Tt∗1 ,n

, θ)
∥∥∥
Θ

a.s.−−−−−→
n→+∞

0.

According to the proof of Theorem 3.1,

1

n− t∗1

∥∥∥L̂n,2(Tt∗1 ,n
, θ)− E �0,2(θ)

∥∥∥
Θ

a.s.−−−−−→
n→+∞

0

where

lt,2(θ) = Y
(2)
t log f t,2

θ − f t,2
θ , with f t,2

θ = fθ(Y
(2)
t−1, Y

(2)
t−2, . . . ).

Moreover, the function θ �→ E (l0,2(θ)) has a unique maximum at θ∗2 .

This is enough to conclude that θ̂n(Tt∗1+1,n)
a.s.−−−−−→

n→+∞
θ∗2 . To complete the

proof of this part of Theorem 4.2, remarks that the two matrices in the
definition of Σ̂n(un) are positive semi-definite (by definition) and the first
one converges a.s. to Σ(1) which is positive definite. Thus, for n large
enough, we have

Ĉn = max
vn≤k≤n−vn

Ĉn,k ≥ Ĉn,t∗1

≥ 1

q
(

t∗1
n

) t∗21 (n− t∗1)
2

n3

(
θ̂n(T1,t∗1

)− θ̂n(Tt∗1+1, n)
)′

·
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2

(
1

un

un∑
t=1

1

f̂ t
θ

(
∂f̂ t

θ

∂θ

)(
∂f̂ t

θ

∂θ

)′)∣∣∣∣∣
θ=θ̂n(T1,un )

⎤⎦(θ̂n(T1,t∗1
)− θ̂n(Tt∗1+1,n)

)
≥ 1

sup0<τ<1 q(τ)
n(τ∗1 (1− τ∗1 ))

2
(
θ̂n(T1,t∗1

)− θ̂n(Tt∗1+1,n)
)′

·⎡⎣1
2

(
1

un

un∑
t=1

1

f̂ t
θ

(
∂f̂ t

θ

∂θ

)(
∂f̂ t

θ

∂θ

)′)∣∣∣∣∣
θ=θ̂n(T1,un )

⎤⎦(θ̂n(T1,t∗1
)− θ̂n(Tt∗1+1,n)

)
≥ C × n

(
θ̂n(T1,t∗1

)− θ̂n(Tt∗1+1,n)
)
·⎡⎣1

2

(
1

un

un∑
t=1

1

f̂ t
θ

(
∂f̂ t

θ

∂θ

)(
∂f̂ t

θ

∂θ

)′)∣∣∣∣∣
θ=θ̂n(T1,un )

⎤⎦(θ̂n(T1,t∗1
)− θ̂n(Tt∗1+1,n)

)
a.s.−−−−−→

n→+∞
+∞.

This holds because θ̂n(T1,t∗1
)− θ̂n(Tt∗1+1,n)

a.s.−−−−−→
n→+∞

θ∗1 − θ∗2 �= 0, and

1

un

un∑
t=1

1

f̂ t
θ

(
∂

∂θ
f̂ t
θ

)(
∂

∂θ
f̂ t
θ

)′
a.s.−−−−−→

n→+∞
Σ(1),

which is positive definite.
This completes the first part of the proof of Theorem 4.2.

2. It goes along the same line as in the proof of Theorem 2 of [27], by using
the approximation of likelihood as above.
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