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Abstract: The minimum divergence estimators have proved to be useful
tools in the area of robust inference. The robustness of such estimators are
often measured using the classical Influence Function analysis. However, in
many complex situations like that of testing a composite null hypothesis
require the estimators to be restricted over some proper subspace of the
parameter space. The robustness of these restricted minimum divergence
estimators are very crucial in order to have overall robust inference. In this
paper we provide a comprehensive description of the robustness of such re-
stricted estimators in terms of their influence function for a general class of
density based divergences along with their unrestricted versions. In particu-
lar, the robustness of some popular minimum divergence estimators are also
demonstrated under certain usual restrictions through examples. Thus the
paper provides a general framework for the influence function analysis of a
large class of minimum divergence estimators with or without restrictions
on the parameters and provides theoretical solutions for measuring the im-
pact of the parameter restrictions on the robustness of the corresponding
estimators.
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1. Introduction

The minimum divergence approach has proved to be a very useful one in the
context of parametric statistical inference. The idea behind this approach is to
quantify the discrepancy between the sample data and the parametric model
through an appropriate divergence and minimize this discrepancy measure over
the parameter space. There are two ways of such quantification in the literature –
either through distribution functions or through probability density functions
(with respect to some suitable dominating measure). Most of the density based
minimum divergence methods are seen to be particularly useful due to their
strong robustness properties along with high efficiencies.

However, in many complex statistical problems we need to estimate the pa-
rameter of interest under some pre-specified restrictions on the parameter space.
For example, when testing a composite null hypothesis, we need to estimate the
parameter under the restrictions imposed by the null hypothesis. For such cases
we need to minimize the divergence measures only over a restricted subspace of
the parameter space. Simpson [20], Lindsay [17] and Basu et al. [4] used such
restricted minimum divergence estimators in the context of testing statistical
hypotheses and derived their asymptotic properties. But they did not consider
the robustness of these restricted estimators separately, although it is also very
important in order to obtain robust solutions for the overall inference problem.

One can provide several examples of such a theoretical void in the literature
in understanding the robustness of estimators under parameter restrictions. To
motivate the issue further, let us consider the problem of testing the equality of
means for two independent normal populations, N(θ1, σ

2) and N(θ2, σ
2) with

common variance σ2. For testing this hypothesis, we need to estimate the com-
mon mean under the null hypothesis θ1 = θ2. It is well-known that the maximum
likelihood estimators of the mean and the variance under the normal model are
highly affected in the presence of outliers in the data, which can be examined
by the unbounded nature of the corresponding influence functions. However, it
is often empirically observed that the conclusion of the testing problem of the
hypothesis θ1 = θ2 based on the maximum likelihood estimator of the common
mean is not affected significantly in the presence of outliers having a similar
pattern in both the samples, although the corresponding estimate of σ2 is af-
fected significantly. Further, if outliers are present in only one sample, then the
end result of the testing problem may get severely affected. This is quite intu-
itive, but there is no theoretical result in terms of influence functions to support
this fact. Similar problems exist even in the case of one normal sample, where
a similar question about the robustness of the estimators of the mean or the
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variance parameter under the restriction on the other parameter has no answer
from the existing theory of robustness. Yet it is very natural to estimate the
mean under a known variance or estimate the variance under a known mean.
The problem becomes more difficult beyond the case of normal models and in
presence of more complicated restrictions. Indeed, the robustness aspect of the
restricted minimum divergence estimators are not well studied in the literature
at all. In this paper we will consider this very important issue and describe
the robustness of the general minimum divergence estimators in terms of the
Influence Function Analysis.

The rest of this paper is organized as follows. Sections 2 describes the concept
of the minimum divergence estimators and presents a general form for their
influence function analysis. In Section 3, we will derive a general form of the
influence function of the restricted minimum divergence estimators. In Section 4,
we will apply the general results in case of some popular divergences – disparities,
density power divergences and S-divergences – under some standard restrictions
on the parameter of interest. The qualitative impact of the usual restrictions on
the robustness of the corresponding minimum divergence estimators is discussed
in Section 5, where we have tried to answer all the above motivating questions
along with some more examples and discussions. Finally we end the paper with
some concluding remark in Section 6. For a better flow of presentation, we have
move all the proofs and detailed calculations to the Appendix.

2. Density-based minimum divergence estimators (MDEs) and their
influence functions: A general form

Let us begin our discussion with a general parametric estimation problem. We
have n independent and identically distributed observations X1, . . . , Xn from a
distribution G. We want to model it by a parametric family of distributions

Fθ = {Fθ : θ ∈ Θ ⊆ R
p}.

We assume the support of G and the parametric model Fθ be the same. Also
let both G and Fθ belong to G, the class of all distributions having densities
with respect to an appropriate σ-finite measure µ on the relevant σ-field and
fθ, g be the density functions of Fθ, G respectively with respect to µ. We want
to estimate the parameter θ based on the available sample data.

In case of density-based minimum divergence estimation, this is done by
choosing the model element that provides the closest match to the data where
the separation between the model and data is quantified by a nonnegative func-
tion ρ(·, ·) from G × G to [0, ∞) that equals zero if and only if its arguments
are identically equal. Such a function ρ(·, ·) is termed as a Statistical Divergence

and the estimator θ̂ of θ obtained by minimizing ρ(ĝ, fθ) with respect to θ ∈ Θ,
where ĝ is some nonparametric estimator of g based on the sample data, is called
the Minimum Divergence Estimator (MDE) of θ.

Definition 2.1. A Statistical Divergence measure is a nonnegative function

ρ(·, ·) : G × G 7→ [0, ∞),
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which satisfies

ρ(g, f) = 0 ⇔ g = f a.e. [µ], for all f, g ∈ G.

Definition 2.2. The Minimum Divergence Estimator (MDE) θ̂ρ of the param-
eter θ corresponding to the divergence ρ(·, ·) is defined as

θ̂ρ = argmin
θ∈Θ

ρ(ĝ, fθ).

In terms of statistical functionals, the Minimum Divergence Functional Tρ(G)
corresponding to the divergence ρ(·, ·) is defined by the relation

ρ(g, fTρ(G)) = min
θ∈Θ

ρ(g, fθ),

provided such a minimum exists.

There are several popular examples of statistical divergences that generate
highly robust and efficient estimators including the disparity family [17], Cressie-
Read power divergences family [5], density power divergence family [2] etc. See
Csiszár [6, 7, 8], Ali and Silvey [1], Vajda [21], Pardo [18] and Basu et al.
[3] for further examples and the details of the minimum divergence estimators
including their asymptotic and robustness properties. Throughout the present
paper, we will restrict our attention to a special class of divergences as given in
the following definition which contains most of the popular divergences used for
statistical inference.

Definition 2.3. Define a class of divergence measures given by

ρ(g, f) =

∫
D(g(x), f(x))dµ(x) (2.1)

for some suitable function D(·, ·) : R× R 7−→ [0 ∞) which satisfies D(a, b) = 0
whenever a = b.

The class of divergences defined in Definition 2.3 contains most of the popular
statistical divergence measures for particular choices of the D(·, ·) function. For
example, the choice

D(a, b) = φ
(a
b
− 1
)
b (2.2)

for a non-negative thrice differentiable strictly convex function φ on [−1,∞)
with φ(0) = 0 = φ′(0) generates the class of disparities [17]. For any α ≥ 0, the
choice

D(a, b) =

{
b1+α −

(
1+α
α

)
bαa+ 1

αa
1+α, if α > 0,

a log(a/b), if α = 0,
(2.3)

generates the density power divergence family of Basu et al. [2]. We will consider
these two classes of divergences in detail again in Section 4.

Now, let us consider the estimating equation of the MDE based on the general
divergences considered in Definition 2.3 which turns out to be
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∇ρ(g, fθ) =

∫
∇D(g(x), fθ(x))dµ(x) = 0. (2.4)

Here ∇ represents the derivative with respect to θ. Note that, this estimating
equation does not necessarily give us an M-estimator; it does so only when the
terms in ∇D(g, fθ) containing fθ include only linear functions of g or some
constant independent of g. However, the number of divergences satisfying this
condition is limited [See, e.g. 19] so that we can not always apply the theory of
M-estimators to describe the properties of the MDEs. However, all the MDEs
obtained as a solution to (2.4) will be Fisher consistent by definition of the
divergence ρ(·, ·).

The popularity of the MDEs is largely due to their strong robustness proper-
ties and in this context a useful tool is the Influence Function [14, 15] which is an
indicator of their classical first-order robustness, as well as of their asymptotic
efficiency. To obtain the influence function of the minimum divergence estima-
tors based on the divergence ρ(·, ·), we consider the ǫ contaminated version of
the true density g given by gǫ(x) = (1 − ǫ)g(x) + ǫχy(x). The corresponding
contaminated distribution function is given by Gǫ(x) = (1− ǫ)G(x) + ǫ ∧y (x);
here χy(x) and ∧y(x) are respectively density and distribution functions of the
degenerate distribution at y. Let θg = Tρ(G) and θǫ = Tρ(Gǫ) be the functional
obtained via the minimization of ρ(g, fθ) and ρ(gǫ, fθ) respectively. Then the
influence function of the minimum divergence functional Tρ(·) is defined as

IF (y, Tρ, G) =
∂θǫ
∂ǫ

∣∣∣∣
ǫ=0

.

Suppose,D(i)(·, ·) denotes the first order partial derivative of D(·, ·) with respect
to its ith argument, D(i,j)(·, ·) denotes its second order partial derivative with
respect to ith and jth arguments (i, j = 1, 2). Further, assume that the standard
regularity conditions hold for the model densities so that all above derivatives
exist and can be interchanged with the integrals with respect to µ. Then the
following theorem provides a general form of the influence function of the MDEs
corresponding to the particular divergence given in Equation (2.1); for brevity
in presentation the proof is given in Appendix A.1.

Theorem 2.1. Under standard regularity conditions on model densities, the
influence function of the minimum divergence functional Tρ corresponding the
particular divergences given by Equation (2.1) has the form

IF (y, Tρ, G) = N(θg)−1[ξ(θg)−M(y; θg)], (2.5)

where θg = Tρ(G) and

N(θ) =

∫ [
D(2)(g(x), fθ(x))∇2fθ(x)

+ D(2,2)(g(x), fθ(x)){∇fθ(x)}{∇fθ(x)}T
]
dµ(x),

M(y; θ) = D(1,2)(g(y), fθ(y))[∇fθ(y)],
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Fig 1. Plot of the function
∣

∣M(y;µ0, σ
2

0
)
∣

∣ in Example 2.1 with µ0 = 0, σ0 = 1 over the
contamination point y for different α [solid line: α = 0, dotted line: α = 0.1, dashed line:
α = 0.5 and dot-dashed line: α = 1].

ξ(θ) =

∫
D(1,2)(g(x), fθ(x))[∇fθ(x)]g(x)dµ(x) = Eg [M(X ; θ)] .

In particular, when the true distribution G belongs to the parametric model
with g(x) = fθ0(x) for some θ0 ∈ Θ, we get θg = θ0 and the above influence
function becomes

IF (y, Tρ, Fθ0) = N(θ0)
−1[ξ(θ0)−M(y; θ0)],

where each of N(θ0), ξ(θ0) and M(y; θ0) are evaluated at g = fθ0 . Therefore,
the influence functions of the MDEs will be bounded at the model for all those
divergences for which the function |M(y; θ)| is bounded in y for all θ. This will
further imply the robustness of the corresponding MDEs.

Example 2.1. Consider the estimation of normal mean θ based on an i.i.d. sam-
ple X1, . . . , Xn from the N(θ, σ2) distribution with known σ2. Assume that
θ ∈ R and the true data generating density belongs to the model with true
parameter value θ0. Then, for the minimum density power divergence estimator
[2] with tuning parameter α defined by Equation (2.3), we have

M(y; θ0) = −(1 + α)
(y − θ0)

(2π)α/2σ
α
2 +2
0

e
−

α(y−θ0)2

2σ2
0 , y ∈ R, α ≥ 0;

see Section 4 for the derivation in case of general model families. Note that, the
function |M(y; θ0)| is bounded in y whenever α > 0 but unbounded at α = 0 (see
Figure 1). So from the general theory developed above, the minimum density
power divergence estimators with α > 0 are robust with respect to the outliers
and that corresponding to α = 0 is non-robust. This fact exactly coincides with
the corresponding results derived independently in Basu et al. [2]. �
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Further, as expected from the interpretation of the influence function by
Hampel et al. [16], we have

∫
IF (y, Tρ, G)d(G(y)) =

∫
IF (y, Tρ, G)g(y)dµ(y)

= N(θ0)
−1

∫
[ξ(θ0)−M(y; θ0)]g(y)dµ(y)

= N(θ0)
−1

[
ξ(θ0)−

∫
M(y; θ0)g(y)dµ(y)

]

= 0.

Then the asymptotic distribution of the MDE follows from Hampel et al. [16],
as noted in the following remark.

Remark 2.1. If the MDE θ̂ρ = Tρ(Ĝ) is an
√
n-consistent estimator of Tρ(G),

then under standard regularity conditions the asymptotic distribution of
√
n(θ̂ρ−

Tρ(G)) is asymptotically normal with mean zero and variance

V (Tρ, G) =

∫
IF (y, Tρ, G)IF (y, Tρ, G)T d(G(y))

= N(θg)−1V arg[M(X ; θg)]N(θg)−1,

where V arg(·) denotes the variance under the distribution of g.

3. The influence function of the restricted MDE: A general form

We will now consider the case of restricted minimum divergence estimators and
derive a general expression for its influence function extending the concepts of
the previous section. Consider the set-up of Section 2, but now we want to
estimate the parameter θ under a restricted (proper) subspace Θ0 of the entire
parameter space Θ. In case of composite null hypotheses, the subspace Θ0 is
given by the null parameter space. Generally, we can define the subspace Θ0 by
a set of r(< p) restrictions of the form

h(θ) = 0 on Θ0, (3.1)

for some function h : Rp 7−→ R
r satisfying the property that the p× r matrix

H(θ) =
∂h(θ)

∂θ

exists with rank r and is continuous in θ. Thus, under Θ0, the parameter θ
essentially contains p− r independent components.

We can solve the above estimation problem by minimizing ρ(ĝ, fθ) with re-
spect to θ ∈ Θ0 and the estimator obtained from this minimization exercise will
be called the Restricted Minimum Divergence Estimator (RMDE).

Definition 3.1. The Restricted Minimum Divergence Estimator (RMDE) θ̃ρ
of the parameter θ corresponding to the divergence ρ(·, ·) and restriction (3.1)
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is defined as

θ̃ρ = arg min
θ∈Θ0

ρ(ĝ, fθ) = arg min
θ;h(θ)=0

ρ(ĝ, fθ).

In terms of statistical functional, the Restricted Minimum Divergence Func-
tional T̃ρ(G) is then given by the relation

ρ(g, fT̃ρ(G)) = min
θ∈Θ0

ρ(g, fθ) = min
h(θ)=0

ρ(g, fθ),

provided such a minimum exists.

We can easily solve this minimization problem using the Lagrange multiplier
method. Lindsay [17] and Basu et al. [4] derived the asymptotic distribution of
such RMDE for the disparities and the density power divergences respectively.
Here we will derive the influence function of the Restricted Minimum divergence
functional.

As in Section 2, let us consider the ǫ-contaminated density gǫ, contaminated
distribution Gǫ and define θ̃g = T̃ρ(G) and θ̃ǫ = T̃ρ(Gǫ). Note that θ̃ǫ is the
minimizer of ρ(gǫ, fθ) subject to (3.1). We will consider only the restrictions
which can be substituted explicitly in the expression of ρ(gǫ, fθ) before taking
its derivatives with respect to θ. Then, the resulting derivative will be zero
at θ = θ̃ǫ, which can be used to derive the required influence function. The
following theorem presents the general expression for the influence function of
the restricted minimum divergence functional; see Appendix A.2 for a proof.

Theorem 3.1. Consider the notations developed so far and assume that rank
of H(θ̃g) is r. Then the influence function of the restricted minimum divergence
estimator corresponding to the divergences (2.1) is given by

IF (y, T̃ρ, G)

=
[
N0(θ̃g)

TN0(θ̃g) +H(θ̃g)H(θ̃g)T
]−1

N0(θ̃g)
T
[
ξ0(θ̃g)−M0(y; θ̃g)

]
, (3.2)

where θ̃g = T̃ρ(G) and N0(θ), ξ0(θ), M0(y; θ) are the same as N(θ), ξ(θ),
M(y; θ) respectively but with an additional prior restriction of h(θ) = 0.

In particular, if the true density belongs to the model family, i.e., g = fθ0 for

some θ0 satisfying h(θ0) = 0, then we put θ̃g = θ0 in (3.2) to obtain the corre-
sponding influence function. Therefore, the influence functions of the RMDEs
will be bounded at the model for all those divergences for which the function
|M0(y; θ)| is bounded in y for all θ. In particular, whenever the influence func-
tion of the MDE at the model is bounded, that of the corresponding RMDE will
also be bounded at the model for any given set of restrictions; but the converse
is not true as shown in the following example.

Example 3.1 (Continuation of Example 2.1). Consider again the problem of
estimating normal mean θ as in Example 2.1. But, now let us assume that the
mean θ can take only values in a proper subset Θ0 of the real line. Then, for this
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restricted case, the function M0(y; θ0) corresponding to the minimum density
power divergence estimator can be sen to have the form

M0(y; θ0) =

{
M(y; θ0), if y ∈ Θ0,
0, if y /∈ Θ0,

α ≥ 0,

where M(y; θ0) is as given in Example 2.1.
Then the function M0(y; θ0) is bounded in y whenever α > 0 for any choice

of Θ0; but for α = 0, the function M0(y; θ0) is bounded only if Θ0 is a bounded
subset and unbounded otherwise. Therefore, the minimum density power di-
vergence estimators of the normal mean θ corresponding to α > 0, which are
originally robust without any restriction on the parameter space (Example 2.1),
remain robust also under any restrictions imposed on the parameter.

However, the corresponding estimator with α = 0 (which is in fact the maxi-
mum likelihood estimator as shown in Basu et al. [2] and non-robust in presence
of no restriction on the parameter space) becomes robust if we impose suitable
restrictions on the set Θ of possible values of the parameter to make it bounded
(e.g., the mean θ belongs to a finite interval [a, b] or it is a fixed given real
number specified by the simple null hypothesis). But, for the restrictions where
the set of possible parameter values is unbounded (e.g., set of all positive reals)
this restricted estimator continues to be non-robust with respect to outliers. �

Further, as in the unrestricted case, one can verify that
∫

IF (y, T̃ρ, G)d(G(y)) =

∫
IF (y, T̃ρ, G)g(y)dµ(y) = 0.

Then, the asymptotic distribution of the RMDE follows by an argument similar
to that presented in Hampel et al. [16] for unrestricted case.

Remark 3.1. If the RMDE θ̃ρ = T̃ρ(Ĝ) is an
√
n-consistent estimator of T̃ρ(G),

then the asymptotic distribution of
√
n(θ̃ρ − T̃ρ(G)) is asymptotically normal

with mean zero and variance

V (T̃ , G) =

∫
IF (y, T̃ρ, G)IF (y, T̃ρ, G)T d(G(y))

=
[
N0(θ̃g)

TN0(θ̃g) +H(θ̃g)H(θ̃g)T
]−1

N0(θ̃g)
TV arg[M0(y; θ̃g)]

× N0(θ̃g)
[
N0(θ̃g)

TN0(θ̃g) +H(θ̃g)H(θ̃g)T
]−1

.

At the model g = fθ0 for some θ0 satisfying h(θ0) = 0, the above expression of

asymptotic variance can be further simplified by substituting θ̃g = θ0 and using
the structure of corresponding model density.

We will now explore a couple of particular cases of restrictions that are com-
monly used in parametric inference.

Example 3.2. First we consider a simple and perhaps most popular case of
restrictions where few components of the parameter θ is pre-specified. Precisely,
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let θ = (θ1 θ2)
T where θ1 is an r-vector and its value is specified as θ1,0. Thus

we consider the RMDE of θ under the restriction θ1 = θ1,0. Note that, in this
case, the RMDE of θ1 will be fixed at θ1,0 having no influence of the outliers
and the influence function analysis of the RMDE of θ2 should be the same as
that of the unrestricted MDE considering θ2 as the only parameter of interest.
We will now apply the general formulas derived above to this simple case and
verify if the general results are in-line with this common intuition.

Now, the influence function of the MDE of θ in the unrestricted case is given
by

IF (y, Tρ, G) = N(θg)−1[ξ(θg)−M(y; θg)].

Let us partition this result in terms of θ1 and θ2 to get

M(y; θ) = (M1(y; θ) M2(y; θ))
T , ξ(θ) = (ξ1(θ) ξ2(θ))

T

and

N(θ) =

(
N11(θ) N12(θ)
N12(θ)

T N22(θ)

)
,

where M1 and ξ1 are r-vectors and N11 is the matrix of order r × r. Using
simple matrix algebra, we get the influence functions of the MDE of θ1 and
θ2 separately, although they are not independent for general parametric mod-
els. However, one can verify that these two (unrestricted) influence functions
of θ1 and θ2 will be independent whenever N12(θ

g) = O, the null matrix of
appropriate order.

Next, consider the restricted case where we have h(θ) = θ1 − θ1,0 and

H(θ) =

[
Ir

O(p−r)×r

]
.

Here Ir represents the identity matrix of order r and Op×q represents the null
matrix of order p × q (we will drop the subscript p × q whenever the order is
clear from the context and will denote the square null matrix of order p× p by
just Op). Also, note that θ̃g = (θ1,0, θg2)

T and hence

N0(θ̃g) =

[
Or O
O N22((θ1,0, θg2)

T )

]
,

M0(y; θ̃g) = [0Tr M2(y; (θ1,0, θ
g
2)

T )]T and ξ0(θ̃g) = [0Tr ξ2((θ1,0, θ
g
2)

T )]T . There-
fore, using Theorem 3.1, the influence function of the RMDE of θ becomes

IF (y, T̃ρ, G) =

(
0r

N22((θ1,0, θg2)
T )−1

[
ξ2((θ1,0, θg2)

T )−M2(y; (θ1,0, θg2)
T )
]
)
.

Thus the influence function of the RMDE corresponding to θ1 turns out to be
identically zero and that corresponding to θ2 is the same as that obtained in
the unrestricted case considering θ2 only, as expected. �
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Remark 3.2. Note that Theorem 3.1 can only be applied provided the re-
strictions are such that rank(H(θ̃g)) = r. But in many practical situations we
need to consider restrictions for which the rank is strictly less than r and we
can not apply the above Theorem 3.1 directly to obtain the influence function
of the corresponding RMDEs. However, the arguments presented to derive the
theorem (in Appendix A.2) can still be applied with some small modifications
as required. One such common restriction is considered in Example 3.3 below.

Example 3.3. Consider a slightly complicated case of restrictions where the
first r components of θ depend among themselves through only one unknown
parameter, say β. Suppose θ = (θ1, θ2)

T where θ1 is an r-vector satisfy-
ing θ1 = φ(β) for a known function φ : R 7→ R

r. We assume that φ(β) =
(φ1(β), . . . , φr(β))

T and each φi is a twice differentiable real function with a
non-zero derivative. Again, let us consider the partitions of the matrices N(θ),
ξ(θ) and M(y; θ) in terms of θ1 and θ2 as in Example 3.2.

To derive the influence function of the RMDEs in this case, note that h(θ) =
θ1 − φ(β) so that

H(θ) =

(
Ir −B
O(p−r)×r

)
,

where the r×r matrix B is defined as B = ∂φ(β)
∂θ1

. Note that, the (i, j)th element

of the matrix B is given by bij =
φ′

j(β)

φ′

i(β)
for each i, j = 1, . . . , r, where φ′

i(β)

denote the first derivative with respect to β. Clearly rank(H(θ̃g)) = r − 1 and
so Theorem 3.1 cannot be applied directly to obtain the influence function of
the RMDE here. However, we can restart with the set of Equations (A.2) and

(A.3) in the proof of Theorem 3.1 with θ = θ̃g = (φ(β̃g), θ̃g2)
T and solve them

for the expression of the influence function.
Let us partition the influence function IF (y, T̃ρ, G) of T̃ρ in terms of that of

the functionals T̃ρ,1 and T̃ρ,2 corresponding to θ1 and θ2 respectively as

IF (y, T̃ρ, G) =

[
IF (y, T̃ρ,1, G)

IF (y, T̃ρ,2, G)

]
.

Then, starting from Equations (A.2) and (A.3), we can show that (details are

presented in Appendix A.3) the first component IF (y, T̃ρ,1, G) is given by the
solution of{

B
[
N11(θ̃g)−N12N22(θ̃g)

−1N21(θ̃g)
]

+B(1)

∫ [
∂fθ(x)

∂θ1
⊗ Ir

]
D(2)(g(x), fθ(x))dµ(x)

}
IF (y, T̃ρ,1, G)

= B
{[

ξ1(θ̃g)−M1(y; θ̃g)
]
−N12(θ̃g)N22(θ̃g)

−1
[
ξ2(θ̃g)−M2(y; θ̃g)

]}
,

(3.3)

subject to the condition

BT IF (y, T̃ρ,1, G) = IF (y, T̃ρ,1, G), (3.4)
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where⊗ denote the Kronecker product of two matrices and the r×r2 matrix B(1)

is defined as B(1) = ∂2φ(β)
∂θ2

1
. The remaining second component IF (y, T̃ρ,2, G) of

the influence function is then given by

IF (y, T̃ρ,2, G) = N22(θ̃g)
−1
[
ξ2(θ̃g)−M2(y; θ̃g)

]

−N22(θ̃g)
−1N21(θ̃g)IF (y, T̃ρ,1, G). (3.5)

In particular, if N12(θ) = O, then the estimators θ̃g1 and θ̃g2 becomes asymp-
totically independent and their influence functions also become independent of

each other. Then, the influence function of θ̃g2 simplifies to

IF (y, T̃ρ,2, G) = N22(θ̃g)
−1
[
ξ2(θ̃g)−M2(y; θ̃g)

]
.

It is easy to see that, this is indeed of the same form as the corresponding

influence function under the unrestricted case. And the influence function of θ̃g1
in this case is given by the solution of

{
BN11(θ̃g) +B(1)

∫ [
∂fθ(x)

∂θ1
⊗ Ir

]
D(2)(g(x), fθ(x))dµ(x)

}
IF (y, T̃ρ,1, G)

= B
{[

ξ1(θ̃g)−M1(y; θ̃g)
]}

,

subject to the restriction (3.4). �

Example 3.4. Let us consider a general form of our motivating example on
testing the equality of two sample means. The multivariate generalization of
this problem involves the testing for homogeneity of mean among the p normal
populations with unknown equal variances. Let us represent this problem by the
set-up of multivariate normal model with mean µ = (µ1, . . . , µp)

T and variance
σ2Ip where we are interested in testing the restrictions µ1 = · · · = µp. Equiv-
alently this restriction can be represented in terms of one unknown parameter,
say β, (instead of p-components of µ) and is given by µ = β(1, . . . , 1)T .

Now let us derive the influence function for this motivating example, but with
a slightly general restriction

µ = βµ0

for some known p-vector µ0 (instead of the the vector of ones). Interestingly,
this case is a particular situation of the Example 3.3 with φi(β) = βµi

0 for all
i = 1, . . . , p, where the superscript denote the corresponding component of µ0.
Hence, we can use the result of Example 3.3 to derive the influence function of

the RMDE (µ̃g, σ̃2g) in this case
Note that, in terms of the notations of Example 3.3, we have bij = constant

for all i, j and so B(1) = O, the null matrix of appropriate order. Further,
considering θ1 = µ and θ2 = σ2, we have N12(θ) = 0p for the present case of
normal models. Thus, from the last part of Example 3.3, the influence function

of σ̃2g is given by

IF (y, σ̃2g, G) = N22(θ̃g)
−1
[
ξ2(θ̃g)−M2(y; θ̃g)

]
.
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and that of µ̃g is given by the solution of

BN11(θ̃g)IF (y, µ̃g, G) = B
[
ξ1(θ̃g)−M1(y; θ̃g)

]
, (3.6)

subject to the restriction

BT IF (y, µ̃g, G) = IF (y, µ̃g, G).

Thus we will get a non-zero influence function of µ̃g if the matrix BT has one
of its eigenvalue as 1 and in that case the required influence function is given
by the particular eigenvector of BT corresponding to the eigenvalue 1 which
satisfies (3.6). After another simplification, this influence function must be of
the form

IF (y, µ̃g, G) = BTN11(θ̃g)
−1
[
ξ1(θ̃g)−M1(y; θ̃g) + v

]
,

where v is a vector in the null-space of the matrix B.
For the special choice µ0 = (1, . . . , 1)T in case of testing homogeneity of

means, we have bij = 1 for all i, j so that the matrix B does not have eigenvalue
1 and hence

IF (y, µ̃g, G) = 0. �

4. Applications: Some particular divergences

Based on the general results obtained in the previous sections, one can de-
scribe the influence function analysis and the asymptotic distributions of any
MDE or RMDE provided one can prove only their

√
n-consistency. In this

section, we will apply those results for some common divergence measures.
Throughout this section, we will assume some common notations from the
likelihood theory; L(θ; Θ) = ln fθ(x) for all θ ∈ Θ is the likelihood function,
uθ(x) = ∇L(θ; Θ) is the the likelihood score function, I(θ) = Efθ [uθ(X)uθ(X)T ]
is the Fisher information matrix. Also, we will define similar quantities under
a proper subspace Θ0 ⊂ Θ (defined by the restrictions h(θ) = 0) as L(θ; Θ0)
being the restriction of L(θ; Θ) onto the subspace Θ0, u

0
θ(x) = ∇L(θ; Θ0) and

I0(θ) = Efθ [u
0
θ(X)u0

θ(X)T ].

4.1. Disparity measures

One of the most popular family of divergences is the disparity family [17] that
yields fully efficient and robust estimators upon minimization. It is defined
in terms of a non-negative thrice differentiable strictly convex function φ on
[−1,∞) with φ(0) = 0 and φ′(0) = 0, called the disparity generating function,
as

ρ(g, f) =

∫
φ(δ)f,

with δ = g/f−1. It is of the form of the general divergences defined in Equation
(2.1) with the function D(·, ·) given by (2.2) so that we can apply all the results
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derived in previous sections. Using the same notations, we have,

M(y; θ) = −A′(δ)uθ(y),

and

N(θ) =

∫ [
A′(δ)uθu

T
θ g −A(δ)∇2fθ

]
,

where the function A(δ), defined as

A(δ) = C′(δ)(δ + 1)− C(δ),

is known as the Residual Adjustment Function in the context of minimum dis-
parity estimation and plays a crucial role in its robustness [17]. Then we get the
following result from Equation (2.5).

Result 4.1. The influence function of the minimum disparity estimators is
given by

IF (y, Tρ, G) = N(θg)−1[A′(δ)uθ(y)− Eg[A
′(δ)uθ(y)]],

which is the same as obtained by Lindsay [17] independently. In particular, at
the model g = fθ0 , this influence function simplifies to I(θ0)

−1uθ0(y) which is
independent of the disparity generating function φ(·, ·) and so is same as that of
the MLE. This is unbounded function for most of the common model families.

Next, let us consider the restricted minimum disparity estimation under the
restriction h(θ) = 0. Using the notations of Section 3, it is easy to see that

M0(y; θ) = −A′(δ)u0
θ(y),

and

N0(θ) =

∫ [
A′(δ)u0

θ(u
0
θ)

T g −A(δ)∇2[fθ]
∣∣
Θ0

]
.

Then, we can derive the influence function of the restricted minimum disparity
estimators from Theorem 3.1 and above simplified expressions. However, the
interesting case is when the true density belongs to the model family, i.e., g =
fθ0 . In that case, we will have M0(y; θ0) = −u0

θ(y), ξ0(θ0) = 0 and N0(θ0) =
I0(θ0). Thus, we have the following new result in the context of the minimum
disparity estimation.

Result 4.2. The influence function of the restricted minimum disparity estima-
tor T̃φ corresponding to the disparity generated by φ(·, ·) at the model is given
by

IF (y, T̃φ, Fθ0) =
[
I0(θ0)

2 +H(θ0)H(θ0)
T
]−1

I0(θ0)u
0
θ(y). (4.1)

Note that the above expression is independent of the choice of the disparity gen-
erating function and hence it also gives the influence function of the Restricted
Maximum Likelihood Estimator.
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Further, the above result also helps us to derive asymptotic distribution of
the restricted minimum disparity estimators θ̃φ including that of the restricted
maximum likelihood estimators. Following the argument of Lindsay [17], one can

easily prove the
√
n-consistency of θ̃φ. Then Remark 3.1 gives it’s asymptotic

distribution as follows.

Remark 4.1. Under standard regularity conditions, whenever the restricted
minimum disparity estimator θ̃φ is consistent, the asymptotic distribution of√
n(θ̃φ−θ0), at the model g = fθ0 , is normal with mean zero and variance given

by
[
I0(θ0)

2 +H(θ0)H(θ0)
T
]−1

[I0(θ0)]
3
[
I0(θ0)

2 +H(θ0)H(θ0)
T
]−1

.

This result coincides with asymptotic distribution of the restricted maximum
likelihood estimators obtained independently from the likelihood theory. Hence
it provides a justification of our general results obtained in this paper.

4.2. Density power divergences

In the recent decades, arguably the most popular divergence measure in the
context of the robust minimum divergence estimation is the Density Power
Divergence [2]. The increasing popularity of this divergence is mainly due to the
fact that corresponding minimum divergence estimation does not require any
kernel smoothing in case of the continuous models; which is a major drawback
of the disparity measures. The density power divergence is defined in terms of
a non-negative tuning parameter α as

ρα(g, f) =

∫
f1+α − 1 + α

α

∫
fαg +

1

α

∫
g1+α for α > 0,

and

ρ0(g, f) = lim
α→0

ρα(g, f) =

∫
g log(g/f).

Note that the case of α = 0 gives the likelihood disparity and so the influ-
ence function of the corresponding minimum divergence estimator is already
discussed in previous subsection. Let us now consider the case α > 0.

Interestingly, for any given fixed α > 0, this divergence also belongs to the
general family of divergence defined in Equation (2.1) with the function D(·, ·)
given by (2.3). Now, we can apply all the results derived above for the density
power divergences, where one can show that

M(y; θ) = −(1 + α)uθ(y)f
α
θ (y),

and

N(θ) = (1 + α)

∫ [
uθu

T
θ f

1+α
θ + (iθ − αuθu

T
θ )(g − fθ)f

α
θ

]

= (1 + α)Jα(θ), say,

with iθ = −∇uθ. Then we get the corresponding influence function from (2.5).
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Result 4.3. The influence function of the minimum density power divergence
estimator Tα is given by

IF (y, Tα, G) = Jα(θ
g)−1[uθ(y)f

α
θ (y)− Eg[uθ(X)fα

θ (X)]]. (4.2)

In particular, if we assume g = fθ0, then the influence function simplifies to

IF (y, Tα, Fθ0) =

(∫
uθ0u

T
θ0f

1+α
θ0

)−1 [
uθ0(y)f

α
θ0(y)−

∫
uθ0f

1+α
θ0

]
. (4.3)

The above influence function is bounded for all α > 0 and most of the com-
mon model families. The expressions of the influence functions of the minimum
density power divergence estimators obtained from our general theory is in fact
exactly the same as those derived in Basu et al. [2] independently. This again
proves the power and correctness of the general theory developed in this paper.

Next, we will consider the restricted minimum density power divergence esti-
mation under the restrictions h(θ) = 0. Again, we use the notations of Section 3
and get

M0(y; θ) = −(1 + α)u0
θ(y)f

α
θ (y),

and

N0(θ) = (1 + α)

∫ [
u0
θ(u

0
θ)

T f1+α
θ + (i0θ − αu0

θ(u
0
θ)

T )(g − fθ)f
α
θ

]

= (1 + α)J0
α(θ),

with i0θ = −∇u0
θ. Then, Theorem 3.1 gives us the expression of the influence

function of the restricted density power divergence estimators. The particular
case of g = fθ0 is presented in the following result.

Result 4.4. The influence function of the restricted minimum disparity esti-
mator T̃α at the model g = fθ0 has the simple form

IF (y, T̃α, Fθ0) = Ψ(θ0)
−1

(∫
u0
θ0(u

0
θ0)

T f1+α
θ0

)
u0
θ0(y)f

α
θ0(y), (4.4)

where

Ψ(θ) =

[(∫
u0
θ(u

0
θ)

T f1+α
θ

)2

+
1

(1 + α)2
H(θ)H(θ)T

]
.

Once again this influence function is generally bounded for all α > 0 for most
parametric models.

Finally, we can derive the asymptotic distribution of the restricted minimum
density power divergence estimators θ̃α from Remark 3.1. The

√
n-consistency

of the restricted minimum density power divergence estimators follows from
a modification of the argument of Basu et al. [2] used to prove the same for
minimum density power divergence estimators. So, if we have g = fθ0 , then
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asymptotic distribution of
√
n(θ̃α−θ0) is normal with mean zero and asymptotic

variance

Ψ(θ0)
−1

(∫
u0
θ0(u

0
θ0)

T f1+α
θ0

)
V arfθ0 [u

0
θ0(Y )fα

θ0(Y )]

×
(∫

u0
θ0(u

0
θ0)

T f1+α
θ

)
Ψ(θ0)

−1.

4.3. S-divergence family

We will end this section by considering a recent family of divergences, namely
the S-Divergence family, developed by Ghosh et al. [13]. This is a general super-
family containing both the density power divergence [2] and the Cressie-Read
family of power divergences [5] and along with many other useful divergences.
It is defined in terms of two parameters λ ∈ R and α ≥ 0 as

ρ(g, f) =
1

A

∫
f1+α − 1 + α

AB

∫
fBgA +

1

B

∫
g1+α, α ∈ [0, 1], λ ∈ R,

where A = 1 + λ(1 − α) and B = α − λ(1 − α). For either A = 0 or B = 0, it
is defined by the corresponding continuous limit of the divergences; see Ghosh
et al. [13] for details. Further applications of this new divergence family in robust
statistical inferences can be found in Ghosh [9], Ghosh and Basu [10, 11] and
Ghosh et al. [12].

Again, this large family of divergence can be written in the form of equation
(2.1) with

D(a, b) =
1

A
b1+α −

(
1 + α

α

)
bBaA +

1

B
a1+α.

Then, we have
M0(y; θ) = −(1 + α)uθ(y)f

B
θ (y)gA(y),

and

N(θ) =
(1 + α)

A

∫ [
Auθu

T
θ f

1+α
θ + (i0θ −Buθu

T
θ )(g

A − fA
θ )fB

θ

]

= (1 + α)J(α,λ).

So we get the influence function of the minimum S-divergence estimator from
Equation (2.5).

Result 4.5. The influence function of the minimum S-divergence functional
T(α,λ) is given by

IF (y, T(α,λ), G)

= J(α,λ)(θ
g)−1

[
uθ(y)f

B
θ (y)gA(y)− Eg[uθ(X)fB

θ (X)gA(X)]
]
, (4.5)

which is again the exactly same as obtained in Ghosh et al. [13]. For the special
case g = fθ0 , this influence function coincides with that of the density power
divergence given by equation (4.3).
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Finally, the influence function of the restricted minimum S-divergence esti-
mators under the restrictions h(θ) = 0 can be derived from Theorem 3.1. It is
then easy to see that, at the model g = fθ0 , the influence function of the re-
stricted minimum S-divergence estimators coincides with that of the restricted
density power divergence estimators derived in Equation (4.4).

5. Impact of restrictions on the robustness: Some qualitative
illustrations

In the previous sections, we have developed the influence function of a general
class of minimum divergence estimators under parameter restrictions and com-
pared them with the general form for the corresponding unrestricted estimators.
This work will help us to understand an important question about robustness
under parameter restrictions – do we gain more robustness by imposing restric-
tions on the parameters? In this section, we present some qualitative discussion
as an indicative answer to this question through several interesting examples
along with the motivating problems mentioned in Section 1.

We have already noted that, for most parametric models, if the unrestricted
minimum divergence estimator has bounded influence function (and hence is ro-
bust) then the corresponding restricted minimum divergence estimators under
most usual restrictions will also be robust and have bounded influence functions.
For example, as seen in Example 3.1, the minimum density power divergence
estimator of the normal mean will always be robust for α > 0 whether we con-
sider the parameter space to be the whole real line or any restricted subspace
of it. However, the converse of the above is not true in general; the maximum
likelihood estimator of the normal mean is non-robust and have unbounded in-
fluence function for the unrestricted parameter space or even for the restricted
parameter space if it is an unbounded subset of real line like the set of posi-
tive reals etc. But if we restrict the parameter space for the normal mean to
a bounded interval of reals, then even the maximum likelihood estimator be-
come robust with respect to the outliers outside that bounded interval. This
fact, although intuitively clear, had no rigorous theoretical proof in the existing
literature, which is now made available by our work in this paper.

Another interesting case of restriction is considered in Example 3.4 following
one of the motivating problems – test for homogeneity of p normal populations
with equal variances. In the motivation for this work, we have noted a similar
problem with p = 2; in case of outliers in both the samples, solution of this
testing problem with the non-robust maximum likelihood estimator becomes
robust under the null hypothesis imposing the restriction of the equality of two
means, which had no theoretical justification. Our work in the present paper
justifies this situation by a rigorous proof as seen in Example 3.4. From the
last paragraph of the example, we have obtained that the influence function of
any restricted minimum divergence estimator (and hence that of the restricted
maximum likelihood estimator also) for the common mean of the p normal
samples with equal variance is identically zero under the restriction of equality
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of the p means. This in turn implies the robustness of those restricted minimum
divergence estimators for any divergence of the form (2.1), which includes the
maximum likelihood estimator. However, without the restriction of equality of
means, there are several minimum divergence estimators of the pmeans like their
maximum likelihood estimators which get affected by the presence of outliers in
the samples.

Thus we have seen that, by restricting on the parameter space we can some-
times make a non-robust minimum divergence estimator to be robust so that it
provides us correct inference even in the presence of outliers in the data. How-
ever, if an unrestricted minimum divergence estimator is already robust with
respect to outliers, then the imposition of any restrictions does not generally
affect its robustness properties.

Next, we will present one more such implication that will illustrate the effect
of restriction in one parameter (or, a set of parameters) of a model on the
robustness of its other parameter (or, the set of remaining parameters); this will
cover one of our motivating problems about the robustness of the estimators of
normal mean when variance is known or vice versa.

Consider a parametric model family fθ with two sets of parameters θ1 and θ2;
here θ = (θ1, θ2). Examples of such model includes the normal family with un-
known mean and variance, exponential family with location and shape parame-
ter etc. Suppose we impose some restriction on the first parameter θ1; a natural
question is to check whether the robustness of the estimators of the second
component θ2 gets affected by such restrictions. We have already discussed the
theoretical results about two such restrictions in Example 3.2 and 3.3, – one
specifies the value of θ1 completely under the restriction (case of simple hy-
pothesis) and the second specifies θ1 only partially (like the case of composite
hypothesis). We have derived the influence function of the RMDE in both the
cases following the general theory developed in this paper; the implication of
the results can be summarized as follows: If the MDEs of θ1 and θ2 are asymp-
totically independent then, for both the cases, there will not be any effect of
the restrictions imposed on θ1 on the properties (including robustness) of the
estimator of θ2; we have seen that the influence function of the RMDE of θ2
coincides with that of the corresponding MDE of θ2 as expected from com-
mon intuition. See Example 5.1 below for a numerical illustration of this case.
However, if the MDEs of θ1 and θ2 are not asymptotically independent then the
above implication does not necessarily hold in general. But when θ1 is fully spec-
ified (as in Example 3.2) then, even under asymptotic dependency, the influence
function of the RMDE of θ2 under the restriction on θ1 becomes equivalent to
that of the corresponding (unrestricted) MDE implying no effect of restriction
on the robustness of the RMDE of θ2. Otherwise, in general, the robustness of
the RMDE of θ2 may depends on the (partially specified) restrictions on θ1 and
need to be examined for each particular case separately.

Example 5.1. Consider the problem of testing for the normal variance with
known mean. In this case, we fix the mean of the assumed normal model to a
given value under the null and estimate the variance parameter σ2. Suppose we
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Fig 2. Influence function of the restricted minimum density power divergence estimators of
normal variance under the restriction of fixed mean at the N(0, 1), model for different α [solid
line: α = 0, dotted line: α = 0.1, dashed line: α = 0.5 and dot-dashed line: α = 1].

use the density power divergence measure for this purpose. Then, the influence

function of the restricted minimum density power divergence estimators σ̃2 of
σ2 at the model, under the restriction of given mean, turns out to be

IF (y, σ̃2, N(µ0, σ
2
0))

=
2(1 + α)5/2

(α2 + 2)

{[
(x− µ0)

2 − σ2
0

]

σ2
0

e
−

α(x−µ0)2

2σ2
0 +

α

(1 + α)3/2

}
σ2
0 ,

which coincides with that of the corresponding unrestricted estimators. These
influence functions for some particular choices of the tuning parameter α are
presented in Figure 2; clearly the RMDEs of σ2 with α > 0 are robust having
bounded influence function, but that corresponding to α = 0 has unbounded
influence function and hence is non-robust with respect to the outliers. �

These are only a few of the several possible important implications of the
theory developed in the present paper, which could help us to understand the
robustness properties of different minimum divergence estimators under restric-
tions in case of different composite hypotheses testing problems. We hope that
these would give the reader a fair enough idea about the impact of parameter re-
striction on the robustness of the corresponding minimum divergence estimators
and the usefulness of the general theory developed here in this context.

6. Conclusion

This work presents the derivation of the influence function of the restricted and
unrestricted minimum divergence estimators for a general class of density based
divergences. It will help researchers to derive the robustness properties of any
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minimum divergence estimators under several restrictions on the parameters.For
illustrations, we have examined the same for some popular minimum divergence
estimators, namely the disparity, density power divergence and S-divergence
family; we have also presented examples with a set of linearly dependent re-
strictions for general model family. Further, this paper gives us several direc-
tions for future works including the influence function of more general class of
divergences that are possibly based on the distribution functions; author want
to solve the related problems in subsequent researches.
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Appendix: Proof of the results

A.1. Proof of Theorem 2.1

From the definition of θǫ, it must satisfy the estimating equation (2.4). So,
substituting gǫ and θǫ in place of g and θ respectively in (2.4) and differentiating
with respect to ǫ at ǫ = 0 we get,

∫
∂[∇D(g(x), fθg (x))]

∂g(x)
[−g(x) + χy(x)]dµ(x)

+

∫
∂[∇D(g(x), fθg (x))]

∂fθg(x)
[∇fθg(x)]T IF (y, Tρ, G)dµ(x) = 0. (A.1)

But
∇D(g(x), fθ(x)) = D(2)(g(x), fθ(x))∇fθ(x);

hence
∂[∇D(g(x), fθ(x))]

∂g(x)
= D(1,2)(g(x), fθ(x))∇fθ(x),

and

∂[∇D(g(x), fθ(x))]

∂fθ(x)
= D(2)(g(x), fθ(x))

∂[∇fθ(x)]

∂fθ(x)
+D(2,2)(g(x), fθ(x))∇fθ(x).

Substituting these expressions in (A.1) and simplifying, we get

[−ξ(θg) +M(y; θg)] +N(θg)IF (y, Tρ, G) = 0.

Then the theorem follows immediately.
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A.2. Proof of Theorem 3.1

Note that θ̃ǫ = T̃ρ(Gǫ). By definition, the derivative of ρ(gǫ, fθ) with respect to

θ will be zero at θ̃ǫ, provided the derivative is taken after the substitution of the
restrictions (3.1) in the expression of ρ(gǫ, fθ). Then, proceeding as in the proof
of Theorem 2.1, we get

N0(θ̃g)IF (y, T̃ρ, G)− ξ0(θ̃g) +M0(y; θ̃g) = 0, (A.2)

where N0(θ), ξ0(θ), M0(y; θ) are as defined in the statement of the theorem.

Also, since θ̃ǫ must satisfy (3.1), a differentiation with respect to ǫ at ǫ = 0
yields

H(θ̃g)T IF (y, T̃ρ, G) = 0, (A.3)

We need to solve the two equations (A.2) and (A.3) to get a general expression

for the influence function IF (y, T̃ρ, G). Combining them, we get

(
N0(θ̃g)

H(θ̃g)T

)
IF (y, T̃ρ, G) =

(
ξ0(θ̃g)−M0(y; θ̃g)

0r

)
, (A.4)

where 0r represents the zero-vector (column) of length r. After simplification,

we get the required expression for the influence function IF (y, T̃ρ, G), which
completes the proof.

A.3. Detailed calculation for Example 3.3

As noted in Example 3.3, we start with the set of equations (A.2) and (A.3) and
solve them to derive the influence function of the RMDE of θ = (θ1, θ2). The
form of the restrictions and the matrix H(θ) are already given in the example.
Now, simple differentiation gives

∇f(φ(β), θ2)T (x) =

(
B ∂fθ(x)

∂θ1
∂fθ(x)
∂θ2

)
= B∗∇fθ(x),

where B∗ is a p× p matrix defined as

B∗ =

(
B O
O Ip−r

)
,

and

∇2f(φ(β), θ2)T (x) =


 B ∂2fθ(x)

∂θ2
1

BT +B(1)
[
∂fθ(x)
∂θ1

⊗ Ir

]
B ∂2fθ(x)

∂θ2∂θ1
∂fθ(x)
∂θ1∂θ2

BT ∂2fθ(x)
∂θ2

2


 .

Then we have
M0(y; θ) = B∗M(y; θ), ξ0(θ) = B∗ξ(θ)
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and

N0(θ) = B∗M(θ)(B∗)T+

[
B(1)

∫ [∂fθ(x)
∂θ1

⊗ Ir

]
D(2)(g(x), fθ(x))dµ(x) O

O Op−r

]
,

Now using the special form of the matrices for this case, Equations (A.2) and
(A.3) simplify to

[BN11(θ̃g)B
T ]IF (y, T̃ρ,1, G) + [BN12(θ̃g)]IF (y, T̃ρ,2, G)

+B(1)

{∫ [
∂fθ(x)

∂θ1
⊗ Ir

]
D(2)(g(x), fθ(x))dµ(x)

}
IF (y, T̃ρ,1, G)

= B
[
ξ1(θ̃g)−M1(y; θ̃g)

]
, (A.5)

[N21(θ̃g)B
T ]IF (y, T̃ρ,1, G) +N22(θ̃g)IF (y, T̃ρ,2, G) =

[
ξ2(θ̃g)−M2(y; θ̃g)

]
,

(A.6)

[Ir −BT ]IF (y, T̃ρ,1, G) = 0. (A.7)

Now from Equation (A.6) and (A.6), we get Equation (3.5) and (3.4) respec-
tively. Substituting (3.5) in (A.5), we get a simplified form of Equation (A.5)
as given in (3.3). So, we need to solve Equation (3.3) for the first component

IF (y, T̃ρ,1, G) of the partition of the influence function subject to (3.4) and then

use Equation (3.5) to get the remaining second component IF (y, T̃ρ,2, G) of the
influence function.

References

[1] Ali, S. M. and Silvey, S. D. (1966). A general class of coefficients of
divergence of one distribution from another. Journal of the Royal Statistical
Society B 28, 131–142. MR0196777

[2] Basu, A., Harris, I. R., Hjort, N. L., and Jones, M. C. (1998).
Robust and efficient estimation by minimising a density power divergence.
Biometrika 85, 549–559. MR1665873

[3] Basu, A., Shioya, H., and Park, C. (2011). Statistical Inference: The
Minimum Distance Approach. Chapman & Hall/CRC. MR2830561

[4] Basu, A., Mandal, A., Martin, N., and Pardo, L. (2013). Density
Power Divergence Tests for Composite Null Hypotheses. ArXiv pre-print ,
arXiv:1403.0330 [stat.ME].

[5] Cressie, N. and Read, T. R. C. (1984). Multinomial goodness-of-fit
tests. Journal of the Royal Statistical Society B 46, 440–464. MR0790631

[6] Csiszár, I. (1963). Eine informations theoretische Ungleichung und ihre
Anwendung auf den Beweis der Ergodizitat von Markoffschen Ketten. Publ.
Math. Inst. Hungar. Acad. Sci. 3, 85–107.

http://www.ams.org/mathscinet-getitem?mr=0196777
http://www.ams.org/mathscinet-getitem?mr=1665873
http://www.ams.org/mathscinet-getitem?mr=2830561
http://arxiv.org/abs/1403.0330
http://www.ams.org/mathscinet-getitem?mr=0790631


1040 A. Ghosh

[7] Csiszár, I. (1967a). Information-type measures of difference of probabil-
ity distributions and indirect observations. Studia Scientiarum Mathemati-
carum Hungarica 2, 299–318. MR0219345

[8] Csiszár, I. (1967b). On topological properties of f -divergences. Studia
Scientiarum Mathematicarum Hungarica 2, 329–339.

[9] Ghosh, A. (2014). Asymptotic properties of minimum S-divergence es-
timator discrete models. Sankhya A – The Indian Journal of Statistics,
doi:10.1007/s13171-014-0063-2.

[10] Ghosh, A. and Basu, A. (2014). The Minimum S-Divergence Estimator
under Continuous Models: The Basu-Lindsay Approach. ArXiv pre-print ,
arXiv:1408.1239 [math.ST].

[11] Ghosh, A. and Basu, A. (2015). Testing Composite Null Hypothesis
Based on S-Divergences. ArXiv pre-print , arXiv:1504.04100 [math.ST].

[12] Ghosh, A., Basu, A., and Pardo, L. (2015). On the robustness of a
divergence based test of simple statistical hypotheses. Journal of Statistical
Planning and Inference 161, 91–108. MR3316553

[13] Ghosh, A., Harris, I. R., Maji, A., Basu, A., and Pardo, L. (2013).
A Generalized Divergence for Statistical Inference. Technical Report,
BIRU/2013/3, Interdisciplinary Statistical Research Unit, Indian Statis-
tical Institute, Kolkata, India.

[14] Hampel, F. R. (1968). Contributions to the theory of robust estimation.
Ph. D. thesis, University of California, Berkeley, USA. MR2617979

[15] Hampel, F. R. (1974). The influence curve and its role in robust estima-
tion. Journal of American Statistical Association 69, 383–393. MR0362657

[16] Hampel, F. R., Ronchetti, E., Rousseeuw, P. J., and Stahel, W.

(1986). Robust Statistics: The Approach Based on Influence Functions.
New York, USA: John Wiley & Sons. MR0829458

[17] Lindsay, B. G. (1994). Efficiency versus robustness: The case for minimum
Hellinger distance and related methods. Annals of Statistics 22, 1081–1114.
MR1292557

[18] Pardo, L. (2006). Statistical Inference Based on Divergences.
CRC/Chapman-Hall. MR2183173

[19] Patra, S., Maji, A., Basu, A., and Pardo, L. (2013). The power
divergence and the density power divergence families: The mathematical
connection. Sankhya B 75, 16–28. MR3082808

[20] Simpson, D. G. (1989). Hellinger deviance test: Efficiency, breakdown
points, and examples. Journal of the American Statistical Association 84,
107–113. MR0999667

[21] Vajda, I. (1972). On the f -divergence and singularity of probability mea-
sures. Periodica Math. Hunger. 2, 223–234. MR0335163

http://www.ams.org/mathscinet-getitem?mr=0219345
http://dx.doi.org/10.1007/s13171-014-0063-2
http://arxiv.org/abs/1408.1239
http://arxiv.org/abs/1504.04100
http://www.ams.org/mathscinet-getitem?mr=3316553
http://www.isical.ac.in/~biru/anb.pdf
http://www.ams.org/mathscinet-getitem?mr=2617979
http://www.ams.org/mathscinet-getitem?mr=0362657
http://www.ams.org/mathscinet-getitem?mr=0829458
http://www.ams.org/mathscinet-getitem?mr=1292557
http://www.ams.org/mathscinet-getitem?mr=2183173
http://www.ams.org/mathscinet-getitem?mr=3082808
http://www.ams.org/mathscinet-getitem?mr=0999667
http://www.ams.org/mathscinet-getitem?mr=0335163

	Introduction
	Density-based minimum divergence estimators (MDEs) and their influence functions: A general form
	The influence function of the restricted MDE: A general form
	Applications: Some particular divergences
	Disparity measures
	Density power divergences
	S-divergence family

	Impact of restrictions on the robustness: Some qualitative illustrations
	Conclusion
	Acknowledgment
	Appendix: Proof of the results
	Proof of Theorem 2.1
	Proof of Theorem 3.1
	Detailed calculation for Example 3.3

	References

