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First, we would like to congratulate Prof. McMurry and Prof. Politis for their
thought-provoking paper on the optimal linear prediction based on full time
series sample (hereafter, referred as [MP15]). [MP15] considered the one-step
optimal linear predictor X∗

n+1 =
∑n

i=1
φi(n)Xn+1−i of a univariate time series

X1, . . . , Xn in the ℓ2 sense which is given by the solution of the Yule-Walker
equations

φ(n) = Γ−1
n γ(n).

[MP15] constructed an optimal linear predictor using the full sample path

φ̂(n) = Γ̂−1
n γ̂(n),

where Γ̂n is a flat-top tapered sample autocovariance matrix and γ̂(n) is the

shifted first row of Γ̂n. Under mild assumptions, it is shown that φ̂(n) is an
ℓ2 consistent estimator of φ(n) and the resulting optimal linear prediction is

consistent for X∗
n+1. Since computing φ̂(n) requires the inversion of Γ̂n, which

can be either non-positive-definite due to the matrix tapering or numerically ill-
conditioned in view of the large dimension n of the full sample autocovariance
matrix, [MP15] proposed four positive definiteness (pd) corrections by thresh-
olding on bad eigenvalues or shrinking towards certain positive-definite targets.
Below, we propose an alternative simple correction method that does not require
the pd correction by directly working on the shrinkage of the inverse.

Let Γ̂n = QD̂Q⊤ be the eigen-decomposition of the flat-top tapered sample
autocovariance matrix of X1, . . . , Xn and D̂ = diag(d̂1, . . . , d̂n) be the diagonal
matrix containing the real eigenvalues of Γ̂n. Let

Θ̂n = QĤQ⊤,
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Fig 1. Modified eigenvalues of the thresholded positive definite version of Γ̂n in Section 4.1
of McMurry & Politis (2015) [MP15] and the ridge shrinkage matrix Θ̂n. Plot from AR(1)
model with coefficient −0.5, threshold parameter λ = dǫi = ǫγ̂0/nβ with ǫ = 20 and β = 1.

where Ĥ = diag(d̂1/(d̂
2
1 +λ), . . . , d̂n/(d̂

2
n +λ)) and λ is a nonnegative shrinkage

tuning parameter. Then, our optimal linear predictor coefficient φ(n) is defined
as

φ̃(n) = Θ̂nγ̂(n).

It is noted that φ̃(n) can be viewed as a ridge-type shrinkage modification of
Γ̂−1
n since by the orthogonality of Q we may write Θ̂n = (Γ̂⊤

n Γ̂n + λIn)
−1Γ̂⊤

n . In

particular, for fixed λ, if d̂i → 0, then ĥi = d̂i/(d̂
2
i +λ) ∼ d̂i/λ; if |d̂i| → ∞, then

ĥi ∼ d̂−1

i . Different from the thresholding and pd shrinkage corrections proposed

by [MP15], our proposal φ̃(n) allows d̂i ≤ 0 after the eigenvalue correction.
Therefore, our correction achieves comparable performance for large eigenvalues
of Σ̂n as the thresholding (or the pd correction), but it can be numerically
more stable when eigenvalues are below a threshold. The effect on the modified
eigenvalues of Γ̂−1

n is shown in Figure 1. We also include a variant of the ridge
shrinkage correction on the eigenvalues

h̃i =

{

d̂−1

i if |d̂i| ≥ λ1/2

2d̂i/(d̂
2
i + λ) if |d̂i| < λ1/2

.

In the following theorem, we show that the ridge corrected estimator φ̃(n), as
well as its modified version using Θ̂n = QH̃Q⊤, both achieve the same rate of
convergence for estimating φ(n) as in [MP15]. For the modified version of ridge
shrinkage, since with high probability H̃ = D−1 and Θ̂−1

n maintains the banded
structure in Γ̂n, therefore it also has the predictive consistency.
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Theorem 1. Under Assumptions 1–4 of [MP15] and if λ = o(1), then we have
|φ̃(n)− φ(n)|2 = Op(rn + λ), where rn = ln−1/2 +

∑∞
i=l |γi|. In addition, under

Assumptions 1–6 of [MP15] and if λ = O(rn), then for the modified version of
the ridge correction Θ̂n = QH̃Q⊤, we have |X̃n+1 −X∗

n+1| = o(1).

For a practical choice of λ, we can use λ = ǫγ̂0/n
β where ǫ > 0 and β >

1/2 are positive constants. Then, following a similar argument in [MP10], we
can easily show that the same asymptotic rate of convergence and prediction
consistency in Theorem 1 are attained for such choice. Note that the value of λ
has the same form as the thresholding parameter in [MP15]. In our simulation
examples, we set ǫ = 20 and β = 1.

1. Sparse full-sample optimal linear prediction

For optimal linear predictors that are high order yet may be approximated by a
only few large coefficients in φ(n), it is expected that the sparse approximation
may work better than using the full sample path. For example, consider the
optimal linear predictor Xi =

∑14

j=1
φjXi−j + ei, where φj = 0 except that

φ1 = −0.3, φ3 = 0.7, φ14 = −0.2. This observation leads to our second proposal
of a sparse full-sample optimal (SFSO) linear predictor φ̂SFSO

minimizeb∈Rn |b|1

subject to |Γ̂nb− γ̂(n)|∞ ≤ λ.

The SFSO predictor is a Dantzig-selector type method in high-dimensional lin-
ear models and estimation of sparse precision matrix [CT07, CLL11]. The SFSO
is computationally efficient since it can be recast to a linear program (LP)

minimizeb+,b−∈Rn

n
∑

i=1

b+i + b−i

subject to b+, b− ≥ 0

Γ̂nb
+ − Γ̂nb

− ≤ λ1n + γ̂(n)

−Γ̂nb
+ + Γ̂nb

− ≤ λ1n − γ̂(n),

where 1n = (1, . . . , 1)⊤ of size n. Let (b̂+, b̂−) be the solution of the above LP.

Then φ̂SFSO = b̂+ − b̂−. Due to the sparsity-promoting nature of the ℓ1 norm,
the SFSO can simultaneously perform predictor selection, estimation and one-
step prediction. Statistically, there is another important advantage of SFSO over
AR models with order determined by the AIC. In AR models, once the order
is determined, predictors have to be added into the model in the sequential
way, therefore necessitating a large model size if the sparse non-zeros are not
ordered in the time index. In the above example of AR(14) with three non-zero
coefficients, even with a correctly specified AR model, we need a model with
14 predictors in order to achieve the optimal prediction! In contrast, the SFSO
does not depend on the order of predictors and therefore it has more flexibility
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of selecting the predictors. Let r ∈ [0, 1). We consider the following class of
sparse vectors

Gr(C0,M) =

{

b ∈ R
n : max

1≤i≤n
|bi| ≤ C0,

n
∑

i=1

|bi|
r ≤ M

}

,

where M is the sparsity parameter and it is allowed to grow with the dimen-
sion n.

Theorem 2. Let q > 2 and d > 1/2 − 1/q. Assume that E|X2q
t | ≤ ν < ∞

and the functional dependence measure δ2q,t = (E|Xt − X ′
t|
2q)1/2q ≤ Cqt

−d−1.
Suppose φ(n) ∈ Gr(C0,M). Let

λ ≥ (1+2C1−r
0 M)

{

max

(

l1/q

n1−1/q
,

√

log l

n

)

+ n−1 max
1≤s≤⌊cκl⌋

s|γs|+ max
l<s≤n

|γs|

}

.

Under Assumptions 2 and 4 of [MP15], we have

|φ̂SFSO − φ(n)|2 = OP (M
1/2|Γ−1

n |
1−r/2
L∞ λ1−r/2), (1)

where |A|L∞ = maxi
∑

j |Aij | is the matrix L∞ norm.

Remark 1. If γs = O(s−d−1), then n−1 max1≤s≤⌊cκl⌋ s|γs| = O(n−1), which
is dominated by the first term in the bracket. Consider r = 0; then φ is an
M -sparse vector. Comparing the rate of convergence (1) with Theorem 1 where
the rate is O(rn), rn = ln−1/2+

∑∞
i=l |γi|, we observe that better rate is obtained

for the SFSO if M is constant (or slowly grows with n at proper rate) since

max

(

l1/q

n1−1/q
,

√

log l

n

)

≪
l

n1/2
and max

l<s≤n
|γs| ≪

∞
∑

i=l

|γi|, l → ∞.

We can also obtain the result for all short-range dependence time series d ∈
(0, 1/2 − 1/q]. In addition, the estimation error can be obtained under the ℓw

loss functions for all w ∈ [1,∞]. Details are omitted.

2. Simulation examples

We now compare the finite sample performance of the proposed ridge corrected
shrinkage and SFSO linear predictors with thresholding, shrinkage to a positive
definite matrix and white noise proposed in [MP15]. We also run the R function
ar() with the default parameter that uses the Yule-Walker solution with order
selection by the AIC. Partially following the setups in [MP15], we consider the
following three models

1. AR(1) model: Xi = θXi−1 + ei, where θ = −0.1,−0.5,−0.9 and ei are iid
N(0, 1).

2. MA(1) model: Xi = ei + θei−1, where θ = −0.1,−0.5,−0.9 and ei are iid
N(0, 1).
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Table 1

RMSPE and mean ℓ1 estimation error for the AR(14) model. FSO-Ridge and
FSO-Ridge-Thr are the ridge shrinkage corrected and its modified variant in this paper.
SFSO is the sparse full-sample optimal linear predictor and the rest of the symbols are

consistent with [MP15]

RMSPE Mean ℓ1 estimation error
AR 1.0347 0.8329

FSO-Th-Raw 1.3093 6.7437
FSO-Th-Shr 1.1987 5.2161

FSO-PD-Raw 1.2043 6.2712
FSO-PD-Shr 1.1941 7.0582

FSO-WN-Raw 1.1998 5.1059
FSO-WN-Shr 1.1986 4.2637

FSO-Ridge 1.1268 3.4535
FSO-Ridge-Thr 1.1547 4.5370

SFSO 1.0325 0.4381

3. Higher-order AR(14) model: Xi =
∑14

j=1
θjXi−j + ei, where θ1 = −0.3,

θ3 = 0.7, θ14 = −0.2, and the rest of θj = 0. The errors ei are iid N(0, 1).

For AR(1), it is expected that ar() does the best. For MA(1), it is expected that
the shrinkage type estimators would work better than the AR and SFSO linear
predictors since the latter two are misspecified. For the higher-order AR(14),
it is expected that the SFSO performs among the best because of the sparsity
structure. The sample size is fixed to 200 for all simulations and the 201-st ob-
servation is used to test for prediction. We follow the empirical rule for choosing
the bandwidth parameter l in [MP15]. The performance of those estimators are
assessed by the root mean square prediction error (RMSPE) and the mean ℓ1

estimation error. All numbers in Table 1–3 are reported by averaging 1000 simu-
lation times. From Table 1, it is observed that the AR and SFSO predictors are
comparably the best in terms of the RMSPE among all predictors considered
here, followed up the FSO-ridge. The superior predictive performance of AR is
conjectured due to the correct model specification. Interestingly, if we look at
the estimation errors, there is a sizable improvement for the SFSO over the AR
due to sparsity.

From Table 2, AR has top performances among all simulations with θ =
−0.9,−0.5 since it is the right model where the data are simulated. However, it
is again interesting to observe that the SFSO also provides a satisfactory out-
put (often the best) for the prediction and predictor selection. For θ = −0.1,
the advantage of AR becomes small since the time series are weakly dependent.
From Table 3, it is not surprising to observe that FSO with proper threshold-
ing/shrinkage can achieve better performance, though it seems that the best
correction is setup-dependent. Overall, the FSO-ridge predictor has comparable
performance with other FSO thresholding/shrinkage predictors in all simulation
setups. We remark here that our Table 2 and 3 are slightly different from Ta-
ble 1 and 2 in [MP15]. We do not know that whether or not the differences are
artifacts of stochastic errors in the simulation or due to different implementa-
tions.
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Table 2

RMSPE (columns 2–4) and mean ℓ1 estimation error (columns 5–7) for the AR(1) models

θ = −0.9 θ = −0.5 θ = −0.1 θ = −0.9 θ = −0.5 θ = −0.1
AR 1.0216 1.0371 0.9758 0.1466 0.1502 0.1514

FSO-Th-Raw 1.2024 1.0655 0.9753 2.2968 0.7728 0.1143
FSO-Th-Shr 1.1004 1.0628 0.9753 1.8906 0.7569 0.1143

FSO-PD-Raw 1.1562 1.0413 0.9753 3.1944 0.4203 0.1114
FSO-PD-Shr 1.0966 1.0371 0.9746 4.0274 0.4538 0.1066

FSO-WN-Raw 1.1557 1.0527 0.9753 1.8588 0.6363 0.1143
FSO-WN-Shr 1.1449 1.0503 0.9753 1.6644 0.6115 0.1143

FSO-Ridge 1.1085 1.0380 0.9749 1.6139 0.3548 0.1086
FSO-Ridge-Thr 1.0858 1.0488 0.9752 1.9124 0.5546 0.1143

SFSO 1.0269 1.0371 0.9738 0.1206 0.1513 0.0966

Table 3

RMSPE (columns 2–4) and mean ℓ1 estimation error (columns 5–7) for the MA(1) models

θ = −0.9 θ = −0.5 θ = −0.1 θ = −0.9 θ = −0.5 θ = −0.1
AR 1.0083 1.0072 0.9962 5.1003 0.3934 0.1586

FSO-Th-Raw 1.0244 1.0059 0.9938 6.9455 0.4851 0.1235
FSO-Th-Shr 1.0202 1.0052 0.9938 7.0753 0.4769 0.1235

FSO-PD-Raw 1.0502 0.9972 0.9940 7.9566 0.3735 0.1207
FSO-PD-Shr 1.0749 1.0006 0.9937 8.2909 0.5524 0.1162

FSO-WN-Raw 1.0146 1.0014 0.9938 7.2256 0.3693 0.1235
FSO-WN-Shr 1.0171 0.9999 0.9938 7.4006 0.3512 0.1235

FSO-Ridge 1.0646 0.9943 0.9936 8.4464 0.4842 0.1179
FSO-Ridge-Thr 1.0438 0.9939 0.9937 8.1716 0.3721 0.1231

SFSO 1.0854 1.0150 0.9930 8.4294 0.7175 0.1080

3. Concluding remarks

We thank Prof. McMurry and Prof. Politis for their stimulating paper which for
the first time shows the feasibility of consistent optimal linear prediction based
on the full sample. Motivated from their work, we proposed an alternative correc-
tion of the optimal linear prediction which has the ridge shrinkage interpretation
and does not require the positive-definiteness as in [MP15]. We also proposed
a sparse optimal linear predictor using the full sample (SFSO) that simultane-
ously performs predictor selection and one-step prediction. Asymptotic rate of
convergence was established for both methods under analogous assumptions in
[MP15]. In addition, prediction consistency is established for a modified version
of our ridge correction method. Finite sample performances were studied by
three simulation examples. We noted that the numeric performances in those
examples depend on the tuning parameter λ, which was fixed in all simulations.
We simply used λ = 20γ̂0/n and

√

log(n)/n for ridge corrected FSO and SFSO
predictors respectively. Better performance can be achieved if we tune those
parameters. Tuning parameter selection is an open question for optimal predic-
tion, as well as estimation, in high-dimensional time series analysis. Though the
superior predictive performance of the SFSO linear predictor is demonstrated in
the simulation under sparse settings, it is an interesting question that to what
extend the SFSO has the prediction consistency. We leave this as future work.
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Appendix: Proofs

Proof of Theorem 1. Note that

φ̃(n)− φ(n) = Θ̂n(γ̂(n)− γ(n)) + (Θ̂n − Γ−1
n )γ(n).

Therefore

|φ̃(n)− φ(n)|2 ≤ ρ(Θ̂n)|γ̂(n)− γ(n)|2 + ρ(Θ̂n − Γ−1
n )|γ̂(n)|2

By Lemma 1 and Theorem 1 [MP15], |γ̂(n)−γ(n)|2 = OP (rn) and ρ(Γ̂n−Γn) =
OP (rn). Since the spectral density of Xi is bounded between [c1, c2], we have

that all eigenvalues ρi(Γn) ∈ [2πc1, 2πc2], i = 1, . . . , n. Let G = {πc1 ≤ d̂i ≤

πc2, ∀i = 1, . . . , n}, where d̂i = ρi(Γ̂n). Then, P(G) → 1 as n → ∞. Since Γ̂n is
positive definite on the event G, we have with probability tending to one

ρ(Θ̂n − Γ−1
n ) ≤ ρ(Θ̂n − Γ̂−1

n ) + ρ(Γ̂−1
n − Γ−1

n )

≤ max
1≤i≤n

|ĥi − d̂−1

i |+Op(rn)

= max
1≤i≤n

λ

|d̂i(d̂2i + λ)|
+Op(rn)

= Op(λ+ rn).

By the short-range dependence assumption
∑∞

i=1
|γi| < ∞, it follows that

|φ̃(n)− φ(n)|2 = Op(λ+ rn). The same rate is obtained by observing that

max
1≤i≤n

|h̃i − d̂−1

i | = max
1≤i≤n

∣

∣

∣

∣

∣

2d̂i

d̂2i + λ
−

1

d̂i

∣

∣

∣

∣

∣

1(|d̂i| < λ1/2)

= max
1≤i≤n

∣

∣

∣

∣

∣

λ− d̂2i

d̂i(d̂2i + λ)

∣

∣

∣

∣

∣

1(|d̂i| < λ1/2)

= OP (λ).

Since QH̃−1Q⊤ has the same banded structure as Γ̂n on G for sufficiently
large n, the rest of the proof for prediction consistency follows from the ar-
gument of [MP15].

Proof of Theorem 2. For notation simplicity, we write φ̂ = φ̂SFSO and φ = φ(n).
Let G1 = {|γ̂(n)− γ(n)|∞ ≤ ǫ} and G2 = {|Γ̂n − Γn|∞ ≤ ǫ}. Since γ(n) = Γnφ,
we have on the event G = G1 ∩G2

|Γ̂nφ− γ̂(n)|∞ = |Γ̂nφ− γ(n) + γ(n)− γ̂(n)|∞

≤ |(Γ̂n − Γn)φ|∞ + |γ̂(n)− γ(n)|∞

≤ |Γ̂n − Γn|∞|φ|1 + ǫ

≤ (|φ|1 + 1)ǫ.
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Choose λ ≥ (|φ|1+1)ǫ. Clearly φ is feasible for the SFSO for such λ and therefore

|φ̂|1 ≤ |φ|1. Then

|φ̂− φ|∞ = |Γ−1
n (Γnφ̂− γ(n))|∞

≤ |Γ−1
n |L∞

(

|(Γn − Γ̂n)φ̂|∞ + |Γ̂nφ̂− γ̂(n)|∞ + |γ̂(n)− γ(n)|∞

)

≤ |Γ−1
n |L∞

(

|Γn − Γ̂n|∞|φ̂|1 + |Γ̂nφ̂− γ̂(n)|∞ + |γ̂(n)− γ(n)|∞

)

≤ |Γ−1
n |L∞ (ǫ|φ|1 + λ+ ǫ)

≤ 2λ|Γ−1
n |L∞ .

Recall that γ̂(n) = (γ̂1, . . . , γ̂n)
⊤, where γ̂s = κ(|s|/l)γ̆s and γ̆s =

n−1
∑n−|s|

t=1
XtXt+|s|. Note that

|γ̂(n)− γ̂(n)|∞ = max
1≤s≤n

|κ(s/l)γ̆s − γs|

≤ max
1≤s≤l

|γ̆s − γs|+ max
l<s≤⌊cκl⌋

|κ(s/l)γ̆s − γs|+ max
⌊cκl⌋+1≤s≤n

|γs|

:= T1 + T2 + T3.

First, we deal with T1. Observe that

T1 ≤ max
1≤s≤l

|γ̆s − Eγ̆s|+ max
1≤s≤l

|Eγ̆s − γs|

=
1

n
max
1≤s≤l

|
n−s
∑

t=1

(XtXt+s − EXtXt+s)|+
1

n
max
1≤s≤l

s|γs|.

By the Cauchy-Schwarz inequality,

‖XtXt+m −X ′
tX

′
t+m‖q ≤ ‖Xt(Xt+m −X ′

t+m)‖q + ‖X ′
t+m(Xt −X ′

t)‖q

≤ ‖Xt‖2q‖Xt+m −X ′
t+m‖2q + ‖X ′

t+m‖2q‖Xt −X ′
t‖2q.

Since E|Xt|
2q ≤ ν and δ2q,t ≤ Cqt

−d−1, it follows that the functional dependence
measure of the process (XtXt+m) is bounded by 2Cqν

1/2qt−d−1 for all m ≥ 0.
For d > 1/2− 1/q, by the Nagaev inequality [LXW13], we have for all ǫ > 0

P

(

max
1≤s≤l

|

n−s
∑

t=1

(XtXt+s − EXtXt+s)| ≥ ǫ

)

≤ C1l

[

n− s

ǫq
+ exp

(

−
C2ǫ

2

(n− s)2

)]

.

Therefore, it follows that

T1 = OP (ǫ
∗ + n−1 max

1≤s≤l
s|γs|),

where

ǫ∗ = max

{

l1/q

n1−1/q
,

√

log l

n

}

.



Discussion 809

For T2, we note that

T2 ≤ max
l<s≤⌊cκl⌋

κ(s/l)|γ̆s − γs|+ max
l<s≤⌊cκl⌋

|κ(s/l)− 1||γs|

≤ max
l<s≤⌊cκl⌋

|γ̆s − γs|+ max
l<s≤⌊cκl⌋

|γs|.

Since cκ ≥ 1 is a constant, by the Nagaev inequality [LXW13], we have

T2 = OP

(

ǫ∗ + n−1 max
l<s≤⌊cκl⌋

s|γs|+ max
l<s≤⌊cκl⌋

|γs|

)

.

Combining the three terms together, we therefore have

|γ̂(n)− γ̂(n)|∞ = OP (ǫ∗∗) , where ǫ∗∗ = ǫ∗ + n−1 max
1≤s≤⌊cκl⌋

s|γs|+ max
l<s≤n

|γs|.

Since Γ̂n and Γn are both Toeplitz matrices, the same bound applies for
|Γ̂n − Γn|∞. Therefore for λ ≥ (|φ|1 + 1)ǫ∗∗ we get

|φ̂− φ|∞ = OP (|Γ
−1
n |L∞λ).

Let u ≥ 0 and D(u) =
∑n

i=1
min(|φi|, u) be the smallness measure of φ defined

in [CXW13]. By the argument in [CXW15], |φ̂ − φ|1 ≤ 6D(3|φ̂ − φ|∞) and
therefore by interpolation we have that

|φ̂− φ|22 = OP

(

|Γ−1
n |L∞λD(3|Γ−1

n |L∞λ
)

.

Since φ ∈ Gr(C0,M), it is easy to see that D(u) ≤ 2Mu1−r. Hence, we obtain

|φ̂− φ|2 = OP (M
1/2|Γ−1

n |
1−r/2
L∞ λ1−r/2).
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