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Abstract: A new methodology for optimal linear prediction of a station-
ary time series is introduced. Given a sample X1, . . . ,Xn, the optimal linear
predictor of Xn+1 is X̃n+1 = φ1(n)Xn + φ2(n)Xn−1 + · · ·+ φn(n)X1. In
practice, the coefficient vector φ(n) ≡ (φ1(n), φ2(n), . . . , φn(n))′ is rou-
tinely truncated to its first p components in order to be consistently esti-
mated. By contrast, we employ a consistent estimator of the n × n auto-
covariance matrix Γn in order to construct a consistent estimator of the
optimal, full-length coefficient vector φ(n). Asymptotic convergence of the
proposed predictor to the oracle is established, and finite sample simula-
tions are provided to support the applicability of the new method. As a
by-product, new insights are gained on the subject of estimating Γn via a
positive definite matrix, and four ways to impose positivity are introduced
and compared. The closely related problem of spectral density estimation
is also addressed.
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1. Introduction

Let X1, . . . , Xn be the realization of a covariance stationary time series with
mean zero and autocovariance function γk = E [XtXt−k]. We consider the prob-
lem of predicting Xn+1 based on these observed data. With respect to Mean
Squared Error (MSE), the optimal linear predictor is

X̃n+1 = φ1(n)Xn + φ2(n)Xn−1 + · · ·+ φn(n)X1, (1)
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where the coefficients φi(n) are given by

φ(n) ≡







φ1(n)
...

φn(n)






= Γ−1

n γ(n); (2)

(see e.g. p. 167 in Brockwell and Davis, 1991). In equation (2), Γn = [γ|i−j|]
n
i,j=1

is the autocovariance matrix of X1, . . . , Xn, and γ(n) = [γ1, . . . , γn]
′ is the

vector of covariances at lags 1, . . . , n. Predictor (1) is an oracle because the
coefficients φ1(n), . . . , φn(n) are unknown. In practice, the coefficient vector
φ(n) ≡ (φ1(n), φ2(n), . . . , φn(n))

′ is routinely truncated to its first p components
in order to be consistently estimated; this procedure is equivalent to fitting an
auto-regressive AR(p) process to the data. The resulting predictor is

X̂AR
n+1 = φ̂1Xn + φ̂2Xn−1 + · · ·+ φ̂pXn−p+1, (3)

where the coefficient vector is typically estimated by the Yule-Walker equations

[φ̂1, . . . , φ̂p]
′ = Γ̆−1

p γ̆(p). (4)

In (4), γ̆k = n−1
∑n−|k|

t=1 XtXt+|k| is the sample autocovariance at lag k, γ̆(p) =

[γ̆1, . . . , γ̆p]
′, and Γ̆p = [γ̆|i−j|]

p
i,j=1.

Interestingly, Γ̆p is positive definite for any p as long as γ̆0 > 0, which is

a sine qua non. In addition, for any finite p, γ̆(p) and Γ̆p are consistent for
their respective targets γ(p) and Γp. Unfortunately, when p is large, problems
ensue. For example, when p = n, Wu and Pourahmadi (2009) showed that the
sample autocovariance matrix Γ̆n = [γ̆|i−j|]

n
i,j=1 is not a consistent estimator of

Γn in operator norm. Hence, equation (4) cannot be used with p = n to give a
consistent estimator of the full coefficient vector φ(n).

In the present work, we investigate an alternative approach to estimating
all n coefficients in the oracle predictor (1); this allows for the complete pro-
cess history to be used in prediction. The estimated prediction coefficients
φ̂1(n), . . . , φ̂n(n) are given by the n-dimensional Yule-Walker equations:

φ̂(n) = (Γ̂∗
n)

−1γ̂(n), (5)

where Γ̂∗
n is a positive definite version of the n×n banded and tapered estimate

of the autocovariance matrix Γn introduced in McMurry and Politis (2010), and
γ̂(n) is the corresponding estimate of the autocovariance vector; see Section 3.2
for details.

It has been widely thought until now that an estimate such as the one in (5) is
not feasible. For example, on p. 717 of the recent work by Bickel and Gel (2011) it
is stated that “given n observations, it is impossible to estimate n AR parameters
sufficiently well for prediction purposes.” The present work demonstrates that
this is not the case. In addition, we discuss an intermediate approach, i.e., an
analog of (4) but with p that can be arbitrarily large as long as p ≤ n.

The remainder of the paper is structured as follows. Section 2 provides the
background on the estimators Γ̂∗

n and γ̂(n) that are required in order to esti-
mate the prediction coefficients. Section 3 contains our main asymptotic results;
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in particular, the consistency of φ̂(n) is shown, and the resulting predictor is
shown to be asymptotically equivalent to the oracle predictor (1). Section 4
presents four ways to correct our matrix estimator in order to ensure positive
definiteness—and therefore invertibility—in finite samples. Section 5 contains
the results of finite-sample simulation studies and a real data experiment. Sec-
tion 6 summarizes our results. All technical proofs have been placed in Section 7.
Our paper concludes with an Appendix that shows how the positive definiteness
corrections described in Section 4 can find application in the related problem of
spectral density estimation.

2. Estimation set-up

2.1. Estimating the n × n autocovariance matrix Γn

The accuracy of the coefficients estimated by equation (5) rests on the abil-
ity to accurately estimate Γn = [γ|i−j|]

n
i,j=1. However, as mentioned in the

introduction, Wu and Pourahmadi (2009) showed that the sample autocovari-
ance matrix Γ̆n = [γ̆|i−j|]

n
i,j=1 is not a consistent estimator of Γn in operator

norm. In order to achieve consistency, they introduced an l-banded estimate that
leaves the 2l+1 main diagonals of the sample autocovariance matrix intact, and
sets the remaining entries to 0. Under conditions on l and short range depen-
dence assumptions on {Xt}t∈Z they established the asymptotic consistency of
the banded matrix. Their banded estimator is optimal for MA(q) models as,
in that case, it corresponds to the parametric estimator. However, if the auto-
correlation does not vanish after a finite lag, the banded estimator can behave
erratically (Politis, 2011).

To improve performance when the autocorrelation does not vanish, McMurry
and Politis (2010) proposed a banded and tapered matrix estimator in which
the 2l + 1 main diagonals of the sample autocovariance matrix are kept intact
but the remaining entries are gradually tapered to zero. The gradual taper can
substantially improve finite sample performance when the autocorrelation does
not vanish, at little cost when it does. The asymptotic convergence rates given in
McMurry and Politis (2010) were similar to those in Wu and Pourahmadi (2009).

Remark 1. Recently, Cai, Ren and Zhou (2013) showed that the banded and
tapered estimator also enjoys a (slightly) improved rate of convergence as com-
pared to the purely banded estimator; for their proof, they used the trapezoidal
taper proposed by Politis and Romano (1995) but it is conjectured that the
same holds true for the family of so-called ‘flat-top’ tapers as long as they are
continuous—see Politis (2001) for more details.

Consequently, we focus on the general matrix estimator proposed by Mc-
Murry and Politis (2010) given by

Γ̂n =
[

γ̂|i−j|

]n

i,j=1
(6)

with
γ̂s = κ(|s|/l)γ̆s for |s| ≤ n, and γ̂(n) = [γ̂1, . . . , γ̂n]

′. (7)
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In the above, κ(·) can be the aforementioned trapezoidal taper, i.e.,

κ(x) =







1 if |x| ≤ 1
2− |x| if 1 < |x| ≤ 2

0 if |x| > 2.
(8)

More generally, κ(·) can be any member of the flat-top family of functions
defined in Politis (2001), i.e., κ(·) is given as

κ(x) =







1 if |x| ≤ 1
g(|x|) if 1 < |x| ≤ cκ
0 if |x| > cκ,

(9)

where the function g(·) satisfies |g(x)| < 1, and cκ is a constant satisfying cκ ≥ 1.
The matrix estimator (6) has a banding parameter l ≥ 0. The flat-top ta-

pering leaves the 2l + 1 main diagonals of the sample autocovariance matrix
intact, and gradually down-weights more distant diagonals. In order to cover
the possibility of the data at hand being uncorrelated, it is useful to adopt the
convention that when l = 0, the resulting Γ̂n matrix is given by γ̆0I; this is
equivalent to adopting that 0/0=0 in the context of eq. (7).

The trapezoidal taper given in (8) is very convenient, and has been shown to
have good performance in different practical settings; we will also employ it in
the numerical work in this paper. Nevertheless, our theoretical results apply to
a broad class of weight functions including pure banding (no taper) as used in
Wu and Pourahmadi (2009), and ultra-smooth tapers such as that suggested in
McMurry and Politis (2004). These possibilities are captured by different choices
of the function g(·) and the constant cκ in (9); e.g., letting cκ = 1 corresponds
to pure banding.

Note that Γ̂n as defined by (6) is asymptotically positive definite, but for
finite samples it can have negative eigenvalues. For the remainder of the paper,
we assume that it has been corrected to positive definiteness—if needed—as
described in Section 4. The positive definite version of matrix Γ̂n will be denoted
by Γ̂∗

n.

2.2. Estimating the length n vector φ(n)

After the above preparatory work, we are able to define the proposed new pre-
dictor as

X̂n+1 = φ̂1(n)Xn + φ̂2(n)Xn−1 + · · ·+ φ̂n(n)X1, (10)

where the coefficients φ̂1(n), . . . , φ̂n(n) are given by equation (5) in conjunction
with the estimates from equations (6) and (7). We can call predictor (10), the
Full-Sample Optimal (FSO) predictor since—as shown in Section 3—it is a
consistent proxy for the oracle optimal predictor (1).

By comparison, Bickel and Gel (2011) have recently investigated a predictor
for Xn+1 that uses the upper-left pn × pn submatrix of the banded sample
autocovariance matrix Γ̂n with pn = o(n). Their estimator is designed for an
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“on-line” prediction problem that allows for the parameters to be updated after
each new observation at relatively low computational cost, and the resulting
prediction for Xn+1 is a linear combination of Xn, . . . , Xn−pn+1. This is still
an AR-type predictor as in (3) but they use a higher order pn than the one
obtained by minimizing AIC or a related criterion.

Letting
γ̂(pn) = [γ̂1, . . . , γ̂pn

]′ and Γ̂pn
=
[

γ̂|i−j|

]pn

i,j=1
(11)

we can construct an alternative predictor that is based on a partial sample, i.e.,
a predictor as in (3) with pn that can be arbitrarily large as long as pn ≤ n.
This new predictor is defined as

X̂pn

n+1 = φ̂pn

1 (n)Xn + φ̂pn

2 (n)Xn−1 + · · ·+ φ̂pn

pn

Xn−pn+1 (12)

where the length-pn coefficient vector φ̂pn(n) = [φ̂pn

1 (n), . . . , φ̂pn

pn

(n)]′ is obtained
from

φ̂pn(n) = (Γ̂∗
pn

)−1γ̂(pn) (13)

where Γ̂∗
pn

is the matrix that results after Γ̂pn
in (11) is corrected to posi-

tive definiteness. We can call predictor (12), the Partial-Sample Optimal (PSO)
predictor as it will be shown to be a consistent proxy for the oracle optimal
Partial-Sample predictor, i.e., the optimal linear predictor of Xn+1 given the
last pn observations; recall that the oracle predictor is constructed using the
(unrealistic) knowledge of the whole autocovariance structure.

2.3. Data-based choice of the banding parameter l

The FSO and PSO predictors of equations (10) and (12) clearly depend on the
choice of the banding parameter l. One possible approach to choosing it in a
data-dependent way is the following rule, which was introduced for density and
spectral density estimation in Politis (2003). McMurry and Politis (2010) further
showed this rule produces approximately correct rates for autocovariance matrix
estimation and good finite sample performance.

Empirical rule for picking l Let ̺k = γk/γ0 and ˘̺k = γ̆k/γ̆0. Let l̂ be
the smallest positive integer such that | ˘̺̂l+k| < c(log n/n)1/2 for k = 1, . . . ,Kn

where c > 0 is a fixed constant, and Kn is a positive, nondecreasing sequence
that satisfies Kn = o(logn).

Remark 2. The empirical rule for picking l remains valid for all c > 0 and
1 ≤ Kn ≤ n, although different choices of c and Kn can lead to very different
finite sample performances. Nonetheless, there are some guidelines for practi-
cally useful choices. The factor (log n)1/2 varies slowly, so it has little influence.
For example, if log is taken to denote base 10 logarithm, then for sample sizes
between 100 and 1000, as is quite typical, (log n)1/2 varies between 1.41 and
1.73. Thus, if c is chosen to be around 2 and Kn about 5, Bonferroni’s inequal-
ity implies that the bound ±c(logn/n)1/2 can be used as the critical value of
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for an approximate 95% test of the null hypothesis that ̺(l̂ + 1), . . . , ̺(l̂+Kn)
are all simultaneously equal to zero. We have found values in this range work
well in practice.

3. Asymptotic results

3.1. Basic assumptions

The convergence of Γ̂∗
n to Γn, the primary result underpinning our present work,

is established in McMurry and Politis (2010) under physical dependence measure
conditions (Wu, 2005). In order to define our results, we briefly describe these
conditions.

Let {ǫi, i ∈ Z} be a sequence of i.i.d. random variables. Assume that Xi is a
causal function of {ǫi}, i.e.,

Xi = f(. . . , ǫi−1, ǫi),

where f is a measurable function such that Xi is well defined and E
[

X2
i

]

< ∞.
In order to quantify dependence, let ǫ′i be an independent copy of ǫi, i ∈ Z.
Let ξi = (. . . , ǫi−1, ǫi), ξ

′
i = (. . . , ǫ−1, ǫ

′
0, ǫ1, . . . , ǫi), and X ′

i = g(ξ′i). For α > 0,
define the physical dependence measure

δα(i) := E [|Xi −X ′
i|
α]

1/α
.

Note that the difference between Xi and X ′
i is due only to the difference

between ǫ0 and ǫ′0, and therefore δα(i) measures the dependence of Xi on an
event i units of time in the past. To measure the cumulative dependence across
all time, the quantity

∆α :=

∞
∑

i=1

δα(i)

is helpful. We will say that {Xi} is short-range dependent with moment α if
∆α < ∞.

These notions of dependence underlie the following assumptions which, in
conjunction with further assumptions about the weight function κ(·), the band-
width l, and the underlying process, will be sufficient to establish the consistency
of FSO predictor (10).

Assumption 1. E
[

X4
i

]1/4
< ∞ and ∆4 < ∞.

Assumption 2. The weight function κ is a ‘flat-top’ taper defined by eq. (9)
where the function g(·) and the constant cκ satisfy |g(x)| < 1 for all x, and
cκ ≥ 1.

Assumption 3. The quantity

rn = ln−1/2 +

∞
∑

i=l

|γi| (14)

converges to zero as n → ∞.
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All asymptotic results and order notations in the paper will be understood to
hold as n → ∞ without explicitly denoting it. In fact, Assumption 3 necessitates
that n → ∞; furthermore, the banding parameter l may have to diverge at an
appropriate rate to ensure the convergence of (14). However, if it so happens
that γi = 0 for all i > some q, e.g., under a moving average MA(q) model, l
does not need to diverge; any finite value of l would be acceptable as long as it
is at least q.

Assumption 4. The spectral density of {Xt}t∈Z, defined as

f(ω) = (2π)−1
∞
∑

k=−∞

γ(k)e−iωk,

satisfies 0 < c1 ≤ f(ω) ≤ c2 < ∞ for all w, and some positive constants c1
and c2.

We now recall one of the main results in McMurry and Politis (2010).

Theorem 1 (McMurry and Politis (2010)). Under Assumptions 1–4,
∣

∣

∣

∣

∣

∣
Γ̂n − Γn

∣

∣

∣

∣

∣

∣

2
= Op(rn) and

∣

∣

∣

∣

∣

∣
Γ̂−1
n − Γ−1

n

∣

∣

∣

∣

∣

∣

2
= Op(rn),

where ||·||2 denotes operator norm and rn is as given in eq. (14).

Remark 3. Under different regularity conditions, Xiao and Wu (2012) were
able to show the sharper result

∣

∣

∣

∣

∣

∣
Γ̂n − Γn

∣

∣

∣

∣

∣

∣

2
= Op(r

′
n)

where

r′n = C
√

l log l/n+ 2

⌊cκl⌋
∑

i=⌊l⌋+1

[

1− κ

(

i

l

)]

|γi|+
2

n

⌊cκl⌋
∑

i=1

i|γi|+ 2

n−1
∑

i=l+1

|γi|

using our Assumption 2 and some constant C > 0. For instance, Xiao and Wu
(2012) assume E|Xt|

4+δ < ∞ for some δ > 0 whereas we allow for the possibility
that δ = 0. Nonetheless, we note that rn can be replaced by r′n in all asymptotic
results of our paper provided our Assumptions 2 and 4 hold together with the
conditions of Theorem 4 in Xiao and Wu (2012).

3.2. Estimating the length n vector γ(n)

Implicit in the n-dimensional Yule-Walker equations (5) is the need for consis-
tent estimation of the length n vector of auto-covariances γ(n) = [γ1, . . . , γn]

′.
The vector of sample auto-covariances γ̆(n) = [γ̆1, . . . , γ̆n]

′ is not a consistent
estimator of γ(n); in fact, γ̆(n) misbehaves. To see why, recall that the peri-
odogram of the centered data vanishes at frequency zero; this implies the iden-
tity

∑n
i=1 γ̆i = −γ̆0/2 which, of course, has no reason to hold for the true γi.
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By contrast, the flat-top weighted estimator γ̂(n) = [γ̂1, . . . , γ̂n]
′ defined in

equation (7) is consistent, as the following Lemma shows. Let |~v|2 denote the l2
norm of the vector ~v. Then,

Lemma 1. Under Assumptions 1–4, |γ̂(n)− γ(n)|2 = Op(rn).

Notice γ̂(n) is closely related to the first row of Γ̂n which is a consistent
estimator of Γn; the only difference is that while γ̂(n) = [γ̂1, . . . , γ̂n]

′, the first
row of Γ̂n is [γ̂0, γ̂1, . . . , γ̂n−1]

′. However, the Yule-Walker equations (5) require
a positive definite version of Γ̂n, denoted Γ̂∗

n (see Section 4). By looking at the
first row of such a Γ̂∗

n, we can obtain alternative estimates of γ̂(n) that are also
consistent as the following Lemma shows.

Lemma 2. Let Γ̂∗
n denote a positive definite version of Γ̂n that satisfies

∣

∣

∣

∣

∣

∣
Γ̂∗
n − Γn

∣

∣

∣

∣

∣

∣

2
= Op(rn) and

∣

∣

∣

∣

∣

∣
(Γ̂∗

n)
−1 − Γ−1

n

∣

∣

∣

∣

∣

∣

2
= Op(rn).

Let (Γ̂∗
n)i,j denote the ij’th entry of Γ̂∗

n, and define

γ̂∗(n) = [(Γ̂∗
n)1,2, . . . , (Γ̂

∗
n)1,n, 0]

′.

Then, under Assumptions 1–4, we have |γ̂∗(n)− γ(n)|2 = Op(rn).

3.3. Optimal prediction using the full sample

Assumptions 1–4 are sufficient to ensure the vector convergence of the estimated
prediction coefficients φ̂(n) given by (5) to the optimal prediction coefficients
φ(n) given by (2).

Theorem 2. Under Assumptions 1–4,

|φ̂(n)− φ(n)|2 = Op(rn). (15)

Corollary 2 of Wu and Pourahmadi (2009) establishes the same rate of con-
vergence for the vector of prediction coefficients resulting from purely banded
estimates of Γn and γ(n). In addition, Corollary 1 of Bickel and Gel (2011)
establishes the convergence of a vector of prediction coefficients of length pn to
the optimal vector of the same length; this is similar in spirit to our Theorem 2
but using pn of smaller order than n.

The vector convergence of estimated prediction coefficients φ̂(n) to φ(n)
shown in Theorem 2 is important but it is not by itself sufficient to establish the
convergence of the resulting predictor to the oracle predictor; this convergence
is the subject of our Theorem 3 and is our main theoretical result. To show that
the FSO predictor X̂n+1 converges to the oracle predictor X̃n+1 we will need
two modest additional assumptions.

Assumption 5. There exists a rate kn → ∞ satisfying

i. kn/(ln
ǫ) → ∞ for some ǫ > 0.
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ii. rnk
1/2
n → 0, where rn is as given in (14).

iii. n
∑∞

i=kn+1 φ
2
i → 0, where φi are the AR(∞) coefficients of the process

{Xt}t∈Z.

Assumption 6. n1/2
∑∞

i=n+1 |φi| → 0.

Remark 4. The rate kn described in Assumption 5 is required to exist in order
to establish the asymptotic optimality of the FSO predictor (10). However, it is
not a tuning parameter, and does not need to be estimated and/or chosen by
the practitioner.

Remark 5. It can easily be seen that Assumptions 5 and 6 impose few addi-
tional restrictions on the process {Xt}t∈Z, as the following discussion shows.

i. Assumption 5i requires that kn grows slightly faster than l. The optimal
l depends on the rate of decay of |γi| (see Corollary 1 of McMurry and
Politis, 2010). If |γi| = O(i−d) for some d > 1, then the optimal l is
proportional to n1/(2d); if |γi| decays exponentially, then it is sufficient for
l to grow logarithmically.

ii. Assumption 6 is satisfied whenever |φi| ≤ Cφi
−k for i > I0, some k > 3/2,

and some Cφ > 0.
iii. Assumptions 5ii and 5iii require some balancing of convergence rates, but

they can be achieved with only modest restrictions on the underlying
process. As long as |φi| decays at a rate faster than i−3/2 (as required by
Assumption 6), the term in Assumption 5iii will converge to 0 provided
kn > Ckn

n1/2+ǫ for some Ckn
> 0 and some ǫ > 0. As long as |γi| < Cγi

−k

for i > I0 for some I0 and some k > 2, this allows for convergence of the
prediction when l is the asymptotically optimal bandwidth. If φi and γi
decay faster, conditions 5ii and 5iii will be satisfied by a wider range of kn
and continue to allow for the optimal l.

Theorem 3. Under Assumptions 1–6,

|X̂n+1 − X̃n+1| = op(1). (16)

In other words, the FSO predictor (10) converges in probability to the theoreti-
cally optimal oracle predictor (1).

Remark 6. Our Theorems 2 and 3 are expected to hold true verbatim if the
estimated autocovariances γ̂s that constitute the entries of matrix (6) are also
thresholded as described in Section 2.3 of Paparoditis and Politis (2012). It is
less clear how the estimator will perform if the entries of autocovariance matrix
are only thresholded without use of the flat-top weight function κ(·), i.e., a
thresholded version of the sample autocovariance matrix as in Xiao and Wu
(2012) and Section 2.2 of Paparoditis and Politis (2012). The reason is that our

proof of Theorem 3 relies on the rapid decay of the φ̂i(n) as i increases; this is
in part ensured because the non-zero diagonals of Γ̂n are constrained to a band
of width proportional to l which grows slowly with n.
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3.4. Optimal prediction using the partial sample

Theorem 3 demonstrates the asymptotic consistency of the estimated prediction
coefficients when the n× n covariance matrix Γ̂∗

n is used. An approach more in
line with traditional AR model fitting or the work of Bickel and Gel (2011)
would be to fit an AR model of order pn < n, where pn could potentially grow
with n. This would entail one-step ahead prediction that uses only the last pn
observations; the prediction coefficients φ̂(pn) are given by (13).

Theorem 2 carries over to this lower order setting without modification, al-
though it should be emphasized that if pn grows slowly enough, faster conver-
gence rates than the one given below are possible; for example, if pn is con-
stant, then the actual convergence rate will be n−1/2, i.e., |φ̂(pn) − φ(pn)|2 =
Op(n

−1/2).

Corollary 1. Let 1 ≤ pn ≤ n. Under Assumptions 1–4,

|φ̂(pn)− φ(pn)|2 = Op(rn).

The extension of Theorem 3 requires a strengthening of Assumption 6. Our
arguments depend on the closeness of φ(pn) to the corresponding AR(∞) co-
efficients; this closeness improves as pn increases, necessitating the following
assumption.

Assumption 7. Let kn be as in Assumption 5. Then either
a. pn ≤ kn for all n, or
b. pn > kn and n1/2

∑∞
i=pn+1 |φi| → 0.

Remark 7. In the case where pn > kn, Assumption 7b is only a modest
strengthening of Assumption 5iii.

Corollary 2. Let 1 ≤ pn ≤ n. Under Assumptions 1–5 and 7,

|X̂pn

n+1 − X̃pn

n+1| = op(1),

where X̂pn

n+1 is the PSO predictor of eq. (12) with coefficients φ̂pn(n) obtained

from eq. (13), and X̃pn

n+1 is its oracle counterpart of order pn.

Corollary 1 is quite similar to Corollary 1 in Bickel and Gel (2011); however,
their result requires pn = o(n) whereas ours is valid for all non-negative se-
quences pn ≤ n. In addition, neither Bickel and Gel (2011) nor Wu and Pourah-
madi (2009) provide a result similar to Corollary 2.

Remark 8. The FSO predictor (10) and the PSO predictor (12) are based
on eq. (5) and (13) respectively that employ the matrix estimator Γ̂∗

n, and the
vector estimator γ̂(n). Of course, using the positive definite matrix estimator is
necessary because the finite-sample inverse is needed. Note, however, that we
could equally have chosen the vector estimator γ̂∗(n) of Lemma 2 instead of
γ̂(n) in the Yule-Walker equations (5) and (13). All our asymptotic results of
Section 3 on FSO/PSO predictors remain true verbatim with such a choice.
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4. Corrections towards positive definiteness

Under Assumptions 1–4, the matrix Γ̂n of eq. (6) will have eigenvalues bounded
away from zero with probability tending to one as n → ∞. However, for finite
samples, Γ̂n will occasionally have eigenvalues that are negative and/or posi-
tive but too small. Since the inverse of Γ̂n is a key element in prediction, the
matrix Γ̂n must be corrected to achieve finite-sample positive definiteness and
avoid ill-conditioning. In this section, we present four ways to implement such
a correction. The method presented in Section 4.1 was originally proposed in
McMurry and Politis (2010); we now complete that proposal by observing the
need to rescale the matrix after its being corrected. The methods in Sections
4.2, 4.3, and 4.4 are novel.

4.1. Eigenvalue thresholding

In the context of the Linear Process Bootstrap, McMurry and Politis (2010)
suggested correcting the eigenvalues obtained in the spectral decomposition

Γ̂n = TnDT ′
n (17)

where Tn is an orthogonal matrix, and D is diagonal with ith entry denoted di.
Letting Dǫ = diag(dǫ1, . . . , d

ǫ
n) with dǫi = max{di, ǫγ̂0/n

β}, McMurry and Politis
(2010) showed that the adjusted estimate

Γ̂ǫ
n = TnD

ǫT ′
n (18)

is positive definite but maintains the same asymptotic rate of convergence as
Γ̂n; in the above, ǫ > 0 and β > 1/2 are some fixed numbers. For the purposes
of Linear Process Bootstrap, it had been found that the simple choices ǫ = 1
and β = 1 worked well in practice. In the present context, however, we found
that ǫ = 1 sometimes produced unstable predictions. A much larger ǫ, of the
order of 10 or 20, seems to solve the problem; we used ǫ = 20 and β = 1 in the
simulations.

Note that the average eigenvalue of Γ̆n equals γ̆0, which is our best es-
timator of var [Xt]; similarly, the average eigenvalue of Γ̂n equals γ̂0 = γ̆0.
However, the threshold correction (18) increases the average eigenvalue of the
estimated matrix, implicitly suggesting an increased estimate of var [Xt] (see
Appendix A for the connection of the eigenvalues of Γn to the spectral den-
sity, and therefore also to var [Xt]). Consequently, it is intuitive to rescale the
estimate Γ̂ǫ

n in order to ensure that its average eigenvalue remains equal to
γ̂0 = γ̆0.

Another way to motivate rescaling the corrected matrix estimate is to note
that the Yule-Walker equations (5) should be scale invariant, i.e., invariant upon
changes of var [Xt]. In fact, they are often defined via a correlation matrix and
vector instead of a covariance matrix and vector. To turn γ̂(n) into a vector of
correlations, we just divide it by γ̂0. Dividing Γ̂∗

n by γ̂0 should then provide a
correlation matrix—hence the need for rescaling.



764 T. L. McMurry and D. N. Politis

The rescaled estimate is thus given by

Γ̂∗
n = cΓ̂ǫ

n where c = γ̂0/d̄
ǫ (19)

and d̄ǫ = n−1
∑n

i=1 d
ǫ
i is the average eigenvalue of Γ̂ǫ

n.

4.2. Shrinkage of problematic eigenvalues towards positive
definiteness

Section 4.1 described a hard-threshold adjustment to the eigenvalues of Γ̂n in
order to render it positive definite. An alternative approach is to make the
adjustment based on a positive definite estimate of Γn; this approach is novel in
the literature of estimating large Toeplitz matrices and/or spectral densities—
for the latter see Appendix A.

If the flat top weight function (8) is replaced by a weight function with a
positive Fourier transform satisfying κ(0) = 1, such as Parzen’s piecewise cubic
lag window (Brockwell and Davis, 1991, p. 361), the resulting estimator Γ̂pd

n

will be positive definite and consistent—albeit with a slower rate of convergence
than Γ̂n. Since Γ̂

pd
n and Γ̂n are both Toeplitz, they are asymptotically diagonal-

ized by the same orthogonal matrix (Grenander and Szegő, 1958). Therefore,
letting Tn be the orthogonal matrix from equation (17), the matrix defined as

D̃ = T ′
nΓ̂

pd
n Tn

will be close to diagonal, and its diagonal entries will approximate the eigenval-
ues of Γ̂pd. Let d̃1, . . . , d̃n be the diagonals of D̃. We then produce adjusted eigen-
values d∗i of D (as in (17)) by the following shrinkage rule. Let d+i = max{di, 0}.
Then

d⋆i =

{

di if di ≥ d̃i
(1− τn)d

+
i + τnd̃i if di < d̃i,

(20)

where τn = c/na for constants c > 0 and a > 1/2. Let D⋆ be a diagonal matrix
with diagonal elements d⋆1, . . . , d

⋆
n, and define the shrinkage estimator

Γ̂⋆
n = TnD

⋆T ′
n

that is positive definite, and maintains the same asymptotic properties as Γ̂n

as long as the constant a in (20) is greater than 1/2. However, if a is chosen
too large, the shrinkage correction will be ineffective for small samples. Finally,
note that a rescaling step as given in eq. (19) must be performed here as well;
hence, our final estimator is given by

Γ̂∗
n = cΓ̂⋆

n where c = γ̂0/d̄
⋆ (21)

and d̄⋆ = n−1
∑n

i=1 d
⋆
i is the average eigenvalue of Γ̂⋆

n.

Remark 9. Shrinking the PSO predictor towards a positive definite estimator
is not expected to perform well when pn << n; this is because Γ̂pd

pn

and Γ̂pn
are

less close to being diagonalizable by the same orthogonal matrix when pn is not
large.
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4.3. Shrinkage towards white noise

Section 4.2 proposed shrinking Γ̂n towards the positive definite estimator Γ̂pd
n .

The shrinking was selective: only problematic eigenvalues were corrected as in
the threshold method of Section 4.1. We now propose a different correction
that is based on shrinking the corresponding spectral density estimate toward
that of a white noise with the same variance—in effect adjusting all eigenvalues.
This approach is novel in the literature of estimating large Toeplitz matrices and
spectral densities, and provides substantial computational benefits. However, the
notion of shrinking covariance matrices towards the identity has been previously
employed by Ledoit and Wolf (2003, 2004) in a different context, namely as a
tool to regularize the sample covariance matrix based on a sample consisting of
multiple i.i.d. copies of a random vector.

Recall that, up to a factor of 2π, the eigenvalues of Γ̂n are asymptotically
given by the values of the corresponding spectral density estimate evaluated at
the Fourier frequencies; see e.g. Gray (2006). Thus, negative eigenvalues cor-
respond to negative values in the estimated spectral density. The estimated
spectral density can be made positive—while keeping γ̂0 fixed—by shrinking γ̂i
(for i 6= 0) towards zero by a constant factor s ∈ (0, 1], chosen to ensure that the
minimum of the estimated spectral density is greater or equal to ǫγ̂0/(2πn

β).
To elaborate, if the minimum of the estimated spectral density happens to be
greater or equal to ǫγ̂0/(2πn

β), then no correction is needed; if not, then s is
chosen so that the the minimum of the corrected spectral density is exactly
equal to ǫγ̂0/(2πn

β). See Appendix A for more details.
The same adjustment can be applied to the estimated autocovariance matrix,

resulting in the shrinkage corrected version of Γ̂n given by

Γ̂∗
n = sΓ̂n + (1− s)γ̂0In, (22)

where In is the identity matrix and s ∈ (0, 1]. If all the eigenvalues di are greater
or equal to ǫγ̂0/n

β , then we let s = 1. Otherwise, we let s be the maximum value
that ensures that the minimum eigenvalue of Γ̂∗

n is exactly equal to ǫγ̂0/n
β.

Estimator (22) has several appealing properties. First, it keeps the estimated
variance of the process fixed to γ̂0, i.e., there is no need for rescaling. Second, the
shrinkage estimator Γ̂∗

n remains banded and Toeplitz, so fast, memory efficient
Toeplitz equation solving algorithms (Brent, Gustavson and Yun, 1980), can
always be used. Third, the estimate itself does not require numerical diagonal-
ization of Γ̂n since s can be estimated by evaluating the corresponding spectral
density estimate.

4.4. Shrinkage towards a 2nd order estimate

Section 4.2 suggested shrinking the smaller eigenvalues of Γ̂n towards a second
order target. Section 4.3 introduced the idea of shrinking all the eigenvalues
of Γ̂n towards those of a white noise process. An approach that combines the
most appealing features of these methods is to shrink the whole of Γ̂n towards
a positive definite, 2nd order estimate of Γn.
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Let Γ̂pd
n be as defined in Section 4.2, and define the corrected estimator by

Γ̂∗
n = sΓ̂n + (1 − s)Γ̂pd

n . (23)

The shrinkage factor s ∈ [0, 1] is chosen to raise the minimum eigenvalue of Γ̂n as
close as possible to ǫγ̂0/n

β while keeping s in the desired range. Our algorithm
exploits the connection between Toeplitz matrices and the spectral density and
is described in detail in Appendix A.3.

Estimator (23) is particularly appealing because Γ̂∗
n remains banded and

Toeplitz, and thus can be inverted via a fast algorithm. In addition, Γ̂∗
n has

no need for rescaling as it has γ̆0 on the main diagonal. Finally, using the
second order estimator as the target feels less arbitrary than shrinking towards
white noise. But the reason that both corrections work well, both asymptotically
and in simulations, is that the correction is a small one, i.e., s tends to one in
large samples; thus, the target is not meant to be achieved but gives only a
general direction for the correction—see the Appendix for more discussion in
the spectral density analog.

4.5. Remarks on the four correction methods

Let Γ̂∗
n denote the corrected (and rescaled—if needed) matrix according to one

of the methods presented in Sections 4.1, 4.2, 4.3, or 4.4. By construction, Γ̂∗
n is

positive definite but maintains the same fast asymptotic rate of convergence as
Γ̂n. The proof of the following corollary is similar to the proofs of Corollaries 2
and 3 in McMurry and Politis (2010).

Corollary 3. Under Assumptions 1–4, the estimator Γ̂∗
n satisfies

∣

∣

∣

∣

∣

∣
Γ̂∗
n − Γn

∣

∣

∣

∣

∣

∣

2
= Op(rn) and

∣

∣

∣

∣

∣

∣
(Γ̂∗

n)
−1 − Γ−1

n

∣

∣

∣

∣

∣

∣

2
= Op(rn)

where ||·||2 denotes operator norm, and rn is as given in eq. (14).

In addition, the positive definite estimator Γ̂∗
n may find other applications

when a consistent estimator of Γ−1
n is needed. For example, in the aforemen-

tioned Linear Process Bootstrap of McMurry and Politis (2010) the un-scaled
threshold estimator Γ̂ǫ

n discussed in Section 4.1 was employed. We conjecture
that using the rescaled estimator Γ̂∗

n of eq. (19) may improve the finite-sample
performance of the Linear Process Bootstrap by better capturing/preserving
the scale of the problem. In addition, the estimators Γ̂∗

n from Sections 4.2, 4.3,
and 4.4 are directly applicable to the Linear Process Bootstrap, and may also
also improve its performance.

Remark 10. The problem of estimating high-dimensional covariance and/or
precision matrices emerges under many settings different from ours; see e.g. Basu
and Michailidis (2014), Bickel and Levina (2008a,b), Cai and Liu (2011), Cai
and Zhou (2012a,b), and Chen, Xu and Wu (2013). As the method of shrinkage
towards the identity has been found useful by Ledoit and Wolf (2003, 2004),
it is conjectured that the above four methods of correcting a matrix towards
positive definiteness may be found useful in different such contexts.
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Remark 11. Among the four correction methods, the two shrinkage estimators,
namely estimators (22) and (23), may prove especially useful in the case of very
large data sets. The reason is that they both result in a banded Toeplitz matrix
that can be calculated easily, stored efficiently, and inverted via fast algorithms.
Recall that the system Tb = z with T Toeplitz can be solved in O(n log2 n) time
using O(n) memory (Brent, Gustavson and Yun, 1980).

5. Simulations and numerical experiments

We tried a variety of simulation experiments. For each simulated data set, we
used the first n observations to predict the n+1’st observation. Each prediction
was made using 16 approaches:

• The FSO predictor with the threshold correction to positive definiteness
described in Section 4.1 together with rescaling to keep the average eigen-
value the same. Two versions of γ̂(n) were considered: The first was the
version given by (7), and the second given by the first row of Γ̂∗

n, i.e.,
([Γ̂∗

n]1,2, . . . , [Γ̂
∗
n]1,n−1, 0)

′; see Section 3.2 for details. In the simulation ta-
bles, these estimates are denoted FSO-Th-Raw and FSO-Th-Shr respec-
tively.

• The FSO predictor with shrinkage to positive definiteness described in
Section 4.2. Both raw and shrunken versions of γ̂n were considered. These
predictions are denoted respectively FSO-PD-Raw and FSO-PD-Shr.

• The FSO predictor with shrinkage towards white noise, as described in
Section 4.3. Both raw and shrunken versions of γ̂n were considered. In the
simulation tables, these estimates are denoted respectively FSO-WN-Raw
and FSO-WN-Shr.

• The FSO predictor with shrinkage towards a 2nd order estimate described
in Section 4.4. Both raw and shrunken versions of γ̂n were considered. In
the simulation tables, these estimates are denoted respectively FSO-2o-
Raw and FSO-2o-Shr.

• The FSO predictor using a rectangular weight function κ(·) along with
either the adaptive bandwidth choice (ABC) described in Section 2.3 or the
subsampling bandwidth choice (SSBC) described in Wu and Pourahmadi
(2009); both bandwidth choices were considered in combination with raw
and shrunken versions of γ̂n. These estimates are denoted Rect-ABC-Raw,
Rect-ABC-Shr, Rect-SSBC-Raw, and Rect-SSBC-Shr. All matrices were
corrected to positive definiteness by shrinkage to white noise.

• The PSO predictor with a threshold correction and pn = (npaic)
1/2 to-

gether with the raw estimate of γ̂n; this estimator is denoted PSO-Th-Raw.
We found the shrunken version of γ̂n preformed erratically in this setting,
and the results are omitted. Note that paic denoted the AR order chosen
by minimization of the AIC criterion.

• The PSO predictor with shrinkage towards white noise and pn = (npaic)
1/2

together with the shrunken estimate of γ̂n. This estimator is denoted PSO-
WN-Shr.
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• An AR(paic) prediction with paic chosen by AIC minimization, denoted
AR.

• A version of the method described in Bickel and Gel (2011), denoted BG,
with pn = n1/2.

Accuracy of all predictions is described by root mean square prediction error
(RMSPE) taken across all simulations. The trapezoidal taper of equation (8)
was used throughout.

The predictor described in Bickel and Gel (2011) has coefficients given by

φ̂BG(n) =
(

Γ̂k
pn

)−1

γ̆(pn),

where Γ̂k
pn

is the k-banded version of the pn × pn autocovariance matrix with
pn = o(n), and γ̆(pn) is the vector of autocovariances at lags 1, . . . , pn. In our
simulations, we found that Γ̂k

pn

was frequently not positive definite. Bickel and
Gel (2011) recommend either considering a reduced set of banding parameters
k or tapering Γ̆pn

with a positive definite taper (Xiao and Wu, 2012). We found
the first approach to produce unstable predictions, so we focused on the second.
In particular, we tapered the entries of Γ̆pn

by the Parzen piecewise cubic lag
window (Brockwell and Davis, 1991, p. 361), and chose the width of the lag
window by cross-validation over the values from 1 to 3pn plus ∞ (no tapering).

For the implementation of the FSO predictor (10), the employed threshold
correction used constants ǫ = 20 and β = 1. When shrinking towards a positive
definite estimator, we used constants c = 6 and a = 0.55. For shrinkage towards
white noise, we scaled the off-diagonals of Γ̂n until the smallest eigenvalue was at
least max{10γ̂0/n, 0.5×λmin(Γ̂

pd
n )}. Shrinkage towards a 2nd order estimate used

threshold of 10γ̂0/n. All second order estimates used the Parzen piecewise cubic
lag window and bandwidth chosen by the plug-in approach proposed by Politis
(2003).

5.1. AR(1) prediction

For the first experiment, we simulated AR(1) time series of length 201 and used
the first 200 data points to predict the 201’st. Each simulation was repeated 1000
times, and the root mean square prediction errors are shown in Table 1. This
simulation should favor the AR predictor (3) since it directly fits an AR model.

The banding of Γ̂n implies that the FSO predictor (10) is based on a model
whose autocovariances vanish for lags bigger than 2l, in effect an MA model
of order 2l. Hence, if a dataset can be well approximated by a low-order AR
model, it is expected that the AR predictor (3) will have an advantage over a
method that is trying to approximate the low-order AR by a high-order MA.

Table 1 shows that FSO predictor (10) is competitive (and even better) than
the AR(p) model for small values of the AR coefficient but becomes less compet-
itive as the AR coefficient becomes larger; this is not surprising since accurate
approximation of such models by a moving average would require a very high
order MA model.
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Table 1

Root mean square prediction errors (standard error in parentheses) for AR(1) processes

φ = −0.9 φ = −0.5 φ = −0.1 φ = 0.1 φ = 0.5 φ = 0.9
FSO-Th-Raw 1.126 (0.027) 1.037 (0.022) 0.992 (0.021) 1.045 (0.023) 1.052 (0.024) 1.117 (0.028)
FSO-Th-Shr 1.091 (0.024) 1.035 (0.022) 0.992 (0.021) 1.045 (0.023) 1.050 (0.024) 1.081 (0.026)

FSO-PD-Raw 1.129 (0.024) 1.027 (0.022) 0.992 (0.021) 1.045 (0.023) 1.037 (0.024) 1.101 (0.026)
FSO-PD-Shr 1.105 (0.024) 1.021 (0.021) 0.991 (0.021) 1.045 (0.023) 1.032 (0.023) 1.078 (0.025)

FSO-WN-Raw 1.112 (0.027) 1.024 (0.021) 0.992 (0.021) 1.045 (0.023) 1.029 (0.023) 1.106 (0.028)
FSO-WN-Shr 1.114 (0.024) 1.023 (0.022) 0.992 (0.021) 1.045 (0.023) 1.028 (0.023) 1.090 (0.025)
FSO-2o-Raw 1.090 (0.024) 1.031 (0.022) 0.992 (0.021) 1.045 (0.023) 1.051 (0.024) 1.051 (0.024)
FSO-2o-Shr 1.066 (0.023) 1.029 (0.022) 0.992 (0.021) 1.045 (0.023) 1.049 (0.024) 1.037 (0.024)

Rect-ABC-Raw 1.649 (0.060) 1.041 (0.022) 0.992 (0.021) 1.045 (0.023) 1.042 (0.023) 1.455 (0.040)
Rect-ABC-Shr 1.360 (0.031) 1.038 (0.022) 0.992 (0.021) 1.045 (0.023) 1.039 (0.023) 1.316 (0.031)

Rect-SSBC-Raw 1.906 (0.070) 1.035 (0.022) 0.992 (0.021) 1.046 (0.023) 1.037 (0.023) 2.060 (0.062)
Rect-SSBC-Shr 1.396 (0.031) 1.036 (0.022) 0.992 (0.021) 1.045 (0.023) 1.033 (0.023) 1.466 (0.035)
PSO-Th-Raw 1.046 (0.023) 1.036 (0.022) 0.992 (0.021) 1.045 (0.023) 1.052 (0.024) 1.049 (0.025)
PSO-Sh-Shr 1.079 (0.024) 1.023 (0.022) 0.992 (0.021) 1.045 (0.023) 1.027 (0.023) 1.071 (0.025)

AR 1.023 (0.023) 1.009 (0.021) 0.991 (0.021) 1.046 (0.023) 1.008 (0.022) 1.004 (0.023)
BG 1.109 (0.030) 1.043 (0.022) 1.024 (0.022) 1.074 (0.024) 1.051 (0.022) 1.108 (0.028)

Table 2

Root mean square prediction errors (standard error in parentheses) for MA(1) processes

θ = −0.9 θ = −0.5 θ = −0.1 θ = 0.1 θ = 0.5 θ = 0.9
FSO-Th-Raw 1.079 (0.026) 1.057 (0.024) 0.991 (0.023) 0.980 (0.022) 1.004 (0.023) 1.052 (0.024)
FSO-Th-Shr 1.075 (0.026) 1.056 (0.024) 0.991 (0.023) 0.980 (0.022) 1.004 (0.023) 1.049 (0.024)

FSO-PD-Raw 1.084 (0.026) 1.054 (0.024) 0.991 (0.023) 0.980 (0.022) 1.000 (0.023) 1.068 (0.025)
FSO-PD-Shr 1.076 (0.026) 1.052 (0.024) 0.991 (0.023) 0.980 (0.022) 0.998 (0.022) 1.056 (0.024)

FSO-WN-Raw 1.059 (0.026) 1.053 (0.024) 0.991 (0.023) 0.980 (0.022) 0.998 (0.023) 1.038 (0.023)
FSO-WN-Shr 1.059 (0.026) 1.053 (0.024) 0.991 (0.023) 0.980 (0.022) 0.997 (0.023) 1.042 (0.023)
FSO-2o-Raw 1.060 (0.026) 1.055 (0.024) 0.991 (0.023) 0.980 (0.022) 1.003 (0.023) 1.040 (0.023)
FSO-2o-Shr 1.060 (0.026) 1.055 (0.024) 0.991 (0.023) 0.980 (0.022) 1.002 (0.023) 1.041 (0.023)

Rect-ABC-Raw 1.061 (0.026) 1.054 (0.024) 0.991 (0.023) 0.980 (0.022) 0.998 (0.023) 1.042 (0.023)
Rect-ABC-Shr 1.060 (0.026) 1.053 (0.024) 0.991 (0.023) 0.980 (0.022) 0.996 (0.023) 1.047 (0.023)

Rect-SSBC-Raw 1.064 (0.026) 1.055 (0.024) 0.991 (0.023) 0.983 (0.022) 0.996 (0.023) 1.040 (0.023)
Rect-SSBC-Shr 1.067 (0.027) 1.055 (0.024) 0.990 (0.023) 0.983 (0.022) 0.996 (0.023) 1.044 (0.023)
PSO-Th-Raw 1.079 (0.026) 1.057 (0.024) 0.991 (0.023) 0.980 (0.022) 1.004 (0.023) 1.052 (0.024)
PSO-Sh-Shr 1.059 (0.026) 1.053 (0.024) 0.991 (0.023) 0.980 (0.022) 0.997 (0.023) 1.042 (0.023)

AR 1.070 (0.026) 1.059 (0.024) 0.993 (0.023) 0.987 (0.022) 1.000 (0.022) 1.047 (0.023)
BG 1.071 (0.025) 1.081 (0.024) 1.007 (0.023) 1.012 (0.023) 1.029 (0.023) 1.054 (0.023)

Standard errors for the RMSPE estimates are shown in parentheses in Ta-
ble 1. The standard errors for the differences in RMSPE between our methods
and the AR predictions tend to decrease with the magnitude of the AR pa-
rameter. When the AR parameter is −0.1 or 0.1, the standard errors for these
differences tend to be around 0.005. When the AR parameter is −0.5 or 0.5,
the standard errors for these differences tend to be around 0.009. When the AR
parameter is −0.9 or 0.9, the standard errors for these differences tend to be
around 0.014.

5.2. MA(1) prediction

For the second experiment, we simulated time series of length 201 and used the
first 200 data points to predict the 201’st. Each simulation was repeated 1000
times, and the root mean square prediction errors are shown in Table 2. This
simulation should favor the FSO predictor (10) since it estimates the correlation
structure of an MA model directly.

Note that the FSO predictor (10) is competitive with the AR(p) model for all
values of the MA coefficient, and frequently shows slightly better performance.
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Standard errors for the RMSPEs are shown in parentheses in Table 2. Stan-
dard errors for the differences in RMSPEs between our methods and the AR(p)
predictions were approximately 0.004 when the MA parameters were −0.1 or
0.1, 0.006 when the MA parameters were −0.5 or 0.5, and 0.010 when the MA
parameters were −0.9 or 0.9.

Remark 12. The AR(1) simulations suggest that the shrunken estimate of
γn tends to outperform the raw estimate when the AR parameter is large.
The improvement seems to come at little to no cost, so the shrunken estimate
seems advisable in practice; further evidence to support this point is provided
in Section 5.6.

5.3. MA(2) prediction

In the next simulation, we considered a wide range of MA(2) processes, with
coefficients θ1 and θ2 ranging from −1 to 1 in steps of 1/3. Several of these com-
binations of parameters, for example θ1 = −1 and θ2 = 0, have MA polynomials
with roots on the unit circle causing the spectral density to have a correspond-
ing zero. These simulations are expected to cause trouble for all approaches
to prediction since Γn is not invertible for large n, but the troubles have been
somewhat masked by the correction to positive definiteness.

For the simulation, 1000 data sets of sizes 101 and 501 were generated for
each combination of θ1 and θ2, and the final observation was predicted using all
preceding observations; results are given in Tables 3 and 4. Note that for the
larger sample size, one of our estimators was the best performing in more than
half of the MA(2) cases under consideration. For the smaller sample size, our
estimators were consistently competitive except for the case θ2 = 1.

Standard errors for the RMSPEs in the MA(2) case were again consistently
close to 0.024. The five-number summary for the simulations of size 100 was:
min = 0.021, Q1 = 0.024, Q2 = 0.026, Q3 = 0.028, max = 0.051. Standard
errors for the simulations of size 500 were almost identical.

Remark 13. The shrinkage corrected FSO and PSO predictors produced very
similar results across most of the simulations; this is not surprising since in
general φ̂i(n) decays rapidly as i increases. As long as pn ≫ l, the coefficients
of the FSO and PSO predictors that are significantly different from zero agree
almost exactly.

5.4. Real data experiment

For our final prediction experiment, we tried our methods on real data using
time series from the M3 competition database (Hyndman, Akram and Bergmeir,
2013). In order to avoid the need for seasonal adjustment, we first selected only
those time series measured yearly. We then further restricted to those time series
which were not found to be nonstationary, i.e., for which the test of Kwiatkowski
et al. (1992) could not reject the null hypothesis of absence of a unit root at the
α = 0.05 level. The end result was 105 time series of lengths between 20 and 47.
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Table 3. Root mean square prediction errors for MA(2) process with n = 100

θ2 = −1 θ2 = −2/3 θ2 = −1/3 θ2 = 0 θ2 = 1/3 θ2 = 2/3 θ2 = 1

FSO-Th-Raw θ1 = −1 1.703 1.615 1.390 1.166 1.045 1.185 1.275
FSO-Th-Shr θ1 = −1 1.699 1.613 1.389 1.164 1.054 1.144 1.224

FSO-PD-Raw θ1 = −1 1.699 1.613 1.391 1.163 1.271 1.637 1.573
FSO-PD-Shr θ1 = −1 1.695 1.609 1.386 1.151 1.133 1.384 1.382

FSO-WN-Raw θ1 = −1 1.695 1.614 1.388 1.148 1.062 1.184 1.234
FSO-WN-Shr θ1 = −1 1.690 1.612 1.387 1.153 1.119 1.198 1.234

FSO-2o-Raw θ1 = −1 1.696 1.616 1.389 1.145 1.056 1.206 1.280
FSO-2o-Shr θ1 = −1 1.691 1.613 1.385 1.151 1.067 1.125 1.193

Rect-ABC-Raw θ1 = −1 1.692 1.617 1.389 1.153 1.079 1.194 1.244

Rect-ABC-Shr θ1 = −1 1.684 1.613 1.387 1.157 1.134 1.209 1.242
Rect-SSBC-Raw θ1 = −1 1.708 1.563 1.364 1.187 1.139 1.159 1.248

Rect-SSBC-Shr θ1 = −1 1.692 1.549 1.358 1.188 1.146 1.174 1.250
PSO-Th-Raw θ1 = −1 1.702 1.614 1.389 1.165 1.046 1.184 1.272
PSO-Sh-Shr θ1 = −1 1.689 1.611 1.387 1.153 1.119 1.197 1.233

AR θ1 = −1 1.698 1.558 1.347 1.153 1.051 1.089 1.135
BG θ1 = −1 1.714 1.569 1.360 1.145 1.088 1.091 1.159

FSO-Th-Raw θ1 = −2/3 1.402 1.289 1.195 1.051 1.123 1.174 1.202
FSO-Th-Shr θ1 = −2/3 1.398 1.288 1.197 1.051 1.085 1.140 1.200

FSO-PD-Raw θ1 = −2/3 1.407 1.290 1.193 1.057 1.188 1.216 1.193
FSO-PD-Shr θ1 = −2/3 1.404 1.288 1.189 1.054 1.127 1.166 1.176

FSO-WN-Raw θ1 = −2/3 1.400 1.288 1.194 1.046 1.081 1.135 1.183

FSO-WN-Shr θ1 = −2/3 1.397 1.289 1.196 1.049 1.075 1.122 1.186

FSO-2o-Raw θ1 = −2/3 1.404 1.287 1.193 1.044 1.116 1.167 1.193
FSO-2o-Shr θ1 = −2/3 1.401 1.289 1.194 1.045 1.071 1.122 1.187

Rect-ABC-Raw θ1 = −2/3 1.405 1.287 1.196 1.045 1.091 1.137 1.192
Rect-ABC-Shr θ1 = −2/3 1.404 1.289 1.198 1.047 1.083 1.125 1.194

Rect-SSBC-Raw θ1 = −2/3 1.427 1.286 1.159 1.083 1.066 1.112 1.209

Rect-SSBC-Shr θ1 = −2/3 1.414 1.276 1.157 1.082 1.061 1.103 1.208
PSO-Th-Raw θ1 = −2/3 1.404 1.287 1.195 1.051 1.121 1.173 1.202
PSO-Sh-Shr θ1 = −2/3 1.397 1.288 1.196 1.048 1.075 1.122 1.186

AR θ1 = −2/3 1.414 1.290 1.136 1.062 1.035 1.079 1.122
BG θ1 = −2/3 1.420 1.297 1.140 1.077 1.068 1.101 1.129

FSO-Th-Raw θ1 = −1/3 1.242 1.109 1.129 1.009 1.044 1.068 1.190
FSO-Th-Shr θ1 = −1/3 1.243 1.106 1.128 1.008 1.042 1.063 1.196

FSO-PD-Raw θ1 = −1/3 1.242 1.112 1.135 1.009 1.034 1.072 1.183
FSO-PD-Shr θ1 = −1/3 1.239 1.107 1.132 1.006 1.026 1.065 1.186

FSO-WN-Raw θ1 = −1/3 1.236 1.099 1.127 1.008 1.036 1.057 1.188
FSO-WN-Shr θ1 = −1/3 1.244 1.103 1.126 1.008 1.033 1.053 1.193

FSO-2o-Raw θ1 = −1/3 1.234 1.100 1.128 1.009 1.043 1.057 1.182
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Table 3. (continued)

θ2 = −1 θ2 = −2/3 θ2 = −1/3 θ2 = 0 θ2 = 1/3 θ2 = 2/3 θ2 = 1

FSO-2o-Shr θ1 = −1/3 1.237 1.097 1.126 1.008 1.041 1.051 1.192
Rect-ABC-Raw θ1 = −1/3 1.242 1.103 1.130 1.010 1.038 1.057 1.196

Rect-ABC-Shr θ1 = −1/3 1.251 1.107 1.128 1.008 1.034 1.050 1.199
Rect-SSBC-Raw θ1 = −1/3 1.276 1.120 1.098 1.004 1.029 1.069 1.229

Rect-SSBC-Shr θ1 = −1/3 1.278 1.118 1.094 0.999 1.020 1.061 1.229
PSO-Th-Raw θ1 = −1/3 1.242 1.109 1.129 1.009 1.044 1.068 1.190
PSO-Sh-Shr θ1 = −1/3 1.244 1.103 1.126 1.008 1.032 1.054 1.194

AR θ1 = −1/3 1.269 1.121 1.095 0.998 1.003 1.052 1.188
BG θ1 = −1/3 1.258 1.111 1.108 1.017 1.043 1.060 1.190

FSO-Th-Raw θ1 = 0 1.181 1.025 1.031 0.996 1.021 1.059 1.140
FSO-Th-Shr θ1 = 0 1.187 1.023 1.030 0.996 1.021 1.059 1.147

FSO-PD-Raw θ1 = 0 1.167 1.035 1.031 0.996 1.019 1.058 1.135

FSO-PD-Shr θ1 = 0 1.163 1.032 1.029 0.996 1.018 1.060 1.136

FSO-WN-Raw θ1 = 0 1.175 1.022 1.029 0.996 1.020 1.050 1.131

FSO-WN-Shr θ1 = 0 1.186 1.027 1.028 0.995 1.020 1.052 1.139

FSO-2o-Raw θ1 = 0 1.170 1.024 1.031 0.996 1.021 1.049 1.127
FSO-2o-Shr θ1 = 0 1.177 1.024 1.030 0.996 1.021 1.050 1.132

Rect-ABC-Raw θ1 = 0 1.190 1.026 1.032 0.996 1.023 1.050 1.143
Rect-ABC-Shr θ1 = 0 1.200 1.032 1.029 0.996 1.021 1.050 1.147

Rect-SSBC-Raw θ1 = 0 1.226 1.045 1.043 1.015 1.032 1.085 1.186
Rect-SSBC-Shr θ1 = 0 1.228 1.047 1.035 1.013 1.026 1.077 1.189
PSO-Th-Raw θ1 = 0 1.181 1.023 1.030 0.996 1.021 1.059 1.141
PSO-Sh-Shr θ1 = 0 1.186 1.027 1.028 0.995 1.020 1.052 1.140

AR θ1 = 0 1.189 1.057 1.015 1.009 1.024 1.080 1.146
BG θ1 = 0 1.179 1.050 1.040 1.038 1.052 1.089 1.138

FSO-Th-Raw θ1 = 1/3 1.190 1.114 1.091 1.037 1.087 1.068 1.172
FSO-Th-Shr θ1 = 1/3 1.191 1.114 1.091 1.036 1.085 1.065 1.177

FSO-PD-Raw θ1 = 1/3 1.187 1.109 1.092 1.036 1.077 1.073 1.167
FSO-PD-Shr θ1 = 1/3 1.185 1.106 1.089 1.036 1.068 1.068 1.162

FSO-WN-Raw θ1 = 1/3 1.185 1.106 1.089 1.037 1.078 1.062 1.164
FSO-WN-Shr θ1 = 1/3 1.190 1.107 1.090 1.036 1.074 1.061 1.173

FSO-2o-Raw θ1 = 1/3 1.183 1.106 1.088 1.038 1.087 1.062 1.163

FSO-2o-Shr θ1 = 1/3 1.188 1.109 1.088 1.037 1.085 1.058 1.171
Rect-ABC-Raw θ1 = 1/3 1.194 1.112 1.090 1.040 1.084 1.071 1.173
Rect-ABC-Shr θ1 = 1/3 1.199 1.113 1.091 1.040 1.080 1.069 1.179

Rect-SSBC-Raw θ1 = 1/3 1.221 1.117 1.070 1.033 1.050 1.103 1.197

Rect-SSBC-Shr θ1 = 1/3 1.219 1.116 1.062 1.028 1.045 1.091 1.205
PSO-Th-Raw θ1 = 1/3 1.188 1.114 1.091 1.037 1.087 1.067 1.172
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Table 3. (continued)

θ2 = −1 θ2 = −2/3 θ2 = −1/3 θ2 = 0 θ2 = 1/3 θ2 = 2/3 θ2 = 1
PSO-Sh-Shr θ1 = 1/3 1.190 1.107 1.090 1.036 1.074 1.061 1.173

AR θ1 = 1/3 1.223 1.113 1.061 1.029 1.032 1.069 1.164

BG θ1 = 1/3 1.210 1.104 1.068 1.052 1.056 1.085 1.156

FSO-Th-Raw θ1 = 2/3 1.505 1.313 1.209 1.011 1.122 1.150 1.260
FSO-Th-Shr θ1 = 2/3 1.502 1.313 1.210 1.009 1.093 1.130 1.255

FSO-PD-Raw θ1 = 2/3 1.506 1.314 1.207 1.012 1.176 1.171 1.249
FSO-PD-Shr θ1 = 2/3 1.503 1.312 1.201 1.006 1.122 1.139 1.231

FSO-WN-Raw θ1 = 2/3 1.499 1.307 1.205 1.002 1.092 1.126 1.243
FSO-WN-Shr θ1 = 2/3 1.497 1.305 1.207 1.001 1.093 1.122 1.246
FSO-2o-Raw θ1 = 2/3 1.501 1.307 1.204 1.002 1.120 1.155 1.250

FSO-2o-Shr θ1 = 2/3 1.497 1.306 1.204 0.999 1.088 1.121 1.238
Rect-ABC-Raw θ1 = 2/3 1.499 1.310 1.206 1.001 1.097 1.130 1.253

Rect-ABC-Shr θ1 = 2/3 1.496 1.307 1.208 1.000 1.095 1.122 1.253
Rect-SSBC-Raw θ1 = 2/3 1.524 1.302 1.156 1.027 1.107 1.100 1.250

Rect-SSBC-Shr θ1 = 2/3 1.518 1.293 1.154 1.026 1.104 1.091 1.251
PSO-Th-Raw θ1 = 2/3 1.503 1.312 1.208 1.012 1.120 1.150 1.260
PSO-Sh-Shr θ1 = 2/3 1.497 1.305 1.207 1.001 1.093 1.122 1.246

AR θ1 = 2/3 1.503 1.302 1.141 1.016 1.071 1.078 1.171

BG θ1 = 2/3 1.536 1.306 1.137 1.030 1.098 1.098 1.175
FSO-Th-Raw θ1 = 1 1.639 1.502 1.391 1.147 1.057 1.146 1.379
FSO-Th-Shr θ1 = 1 1.635 1.500 1.391 1.156 1.053 1.108 1.327

FSO-PD-Raw θ1 = 1 1.640 1.505 1.397 1.124 1.267 1.619 1.594
FSO-PD-Shr θ1 = 1 1.635 1.503 1.393 1.124 1.132 1.346 1.445

FSO-WN-Raw θ1 = 1 1.634 1.502 1.390 1.139 1.046 1.146 1.350
FSO-WN-Shr θ1 = 1 1.630 1.502 1.390 1.147 1.083 1.166 1.354
FSO-2o-Raw θ1 = 1 1.639 1.501 1.390 1.132 1.046 1.165 1.391
FSO-2o-Shr θ1 = 1 1.635 1.500 1.390 1.143 1.049 1.091 1.298

Rect-ABC-Raw θ1 = 1 1.637 1.503 1.399 1.143 1.063 1.157 1.359
Rect-ABC-Shr θ1 = 1 1.631 1.502 1.397 1.150 1.097 1.175 1.366

Rect-SSBC-Raw θ1 = 1 1.647 1.513 1.361 1.195 1.099 1.127 1.290
Rect-SSBC-Shr θ1 = 1 1.630 1.500 1.355 1.192 1.107 1.141 1.302
PSO-Th-Raw θ1 = 1 1.638 1.501 1.391 1.146 1.058 1.145 1.377

PSO-Sh-Shr θ1 = 1 1.629 1.501 1.390 1.147 1.084 1.166 1.354

AR θ1 = 1 1.629 1.499 1.347 1.135 1.049 1.056 1.204

BG θ1 = 1 1.666 1.516 1.345 1.138 1.073 1.071 1.195
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Table 4. Root mean square prediction errors for MA(2) process with n = 500

θ2 = −1 θ2 = −2/3 θ2 = −1/3 θ2 = 0 θ2 = 1/3 θ2 = 2/3 θ2 = 1
FSO-Th-Raw θ1 = −1 1.631 1.443 1.240 1.106 1.346 1.045 1.097
FSO-Th-Shr θ1 = −1 1.631 1.443 1.239 1.101 1.216 1.041 1.096

FSO-PD-Raw θ1 = −1 1.631 1.440 1.238 1.128 2.108 1.066 1.104
FSO-PD-Shr θ1 = −1 1.631 1.439 1.236 1.115 1.756 1.058 1.100

FSO-WN-Raw θ1 = −1 1.631 1.439 1.230 1.081 1.020 1.030 1.095
FSO-WN-Shr θ1 = −1 1.631 1.439 1.231 1.085 1.032 1.028 1.099
FSO-2o-Raw θ1 = −1 1.631 1.442 1.234 1.075 1.066 1.036 1.084
FSO-2o-Shr θ1 = −1 1.631 1.442 1.234 1.079 1.018 1.034 1.086

Rect-ABC-Raw θ1 = −1 1.630 1.439 1.230 1.086 1.037 1.050 1.108

Rect-ABC-Shr θ1 = −1 1.631 1.438 1.230 1.090 1.048 1.050 1.116
Rect-SSBC-Raw θ1 = −1 1.633 1.440 1.230 1.079 1.037 1.050 1.104
Rect-SSBC-Shr θ1 = −1 1.633 1.440 1.230 1.085 1.051 1.050 1.111
PSO-Th-Raw θ1 = −1 1.631 1.443 1.240 1.106 1.345 1.045 1.097
PSO-Sh-Shr θ1 = −1 1.631 1.439 1.231 1.085 1.032 1.028 1.099

AR θ1 = −1 1.651 1.457 1.233 1.071 0.999 1.021 1.079

BG θ1 = −1 1.670 1.472 1.234 1.075 1.023 1.024 1.077

FSO-Th-Raw θ1 = −2/3 1.415 1.266 1.056 1.023 1.029 0.998 1.083
FSO-Th-Shr θ1 = −2/3 1.415 1.265 1.056 1.021 1.017 0.996 1.081

FSO-PD-Raw θ1 = −2/3 1.410 1.264 1.062 1.024 0.996 1.001 1.100
FSO-PD-Shr θ1 = −2/3 1.409 1.262 1.061 1.021 0.987 0.997 1.094

FSO-WN-Raw θ1 = −2/3 1.406 1.260 1.069 1.013 0.962 0.981 1.085

FSO-WN-Shr θ1 = −2/3 1.403 1.261 1.073 1.013 0.963 0.981 1.088

FSO-2o-Raw θ1 = −2/3 1.415 1.258 1.055 1.017 0.987 0.985 1.069
FSO-2o-Shr θ1 = −2/3 1.414 1.259 1.058 1.015 0.978 0.984 1.069

Rect-ABC-Raw θ1 = −2/3 1.411 1.262 1.073 1.014 0.963 0.986 1.089
Rect-ABC-Shr θ1 = −2/3 1.408 1.263 1.077 1.013 0.965 0.983 1.092

Rect-SSBC-Raw θ1 = −2/3 1.410 1.262 1.068 1.015 0.966 0.986 1.087
Rect-SSBC-Shr θ1 = −2/3 1.407 1.263 1.072 1.014 0.965 0.984 1.091
PSO-Th-Raw θ1 = −2/3 1.415 1.266 1.056 1.023 1.029 0.998 1.084
PSO-Sh-Shr θ1 = −2/3 1.403 1.261 1.073 1.013 0.963 0.981 1.088

AR θ1 = −2/3 1.407 1.270 1.042 1.021 0.967 0.993 1.063
BG θ1 = −2/3 1.419 1.288 1.046 1.036 0.981 0.997 1.064

FSO-Th-Raw θ1 = −1/3 1.235 1.073 0.985 0.989 0.971 1.037 1.117
FSO-Th-Shr θ1 = −1/3 1.230 1.071 0.985 0.989 0.971 1.036 1.115

FSO-PD-Raw θ1 = −1/3 1.228 1.080 0.983 0.989 0.971 1.030 1.117

FSO-PD-Shr θ1 = −1/3 1.223 1.074 0.983 0.989 0.970 1.027 1.113
FSO-WN-Raw θ1 = −1/3 1.201 1.060 0.978 0.989 0.971 1.018 1.121

FSO-WN-Shr θ1 = −1/3 1.203 1.062 0.977 0.989 0.971 1.016 1.125
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Table 4. (continued)

θ2 = −1 θ2 = −2/3 θ2 = −1/3 θ2 = 0 θ2 = 1/3 θ2 = 2/3 θ2 = 1

FSO-2o-Raw θ1 = −1/3 1.203 1.053 0.983 0.989 0.971 1.030 1.104
FSO-2o-Shr θ1 = −1/3 1.201 1.055 0.983 0.989 0.971 1.028 1.106

Rect-ABC-Raw θ1 = −1/3 1.206 1.066 0.979 0.989 0.976 1.020 1.121
Rect-ABC-Shr θ1 = −1/3 1.210 1.069 0.978 0.989 0.976 1.017 1.126

Rect-SSBC-Raw θ1 = −1/3 1.209 1.063 0.978 0.990 0.975 1.018 1.123

Rect-SSBC-Shr θ1 = −1/3 1.213 1.067 0.977 0.990 0.975 1.015 1.127
PSO-Th-Raw θ1 = −1/3 1.233 1.072 0.985 0.989 0.971 1.037 1.117
PSO-Sh-Shr θ1 = −1/3 1.203 1.062 0.977 0.989 0.971 1.016 1.125

AR θ1 = −1/3 1.199 1.063 0.982 0.990 0.972 1.036 1.104

BG θ1 = −1/3 1.201 1.056 0.996 1.015 0.991 1.051 1.098

FSO-Th-Raw θ1 = 0 1.124 0.981 0.981 1.011 0.988 1.072 1.155
FSO-Th-Shr θ1 = 0 1.121 0.979 0.981 1.011 0.988 1.071 1.151

FSO-PD-Raw θ1 = 0 1.118 0.975 0.981 1.011 0.988 1.067 1.146
FSO-PD-Shr θ1 = 0 1.112 0.973 0.981 1.011 0.988 1.066 1.138

FSO-WN-Raw θ1 = 0 1.111 0.965 0.981 1.011 0.988 1.055 1.123
FSO-WN-Shr θ1 = 0 1.120 0.966 0.981 1.011 0.988 1.055 1.123
FSO-2o-Raw θ1 = 0 1.094 0.972 0.981 1.011 0.988 1.065 1.112

FSO-2o-Shr θ1 = 0 1.097 0.971 0.981 1.011 0.988 1.063 1.110
Rect-ABC-Raw θ1 = 0 1.117 0.966 0.982 1.011 0.989 1.055 1.126
Rect-ABC-Shr θ1 = 0 1.129 0.968 0.982 1.011 0.989 1.056 1.127

Rect-SSBC-Raw θ1 = 0 1.114 0.965 0.982 1.011 0.990 1.056 1.126
Rect-SSBC-Shr θ1 = 0 1.126 0.968 0.982 1.011 0.990 1.056 1.127
PSO-Th-Raw θ1 = 0 1.124 0.980 0.981 1.011 0.988 1.072 1.155
PSO-Sh-Shr θ1 = 0 1.120 0.966 0.981 1.011 0.988 1.055 1.123

AR θ1 = 0 1.068 0.976 0.986 1.012 0.990 1.070 1.112
BG θ1 = 0 1.070 0.982 1.008 1.032 1.010 1.079 1.113

FSO-Th-Raw θ1 = 1/3 1.234 1.058 1.003 0.988 1.051 1.018 1.099
FSO-Th-Shr θ1 = 1/3 1.229 1.057 1.002 0.988 1.051 1.017 1.095

FSO-PD-Raw θ1 = 1/3 1.237 1.055 1.001 0.988 1.051 1.011 1.099

FSO-PD-Shr θ1 = 1/3 1.230 1.052 1.001 0.988 1.050 1.008 1.092

FSO-WN-Raw θ1 = 1/3 1.205 1.050 0.996 0.988 1.051 0.998 1.086
FSO-WN-Shr θ1 = 1/3 1.206 1.052 0.996 0.988 1.051 0.998 1.089

FSO-2o-Raw θ1 = 1/3 1.210 1.044 1.000 0.988 1.051 1.008 1.071
FSO-2o-Shr θ1 = 1/3 1.207 1.044 1.000 0.988 1.051 1.007 1.073

Rect-ABC-Raw θ1 = 1/3 1.214 1.056 0.995 0.988 1.056 0.995 1.091

Rect-ABC-Shr θ1 = 1/3 1.214 1.060 0.994 0.988 1.055 0.995 1.093
Rect-SSBC-Raw θ1 = 1/3 1.213 1.054 0.994 0.988 1.056 0.995 1.090
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Table 4. (continued)

θ2 = −1 θ2 = −2/3 θ2 = −1/3 θ2 = 0 θ2 = 1/3 θ2 = 2/3 θ2 = 1
Rect-SSBC-Shr θ1 = 1/3 1.214 1.058 0.994 0.988 1.056 0.995 1.093
PSO-Th-Raw θ1 = 1/3 1.234 1.058 1.002 0.988 1.051 1.019 1.099
PSO-Sh-Shr θ1 = 1/3 1.206 1.052 0.996 0.988 1.051 0.998 1.089

AR θ1 = 1/3 1.217 1.057 1.007 0.991 1.052 1.002 1.065

BG θ1 = 1/3 1.233 1.052 1.020 1.005 1.071 1.007 1.063

FSO-Th-Raw θ1 = 2/3 1.438 1.297 1.043 1.016 1.068 1.002 1.111
FSO-Th-Shr θ1 = 2/3 1.438 1.296 1.042 1.014 1.057 1.001 1.109

FSO-PD-Raw θ1 = 2/3 1.431 1.296 1.057 1.011 1.031 1.002 1.113
FSO-PD-Shr θ1 = 2/3 1.431 1.294 1.054 1.008 1.022 1.001 1.109

FSO-WN-Raw θ1 = 2/3 1.429 1.283 1.054 1.002 0.995 0.993 1.094

FSO-WN-Shr θ1 = 2/3 1.428 1.283 1.058 1.001 0.993 0.993 1.095

FSO-2o-Raw θ1 = 2/3 1.436 1.288 1.042 1.008 1.033 0.999 1.081
FSO-2o-Shr θ1 = 2/3 1.436 1.286 1.045 1.007 1.023 0.998 1.083

Rect-ABC-Raw θ1 = 2/3 1.425 1.286 1.059 1.003 0.999 1.001 1.112

Rect-ABC-Shr θ1 = 2/3 1.423 1.284 1.064 1.002 0.996 1.002 1.111
Rect-SSBC-Raw θ1 = 2/3 1.429 1.285 1.059 1.002 1.002 1.004 1.102
Rect-SSBC-Shr θ1 = 2/3 1.427 1.284 1.063 1.001 1.000 1.003 1.102
PSO-Th-Raw θ1 = 2/3 1.439 1.297 1.043 1.015 1.068 1.002 1.111
PSO-Sh-Shr θ1 = 2/3 1.428 1.283 1.058 1.001 0.993 0.993 1.095

AR θ1 = 2/3 1.427 1.296 1.035 1.011 0.992 0.998 1.090
BG θ1 = 2/3 1.437 1.302 1.035 1.024 1.000 1.011 1.092

FSO-Th-Raw θ1 = 1 1.659 1.450 1.295 1.093 1.301 0.995 1.089
FSO-Th-Shr θ1 = 1 1.659 1.450 1.295 1.088 1.193 0.988 1.087

FSO-PD-Raw θ1 = 1 1.659 1.449 1.296 1.107 1.948 1.034 1.116

FSO-PD-Shr θ1 = 1 1.658 1.450 1.294 1.097 1.636 1.013 1.107

FSO-WN-Raw θ1 = 1 1.659 1.450 1.287 1.069 1.030 0.984 1.084
FSO-WN-Shr θ1 = 1 1.659 1.450 1.287 1.073 1.038 0.984 1.087
FSO-2o-Raw θ1 = 1 1.659 1.450 1.292 1.062 1.049 0.987 1.069

FSO-2o-Shr θ1 = 1 1.659 1.450 1.292 1.064 1.022 0.984 1.070
Rect-ABC-Raw θ1 = 1 1.660 1.451 1.284 1.070 1.035 1.002 1.104
Rect-ABC-Shr θ1 = 1 1.659 1.451 1.284 1.073 1.044 0.999 1.104

Rect-SSBC-Raw θ1 = 1 1.661 1.451 1.280 1.069 1.044 1.006 1.095
Rect-SSBC-Shr θ1 = 1 1.660 1.451 1.280 1.073 1.053 1.003 1.096
PSO-Th-Raw θ1 = 1 1.659 1.450 1.295 1.094 1.300 0.995 1.090
PSO-Sh-Shr θ1 = 1 1.659 1.450 1.287 1.073 1.038 0.984 1.087

AR θ1 = 1 1.667 1.461 1.282 1.058 1.023 0.993 1.052

BG θ1 = 1 1.678 1.470 1.288 1.055 1.046 1.003 1.045
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Table 5

Root mean square prediction errors for M3 competition data and reversed M3 competition
data

Forward Reversed
FSO-Th-Raw 0.8693 0.8421
FSO-Th-Shr 0.9746 1.0021

FSO-PD-Raw 0.8828 0.8485
FSO-PD-Shr 0.8930 0.8835

FSO-WN-Raw 0.8821 0.8509
FSO-WN-Shr 0.9831 1.0237
FSO-2o-Raw 0.8894 0.8640
FSO-2o-Shr 0.8916 0.8877

Rect-ABC-Raw 0.8785 0.8561
Rect-ABC-Shr 0.9941 1.0413

Rect-SSBC-Raw 0.8572 0.7971
Rect-SSBC-Shr 0.9405 0.9661
PSO-Th-Raw 0.8804 0.8490
PSO-Sh-Shr 0.9864 1.0246

AR 0.8356 0.7852
BG 0.8682 0.7916

Each of these time series was then rescaled to have variance 1 so that prediction
errors would have approximately the same scale. The experiment consisted of
predicting the second to last and the last value in each series using all preceding
observations, i.e., having a testing set of size 2 for each series; this resulted in 210
total predictions. Root mean square prediction errors (obtained as an average
of the 210 predictions) corresponding to the different methods are shown in the
first column of Table 5.

To corroborate and add weight to these findings, we then reversed time and
used the later times in each series to predict the first and second observations.
Time reversal produces stationary time series with the same covariance struc-
tures, allowing us to perform an additional 210 predictions. Results are shown
in the second column of Table 5.

In both the original and time reversed real data experiments, the benchmark
AR prediction outperformed all other methods. Our procedure is analogous
to nonparametric spectral estimation, so in some sense it is unsurprising that
a nonparametric procedure is uncompetitive with smaller sample sizes. More
surprisingly, subsampling bandwidth choice outperformed adaptive bandwidth
choice, and the estimators using shrunken estimates of γ(n) underperformed
those using raw estimates.

In both the original and time reversed real data experiments, the benchmark
AR prediction outperformed all other methods. Our procedure is analogous to
nonparametric spectral estimation, so in some sense it is not surprising that
it is not competitive with sample sizes between 20 to 50. More surprisingly,
subsampling bandwidth choice outperformed adaptive bandwidth choice, and
the predictors using shrunken estimates of γ(n) underperformed compared to
those using raw estimates. Both these phenomena seem to contradict the findings
of the simulations; we suspect the sample sizes were so small that they did not
allow the asymptotics to kick in.
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Table 6

Average operator norm loss for autocovariance matrix estimates using various corrections to
positive definiteness

Γ̂n Thresh Thresh+Scl PD-Shrink WN-Shrink 2o-Shrink Rect-ABC-WN Rect-SSBC-WN
AR(1) φ = −0.9 10.9824 10.9822 10.7257 10.8039 9.8317 10.0831 9.4513 10.4375
AR(1) φ = −0.5 0.9154 0.9153 0.9172 0.9010 0.9429 0.9098 0.9483 0.9108
AR(1) φ = −0.1 0.2992 0.2992 0.2992 0.2982 0.2992 0.2992 0.2977 0.2857
AR(1) φ = 0.1 0.2930 0.2930 0.2930 0.2923 0.2930 0.2930 0.2924 0.2863
AR(1) φ = 0.5 0.9454 0.9451 0.9465 0.9352 0.9713 0.9417 0.9948 0.9133
AR(1) φ = 0.9 9.7730 9.7708 9.7022 9.7519 9.3799 9.8239 10.6984 13.2768
MA(1) θ = −0.9 0.3185 0.3248 0.3143 0.3206 0.2909 0.3501 0.2804 0.3686
MA(1) θ = −0.5 0.2488 0.2486 0.2474 0.2517 0.2377 0.2500 0.2284 0.3103
MA(1) θ = −0.1 0.2883 0.2883 0.2883 0.2877 0.2883 0.2883 0.2877 0.2835
MA(1) θ = 0.1 0.2816 0.2816 0.2816 0.2809 0.2816 0.2816 0.2812 0.2833
MA(1) θ = 0.5 0.2567 0.2565 0.2552 0.2593 0.2452 0.2581 0.2368 0.3085
MA(1) θ = 0.9 0.2999 0.3059 0.2976 0.3042 0.2794 0.3327 0.2784 0.3776

ARMA(2,1) 1.3995 1.3988 1.3977 1.3845 1.3882 1.3926 1.3953 1.3855

5.5. Relative performance of different matrix estimators

Rescaling of the threshold corrected matrix given in eq. (19) is a new proposal
in the literature. Similarly, the shrinkage corrected matrices described in Sec-
tions 4.2, 4.3, and 4.4 are also novel. For this reason, we also carried out a small
simulation study demonstrating their ability to improve estimates of Γn. Data
sets of size n = 200 were used throughout using some simple AR(1) and MA(1)
models, along with the ARMA(2,1) modelXt−0.7Xt−1+0.5Xt−2 = ǫt−0.3ǫt−1.
Each data set was used to estimate the autocovariance matrix, and the estimate
was then compared to the true autocovariance matrix in operator norm. 1,000
replications were performed for each model.

Average differences in operator norm are shown in Table 6. The estimators
that have been corrected to positive definiteness and then scaled to keep the
average eigenvalue unchanged show a consistent advantage over the initial es-
timate Γ̂n and the unadjusted threshold corrected matrix. Shrinkage to white
noise and to a second order estimate both show strong performance, with the
former particularly strong for the MA processes, and the latter stronger for the
AR processes.

5.6. Relative performance of autocovariance vector estimators

Section 3.2 introduced two estimates of the autocovariance vector γ(n). The
first, γ̂(n) is the raw or unadjusted banded and tapered estimate. The second,
γ̂∗(n) is the shrunken version taken from the first row of the estimated autoco-
variance matrix after correction to positive definiteness. These two estimators
have similar theoretical performance, but it is unclear which is preferable in
application.

In order to compare performance, we conducted a small simulation study
using a selection of AR(1) and MA(1) models, along with the ARMA(2,1) model
Xt − 0.7Xt−1 + 0.5Xt−2 = ǫt − 0.3ǫt−1, each with a sample size of n = 200. l2
norm errors are shown in Table 7. All the shrinkage type estimators, except
possibly the selective shrinkage towards a positive definite estimate, seem to
consistently improve on the raw estimate γ̂(n); shrinkage towards white noise is
a particularly strong performer here.
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Table 7

Average l2 norm differences between estimates and true values of vector γ(n)

Raw Thresh PD-Shrink WN-Shrink 2o-Shrink Rect-ABC Rect-ABC-WN Rect-SSBC Rect-SSBC-WN
AR(1) φ = −0.9 5.6285 5.4900 5.5622 5.1675 5.2324 5.9317 5.2304 5.9948 5.8240
AR(1) φ = −0.5 0.3088 0.3086 0.2973 0.3127 0.3056 0.3300 0.3234 0.3021 0.2950
AR(1) φ = −0.1 0.1059 0.1059 0.1054 0.1058 0.1059 0.1057 0.1057 0.0984 0.0983
AR(1) φ = 0.1 0.1063 0.1063 0.1057 0.1063 0.1063 0.1062 0.1062 0.0984 0.0983
AR(1) φ = 0.5 0.3084 0.3082 0.2983 0.3121 0.3059 0.3317 0.3268 0.2981 0.2918
AR(1) φ = 0.9 5.4163 5.3440 5.3906 5.1878 5.3164 5.7428 5.7425 6.3400 6.9718
MA(1) θ = −0.9 0.1513 0.1443 0.1508 0.1277 0.1581 0.1499 0.1243 0.1975 0.1789
MA(1) θ = −0.5 0.0939 0.0934 0.0946 0.0864 0.0934 0.0931 0.0849 0.1248 0.1190
MA(1) θ = −0.1 0.1038 0.1038 0.1034 0.1038 0.1038 0.1037 0.1036 0.0962 0.0961
MA(1) θ = 0.1 0.1034 0.1034 0.1031 0.1034 0.1034 0.1033 0.1033 0.0966 0.0965
MA(1) θ = 0.5 0.0973 0.0968 0.0985 0.0904 0.0969 0.0967 0.0894 0.1264 0.1213
MA(1) θ = 0.9 0.1525 0.1476 0.1558 0.1353 0.1588 0.1509 0.1323 0.1879 0.1715

ARMA(2,1) 0.3467 0.3463 0.3367 0.3425 0.3445 0.3754 0.3534 0.3616 0.3415

6. Conclusions

The thrust of this paper was to demonstrate the viability and asymptotic con-
sistency of the FSO linear predictor (10) that uses the complete process history.
A key element here is an accurate estimate of the full n × n autocovariance
matrix given a sample of size n. As a by-product, we also show the consistency
of the PSO linear predictor (12) which is an AR(p) predictor based on the last
p data values for any p ≤ n; this is a substantial strengthening of previous
results which had required p = o(n). In simulations, it is shown that the FSO
and PSO predictors are competitive as compared to the state-of-the-art lin-
ear predictor which amounts to fitting an AR(p) model with p chosen by AIC
minimization.

As part of our investigations, we have introduced several refinements to the
current state of the art in estimating large autocovariance matrices under the
restriction that they are finite-sample positive definite and not ill-conditioned.
In particular, when using the eigenvalue threshold correction, we noted the ne-
cessity of rescaling the matrix so that the mean eigenvalue remains unchanged.
In addition, we introduced three new corrections to positive definiteness, namely
shrinking towards positive definiteness, shrinking towards the (rescaled) iden-
tity/white noise, and shrinking towards a 2nd order estimate. All three correc-
tions are shown to work well with the shrinkage towards white noise appearing
to have a small finite sample performance advantage over shrinking towards a
2nd order estimate.

In particular, note that the estimators resulting from shrinkage towards either
white noise or a second order estimate both result in a banded Toeplitz matrix.
As such, they can be calculated easily, stored efficiently, and inverted via fast
algorithms; this property is especially important in the case of very large sample
sizes.

Finally, in Appendix A we use these insights into large covariance matrix
estimation to refine flat-top kernel spectral density estimates in order to ensure
their positivity.

7. Technical proofs

Let ||A||2 ≡ max{|A~x|2 : ~x ∈ R
n with |~x|2 = 1} denote the matrix 2-norm of an

n× n matrix A.
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Proof of Lemma 1.

|γ̂(n)− γ(n)|2 =

{

n
∑

i=1

[κ(i/l)γ̆i − γi]
2

}1/2

≤
n
∑

i=1

|κ(i/l)γ̆i − γi|

≤

l
∑

i=1

|γ̆i − γi|+

⌊cκl⌋
∑

i=l+1

|κ(i/l)γ̆i − γi|+

n
∑

i=⌊cκl⌋+1

|γn|

Bounds for the above three terms are obtained in the proof of Theorem 1 in
McMurry and Politis (2010); using those bounds, we have

E
[

|γ̂(n)− γ(n)|22
]1/2

≤ d2(⌊cκl⌋+ 1)n−1/2 +
1

n

⌊cκl⌋
∑

i=1

i|γi|+

n
∑

i=l+1

|γi|,

where d2 is a constant depending on E
[

X4
i

]

and ∆4 but not l or n; this estab-

lishes the convergence of γ̂(n) to γ(n) with the same rates as Γ̂n converges to
Γn, described in Corollary 1 of McMurry and Politis (2010).

Proof of Theorem 2.

φ̂(n)− φ(n) = (Γ̂∗
n)

−1γ̂(n)− Γ−1
n γ(n)

= (Γ̂∗)−1
n γ̂(n)− Γ̂−1

n γ(n) + (Γ̂∗
n)

−1γ(n)− Γ−1
n γ(n)

= (Γ̂∗
n)

−1[γ̂(n)− γ(n)] + [(Γ̂∗
n)

−1 − Γ−1
n ]γ(n)

Therefore

|φ̂(n)− φ(n)|2 ≤
∣

∣

∣

∣

∣

∣
(Γ̂∗

n)
−1
∣

∣

∣

∣

∣

∣

2
|γ̂(n)− γ(n)|2 +

∣

∣

∣

∣

∣

∣
(Γ̂∗

n)
−1 − Γ−1

n

∣

∣

∣

∣

∣

∣

2
|γ(n)|2

= A1 +A2.

We investigate term A1 first. With probability tending to one, ||(Γ̂∗
n)

−1||2 is
bounded.

|γ̂(n)− γ(n)|2 =

{

n
∑

i=1

[γ̆iκ(i/l)− γi]
2

}1/2

≤

n
∑

i=1

|γ̆iκ(i/l)− γi|

= Op(rn)

The final equality is established in the proof of Theorem 1 in McMurry and
Politis (2010); see also Section 3.2.
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We now turn our attention to A2. By Corollary 3 in McMurry and Politis
(2010),

∣

∣

∣

∣

∣

∣
(Γ̂∗

n)
−1 − Γ−1

n

∣

∣

∣

∣

∣

∣

2
= Op(rn).

Since
∑∞

i=1 |γ(i)| < ∞, the result follows.

Proof of Theorem 3. We compare the FSO predictor X̂n+1 to the oracle optimal
prediction X̃n+1 based on the following decomposition:

X̂n+1 − X̃n+1 =

kn
∑

i=1

[φ̂i(n)− φi(n)]Xn−i+1 +

n
∑

i=kn+1

φ̂i(n)Xn−i+1

−
n
∑

i=kn+1

φi(n)Xn−i+1

= A+B + C. (24)

The basic idea of the proof is that we can let kn → ∞ slowly enough that
the first term goes to 0 by the Cauchy-Schwarz inequality. Since the coefficients
φ̂i(n) and φi(n) decay quickly as i increases, by allowing kn to grow fast enough
the second two terms can also be shown to converge to 0, again by Cauchy-
Schwarz.

We begin with term A. By the Cauchy-Schwarz inequality

∣

∣

∣

∣

∣

kn
∑

i=1

[φ̂i(n)− φi(n)]Xn−i+1

∣

∣

∣

∣

∣

≤ |φ̂(n)− φ(n)|2

[

kn
∑

i=1

X2
n−i+1

]1/2

= Op(rnk
1/2
n )

By Assumption 5ii this term tends to 0.
Term B will be handled by Proposition 2.2 of Demko, Moss and Smith (1984)

which shows that as long as Γ̂∗
n is a banded matrix, which it will be with probabil-

ity tending to 1, (for small samples Γ̂∗
n may be corrected to positive definiteness,

and depending on the technique used, no-longer banded)

|(Γ̂∗
n)

−1
ij | ≤ C2λ

|i−j|/l, (25)

where C2 and λ < 1 depend only on the largest and smallest eigenvalues of Γ̂∗
n.

Since with probability tending to 1, these are bounded away from 0 and from
above, for large enough n, C2 and λ can be chosen independent of n with (25)
holding with probability tending to 1.

Since by Assumption 5i, kn grows faster than l, there is no loss in considering
only i > 2l. In this case

|φ̂i(n)| =

∣

∣

∣

∣

∣

∣

cκl
∑

j=1

(Γ̂∗
n)

−1
ij γ̂j

∣

∣

∣

∣

∣

∣

≤ C3

cκl
∑

j=1

λ(i−j)/l ≤ C4lλ
i/l, (26)

where the bound above holds with probability tending to 1.
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By (26),
{

n
∑

i=kn

|φ̂i(n)|
2

}1/2

≤ C5l
3/2λ(kn−1)/(2l). (27)

By (27) and the Cauchy-Schwarz inequality, term B converges to 0 by Assump-
tion 5i.

By the Cauchy-Schwarz inequality, Term C can be bounded by

|C| =

∣

∣

∣

∣

∣

n
∑

i=kn+1

φi(n)Xn−i+1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n
∑

i=kn+1

[φi(n)− φi + φi]Xn−i+1

∣

∣

∣

∣

∣

≤





(

n
∑

i=kn+1

|φi(n)− φi|

)

+

(

n
∑

i=kn+1

φ2
i

)1/2




×Op(n
1/2)

≤



C7

∞
∑

i=n+1

|φi|+

(

∞
∑

i=kn+1

φ2
i

)1/2


Op(n
1/2)

(28)

where φi denotes the corresponding AR(∞) coefficient, and inequality (28) fol-
lows from the variant of Baxter’s inequality (Baxter, 1962, 1963) given in Lemma
2.2 of Kreiss, Paparoditis and Politis (2011) and holds for all n > N0 for some
positive N0. The first term in (28) converges by Assumption 6. The second term
in (28) converges by Assumption 5iii.

Proof of Corollary 1. For any sequence pn < n, Γ̂∗
pn

converges to Γpn
as fast

or faster than the convergence of the larger n× n matrices; this is because the
absolute row sum norm of the difference of the smaller matrices is bounded
from above by the maximum absolute row sum norm of the difference of the
larger matrices. Similarly, the convergence of γ̂(pn) to γ(pn) is not made worse;
see Section 3.2. Finally, the eigenvalues of Γ̂∗

pn

and Γpn
have the same positive

upper and lower bounds as their larger counterparts; see Lemma 4.1 in Gray
(2006). Therefore, the proof of Theorem 2 carries over directly.

Proof of Corollary 2. In the case that pn ≤ kn, terms B and C in (24) are 0, and
the Cauchy-Schwarz inequality can be used directly on term A, giving the desired
result. If pn > kn, term B in decomposition (24) is again handled by Proposition
2.2 of Demko, Moss and Smith (1984) with the only change being that the sum
(27) stops at pn. The challenge comes with term C, where Baxter’s inequality is
now used to compare φi(pn) and φi. Since pn < n, this approximation becomes
worse, and the first half of term C becomes

n1/2C′
7

∞
∑

i=pn+1

|φi|,

which converges to 0 by Assumption 7.
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Appendix A: Positivity corrections in spectral density estimation

Let

f̂io(ω) =
1

2π

n
∑

s=−n

κ(s/l)γ̆je
−iωs ≡

1

2π

n
∑

s=−n

γ̂je
−iωs (29)

denote the infinite-order estimate of f(ω) using flat-top weight function κ(·).

As is well-known, f̂io(ω) achieves the fastest rate of convergence possible in a
given smoothness class; see Politis (2011) and the references therein. However,

although f(ω) ≥ 0 for all ω, the same is not guaranteed to be true for f̂io(ω). The
usual correction is to clip the negative values, i.e., define the corrected estimator

f̂+
io(ω) = max{0, f̂io(ω)}

that is nonnegative while maintaining the same fast rate of convergence of f̂io(ω).
Nevertheless, in situations where an estimate of the inverse of f(ω) is needed,

a more dramatic correction must take place. For example, recall that the large-
sample variance of the sample mean n−1

∑n
t=1 Xt is given by 2πf(0)/n under

standard conditions. Hence, to create a t-statistic for testing and/or confidence
intervals, the practitioner must be able to divide by an estimate of f(0).

In this Appendix we discuss analogs of the three matrix corrections given
in Section 4 as they apply to the problem of spectral density estimation. The
analogy is made possible due to the aforementioned fact that the eigenvalues
of Γn are asymptotically given by the values of the spectral density function
evaluated on the Fourier frequencies; see e.g. Gray (2006).

A.1. Selective shrinkage to positive definiteness

As in Section 4.2, we can employ a second order kernel estimator to provide
a target lower bound for the estimated spectral density. Recall that a positive
definite spectral estimator is by necessity based on a second order kernel, and
is therefore asymptotically inefficient. Let

f̂2o(ω) =
1

2π

n
∑

s=−n

κ2o(s/l)γ̆je
−iωs

denote a second-order, positive definite spectral density estimate such as the one
that results when the weight function κ2o(·) is chosen to be Parzen’s piecewise
cubic lag window.
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Then we can define a corrected flat-top spectral density estimator as

f̂⋆
io(ω) =

{

f̂io(ω) if f̂io(ω) ≥ f̂2o(ω)

(1− τn)f̂
+
io(ω) + τnf̂2o(ω) if f̂io(ω) < f̂2o(ω)

where τn = c/na for constants c > 0 and a > 1/2. Since a > 1/2, the correction

by factor τn is asymptotically negligible so that f̂⋆
io(ω) enjoys the same fast rate

of convergence as f̂io(ω).
Using the formula for the Fourier coefficients and noting that κ(0) = κ2o(0) =

1, it follows that

γ̆0 = γ̂0 =

∫ π

−π

f̂io(ω)dω =

∫ π

−π

f̂2o(ω)dω,

i.e., the area under any choice of spectral density estimate equals the sample
autocovariance at lag zero which is our best estimate of var [Xt]. Note, however,
that the shrinkage estimator f⋆

io(ω) has an area that is larger than γ̂0, therefore

implying a bigger estimate for var [Xt]. This is not intuitive, and hence f̂⋆(ω)
should be appropriately rescaled. Our final, rescaled shrinkage estimator is given
by

f̂∗
io(ω) = cf̂⋆

io(ω) where c = γ̂0/

∫ π

−π

f̂⋆
io(ω)dω. (30)

A.2. Shrinkage toward white noise

As described in Section 4.3, we may shrink γ̂i (for i 6= 0) towards zero by a
factor s ∈ (0, 1] chosen to ensure that the minimum of the estimated spectral
density is greater or equal to ǫγ̂0/(2πn

β). The resulting estimator

f̂∗
io(ω) ≡ (1− s)

γ̂0
2π

+ sf̂io(ω)

is positive definite while maintaining the same fast asymptotic rate of conver-
gence as f̂io(ω). Note that by construction, f̂∗

io(ω) ≥ ǫγ̂0/(2πn
β) for all ω. By

analogy to Section 4.3, the estimator f̂∗
io(ω) has no need for rescaling as it main-

tains the same area under the curve as f̂io(ω), and therefore is associated with
an estimate of var [Xt] given by γ̂0 = γ̆0.

A.3. Shrinkage towards a 2nd order estimate

A spectral density estimator can also be corrected to non-negativity by shrinking
it towards a positive definite, 2nd order estimate as described for matrices in
Section 4.4. The resulting estimator is

f̂∗
io(ω) ≡ sf̂io(ω) + (1− s)f̂2o(ω).

Note that the above amounts to shrinking f̂io(ω) towards f̂2o(ω) for all ω ∈
[−π, π]; thus, it should be contrasted with the method of Section A.1 where it

was proposed to shrink f̂+
io(ω) towards f̂2o(ω) only for ω such that f̂+

io(ω) <

f̂2o(ω).
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The shrinkage factor s ∈ [0, 1] is chosen to be the minimum of s(ω), where
s(ω) is a “pointwise” shrinkage factor, calculated as follows. If fio(ω) ≥ f2o(ω)
or if fio(ω) ≥ ǫγ̂0/(2πn

β), then s(ω) = 1; in words fio(ω) is bigger than either
the threshold or the second order estimator, so it is left untouched. Otherwise,
we calculate the shrinkage factor needed to raise fio(ω) to the minimum of
the threshold and the second order estimator, making s(ω) the maximum of
[

ǫγ̂0/(2πn
β)− f2o(ω)

]

/[fio(ω)− f2o(ω)] and 0.

The reason that both shrinking towards white noise and shrinking towards
a 2nd order estimate work well—asymptotically and in finite samples—is ex-
plained in the following remark.

Remark 14. Spectral estimators such as f̂io and f̂2o can be alternatively ex-
pressed as weighted local averages of the periodogram (see Brockwell and Davis,
1991). Since the periodogram is (approximately) unbiased, the bias in spectral
estimation is due to the local averaging that, in effect, “trims the hills, and fills
the valleys”. The fact that f̂io(ω) is less biased than f̂2o(ω) implies that f̂io(ω)

can follow “the hills and the valleys” better than f̂2o(ω). In that sense, shrinking

f̂io(ω) towards the spectral density of a white noise is tantamount to shrinking

f̂io(ω) towards f̂2o(ω) for all ω ∈ [−π, π]; the goal of shrinkage towards either

target is a flatter version of f̂io(ω). Of course these targets are not meant to be
achieved—just to give a general direction for the correction.

A.4. Thresholding correction

Politis (2011) proposed a threshold correction for the spectral density that is
analogous to the eigenvalue thresholding of Section 4.1. To elaborate, the thresh-
old corrected spectral density estimate is f̂ ǫ

io(ω) = max{f̂io(ω), ǫγ̂0/(2πn
β)} for

some ǫ > 0 and β > 1/2. Note, however, that this threshold estimator could also
benefit from rescaling due to the arguments leading to eq. (30). We may thus
propose a new rescaled threshold corrected flat-top spectral density estimator
given by

f̂∗
io(ω) = cǫf̂

ǫ
io(ω) where cǫ = γ̂0/

∫ π

−π

f̂ ǫ
io(ω)dω. (31)

A.5. Numerical illustrations

Although asymptotically negligible, the corrections discussed in Sections A.1–
A.4 can dramatically improve finite sample performance. Figure 1 provides an
illustration using a dataset simulated from the ARMA(2,1) modelXt−0.7Xt−1+
0.5Xt−2 = ǫt − 0.3ǫt−1 with n = 100. Notably, this was not a dataset selected
at random; it was chosen among many realizations of datasets from this ARMA
model because for this particular dataset f̂io behaves poorly at ω = 0 necessi-
tating substantial correction.
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Fig 1. The 2nd order, infinite order, and shrinkage-corrected spectral density estimates.

Table 8

Mean integrated square errors for spectral density estimates

f̂io Thresh PD-Shrink WN-Shrink 2o-Shrink Rect-ABC Rect-ABC-WN Rect-SSBC Rect-SSBC-WN
AR(1) φ = −0.9 15.3518 12.8751 14.2757 11.8498 11.9982 15.6966 9.2717 14.2054 10.4643
AR(1) φ = −0.5 0.0426 0.0419 0.0396 0.0434 0.0418 0.0449 0.0398 0.0423 0.0404
AR(1) φ = −0.1 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0055 0.0059 0.0055
AR(1) φ = 0.1 0.0055 0.0055 0.0054 0.0055 0.0055 0.0055 0.0055 0.0057 0.0054
AR(1) φ = 0.5 0.0418 0.0412 0.0392 0.0428 0.0410 0.0441 0.0404 0.0403 0.0406
AR(1) φ = 0.9 11.3374 10.6823 11.0332 10.4805 10.7259 12.2597 11.1381 13.7981 13.2870
MA(1) θ = −0.9 0.0232 0.0225 0.0220 0.0200 0.0220 0.0223 0.0189 0.0298 0.0206
MA(1) θ = −0.5 0.0081 0.0075 0.0078 0.0073 0.0080 0.0080 0.0072 0.0116 0.0075
MA(1) θ = −0.1 0.0052 0.0052 0.0051 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052
MA(1) θ = 0.1 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.0052 0.0053 0.0052
MA(1) θ = 0.5 0.0084 0.0080 0.0082 0.0079 0.0084 0.0083 0.0077 0.0120 0.0080
MA(1) θ = 0.9 0.0217 0.0214 0.0208 0.0192 0.0208 0.0210 0.0183 0.0310 0.0208

ARMA(2,1) 0.0493 0.0481 0.0464 0.0483 0.0489 0.0540 0.0425 0.0503 0.0441

In addition, we tried a formal simulation experiment to compare the various
corrections to positive definiteness in spectral density estimation using difference
AR(1) and MA(1) models, as well as the aforementioned ARMA(2,1) model of
Figure 1. For each simulated dataset of size n = 200, we estimated the spectral
density using the uncorrected infinite order estimate and the methods described
in Sections A.1–A.4. The thresholds for correction were the same as those used
in the corresponding autocovariance matrix simulations.

Mean integrated square errors are shown in Table 8. All of the new correction
methods show substantial improvement over f̂io. As in the matrix estimation
set-up of Section 5.5, shrinkage towards white noise and towards a 2nd order
estimator appear particularly powerful. Shrinkage towards white noise seems
to perform better for MA processes, while shrinkage towards the 2nd order
estimator appears to have a small edge for AR processes.
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