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Abstract: Regularized M-estimators are used in diverse areas of science
and engineering to fit high-dimensional models with some low-dimensional
structure. Usually the low-dimensional structure is encoded by the presence
of the (unknown) parameters in some low-dimensional model subspace. In
such settings, it is desirable for estimates of the model parameters to be
model selection consistent : the estimates also fall in the model subspace.
We develop a general framework for establishing consistency and model se-
lection consistency of regularized M-estimators and show how it applies to
some special cases of interest in statistical learning. Our analysis identifies
two key properties of regularized M-estimators, referred to as geometric
decomposability and irrepresentability, that ensure the estimators are con-
sistent and model selection consistent.
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1. Introduction

The principle of parsimony is used in many areas of science and engineering to
promote “simple” models over more complex ones. In machine learning, signal
processing, and high-dimensional statistics, this principle motivates the use of
sparsity inducing penalties for model selection and signal recovery from incom-
plete/noisy measurements. Usually the “simplicity” of the model is encoded by
the presence of the (unknown) parameters in some low-dimensional model sub-
space, and it is desirable for estimates of the parameters to fall in the model
subspace. This notion of correctness is termed model selection consistency. In
this work, we consider regularized M-estimators of the form

minimize
θ∈E

ℓ(θ) + λρ(θ), (1.1)
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where ℓ is a convex, twice continuously differentiable loss, ρ is a penalty func-
tion, and E ⊆ Rp is a subspace. We identify two key properties of regularized
M-estimators, referred to as geometric decomposability and irrepresentability,
that ensure the estimators are consistent and model selection consistent. We also
develop a general framework for analyzing the consistency and model selection
consistency of M-estimators with geometrically decomposable penalties. When
specialized to various statistical models, our framework yields some known and
some new model selection consistency results.

The article is organized as follows: First, we review existing work on consis-
tency and model selection consistency of regularized M-estimators. Then, in Sec-
tion 2, we describe geometrically decomposable penalties. Section 3 is devoted
to our main result and some discussion of its consequences. converse results on
the necessity of the irrepresentable condition in Section 5. The final section,
Section 4, is devoted to applications of our main result to various statistical
models, including sparse regression and low-rank multivariate regression.

1.1. Notation

Given a set S ⊂ Rp and a point x ∈ Rp, we use PS(x) to denote the projector
of x on span(S) :

PS(x) = argminy∈span(S)
1
2 ‖x− y‖22 .

Since PS(x) is a linear mapping, we write PSx = PS(x), where PS ∈ Rp×p We
use Bq to denote the q norm ball {x ∈ Rp | ‖x‖q ≤ 1}. For a semi-norm ρ, we
use ρ∗ to denote its dual semi-norm:

ρ(x)∗ = supρ(x)≤ 1 y
Tx.

Finally, given a matrix X ∈ Rp1×p1 , we use X† to denote its Moore-Penrose
pseudoinverse.

1.2. Consistency of regularized M-estimators

A large body of work in high-dimensional statistics focuses on obtaining suffi-
cient conditions for consistency of regularized M-estimation. A recurring theme
in this avenue of research is the notion of restricted strong convexity. We refer
to the past work section in Negahban et al. (2012) and Bühlmann and van de
Geer (2011) for a comprehensive treatment of recent work on this topic.

Negahban et al. (2012) proposes a unified framework for establishing consis-
tency and convergence rates for M-estimators with penalties ρ that are decom-
posable with respect to a pair of subspaces M, M̄ :

ρ(x+ y) = ρ(x) + ρ(y), for all x ∈ M, y ∈ M̄⊥.

Many common penalties such as the lasso, group lasso, and nuclear norm are
decomposable in this sense. Negahban et al. (2012) also develop a general notion
of restricted strong convexity and prove a general result that establishes the con-
sistency of M-estimators with decomposable penalties. Using their framework,
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they establish estimation consistency results for different statistical models in-
cluding sparse and group sparse linear regression. Our results propose a unified
framework for model selection consistency in a similar setting.

More recently, van de Geer (2012) proposes the notion of weakly decompos-
ability. A penalty ρ is weakly decomposable if there is some norm ρSc on Rp−|S|

such that ρ is superior to the sum of ρ and ρSc ; i.e.

ρ(x) ≥ ρ(xS) + ρSc(xSc), for all x ∈ Rp,

where S ⊂ [ p ] and xS ∈ R|S|, xSc ∈ Rp−|S|. Many common sparsity induc-
ing penalties, including the ℓ2/ℓ1-norm (with possibly overlapping groups), are
weakly decomposable. van de Geer (2012) shows oracle inequalities for the ℓ1
penalty generalizes to weakly decomposable penalties.

In the parallel world of signal processing, there is a rich literature on con-
strained M-estimators of the form

minimize
θ∈Rp

‖θ‖A subject to θ ∈ C, (1.2)

where C ⊂ Rp is a convex set. Candès and Recht (2012) proposed a unified
analysis of (1.2) when ‖ · ‖A is decomposable. By Candès and Recht (2012),
Definition 1, ‖ · ‖A is decomposable at θ⋆ ∈ Rp if ∂‖θ⋆‖A has the form

∂ ‖θ⋆‖A = {z ∈ Rp | PT (z) = e, ρ(PT⊥(z))∗ ≤ 1}

for some subspace T ⊂ Rp and a point e ∈ T. Above, PT (resp. PT⊥) is the
orthogonal projection onto T (resp. T⊥). We emphasize the notion of decom-
posability by Candès and Recht (2012) is different from the notion by Negah-
ban et al. (2012). Candès and Recht (2012) show exact recovery results for
sparse/block-sparse vectors and low-rank matrices from random linear mea-
surements depend upon the decomposability of the ℓ1, ℓ2/ℓ1, and nuclear norms.
Bach (2010) show support recovery results for polyhedral norms arising from
non-decreasing submodular functions including the ℓ1 and ℓ∞/ℓ1 norms.

Recently, Chandrasekaran et al. (2012) proposed the notion of an atomic
norm:

‖x‖A = inf {t > 0 | x ∈ t conv(A)} for a set of atoms A.

They develop a general framework for deriving both exact (in the noise-free
case) and robust (in the noisy case) recovery results from random Gaussian
measurements by solving convex optimization problems of the form (1.2).

The model selection consistency of regularized M-estimators has also been
extensively studied. The most commonly studied problems are

1. sparse regression (including generalized linear models): Zhao and Yu (2006);
Bunea (2008); Wainwright (2009); Obozinski, Wainwright and Jordan
(2011); Vaiter et al. (2013)

2. sparse covariance estimation and (more generally) structure learning: Mein-
shausen and Bühlmann (2006); Kolar et al. (2010); Ravikumar, Wain-
wright and Lafferty (2010); Jalali et al. (2011); Loh andWainwright (2012).
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In addition to restricted strong convexity, these results also rely upon the notion
of irrepresentability originally proposed by Zhao and Yu (2006)1. Despite ex-
tensive work on this area, there is no general framework for establishing model
selection consistency of commonly used M-estimators.

2. Geometrically decomposable penalties

Let C ⊂ Rp be a closed convex set. Then the gauge function on C is

γC(x) = infx {λ ∈ R+ | x ∈ λC},
and the support function on C is

hC(x) = supy {yTx | y ∈ C}. (2.1)

Both gauge support functions are sublinear and should be thought of as semi-
norms. If C is a norm ball, i.e. C = {x | ‖x‖ ≤ 1}, then γC is the norm and hC

is the dual norm given by

‖y‖∗ = supx {xT y | ‖x‖ ≤ 1}.
The support function is a supremum of linear functions, hence the subdiffer-

ential consists of the linear functions that attain the supremum:

∂hC(x) = {y ∈ C | yTx = hC(x)}. (2.2)

The support function (as a function of the convex set C) is also additive over
Minkowski sums, i.e. if C and D are convex sets, then

hC+D(x) = hC(x) + hD(x).

We use this property to express penalty functions as sums of support functions.
E.g. if ρ is a norm and the dual norm ball can be expressed as a (Minkowski)
sum of convex sets C1, . . . , Ck, then ρ can be expressed as a sum of support
functions:

ρ(x) = hC1
(x) + · · ·+ hCk

(x).

If a penalty ρ can be expressed as

ρ(θ) = hA(θ) + hI(θ) + hE⊥(θ), (2.3)

where A, I ⊂ Rp are closed convex sets and E ⊂ Rp is a subspace, then we
say ρ is a geometrically decomposable penalty. This form is general; if ρ can be
expressed as a sum of support functions, i.e.

ρ(θ) = hC1
(θ) + · · ·+ hCk

(θ),

then we can set A, I, and E⊥ to be sums of the sets C1, . . . , Ck to express ρ
in geometrically decomposable form (2.3). In many cases of interest, A + I is
a norm ball and hA+I = hA + hI is the dual norm. In our analysis, we further
assume

1An equivalent notion, called neighborhood stability, was proposed by Meinshausen and
Bühlmann (2006).
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1. A, I are bounded.
2. I contains a relative neighborhood of the origin, i.e. 0 ∈ relint(I).

To allow for unregularized parameters, we do not assume A + I contains a
neighborhood of the origin. Thus ρ is not necessarily a norm. We summarize
the form of geometrically decomposable penalties in a definition.

Definition 2.1. A regularizer is geometrically decomposable in terms of convex
sets A, I ⊂ Rp and a subspace E ⊂ Rp if

ρ(θ) = hA(θ) + hI(θ) + hE⊥(θ).

We assume A, I are bounded and 0 ∈ relint(I).

The notation A, I should be as read as “active” and “inactive”: span(A)
should contain the (unknown) parameter vector and span(I) should contain
deviations that we want to penalize. For example, if we know the sparsity pattern
of the unknown parameter vector, then A should span the subspace of all vectors
with the correct sparsity pattern.

The third term enforces a subspace constraint θ ∈ E because the support
function of a subspace is the (convex) indicator function of the orthogonal com-
plement:

hE⊥(θ) = 1E(θ) =

{

0 θ ∈ E

∞ otherwise.

Such subspace constraints arise in many problems, either naturally (e.g. the
constrained lasso by James, Paulson and Rusmevichientong (2012)) or after
reformulation (e.g. group lasso with overlapping groups).

Before we state our theoretical results, we note that regularizers of the form
ρ(Dθ) for some D ∈ Rm×p are geometrically decomposable, as long as ρ is
geometrically decomposable. By the geometric decomposability of ρ,

ρ(Dθ) = hA(Dθ) + hI(Dθ) + hE⊥(Dθ)

= hDTA(θ) + hDT I(θ) + hDTE⊥(θ).

In signal processing, regularizing with ρ(Dθ) for some dictionary D is called
analysis regularization. We give some examples of M-estimators with geometri-
cally decomposable penalties in Section 3.

3. Main results

3.1. Problem setup

We begin with a description of the problem at hand. Let X(n) = {X1, . . . , Xn}
be n identically distributed observations of some random variable with marginal
distribution P. We seek to estimate some (unknown) parameters θ⋆ ∈ M ⊂
Rp of P, where M is the model subspace. The model subspace is usually low-
dimensional and captures the simple structure of the model. For example, M
may be the subspace of vectors with a particular support or a subspace of low-
rank matrices. We focus on the high-dimensional setting, i.e. when n > p.
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Let ℓ be a convex and twice-continuously differentiable loss that assigns a
cost ℓ(θ) to any parameter θ ∈ E. To estimate θ⋆ from the data X(n), we solve
the convex optimization problem

minimize
θ∈Rp

ℓ(θ) + λ(hA(θ) + hI(θ) + hE⊥(θ)), (3.1)

where ρ is geometrically decomposable in terms of convex sets A, I ⊂ Rp and
a subspace E ⊂ Rp. The sets A, I, E are chosen such that M = E ∩ span(I)⊥.
Intuitively, span(I) ⊂ M⊥ contains deviations from M that we wish to kill.
Many common regularized M-estimators possess the decomposable structure
given by (3.1). To gain some intuition, we give three examples, beginning with
sparse regression.

3.1.1. Sparse linear regression

Consider the linear model
y = Xθ + ǫ, (3.2)

where X ∈ Rn×p is the design matrix, and y ∈ Rn are the responses. We
assume the coefficients θ ∈ Rp are sparse, i.e. most of the coefficients are zero.
Let S ⊂ [ p ] be the support of θ, and Sc be the complementary subset of [ p ].
The model subspace is {θ ∈ Rp | θSc = 0}.

The lasso by Tibshirani (1996) (also known as basis pursuit denoising by
Chen, Donoho and Saunders (2001)) estimates θ⋆ by the solution of:

minimize
θ∈Rp

1

2n
‖y −Xθ‖22 + λ‖θ‖1. (3.3)

The ℓ1 norm is geometrically decomposable: ‖θ‖1 = hB∞,S (θ)+hB∞,Sc (θ), where
hB∞,S and hB∞,Sc are support functions of the sets

B∞,S =
{

θ ∈ Rp | ‖θ‖∞ ≤ 1, θSc = 0
}

B∞,Sc =
{

θ ∈ Rp | ‖θ‖∞ ≤ 1, θS = 0
}

.

It is straightforward to check span(B∞,Sc)⊥ = M. Thus the lasso possesses the
structure given by (3.1). There is a well-developed theory of the lasso that says,
under suitable assumptions on X, the lasso estimator is (consistent and) model
selection consistent. In fact, under a stronger beta-min condition, the lasso is
sign consistent. As we shall see, the aforementioned structure is the key to the
performance of the lasso.

Given an estimate θ̂, there are various ways to assess its performance. We
consider two notions: consistency and model selection consistency. An estimate
θ̂ is consistent (in the ℓ2 norm) if the estimation error in the ℓ2 norm decays to
zero in probability as sample size grows:

∥

∥θ̂ − θ⋆
∥

∥

2

p→ 0 as n → ∞.

An estimate is model selection consistent if θ̂ is in the model subspace:

Pr(θ̂ ∈ M) → 1 as n → ∞. (3.4)
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3.2. The main result

Before we state our main result, we state our assumptions on the problem.
Our two main assumptions are on the (sample) Fisher information matrix :
Q = ∇2ℓ(θ⋆). The first is restricted strong convexity (RSC) and the second is
irrepresentability.

Assumption 3.1 (Restricted strong convexity (RSC)). Let C ⊂ Rp be some
(a priori) known convex set containing θ⋆. The loss function ℓ is RSC (on
C ∩ M) when

∆T∇2ℓ(θ)∆ ≥ m ‖∆‖22 , θ ∈ C ∩ M,∆ ∈ (C ∩ M)− (C ∩ M) (3.5)

‖∇2ℓ(θ)−Q‖2 ≤ L ‖θ − θ⋆‖2 , θ ∈ C, (3.6)

for some m > 0 and L < ∞.

The set C is usually taken to be a compact set (see Section 4.2 for an exam-
ple). In these cases, restricted strong smoothness (3.6) holds by the continuity
of ∇2ℓ. Similar notions of restricted strong convexity/smoothness are common
in the literature on high-dimensional statistics. For example, the unified frame-
work by Negahban et al. (2012) requires a (slightly stronger) notion of restricted
strong convexity.

For a concrete example, we consider the sparse linear regression problem
described in Section 3.1.1. When the rows of X ∈ Rn×p are i.i.d. Gaussian
random vectors with mean zero and covariance Σ, Raskutti, Wainwright and
Yu (2010) showed there are constants m1,m2 > 0 such that

1

n
‖X∆‖22 ≥ m1 ‖∆‖22 −m2

log p

n
‖∆‖21 for any ∆ ∈ Rp

with probability at least 1 − c1 exp(−c2n). Their result implies RSC over
span(B∞,S) with constants L = 0 and m = m1

2 as long as n > 2m2

m1
|S| log p.

Thus sparse regression with random Gaussian designs satisfy RSC, even when
there are dependencies among the predictors. The result was extended to sub-
gaussian designs by Rudelson and Zhou (2013), also allowing for dependencies
among the predictors.

Assumption 3.2 (Irrepresentability). There is τ ∈ (0, 1) such that

supz ∈ ∂hA(M) V (PM⊥ (QPM (PMQPM )†PMz − z)) < 1− τ, (3.7)

where V (z) = infy {γI(y) + 1E⊥(z − y)} and ∂hA(M) =
⋃

θ∈M ∂hA(θ).

As we shall see, V is a semi-norm: it measures the size of the component of
z in I. In particular, V (z) < 1 implies

z = zI + zE⊥ for some zI ∈ relint(I) and zE⊥ ∈ E⊥.

Lemma 3.3. V is finite and sublinear.
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To interpret the irrepresentable condition, consider again the sparse regres-
sion problem. Since E = Rp and Q = 1

nX
TX, (3.7) simplifies to

∥

∥XT
Sc

(

XT
S
)†

sign(θ⋆S)
∥

∥

∞ ≤ 1− τ.

By the properties of support functions, ∂hA(M) ⊂ B∞. Thus it is sufficient to
assume

∥

∥XT
Sc

(

XT
S
)†∥
∥

∞ ≤ 1− α for some α ∈ (0, 1). (3.8)

The rows of XT
Sc(XT

S )
† are the regression coefficients of xj , j ∈ Sc on XS . Thus

(3.8) says the active predictors (columns of XS) are not overly well-aligned
with the inactive predictors. Ideally, we would like the inactive predictors to be
orthogonal to active predictors: ‖XT

Sc(XT
S )

†‖∞ = 0. Unfortunately, orthogonal-
ity is impossible in the high-dimensional setting. The irrepresentable condition
relaxes orthogonality to “near orthogonality”.

As we shall see, the main result requires the regularization parameter λ
to be larger than the “empirical process” part of the problem. Known re-
sults on the convergence rates of regularized M-estimators usually require λ =
Ω(ρ∗(∇ℓ(θ⋆))). However, when ρ is not a norm (e.g. when there are unregu-
larized parameters), ρ∗(∇ℓ(θ⋆)) is usually infinite. To allow for unregularized
parameters, we relax the requirement to λ = Ω(̺∗(∇ℓ(θ⋆))) for some norm ̺
such that ρ(θ) ≤ ̺(θ) for any θ ∈ Rp.

Before we state our main result, we describe some constant that appear in
the result. Let B2 be the 2-norm ball. We use κρ (resp. κ̺, κ̺∗) to denote the
compatibility constant between ρ (resp. ̺, ̺∗) and the ℓ2-norm on M :

κρ = supθ {ρ(θ) | θ ∈ B2 ∩ M}

(resp. κ̺, κ̺∗). Similarly, we use κIC to denote the compatibility constant be-
tween the irrepresentable term and ̺∗ :

κIC = sup̺∗(z)≤ 1 V (PM⊥(QPM (PMQPM )†PMz − z)).

The constants κρ and κIC are finite because ρ and ̺∗ are finite.

Theorem 3.4. Assume ℓ and ρ satisfy RSC (on C ∩ M) and irrepresentability
(Assumptions 3.1 and 3.2). For any

4κIC

τ ̺∗(∇ℓ(θ⋆)) < λ < m2

2L

(

2κρ +
κ̺

κIC

τ
2

)−2
τ

κ̺∗κIC
, (3.9)

the optimal solution to (3.1) is unique,

1. consistent: ‖θ̂ − θ⋆‖2 ≤ 2
m (κρ +

τ
4

κ̺

κIC
)λ,

2. model selection consistent: θ̂ ∈ M.

Theorem 3.4 makes a deterministic statement about the optimal solution
to (3.1). To use this result to derive consistency and model selection consistency
results for a statistical model, we must first verify the loss and penalty satisfies
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restricted strong convexity/smoothness and irrepresentability. Then, we must
select a penalty parameter that satisfies (3.9) (for some error norm). We know
̺∗(∇ℓ(θ⋆)) = Op(

1√
n
) for most problems of interest, so, for n large enough,

there exist λ that satisfies (3.9).

Proof. The proof of Theorem 3.4 consists of three main steps:

1. Show the solution to a restricted problem (3.10) is unique and consistent
(Lemma 3.5).

2. Establish a primal-dual witness (PDW) condition that ensures all solu-
tions to the original problem are also solutions to the restricted problem
(Lemma 3.6).

3. Construct a primal-dual pair for the original problem from the restricted
primal-dual pair that satisfies the dual certificate condition.

Let (θ̄, z̄A, z̄M⊥) be a primal-dual pair to the restricted problem:

minimize
θ∈Rp

ℓ(θ) + λ(hA(θ) + hM⊥(θ)). (3.10)

The restricted primal-dual pair satisfies the first order optimality condition

∇ℓ(θ̄) + λz̄A + λz̄M⊥ = 0 (3.11)

z̄A ∈ ∂hA(θ̄), z̄M⊥ ∈ M⊥. (3.12)

First, we show the solution to the restricted problem is consistent.

Lemma 3.5. Assume ℓ and ρ satisfy RSC (on C ∩ M). For any λ >
4κIC

τ ̺∗(PM∇ℓ(θ⋆)), the optimal solution to the restricted problem (3.10) is uni-
que and consistent: ‖θ̄ − θ⋆‖2 ≤ 2

m(κρ +
τ
4

κ̺

κIC
)λ.

Next, we establish the PDW condition that ensures all solutions to the orig-
inal problem are also solutions to the restricted problem.

Lemma 3.6. Suppose θ̂ is a primal solution to (3.1), and ẑA, ẑI , ẑE⊥ are dual

solutions; i.e. (θ̂, ẑA, ẑI , ẑE⊥) satisfy

∇ℓ(θ̂) + λ(ẑA + ẑI + ẑE⊥) = 0

ẑI ∈ ∂hI(θ̂), ẑA ∈ ∂hA(θ̂), ẑE⊥ ∈ E⊥.

If ẑI ∈ relint(I), then all primal solutions to (3.1) satisfy hI(θ) = 0.

Finally, we use the restricted primal-dual pair to construct a feasible pri-
mal-dual pair for the original problem (3.1). The optimality conditions of the
original problem are

∇ℓ(θ̂) + λ(ẑA + ẑI + ẑE⊥) = 0 (3.13)

ẑI ∈ ∂hI(θ̂), ẑA ∈ ∂hA(θ̂), ẑE⊥ ∈ E⊥. (3.14)
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Let

ẑI = argminz γI(z) + 1E⊥(z̄M⊥ − z)

ẑE⊥ = z̄M⊥ − ẑI .

The pair (θ̄, z̄A, ẑI , ẑE⊥) satisfies (3.14) by construction. Thus θ̄ is a solution to
the original problem. To show θ̄ is the unique solution to the original problem,
we show ẑI is PDW feasible: ẑI ∈ relint(I).

The restricted primal-dual pair (θ̄, z̄A, z̄M⊥) satisfies (3.12) and thus the zero
reduced gradient condition:

PM∇ℓ(θ̄) + λPM z̄A = 0.

We Taylor expand ∇ℓ around θ⋆ (component-wise) to obtain

PMW + PMQPM (θ̄ − θ⋆) + PMR+ λPM z̄A = 0,

where W = ∇ℓ(θ⋆) and

R = ∇ℓ(θ̄)−∇ℓ(θ⋆)−Q(θ̄ − θ⋆).

Since PMQPM is invertible on M , we solve for θ̄ to obtain

θ̄ = θ⋆ − (PMQPM )†PM (W + λz̄A +R). (3.15)

We Taylor expand ∇ℓ in (3.12) around θ⋆ to obtain

W +Q(θ̄ − θ⋆) +R+ λ(z̄A + z̄M⊥) = 0.

We substitute (3.15) into this expression to obtain

0 = W −Q(PMQPM )†PM (W + λz̄A +R) +R+ λ(z̄A + z̄M⊥). (3.16)

Rearranging, we obtain

z̄M⊥ =
1

λ

(

Q(PMQPM )†PM (W + λz̄A +R)−W −R− λz̄A)
)

= QPM (PMQPM )†PM z̄A − z̄A

+
1

λ

(

QPM (PMQPM )†PM (W +R)−W +R
)

.

Finally, we take V ’s to obtain

V (z̄M⊥) ≤ V (PM⊥(QPM (PMQPM )†PM z̄A − z̄A)) (3.17)

+
1

λ
V (PM⊥(QPM (PMQPM )†W −W )) (3.18)

+
1

λ
V (PM⊥(QPM (PMQPM )†PMR−R)). (3.19)
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The irrepresentable condition (3.7) implies the first term is small:

V (PM⊥ (QPM (PMQPM )†PM z̄A − z̄A)) ≤ 1− τ.

Since V is a semi-norm on M⊥, there is some κIC such that

V (PM⊥(QPM (PMQPM )†W −W )) ≤ κIC̺
∗(W ).

We substitute these expressions into (3.19) to obtain

V (z̄M⊥) ≤ 1− τ + κIC

(

̺∗(W )

λ
+

̺∗(R)

λ

)

.

If we have λ > 4κIC

τ ̺∗(W ), then κIC

λ ̺∗(W ) ≤ τ
4 and

V (z̄M⊥) < 1− τ +
τ

4
+

κIC

λ
ρ∗(R). (3.20)

Lemma 3.7. Assume ℓ and ρ satisfy RSC (over C ∩M). For any λ < m2

2L (2κρ+
κ̺

κIC

τ
2 )

−2 τ
κ̺∗κIC

, κIC

λ ̺∗(R) < τ
4 .

We substitute this bound into (3.20) to obtain

V (z̄M⊥) < 1− τ +
τ

4
+

τ

4
≤ 1− τ

2
< 1.

Thus ẑI is PDW feasible. By Lemma 3.6 and the uniquenss of the solution to
the restricted problem, θ̄ is also the unique solution to the original problem.

3.3. (Partial) converse results

Although the irrepresentable condition (3.7) seems cryptic and hard to verify,
Zhao and Yu (2006) and Wainwright (2009) showed it is necessary for sign
consistency of the lasso.2 In this section, we give necessary conditions for an
M-estimator with a geometrically decomposable penalty to be both consistent
and model selection consistent.

Theorem 3.8. Assume ℓ and ρ satisfy RSC (on C ∩ M) and irrepresentability
(Assumptions 3.1 and 3.2). Further, assume the optimal solution to (3.1) is
unique, consistent, and model selection consistent, i.e.

θ̂ ∈ (θ⋆ + rB2) ∩ M.

We must have
PM⊥QPM (PMQPM )†(W + λẑA +R)

∈ PM⊥(W +R+ λ(ẑA + I + E⊥))

ẑA ∈ ∂hA((θ
⋆ + rB2) ∩ M),

where W = ∇ℓ(θ⋆) and R = ∇ℓ(θ̂)−W −Q(θ̂ − θ⋆).

2Zhao and Yu (2006) and Wainwright (2009) refer to the (slightly) stronger condition (3.8)
as irrepresentability. Thus their converse results are often summarized as irrepresentability is
“almost” necessary for model selection consistency of the lasso.
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Proof of Theorem 3.8. The proof proceeds like the proof of Theorem 3.4. The
optimal solution to (3.1) satisfies

∇ℓ(θ̂) + λ(ẑA + ẑI + ẑE⊥) = 0 (3.21)

ẑI ∈ ∂hI(θ̂), ẑA ∈ ∂hA(θ̂), ẑE⊥ ∈ E⊥. (3.22)

Since θ̂ is consistent and model selection consistent (by assumption), θ̂ ∈ (θ⋆ +
rB2) ∩ M. We solve for the error like we did to prove Theorem 3.4:

θ̂ − θ⋆ = −(PMQPM )†PM (W + λẑA +R).

We plug in the expression for the error to (3.22) to obtain

0 = W −Q(PMQPM )†PM (W + λẑA +R) +R + λ(ẑA + ẑI + ẑE⊥).

We project onto M⊥ to obtain the desired result.

Theorem 3.8 is a deterministic statement concerning the solution to (3.1). It
says the (random) term

PM⊥ (W +R)− PM⊥QPM (PMQPM )†(W +R) (3.23)

falls in the set

PM⊥(∂hA((θ
⋆ + rB2) ∩ M) + I + E⊥)

− PM⊥QPM (PMQPM )†∂hA((θ
⋆ + rB2) ∩ M).

(3.24)

To deduce the necessity of irrepresentability, we must show when irrepresentabil-
ity is violated, the claims of Theorem 3.8 are invalid with positive probability.
Although the distribution of (3.23) is generally hard to characterize, we do not
need to completely characterize its distribution. As we shall see, showing the it
is symmetric, i.e.

Pr((3.23) ∈ B) = Pr((3.23) ∈ −B) for any measurable set B,

is enough to deduce the necessity of irrepresentability.

Corollary 3.9. Assume ℓ and ρ satisfy RSC (over C ∩M) and A is a polyhedral
set. Further, assume the distribution of (3.23) is symmetric, and

θ⋆ ∈ ⋃θ∈ext(A) relint(NA(θ)).

When irrepresentability is violated—say

infz∈ ∂hA(θ⋆) V (PM⊥ (QPM (PMQPM )†PMz − z)) ≥ 1,

Pr(θ̂ ∈ (θ⋆ + rB2) ∩ M) ≤ 1
2

for any r small enough such that θ⋆ + rB2 ⊂ ⋃x∈ext(A) relint(NA(x)).
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Proof. Since θ⋆ ∈
⋃

x∈ext(A) relint(NA(x)), ∂hA(θ
⋆) is a point. For any r small

enough such that

θ⋆ + rB2 ⊂ ⋃x∈ext(A) relint(NA(x)),

∂hA((θ
⋆ + rB2) ∩ M) is also the point ∂hA(θ

⋆). Thus (3.24) is given by

PM⊥(∂hA(θ
⋆) + I + E⊥)− PM⊥QPM (PMQPM )†∂hA(θ

⋆). (3.25)

When irrepresentability is violated, (3.25) is a convex set that does not con-
tain a relative neighborhood of the origin. Thus there is a halfspace (through
the origin) that contains (3.25). Since the distribution of (3.23) is symmetric,
Pr((3.23) ∈ (3.24)) ≤ 1

2 .

4. Examples

We use Theorem 3.4 to establish the consistency and model selection consistency
of the lasso, the generalized lasso, and the regularized maximum likelihood esti-
mator for exponential families in the high-dimensional setting. Our results are
nonasymptotic, i.e. we obtain bounds in terms n and p that hold with high
probability.

4.1. Sparse linear regression

We return to the sparse linear regression setup described in Section 3.1.1. The
Fisher information is Σ̂ = 1

nX
TX. We assume

1. RSC (over span(B∞,S) and let C = Rp) and (3.8). Since ℓ is quadratic, it
satisfies the smoothness condition with L = 0.

2. the components of ǫ are i.i.d. subgaussian random variables with mean
zero and subgaussian norm σ.

The assumption (3.8) is a stronger condition than irrepresentability. It implies
irrepresentability with τ = α:

∥

∥XT
Sc

(

XT
S
)†

sign(θ⋆S)
∥

∥

∞ ≤
∥

∥XT
Sc

(

XT
S
)†∥
∥

∞
∥

∥ sign(θ⋆)S
∥

∥

∞ ≤ 1− α. (4.1)

Corollary 4.1. Assume Σ̂ is RSC (on span(B∞,S)) and (3.8). For λ =
8(2−α)

α σ
√

log p
n , the lasso estimator is unique,

1. consistent: ‖θ̂ − θ⋆‖2 ≤ 4
m (1 + 4(2−α)

α )σ
√

|S| log p
n ,

2. model selection consistent: θ̂Sc = 0

with probability at least 1− 2p−1.

Further, if mina∈S |θ⋆a| > 4
m(1 + 4(2−α)

α )σ
√

|S| log p
n , then the lasso estimator

is also sign consistent: sign(θ̂S) = sign(θ⋆S).
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Proof. Before we apply Theorem 3.4, we compute the constants κρ, κ̺ and κIC.
Since the regularizer is finite (it’s a norm), its dual semi-norm is finite. To keep
things simple, we let ̺ = ‖ · ‖1. The constant κρ = κ̺ is

κρ = supθ {‖θ‖1 | θ ∈ B2 ∩ span(B∞,S)} =
√

|S|.

Similarly, the constant κIC is given by

∥

∥PB∞,Sc (Σ̂PB∞,S (PB∞,S Σ̂PB∞,S )
†PB∞,Sz − z)

∥

∥

∞

≤
∥

∥XT
Sc

(

XT
S
)†
zS
∥

∥

∞ + ‖zSc‖∞ ≤ (2− α) ‖z‖∞

is at most 2− α.

To apply Theorem 3.4, we check λ = 8(2−α)
α σ

√

log p
n satisfies the assumptions.

Since the loss function is quadratic, it satisfies the smoothness condition (3.6)
with L = 0. Thus any λ < ∞ satisfies the upper bound in (3.9). We check our
choice also satisfies the lower bound in (3.9). By Vershynin (2010), Proposition
5.10 and a union bound,

Pr
(∥

∥∇ℓ(θ⋆)
∥

∥

∞ > t
)

= Pr
( ∥

∥XT ǫ
∥

∥

∞ > nt
)

≤ 2 exp
(

− nt2

2σ2 + log p
)

.

Thus

Pr

(

4(2− α)

α

∥

∥∇ℓ(θ⋆)
∥

∥

∞ >
8(2− α)

α
σ

√

log p

n

)

≤ 2 exp(−2 log p+ log p) = 2p−1.

Consequently, the claims of Theorem 3.4 are valid with probability at least
1− 2p−1 :

1. ‖θ̂ − θ⋆‖2 ≤ 2
m (1 + α

4(2−α) )
√

|S|λ = 4
m (1 + 4(2−α)

α )σ
√

|S| log p
n ,

2. θ̂ ∈ span(B∞,S) = {θ ∈ Rp | θSc = 0}.

An easy consequence of (1) is ‖θ̂a − θ⋆a‖∞ ≤ θmin. Thus θ̂ is sign consistent:

sign(θ̂a) = sign(θ⋆a) for any a ∈ S such that |θ⋆a| > θmin.

As we saw in Section 2, analysis regularizers of the form ρ(Dθ) are geomet-
rically decomposable. A prominent example of ℓ1 analysis regularization is the
generalized lasso:

minimize
θ∈Rp

1

2n
‖y −Xθ‖22 + λ ‖Dθ‖1 . (4.2)

The underlying (statistical) model is a straightforward modification of the linear
model (3.2): we assume Dθ⋆ (instead of θ⋆) is sparse. The sparsity of Dθ usually
translates to some desirable structural or geometric property of θ. We refer to
Section 2 in Tibshirani and Taylor (2011) for some examples.

The model subspace is {θ ∈ Rp | (Dθ)Sc = 0}, where S ⊂ [m ] is the
support of Dθ. It’s straightforward to check span(DTB∞,Sc)⊥ = M. Thus the
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generalized lasso possesses the structure given by (3.1). To study the model
selection properties of the generalized lasso, we assume

∥

∥DScXT
(

DSX
T
)†

sign(θ⋆S)
∥

∥

∞ ≤ 1− τ (4.3)

in lieu of (3.8). The assumption (4.3) is equivalent to irrepresentability. It is
usually referred to as an identifiability criterion (IC). Given IC (4.3), we derive
the analog of Corollary (4.1) for the generalized lasso.

Corollary 4.2. Assume Σ̂ is RSC (on span(DTB∞,Sc)⊥) and (4.3). For λ =

8κIC

τ σ
√

log p
n , the generalized lasso estimator is unique,

1. consistent: ‖θ̂ − θ⋆‖2 ≤ 4
m (κ̺ +

4κIC

τ κρ)σ
√

log p
n ,

2. model selection consistent: (Dθ)Sc = 0

with probability at least 1− 2p−1.

Proof. Before we apply Theorem 3.4, we compute the constants κρ and κ̺.
When D has a (nontrivial) null space, the regularizer is not a norm. To allow
for the possibility, we let ̺ = ‖ · ‖1 and set λ > 4κIC

τ ‖∇ℓ(θ⋆)‖∞. The constants
κρ, κ̺ are

κρ = supθ
{

‖Dθ‖1 | θ ∈ B2 ∩ span(DTB∞,Sc)⊥
}

κ̺ = supθ
{

‖θ‖1 | θ ∈ B2 ∩ span(DTB∞,Sc)⊥
}

.

By an argument similar to the argument in the proof of Corollary 4.1, λ =
8κIC

τ σ
√

log p
n satisfies the assumptions of Theorem 3.4 with probability at least

1− 2p−1. Thus, with probability at least 1− 2p−1,

1. ‖θ̂ − θ⋆‖2 ≤ 2
m(κρ +

τ
4

κ̺

κIC
)λ = 2

m(2κ̺ +
8κIC

τ κρ)σ
√

log p
n ,

2. θ̂ ∈ span(DTB∞,Sc)⊥ = {θ ∈ Rp | (Dθ)Sc = 0}.

4.2. Learning exponential families

We turn our attention to a problem with a non-quadratic loss function. Recall
an exponential family is a distribution of the form

Pr(x; θ) = h(x) exp
(

θTφ(x) −A(θ)
)

,

where θ are the natural parameters, φ(X) ∈ Rp are sufficient statistics. We
assume θ⋆ is group-sparse, i.e. the components of θ⋆ are organized in (possibly
overlapping) groups and only a few groups are active. Let G be the collection of
groups and S be the subset of active groups. The model subspace is M = {θ ∈
Rp | θg = 0 for any g ∈ Sc}.

Given independent observations X(n) = {X1, . . . , Xn}, we seek to estimate
θ⋆ by the regularized maximum likelihood estimator (MLE):

minimize
θ∈E ⊂Rp

− 1

n

n
∑

i=1

φ(x(i))T θ +A(θ) + λ ‖θ‖2/1 . (4.4)
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The ℓ1/ℓ2 norm is geometrically decomposable:

‖θ‖2/1 =
∑

g∈G
‖θg‖2 = hB∞/2,S

(θ) + hB∞/2,Sc (θ),

where hB∞/2,S
and hB∞/2,Sc are support functions of the sets

B∞/2,S =
{

θ ∈ Rp | maxg∈G ‖θg‖2 ≤ 1, θg = 0 for any g ∈ Sc
}

B∞/2,Sc =
{

θ ∈ Rp | maxg∈G ‖θg‖2 ≤ 1, θg = 0 for any g ∈ S
}

.

It is easy to check span(B∞/2,S) = M. Thus (4.4) has the structure given by
(3.1). The Fisher information is Q = ∇2A(θ⋆). We assume Q satisfies RSC (over
span(B∞/2,S)) and irrepresentability.

First, we establish two auxiliary results: (i) a concentration result for W and
(ii) the optimal solution to (4.4) is contained in some compact subset of the
model subspace.

Lemma 4.3. The random variable W satisfies

Pr

(∣

∣

∣

∣

∂ℓ

∂θj
(θ⋆)

∣

∣

∣

∣

> t

)

≤ 2 exp

(

−cnmin

(

t2

maxg∈G |g|K2
,

t

maxg∈G
√

|g|K

))

Pr

(

max
g∈G

∥

∥∇θgℓ(θ
⋆)
∥

∥

2
> t

)

≤ 2 exp

(

log |G| − cnmin

(

t2

maxg∈G |g|K2
,

t

maxg∈G
√

|g|K

))

for some absolute constant c > 0 and a constant K that is independent of n.

Lemma 4.4. The optimal solution to (4.4) satisfies

∥

∥θ̂
∥

∥

2/1
≤ 1

(λ− ‖φn − φ⋆‖2,∞)

(

λ ‖θ⋆‖2/1 + ‖φn − φ⋆‖2,∞ ‖θ⋆‖2/1
)

A(θ̂) ≤ ‖θ⋆‖2/1 ‖φn‖2,∞ +
∥

∥θ̂
∥

∥

2/1
‖φn‖2,∞ +A(θ⋆) + λ ‖θ⋆‖2/1

where φn = 1
n

∑n
i=1 φ(x

(i)) and φ⋆ = Eθ⋆ [φ(X)].

We use these two results to establish the consistency and model selection
consistency of the regularized MLE.

Corollary 4.5. Suppose we are given samples x(1), . . . , x(n) drawn i.i.d. from a
regular exponential family with unknown parameters θ⋆, κIC ≥ τ , and Assump-
tion 3.2 is satisfied. Select

λ =
3κIC

τ
max
g∈G

√

|g|K
√

log |G|
cn

and the sample size

n > max

(

36

c

κ4
IC

τ4
max
g∈G

|g|K2 log |G| L
2

m4

(

2
√

|S|+ τ

2κIC

√

|S|
)4

,

(

3

2

)2
log |G|

c

)
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where C := {θ |‖θ‖2/1 ≤ 4‖θ⋆‖2/1 and A(θ) ≤ R}, c > 0 is an absolute constant,
and K is a constant independent of n defined in Lemma B.1. With probability
at least 1− 2|G|−5/4, the optimal solution to (4.4) satisfies

1. ‖θ̂ − θ⋆‖2 ≤ 6
m

κIC

τ maxg∈G

√

|g|K(
√

|S|+ τ
2κIC

√

|S|)
√

log |G|
cn

2. θ̂g = 0, g ∈ Sc.

Furthermore if we assume the beta-min condition

∥

∥θ⋆g
∥

∥

2
>

6

m

κIC

τ
max
g∈G

√

|g|K
(

√

|S|+ τ

2κIC

√

|S|
)

√

log |G|
cn

for all g ∈ S, then all groups g ∈ S are correctly estimated as non-zero,
‖θ̂g‖2 > 0.

5. Model selection properties of regularized M-estimators with

weakly decomposable penalties

5.1. Background and problem setup

Geometric decomposability, although general, excludes some common regular-
izers. An important example is the nuclear norm:

‖Θ‖∗ =
∑r

j=1 σj(Θ),

where r is the rank of Θ ∈ Rp1×p2 and σj(Θ), j = 1, . . . , r are its singular values.
The motivating example we have in mind is low-rank multivariate regression.
Consider the (multivariate) generalization of the linear model:

Y = XΘ⋆ +W, (5.1)

where the rows of Y ∈ Rn×p2 are (multivariate) responses. We assume the ma-
trix of coefficients Θ⋆ ∈ Rp1×p2 has rank r ≪ min{p1, p2}. Given observations
{(xi, yi)}ni=1, a standard approach to estimating the unknow Θ⋆ is nuclear norm
minimization:

minimize
Θ∈Rp1×p2

1

2n
‖Y −XΘ‖2F + λ ‖Θ‖∗ . (5.2)

Bach (2008) showed that nuclear norm minimization is rank consistent, i.e.

Pr
(

rank(Θ̂) = r
)

→ 1 as n → ∞, (5.3)

subject to irrepresentability. Although rank consistency does not fit into our
notion of model selection consistency because the set of rank r matrices is not
a subspace, our results may be used to derive a non-asymptotic form of Bach’s
rank consistency result.

To study the rank consistency of nuclear norm minimization, we consider an
alternative notion of decomposability: weak decomposability.
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Definition 5.1. A regularizer is weakly decomposable at θ⋆ ∈ Rp in terms of
convex sets A, I ⊂ Rp if it is sublinear and

∂ρ(θ⋆) = ∂hA(θ
⋆) + ∂hI(θ

⋆).

We assume A, I are bounded and 0 ∈ relint(I).

Weak decomposability is more general than geometric decomposability. How-
ever, the structure of the subdifferential of a weakly decomposable penalty at θ⋆

is very similar to that of a geometrically decomposable penalty. Consequently,
the directional derivative of ρ at θ⋆ along ∆ is geometrically decomposable:

ρ̄(θ⋆,∆) = h∂hA(θ⋆)(∆) + h∂hI(θ⋆)(∆).

As we shall see, the geometric decomposability of ρ̄(θ⋆,∆) is the key to the
model selection properties of weakly decomposable penalties.

The problem setup is similar to the setup in Section 3.1. To keep things
simple, we focus on regularized least squares. Given n identically distributed
observations of some random variable, we estimate some parameters θ⋆ ∈ M ⊂
Rp of its distribution by

minimize
θ∈Rp

1

2
θTQθ − qT θ + λρ(θ), (5.4)

where ρ is weakly decomposable in terms of convex sets A, I ⊂ Rp. The sets
A, I are chosen such that M = span(I)⊥. As we shall see, the nuclear norm
minimization problem has the form given by (5.4).

5.2. Dual consistency of regularized M-estimators

To study the model selection properties of (5.4), we compare the its optimal
solution to the optimal solution to a linearized problem

minimize
θ∈Rp

1

2
θTQθ − qT θ + λ(ρ(θ⋆) + ρ̄(θ⋆, θ − θ⋆)). (5.5)

Since the objective functions of (5.5) and (5.4) are similar, we expect the
(optimal) solutions are close. Unfortunately, due to the lack of strong convexity,
we cannot conclude the solutions are close. However, as we shall see, the dual
solutions are close.

After a change of variables, the linearized problem is

minimize
∆∈Rp

1

2
∆TQ∆+ (Qθ⋆ − q)T∆+ λ(h∂hA(θ⋆)(∆) + hI(∆)). (5.6)

We recognize (5.6) possesses the decomposable structure given by (3.1). By
Theorem 3.4, a primal-dual pair (∆̄, z̄A, z̄I) that satisfies

Q(θ⋆ + ∆̄)− q + λ(z̄A + z̄I) = 0

z̄A ∈ ∂hA(θ
⋆), z̄I ∈ I

(5.7)

is unique. Further, ∆̄ is consistent, and z̄I is PDW feasible. We summarize the
properties of (∆̄, z̄A, z̄I) in a lemma.
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Lemma 5.2. Assume Q and ρ̄ satisfy RSC (on span(I)⊥) and irrepresentabil-
ity. For any λ > 4κIC

τ ¯̺∗(Qθ⋆−q), the unique primal-dual pair for (5.6) (∆̄, z̄A, z̄I)
is

1. consistent: ‖∆̄‖2 ≤ 2
m (κρ̄ +

τ
4

κ ¯̺

κIC
)λ.

2. PDW feasible: γI(z̄I) ≤ 1− τ
2 .

The main result shows the dual solutions to (5.4) and (5.6) are close.

Theorem 5.3. Assume Q and ρ̄ satisfy RSC (on span(I)⊥) and irrepresentabil-
ity. For any λ > 4κIC

τ ¯̺∗(Qθ⋆ − q), the optimal dual solutions to (5.5) and (5.4)
satisfy

‖z̄A + z̄I − ẑ‖22 ≤ ‖Q‖
2

λ

(

R(∆̄)−R(∆̂)
)

,

where R(∆) = ρ(θ⋆ +∆)− ρ(θ⋆)− ρ̄(θ⋆,∆).

Proof. After a change of variables, the original problem is

minimize
∆∈Rp

1

2
∆TQ∆+ (Qθ⋆ − q)T∆+ λρ(θ⋆ +∆). (5.8)

Its optimality conditions are

Q(θ⋆ + ∆̂)− γ + λẑ = 0

ẑ ∈ ∂ρ(θ⋆ + ∆̂).
(5.9)

Let ∆̄ and ∆̂ be the solutions to (5.6) and (5.8). By Fermat’s rule, z̄A + z̄I and
ẑA + ẑI are also the dual solutions to (5.5) and (5.4). We subtract (5.9) from
(5.7) to obtain

Q(∆̂− ∆̄) = λ(z̄A + z̄I − ẑ). (5.10)

To complete the proof, we show ‖Q(∆̂ − ∆̄)‖22 is small. By inspection of the
optimality conditions (5.9) and (5.7), ∆̄ and ∆̂ are also the solutions to

minimize
∆∈E

∆̄TQ∆+ (Qθ⋆ − q)T∆+ λρ̄(θ⋆,∆)

minimize
∆∈E

∆̂TQ∆+ (Qθ⋆ − q)T∆+ λ(ρ(θ⋆ +∆)− ρ(θ⋆)).

Since ∆̄ and ∆̂ are their respective optimal solutions, we know

∆̄TQ∆̄ + (Qθ⋆ − q)T ∆̄ + λρ̄(θ⋆, ∆̄)

≤ ∆̄TQ∆̂ + (Qθ⋆ − q)T ∆̂ + λρ̄(θ⋆, ∆̂),

∆̂TQ∆̂ + (Qθ⋆ − q)T ∆̂ + λ(ρ(θ⋆ + ∆̂)− ρ(θ⋆))

≤ ∆̂TQ∆̄ + (Qθ⋆ − q)T ∆̄ + λ
(

ρ(θ⋆ + ∆̄)− ρ(θ⋆)
)

.

We add the inequalities and rearrange to obtain

(∆̄− ∆̂)TQ(∆̄− ∆̂) = ‖∆‖2Q ≤ λ
(

R(∆̄)−R(∆̂)
)

,

where R(∆) = ρ(θ⋆ +∆)− ρ(θ⋆)− ρ̄(θ⋆,∆). Since ‖Q∆‖22 ≤ ‖Q‖2‖∆‖2Q,
∥

∥Q(∆̂− ∆̄)
∥

∥

2

2
≤ ‖Q‖2

∥

∥∆̂− ∆̄
∥

∥

2

Q
≤ ‖Q‖2 λ

(

R(∆̄)−R(∆̂)
)

.

We plug in (5.10) to reach the stated conclusion.
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5.3. Rank consistency of low-rank multivariate regression

We return to the low-rank multivariate regression problem described in Sec-
tion 5.1. The nuclear norm is weakly decomposable. Let Θ⋆ = UΣV T be the
(full) SVD of Θ⋆ and define the sets

A =
{

Θ ∈ Bsp ⊂ Rp1×p2 | Θ = UrDV T
r for some diagonal D

}

I =
{

Θ ∈ Bsp ⊂ Rp1×p2 | Θ = Up1−rDV T
p2−r for some diagonal D

}

,

where Ur, Up1−r (resp. Vr, Vp2−r) are submatrices of U (resp. V ) consisting of
the top r and bottom p1 − r left (resp. p2 − r right) singular vectors of Θ⋆.
It’s straightforward to check the nuclear norm is weakly decomposable at Θ⋆ in
terms of A, I. Since A+ I ⊂ Bsp,

‖Θ‖∗ = hBsp
(Θ) ≥ hA(Θ) + hI(Θ).

Before we delve into the rank consistency of low-rank multivariate regression,
we state our assumptions on the problem. To keep notation manageable, we
adopt operator theoretic notation. Let ~X ∈ Rp1p2 be the vectorized form of
X ∈ Rp1×p2 . In operator notation, the model is

~Y = X (Θ⋆) + ~W, (5.11)

where X : Rp1×p2 → Rn is a linear operator. Since X is linear, we abuse notation
by writing XΘ = X (Θ). The Fisher information Q : Rp1×p2 → Rp1×p2 is given
by 1

nX ∗X . We assume

1. RSC and

supZ ∈Bsp

∥

∥UT
p1−r

[

PIQPI⊥(PI⊥QPI⊥)†Z
]

Vp2−r

∥

∥

sp
≤ 1− α, (5.12)

where PI : Rp1×p2 → Rp1×p2 (resp. PI⊥) is the projector onto span(I)
(resp. span(I)⊥).

2. the entries of W are i.i.d. subgaussian random variables with mean zero
and subgaussian norm σ.

The assumption (5.12) is stronger than irrepresentability. It implies irrepre-
sentability with τ = α :

∥

∥UT
p1−r

[

PI

(

QPI⊥(PI⊥QPI⊥)†UrV
T
r − UrV

T
r

)]

Vp2−r

∥

∥

sp

=
∥

∥UT
p1−r

[

PI

(

QPI⊥(PI⊥QPI⊥)†UrV
T
r

)]

Vp2−r

∥

∥

sp

≤ supZ ∈Bsp

∥

∥UT
p1−r

[

PIQPI⊥(PI⊥QPI⊥)†Z
]

Vp2−r

∥

∥

sp
.

(5.13)

We make the stronger assumption to obtain an explicit expression for the con-
stant κIC (in terms of the constant α).

The final ingredient we require is a “Taylor’s theorem” for the nuclear norm
that says the nuclear norm is well-approximated by its linearization.
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Lemma 5.4. Let sr be smallest nonzero singular value of Θ⋆. For any ∆ ∈
span(I)⊥, ‖∆‖sp < sr

2 , we have

‖Θ⋆ +∆‖∗ − ‖Θ⋆‖∗ − tr
(

UT
r ∆Vr

)

≤ 4

3sr
‖∆‖2F .

We put the pieces togther to conclude low-rank multivariate regression is
rank consistent.

Corollary 5.5. Assume Q is RSC (over span(I)⊥) and (5.12). For λ =
8(2−α)

α σ
√

p1+p2

n , the optimal solution to (5.2) is unqiue and rank consistent

when

n > max

{

1282

9s2r

M2

m4

(
√
2 + α′)4

α4α′2 r2,
16

m2
(
√
2 + α′)2r

}

σ2(p1 + p2)

with probability at least 1− c1e
−c2(p1+p2). The constants M and α′ are given by

sup‖∆‖F ≤ 1 ‖Q∆‖F and 4(2−α)
α .

Proof. To show Θ̂ has rank at most r, it suffices to show the optimal dual
solution Û V̂ T has no more than r unit singular values. At a high level, the
proof consists of three steps:

1. Show the unique (feasible) primal-dual pair to a linearized problem (∆̄,
UrV

T
r , Ūp1−rV̄

T
p2−r) is consistent and PDW feasible (Lemma 5.6).

2. Invoke Theorem 5.3 to show Û V̂ T is close to the optimal dual solution
to the linearized problem UrV

T
r + Ūp1−rV̄

T
p2−r. Since Ūp1−rV̄

T
p2−r is PDW

feasible, its singular values are bounded away from one.
3. Apply a singular value perturbation result to conclude Û V̂ T has (no more

than) r unit singular values.

Consider the linearized problem

minimize
∆∈Rp1×p2

1

2n
‖Y −X(Θ⋆ +∆)‖2F+λ

(

tr
(

UT
r ∆Vr

)

+ ‖UT
p1−r∆Vp2−r‖∗

)

. (5.14)

We apply Lemma 5.2 to deduce a primal-dual pair (∆̄, UrV
T
r , Ūp1−rV̄

T
p2−r) that

satisfies

Σ̂(Θ⋆ + ∆̄)− q + λ(UrV
T + Ūp1−rV̄

T
p2−r) = 0

Ūp1−rV̄
T
p2−r ∈ I

is unique, consistent, and PDW feasible.

Lemma 5.6. Assume the linearized problem (5.14) satisfies RSC (over

span(I)⊥) and (5.12). For λ = 8(2−α)
α σ

√

p1+p2

n , the unique primal-dual pair

for (5.14) (∆̄, UrV
T
r , Ūp1−rV̄

T
p2−r) is

1. consistent: ‖∆̄‖F ≤ 4
m (

√
2 + 4(2−α)

α )σ
√

r(p1+p2)
n .

2. PDW feasible: ‖Ūp1−rV̄
T
p2−r‖sp ≤ 1− τ

2 .
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By Theorem 5.3 (and the convexity of the nuclear norm),
∥

∥Û V̂ T − UrV
T
r − Ūp1−rV̄

T
p2−r

∥

∥

2

sp

≤ ‖Û V̂ T − UrV
T
r − Ūp1−rV̄

T
p2−r‖2F

≤ M

λ

(

R(∆̄)−R(∆̂)
)

≤ M

λ
R(∆̄),

where M = sup‖∆‖F ≤ 1 ‖Q∆‖F. Since ∆̄ ∈ span(I)⊥, we may apply Lemma 5.4
to obtain

∥

∥Û V̂ T − UrV
T
r − Ūp1−rV̄

T
p2−r

∥

∥

2

sp
≤ 4

3sr

M

λ
‖∆̄‖2F

as long as ‖∆̄‖sp ≤ sr
2 . By the consistency of the linearized problem

‖∆̄‖sp ≤ ‖∆̄‖F ≤ 4

m
(
√
2 + α′)σ

√

r(p1 + p2)

n
,

where α′ = 4(2−α)
α . We put the pieces together to obtain

∥

∥Û V̂ T − UrV
T
r − Ūp1−rV̄

T
p2−r

∥

∥

2

sp

≤ 32

3sr

M

m2

(
√
2 + α′)2

α′ σr

√

(p1 + p2)

n
,

(5.15)

when n > 16
m2

σ2

s2r
(
√
2 + α′)2r(p1 + p2).

By Lemma 5.2, Ūp1−rV̄
T
p2−r is PDW feasible. Thus it has at most r unit

singular values. Its min{p1, p2} − r remaining singular values are smaller than
1− α

2 . By Weyl’s inequality, it suffices to ensure
∥

∥Û V̂ T − UrV
T
r − Ūp1−rV̄

T
p2−r

∥

∥

sp
≤ α

2
, (5.16)

to ensure Ū V̄ T has no more than r unit singular values. We combine (5.15) and
(5.16) to deduce the requirement on n.

To our knowledge, Theorem 5.5 is the first non-asymptotic rank consistency
result for the multivariate regression problem. Further, the proof technique gen-
eralizes readily to M-estimators with other loss functions and regularizers. In
Chandrasekaran, Parrilo and Willsky (2012), the authors demonstrated rank
and sign consistency in the problem of graphical model estimation with la-
tent variables. For the multivariate regression problem, Negahban et al. (2011)
showed an operator norm consistency bound. Operator norm consistency by
itself does not give rank consistency, but hard-thresholding the singular values
of Θ̂ at the appropriate level does give rank consistency. In contrast, Corollary
5.5 is a statement regarding Θ̂, the regularized M-estimator 5.2 without any
post-processing.

6. Computational experiments

We show some consequences of Corollary 4.5 with experiments on two mod-
els from structure learning of networks that are motivated by bioinformatics
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Fig 1. Fraction of correct model selection versus sample size n and rescaled sample size

n/((maxg∈G |g|) log |G|) with the grouped graphical lasso. Each point represents the frac-

tion of 100 trials when the grouped graphical lasso correctly estimated the true group struc-

ture.

applications. We select λ proportional to
√

(maxg∈G |g|) log |G|
n and use a proxi-

mal Newton-type method Lee, Sun and Saunders (2009) to solve the likelihood
maximization problem.

6.1. The graphical lasso

Suppose we are given samples drawn i.i.d. from a normal distribution, and we
seek to estimate the inverse covariance matrix. If p > n, we cannot simply
invert the sample covariance matrix Σ̂ to estimate Θ⋆. However, we can obtain
a maximum likelihood estimate of Θ⋆:

minimize
Θ

tr
(

Σ̂Θ
)

− log det(Θ) + λ
∑

s,t∈G
‖Θst‖2 . (6.1)

The group lasso penalty to promotes block sparse inverse covariance matri-
ces, and λ trades-off goodness-of-fit and group sparsity. This estimator is a
group sparse variant of the graphical lasso Friedman, Hastie and Tibshirani
(2008).

We estimate the probability of correct model selection using the fraction of
100 trials when the graphical lasso correctly estimates the true group structure.
Figure 1 shows the fraction of correct group structure selection versus the sam-
ple size n for four graphs consisting of 64, 100, 144, and 225 nodes. In these
experiments, we varied the sample size n from 100 to 1000.

The fraction of correct model selection is small for small sample sizes but
grows to one as the sample size increases. Intuitively, more samples are required
to learn a larger model, hence the curves for larger graphs are to the right of
curves for smaller graphs. If we plot these curves with the x-axis rescaled by
1/((maxg∈G |g|) log |G|), then the curves align. This is consistent with Corol-
lary 4.5 that say the effective sample size scales logarithmically with |G|.
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6.2. Learning mixed graphical models

The pairwise mixed graphical model was developed to model data that contain
both categorical and continuous features Lee and Hastie (2012); Cheng, Levina
and Zhu (2013) e.g., two features about a person are weight (continuous) and
gender (categorical). The model is a natural pairwise extension of the Gaussian
MRF and a pairwise discrete MRF:

Pr(x, y; (β, θ, γ)) ∝ exp

(

∑

s,t

− 1
2βstxsxt+

∑

s,j

θsj(yj)xs+
∑

j,r

γrj(yr, yj)
)

. (6.2)

xs, s = 1, . . . , p and yj, j = 1, . . . , q’s are continuous and discrete variables and
βst, θsj , γrj are continuous-continuous, continuous-discrete, and discrete-discrete
edge potentials. We seek maximum likelihood and pseudolikelihood estimates of
the parameters (β, θ, γ)

minimize
(β,θ,γ)

− ℓ(n)((β, θ, γ)) + λρ((β, θ, γ)). (6.3)

ρ is the group lasso penalty:

ρ((β, θ, γ)) =
∑

s,t

|βst|+
∑

s,j

‖θsj‖2 +
∑

j,r

‖γrj‖F .

To make sure the model is identifiable, we enforce linear constraints on γrj :

∑

xr,xj
γrj(xr, xj) = 0, j, r = 1, . . . , q.

We estimate the probability of correct model selection using the fraction of
100 trials when (6.3) correctly estimates the true group structure. Figure 2
shows the fraction of correct group structure selection versus the sample size n.
In these experiments, we varied the sample size from 300 to 2000.

(a) The graph topology used in this exper-
iment. The blue nodes are continuous vari-
ables and the red nodes are discrete vari-
ables. The actual experiment had 10 contin-
uous and 10 discrete variables
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Fig 2. Fraction of correct model selection versus sample size n of the penalized MLE and

PLE on a mixed graphical model. Each point represents the fraction of 100 trials when the

grouped graphical lasso correctly estimated the true group structure.
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The fraction of correct model selection is small for small sample sizes but
grows with the sample size. For the penalized PLE, the fraction grows to one,
but, for the penalized MLE, the fraction plateaus around 0.9. This can be ex-
plained by the penalized MLE violating the irrepresentable condition. We refer
to Section 3.1.1 in Ravikumar et al. (2011) for a similar example where the the
irrepresentable condition holds for a neighborhood-selection estimator but fails
for the penalized MLE.

7. Conclusion

We proposed the notion of geometric decomposablility and showed it is key
to the model selection properties of regularized M-estimators. Our notion of
decomposability builds on the notions by Candès and Recht (2012) and van de
Geer (2012) and readily admits a notion of irrepresentability.

We also developed a general framework for establishing consistency and model
selection consistency of regularized M-estimators. Our main result (Theorem 3.4
gives deterministic conditions on the problem that guarantee consistency and
model selection consistency. We combined our main result with probabilistic
analysis to study the model selection properties of the lasso, generalized lasso,
and nuclear norm minimization. To our knowledge the non-asymptotic result
on rank-consistency of nuclear norm minimization is novel.
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Appendix A: Proof of lemmas in Section 3

Proof of Lemma 3.3. V is the infimal convolution of γI = hI◦ and 1E = hE⊥ .
By the properties of support functions, V = hE ∩ I◦ . Since I◦ is bounded and
support functions of bounded sets are finite and sublinear, V is finite and sub-
linear.

Proof of Lemma 3.5. Since θ̄ solve the restricted problem, we have

ℓ(θ̄) + λhA(θ̄) ≤ ℓ(θ⋆) + λhA(θ
⋆).

Since θ̂ ∈ C and the objective is strongly convex over C, θ̂ is the unique solution
to (3.1). By Assumption 3.1, we have

WTPM (θ̄ − θ⋆) +
m

2
‖θ̄ − θ⋆‖22 + λ(ρ(θ̄)− ρ(θ⋆)) ≤ 0,
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where W = ∇ℓ(θ⋆). We take norms to obtain

0 ≥ −̺∗(PMW )̺
(

θ̄ − θ⋆
)

+
m

2

∥

∥θ̄ − θ⋆
∥

∥

2

2
− λρ(θ̄ − θ⋆) (A.1)

≥ −κ̺̺
∗(PMW )

∥

∥θ̄ − θ⋆
∥

∥

2
+

m

2

∥

∥θ̄ − θ⋆
∥

∥

2

2
− λρ(θ̄ − θ⋆). (A.2)

Since θ̂ − θ⋆ ∈ M, we have

hA(θ̄ − θ⋆) = ρ(θ̄ − θ⋆) ≤ κρ

∥

∥θ̄ − θ⋆
∥

∥

2
.

We substitute this bound into (A.2) to obtain

0 ≥ −κ̺̺
∗(PMW )

∥

∥θ̄ − θ⋆
∥

∥

2
+

m

2

∥

∥θ̄ − θ⋆
∥

∥

2

2
− κρλ

∥

∥θ̄ − θ⋆
∥

∥

2
.

This means
∥

∥θ̄ − θ⋆
∥

∥

2
≤ 2

m
(κ̺̺

∗(PMW ) + κρλ) .

Plugging in the choice of λ > 4κIC

τ ̺∗(PMW ) gives our conclusion.

Proof of Proposition 3.6. Suppose there are two primal dual solution pairs,
(θ1, zA,1, zI,1, zE⊥,1) and (θ2, zA,2, zI,2, zE⊥,2), i.e.

∇ℓ(θ1) + λ(zA,1 + zI,1 + zE⊥,1) = 0 (A.3)

∇ℓ(θ2) + λ(zA,2 + zI,2 + zE⊥,2) = 0. (A.4)

Since the original problem (3.1) is convex, the optimal value is unique:

ℓ(θ1) + P (θ1) = ℓ(θ1) + λ(zA,1 + zI,1 + zE⊥,1)
T θ1

= ℓ(θ2) + P (θ2) = ℓ(θ2) + λ(zA,2 + zI,2 + zE⊥,2)
T θ2.

We subtract λ(zA,1 + zI,1 + zE⊥,1)
T θ2 from both sides to obtain

ℓ(θ1) + λ(zA,1 + zI,1 + zE⊥,1)
T (θ1 − θ2)

= ℓ(θ2) + λ(zA,2 + zI,2 + zE⊥,2 − zA,1 − zI,1 − zE⊥,1)
T θ2.

We rearrange this expression to obtain

ℓ(θ1)− ℓ(θ2) + λ(zA,1 + zI,1 + zE⊥,1)
T (θ1 − θ2)

= λ(zA,2 + zI,2 + zE⊥,2 − zA,1 − zI,1 − zE⊥,1)
T θ2.

We substitute in (A.3) to obtain

ℓ(θ1)− ℓ(θ2)−∇ℓ(θ1)
T (θ1 − θ2)

= λ(zA,2 + zI,2 + zE⊥,2 − zA,1 − zI,1 − zE⊥,1)
T θ2.

Since ℓ is convex, the left side is non-positive and

(zA,2 + zI,2 + zE⊥,2)
T θ2 ≤ (zA,1 + zI,1 + zE⊥,1)

T θ2.
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Since θ1 and θ2 are in S, we can ignore the terms zTE⊥,2θ2 and zTE⊥,1θ2 to obtain

(zA,2 + zI,2)
T θ2 ≤ (zA,1 + zI,1)

T θ2.

But we also know

(zA,1 + zI,1)
T θ2 ≤ sup

u
{uT θ2 | u ∈ A} + sup

u
{uT θ2 | u ∈ I}

= zTA,2θ2 + zTI,2θ2.

We combine these two inequalities to obtain

(zA,2 + zI,2)
T θ2 = (zA,1 + zI,1)

T θ2 ≤ zTA,2θ2 + zTI,1θ2

This simplifies to zTI,2θ2 ≤ zTI,1θ2. If zI,1 ∈ relint(I), then

zTI,1θ2 = zTI,2θ2 if θ2 has no component in span(I)

zTI,1θ2 < zTI,2θ2 if θ2 has a component in span(I).

But we also know zTI,2θ2 ≤ zTI,1θ2. Thus θ2 has no component in span(I).

Proof of Lemma 3.7. The Taylor remainder term is simply

R = ∇ℓ(θ̄)−∇ℓ(θ⋆)−Q(θ̄ − θ⋆).

By mean value theorem (along θ̄ − θ⋆), we have

R =

∫ 1

0

(

∇2ℓ(θ⋆ + α(θ̄ − θ⋆))−Q
)

(θ̄ − θ⋆) dα.

Since ∇2ℓ is Lipschitz continuous with constant L over C,

‖R‖2 =
∥

∥

∥

∥

∫ 1

0

(

∇2ℓ(θ⋆ + α(θ̄ − θ⋆))−Q
)

(θ̄ − θ⋆) dα

∥

∥

∥

∥

2

≤
∫ 1

0

∥

∥∇2ℓ(θ⋆ + α(θ̄ − θ⋆))−Q
∥

∥

∥

∥θ̄ − θ⋆
∥

∥

2
dα

≤
∫ 1

0

L
∥

∥θ̄ − θ⋆
∥

∥

2

2
αdα

≤ L

2

∥

∥θ̄ − θ⋆
∥

∥

2

2
.

By Lemma 3.5, we have

‖R‖2 ≤
2L

m2

(

κρ +
τ

4

κ̺

κIC

)2

λ2.

To ensure κIC

λ ̺∗(R) ≤ τ
4 , it sufficies to ensure κIC

λ ‖R‖2 ≤ τ
4κ̺∗

. Plugging in the

choice of λ gives the desired conclusion.
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Appendix B: Proofs of lemmas in Section 4

Proof of Lemma 4.3. First, we prove an auxiliary result: the sufficient statistics
of an exponential family are subexponential random variables.

Lemma B.1. Let φ⋆
i = Eθ⋆ [φi(x)] and φi(x) be a sufficient statistics of a

regular exponential family. The random variable φi(x)− φ⋆
i is subexponential:

Eθ⋆ [exp si(φi(x)− φ⋆
i )] ≤ exp(1)

for some si > 0.

Proof.

Eθ⋆ [exp si(φi(x) − φ⋆
i )]

∫

dx h(x) exp
(

θ⋆Tφ(x) + siφi(x)−A(θ⋆)− siφ
⋆
i

)

exp (−A(θ⋆)− siφ
⋆
i )

∫

dx h(x) exp
(

(θ⋆ + siei)
Tφ(x)

)

exp (−A(θ⋆)− siφ
⋆
i +A(θ⋆ + siei))

exp(−siφ
⋆
i ) exp (A(θ

⋆ + siei)−A(θ⋆)) .

Using continuity and the regular exponential family, |A(θ⋆ + siei)−A(θ⋆)| < ǫ
and | − siφ

⋆
i | < ǫ for small enough si. Thus

exp (A(θ⋆ + siei)−A(θ⋆)− siφ
⋆
i ) ≤ exp(1)

for small enough si.

We have ∂ℓ
∂θj

(θ⋆) = 1
n

∑n
i=1(−φj(x

(i))+Eθ⋆ [φj(x)]). Thus
∂ℓ
∂θj

(θ⋆) is a sum of

i.i.d. subexponential random variables (Lemma B.1) and applying (Vershynin,
2010, Corollary 5.17) gives

Pr

(∣

∣

∣

∣

∂ℓ

∂θj
(θ⋆)

∣

∣

∣

∣

> t

)

≤ 2 exp
(

−cnmin(t2/K2
j , t/Kj)

)

where Kj is the Orlicz 1-norm of −φj(X) +Eθ⋆ [φj(X)] (Vershynin, 2010, Defi-
nition 5.13). Let K = maxj Kj . By the union bound,

Pr
(∥

∥∇θgℓ(θ
⋆)
∥

∥

2
> t
)

≤ Pr

(

for some j ∈ g,

∣

∣

∣

∣

∂ℓ

∂θj
(θ⋆)

∣

∣

∣

∣

> t/
√

|g|
)

≤
∑

j∈g

Pr

(∣

∣

∣

∣

∂ℓ

∂θj
(θ⋆)

∣

∣

∣

∣

> t/
√

|g|
)

≤ 2 exp

(

−cnmin

(

t2

|g|K2
,

t
√

|g|K

))

≤ 2 exp

(

−cnmin

(

t2

maxg∈G |g|K2
,

t

maxg∈G
√

|g|K

))
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and

Pr

(

max
g∈G

∥

∥∇θgℓ(θ
⋆)
∥

∥

2
> t

)

≤ Pr
(

for some g ∈ G,
∥

∥∇θgℓ(θ
⋆)
∥

∥

2
> t
)

≤
∑

g∈G
Pr
(∥

∥∇θgℓ(θ
⋆)
∥

∥

2
> t
)

≤ |G|2 exp
(

−cnmin

(

t2

maxg∈G |g|K2
,

t

maxg∈G
√

|g|K

))

= 2 exp

(

log |G| − cnmin

(

t2

maxg∈G |g|K2
,

t

maxg∈G
√

|g|K

))

.

Proof of Lemma 4.4. By optimality of θ̂,

ℓ(θ̂) + λ
∥

∥θ̂
∥

∥

2/1
≤ ℓ(θ⋆) + λ ‖θ⋆‖2/1

−θ̂Tφn +A(θ̂) + λ
∥

∥θ̂
∥

∥

2/1
≤ −θ⋆Tφn +A(θ⋆) + λ ‖θ⋆‖2/1

−θ̂Tφn +∇A(θ⋆)T (θ̂ − θ⋆) + λ
∥

∥θ̂
∥

∥

2/1
≤ −θ⋆Tφn + λ ‖θ⋆‖2/1

−θ̂Tφn + φ⋆T (θ̂ − θ⋆) + λ
∥

∥θ̂
∥

∥

2/1
≤ −θ⋆Tφn + λ ‖θ⋆‖2/1

λ
∥

∥θ̂
∥

∥

2/1
≤ λ ‖θ⋆‖2/1 + (θ̂ − θ⋆)T (φn − φ⋆) .

We now bound ‖θ̂‖2/1,

λ
∥

∥θ̂
∥

∥

2/1
≤ λ ‖θ⋆‖2/1 + (θ̂ − θ⋆)T (φn − φ⋆)

≤ λ ‖θ⋆‖2/1 +
∥

∥θ̂ − θ⋆
∥

∥

2/1
‖φn − φ⋆‖2,∞

≤ λ ‖θ⋆‖2/1 +
∥

∥θ̂
∥

∥

2/1
‖φn − φ⋆‖2,∞ + ‖θ⋆‖2/1 ‖φn − φ⋆‖2,∞ .

Rearranging gives us,

∥

∥θ̂
∥

∥

2/1
≤ 1

(λ− ‖φn − φ⋆‖2,∞)

(

λ ‖θ⋆‖2/1 + ‖φn − φ⋆‖2,∞ ‖θ⋆‖2/1
)

. (B.1)

For the second part,

ℓ(θ̂) + λ
∥

∥θ̂
∥

∥

2/1
≤ ℓ(θ⋆) + λ ‖θ⋆‖2/1

−θ̂Tφn +A(θ̂) + λ
∥

∥θ̂
∥

∥

2/1
≤ −θ⋆Tφn +A(θ⋆) + λ ‖θ⋆‖2/1

A(θ̂) ≤ (θ̂ − θ⋆)Tφn + A(θ⋆) + λ ‖θ⋆‖2/1 − λ
∥

∥θ̂
∥

∥

2/1

A(θ̂) ≤
∥

∥θ̂
∥

∥

2/1
‖φn‖2,∞ + ‖θ⋆‖2/1 ‖φn‖2,∞ +A(θ⋆)

+ λ ‖θ⋆‖2/1 .

Proof of Corollary 4.5. Let f(n, |G|, |g|) be a function that inverts the concen-
tration inequality of Lemma 4.3 in the sense
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Pr

(

max
g∈G

∥

∥∇θgℓ(θ
⋆)
∥

∥

2
> f(n, |G|, |g|)

)

≤ 2 exp

(

log |G| − cnmin

(

f(n, |G|, |g|)2
maxg∈G |g|K2

,
f(n, |G|, |g|)

maxg∈G
√

|g|K

))

= 2 exp(0).

Thus f is chosen so

log |G| − cnmin





(

f

maxg∈G

√

|g|K

)2

,
f

maxg∈G

√

|g|K



 = 0. (B.2)

Let

f(n, |G|, |g|) := max
g∈G

√

|g|K
√

log |G|
cn

.

For n > (32 )
2 log |G|

c the first term in the min is active, so the choice of f satis-
fies (B.2).

By the following computation, the choice λ = 3κIC

τ f(n, |G|, |g|) ensures that

Pr

(

2κIC

τ
max
g∈G

∥

∥∇θgℓ(θ
⋆)
∥

∥

2
> λ

)

< 2|G|−5/4

Pr

(

2κIC

τ
max
g∈G

∥

∥∇θgℓ(θ
⋆)
∥

∥

2
> λ

)

= Pr

(

2κIC

τ
max
g∈G

∥

∥∇θgℓ(θ
⋆)
∥

∥

2
>

3κIC

τ
max
g∈G

√

|g|K
√

log |G|
cn

)

= Pr

(

max
g∈G

∥

∥∇θgℓ(θ
⋆)
∥

∥

2
>

3

2
max
g∈G

√

|g|K
√

log |G|
cn

)

≤ 2 exp

(

log |G| − cnmin

(

9/4max
g∈G

|g|K2 log |G|
cn

, 3/2
f

maxg∈G

√

|g|K

))

= 2 exp

(

log |G| − cnmin

(

9/4
log |G|
cn

, 3/2

√

log |G|
cn

))

.

Since n > (32 )
2 log |G|

c , we have 9/4 log |G|
cn < 3/2 log |G|

cn and thus

Pr

(

2κIC

τ
max
g∈G

∥

∥∇θgℓ(θ
⋆)
∥

∥

2
> λ

)

≤ 2 exp

(

log |G| − 9

4
log |G|

)

= 2|G|−5/4.

For the rest of this proof, we will assume the event {λ >
2κIC

τ maxg∈G ‖∇θgℓ(θ
⋆)‖2}, so all the following statements hold with probability

at least 1− 2|G|−5/4.
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Lemma 4.4 shows

∥

∥θ̂
∥

∥

2/1
≤

λ ‖θ⋆‖2/1 + ‖φn − φ⋆‖2,∞ ‖θ⋆‖2/1
λ− ‖φn − φ⋆‖2,∞

≤
λ ‖θ⋆‖2/1 + τ

2κIC
λ ‖θ⋆‖2/1

λ− τ
2κIC

λ

≤
2 ‖θ⋆‖2/1
1− τ

2κIC

≤ 4 ‖θ⋆‖2/1

where we used ‖φn − φ⋆‖2,∞ = maxg∈G ‖∇θgℓ(θ
⋆)‖2 and τ

κIC
≤ 1. Lemma 4.4

also shows that

A(θ̂) ≤ ‖θ⋆‖2/1‖φn‖2,∞ +
∥

∥θ̂
∥

∥

2/1
‖φn‖2,∞ +A(θ⋆) + λ‖θ⋆‖2/1

≤ 5‖θ⋆‖2/1‖φn‖2,∞ +A(θ⋆) + 3
κIC

τ
f(n, |G|, |g|)‖θ⋆‖2/1

≤ 5‖θ⋆‖2/1
(

‖φ⋆‖2,∞ +
3

2
f(n, |G|, |g|)

)

+A(θ⋆) + 3
κIC

τ
f(n, |G|, |g|)‖θ⋆‖2/1

= 5‖θ⋆‖2/1
(

‖φ⋆‖2,∞ +
3

2
max
g∈G

√

|g|K
√

log |G|
cn

)

+A(θ⋆)

+ 3
κIC

τ
max
g∈G

√

|g|K
√

log |G|
cn

‖θ⋆‖2/1

<= 5‖θ⋆‖2/1
(

‖φ⋆‖2,∞ +max
g∈G

√

|g|K
)

+A(θ⋆) + 2
κIC

τ
max
g∈G

√

|g|K‖θ⋆‖2/1

=: R

by the triangle inequality, 3
2f(n, |G|, |g|) > maxg∈G , and n > (32 )

2 log |G|
c .

Thus from the above arguments we know that

θ̂ ∈ C := {θ
∣

∣ ‖θ‖2/1 ≤ 4 ‖θ⋆‖2/1 and A(θ) ≤ R}.

The subset C is convex and compact. Since the exponential family is minimal on
M , vT∇2A(θ)v > 0 for v ∈ M Wainwright and Jordan (2008) and thus strongly
convex over the compact subset C ∩ M with strong convexity constant m

(Assumption 3.1). By the extreme value theorem applied to ‖∇2A(θ)−∇2A(θ⋆)‖2

‖θ−θ⋆‖2
,

the function ∇2ℓ(θ) has a finite Lipschitz constant L over C.
Before we apply Theorem 3.4, we compute the constants κρ∗ , κρ∗ . Since the

regularizer is finite (it’s a norm), its dual semi-norm is finite. To keep things
simple, we let ̺ = ‖ · ‖2/1. The constants κρ = κ̺, κρ∗ are

κρ = supθ

{

‖θ‖2/1 | θ ∈ B2 ∩ span(B2/∞,S)
}

=
√

|S|,

κρ∗ = supx
{

maxg∈G | θ ∈ B2 ∩ span(B2/∞,S)
}

≤ 1.
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To apply Theorem 3.4, we need to verify that the choice of λ satisfies

λ <
m2

2L

τ

κICκρ∗

(

2κρ +
κρ

κIC

τ

2

)−2
τ

2κIC
.

Substituting the expressions for the compatibility constants into the expression
above gives

λ <
m2

2L

(

2
√

|S|+ τ

2κIC

√

|S|
)−2

τ

2κIC

or equivalently

3κIC

τ
f(n, |G|, |g|) < m2

L

(

2
√

|S| + τ

2κIC

√

|S|
)−2

τ

2κIC
. (B.3)

Using f(n, |G|, |g|) = maxg∈G

√

|g|K
√

log |G|
cn ,

3κIC

τ
max
g∈G

√

|g|K
√

log |G|
cn

<
m2

L

(

2
√

|S|+ τ

2κIC

√

|S|
)−2

τ

2κIC

√
cn > 6

κ2
IC

τ2
max
g∈G

√

|g|K
√

log |G| L
m2

(

2
√

|S|+ τ

2κIC

√

|S|
)2

n >
36

c

κ4
IC

τ4
max
g∈G

|g|K2 log |G| L
2

m4

(

2
√

|S|+ τ

2κIC

√

|S|
)4

.

This completes the proof. We have verified all the assumptions of Theorem 3.4
and applying the theorem for the chosen value of λ gives the desired result.

Appendix C: Proof of lemmas in Section 5

Proof of Lemma 5.6. Before we apply Lemma 5.2, we compute the constants
κρ̄, κ ¯̺, κIC. Since the regularizer is not a norm, we let ¯̺ = ‖ · ‖∗ and check
λ > 4κIC

τ ‖∇ℓ(Θ⋆)‖sp. It’s straighforward to check

tr(UT
r ∆V ) +

∥

∥UT
p1−r∆Vp2−r

∥

∥

∗ ≤ ‖∆‖∗.

The “model subspace” M is given by

span(I)⊥ =
{

UrX + (VrY )T | for any X ∈ Rr×p2 , Y ∈ Rr×p1
}

,

and the constants κρ̄, κ ¯̺ are given by

κρ̄ = supX,Y

{

tr
(

UT
r ∆Vr

)

| ‖∆‖F ≤ 1
}

=
√
r

κ ¯̺ = supX,Y

{∥

∥XVr + UrY
T
∥

∥

∗ |
∥

∥UrX + (VrY )T
∥

∥

F
≤ 1
}

=
√
2r.
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Similarly, the constant κIC is given by
∥

∥UT
p1−r

[

PI

(

QPI⊥(PI⊥QPI⊥)†Z − Z
)]

Vp2−r

∥

∥

sp

≤
∥

∥UT
p1−r

[

PIQPI⊥(PI⊥QPI⊥)†Z
]

Vp2−r

∥

∥

sp
+
∥

∥UT
p1−rZVp2−r

∥

∥

sp

≤ (2− α) ‖Z‖sp

(C.1)

is at most 2− α.

To apply Lemma 5.2, we check λ = 8(2−α)
α σ

√

p1+p2

n satisfies the assumptions.

By Negahban et al. (2011), Lemma 3,

Pr

(

8(2− α)

αn
‖X ∗(ǫ)‖2 >

8(2− α)

α
σ

√

p1 + p2
n

)

≤ c1e
−c2(p1+p2),

for some universal constants c1, c2. Thus the claims of Lemma 5.2 are valid with
probability at least 1− c1e

−c2(p1+p2) :

1. consistent: ‖∆̄‖2 ≤ 2
m (

√
2 + 4(2−α)

α )σ
√

r(p1+p2)
n .

2. PDW feasible: ‖Ūp1−rV̄
T
p2−r‖2 ≤ 1− τ

2 .

Proof of Lemma 5.4. For any ∆ ∈ span(I)⊥, we have

‖Θ⋆ +∆‖∗ − ‖Θ⋆‖∗ − tr
(

VrU
T
r ∆
)

= tr
(

ṼrŨ
T
r (Θ⋆ +∆)

)

− tr
(

VrU
T
r Θ⋆

)

− tr
(

VrU
T
r ∆
)

,

where Ũ ∈ Rp1×r and Ṽ ∈ Rp2×r are the left and right singular factors of
Θ⋆ +∆. Since tr(ṼrŨ

T
r Θ⋆) ≤ tr(VrU

T
r Θ⋆),

‖Θ⋆ +∆‖∗ − ‖Θ⋆‖∗ − tr
(

VrU
T
r ∆
)

≤ tr
((

ŨrṼ
T
r − UrV

T
r

)T
∆
)

≤
∥

∥ŨrṼ
T
r − UrV

T
r

∥

∥

F
‖∆‖F .

By Li and Sun (2002), Theorem 2.4,

∥

∥ŨrṼ
T
r − UrV

T
r

∥

∥

F
≤ 4

3sr
‖∆‖F

for any ∆ such that ‖∆‖2 ≤ sr
2 . We put the pieces together to obtain the desired

bound.
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