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Abstract. Robust time series analysis is an important subject in statistical
modeling. Models based on Gaussian distribution are sensitive to outliers,
which may imply in a significant degradation in estimation performance as
well as in prediction accuracy. State-space models, also referred as Dynamic
Models, is a very useful way to describe the evolution of a time series vari-
able through a structured latent evolution system. Integrated Nested Laplace
Approximation (INLA) is a recent approach proposed to perform fast ap-
proximate Bayesian inference in Latent Gaussian Models which naturally
comprises Dynamic Models. We present how to perform fast and accurate
non-Gaussian dynamic modeling with INLA and show how these models can
provide a more robust time series analysis when compared with standard dy-
namic models based on Gaussian distributions. We formalize the framework
used to fit complex non-Gaussian space-state models using the R package
INLA and illustrate our approach with a simulation study and a Brazilian
homicide rate dataset.

1 Introduction

Robust estimation of time series analysis is an important and challenging field of
statistical application from either frequentist (Bustos and Yohai, 1979, Denby and
Martin, 1979) or Bayesian perspectives (West, 1981). Robust methods are useful
when there is a small percentage of data that do not follow a proposed model. Dy-
namic Linear Models (DLM) and Generalized Dynamic Linear Models (DGLM),
also referred as state-space models, are a broad class of parametric models that
generalizes regression and time series models with time varying parameters, where
both the parameter variation and the observed data are described in an evolutionary
structured way (Migon et al., 2005). Dynamic models are composed by an obser-
vational equation and one or more system equations in which the error terms are
usually chosen to follow a Gaussian distribution. However, it is well known that the
Gaussian distribution is very sensitive to outliers, which may produce degradation
in the estimation performance (Fox, 1972). Therefore, one might be interested in
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building a more flexible model based on heavy-tailed distributions rather than the
usual Gaussian. Such models fall into the class of non-Gaussian dynamic models
(see Kitagawa (1987), Durbin and Koopman (2000) for a detailed description as
well as applications of this class of models).

Integrated Nested Laplace Approximation (INLA) is an approach proposed by
Rue, Martino and Chopin (2009) to perform approximate fully Bayesian inference
in the class of latent Gaussian models (LGMs). LGMs is a broad class and in-
clude many of the standard models currently in use by the applied community, e.g.,
stochastic volatility, disease mapping, log-Gaussian Cox process and generalized
linear models. As opposed to the simulation-based methods, like Markov Chain
Monte Carlo (MCMC), INLA performs approximate inference using a series of
deterministic approximations that take advantage of the LGM structure to provide
fast and accurate approximations. Moreover, it avoids known problems with com-
monly used simulation-based methods, e.g., difficulty in diagnosing convergence,
additive Monte Carlo errors, and high demand in terms of computational time.
Even for dynamic models within the class of LGMs, it was not possible to fit most
of them using the available tools in the INLA package for R, hereafter denoted
as R-INLA. Ruiz-Cérdenas, Krainski and Rue (2012) presented a general frame-
work which enabled users to use R- INLA to perform fully Bayesian inference for
a variety of state-space models. However, their approach does not include the class
of non-Gaussian dynamic models where the errors of the system equations have a
non-Gaussian distribution as, for example, the heavy-tailed distributions.

One of the key assumptions of the INLA approach is that the latent field fol-
lows a Gaussian distribution. However, Martins and Rue (2014) have shown a way
to extend INLA to cases where some independent components of the latent field
have a non-Gaussian distribution. Their approach transfer the non-Gaussianity of
the latent field to the likelihood function and it has shown to produce satisfactory
results as long as this distribution is not far from Gaussian. Distributions that add
flexibility around a Gaussian as near-Gaussian distributions are referred as being,
for example, unimodal and symmetric.

The contribution of this paper is three folded: (1) To extend INLA for non-
Gaussian latent models with dependency structure, specifically for non-Gaussian
DLMs; (2) To present in a simple manner how to use R-INLA to perform non-
Gaussian DLMs modelling.

To accomplish these issues, we introduce a reparametrization of the non-
Gaussian DLM and combine it with the computational framework provided by
R-INLA to introduce how to model dependent non-Gaussian latent field in the R-
INLA setup; (3) We analyze the Brazilian homicides rates using a robust approach.
The analysis indicates that, in most of our application scenarios, the robust method
outperforms the traditional Gaussian approach.

The paper is organized as following: Section 2 introduces the methodology of
our approach, presenting how to perform fast Bayesian inference using R-INLA
for non-Gaussian DLLMs. Section 3 presents our simulation study to compare two
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competitor models using some quality measures. In Section 4, we present the study
over the Brazilian Homicide data, explaining our findings. Finally, in Section 5 we
discuss some final remarks and future research.

2 Methodology

This section will describe our approach to handle non-Gaussian DLM within R-
INLA. Although valid for DGLM, we have chosen to illustrate our extension using
a DLM to facilitate the presentation. To apply the extension for DGLM, a sim-
ple change in the Gaussian likelihood is necessary, which is a trivial modifica-
tion under R-INLA. Section 2.1 will define a general DLM of interest, and show
that it fits the class of LGM only if the error terms of the system equations are
Gaussian distributed. Section 2.2 will review the INLA methodology, including
the recent extension that allows INLA to be applied to models where some com-
ponents of the latent field have non-Gaussian distribution. Section 2.3 gives an
overview of a generic approach to fit dynamic models using R- INLA through an
augmented model structure. Finally, Section 2.4 extend the approaches presented
in Sections 2.2 and 2.3 and show how this extension can be exploited to fit non-
Gaussian DLM within R-INLA.

2.1 Models

The INLA approach performs approximate Bayesian inference in latent Gaussian
models where the first stage is formed by the likelihood function with conditional
independence properties given the latent field x and possible hyperparameters 61,
where each data point {y;,t =1, ..., ng} is connected to one element in the latent
field x;. In this context, the latent field x is formed by linear predictors, random and
fixed effects, depending on the model formulation. Assuming that the elements of
the latent field connected to the data points, that is, the linear predictors {n;,t =
1, ..., ng}, are positioned on the first ny elements of x, we have:

o Stage 1.y|x,01 ~ 7 (y|x,01) =<, 7 (y:|x:, 01).

The conditional distribution of the x given some possible hyperparameters 6,
forms the second stage of the model and has a joint Gaussian distribution,

o Stage 2.x|0> ~ 7 (x]62) = N'(x; p(62), Q71 (82)),

where AV'(-; w, Q1) denotes a multivariate Gaussian distribution with mean vec-
tor . and a precision matrix Q. In most applications, the latent Gaussian field have
conditional independence properties, which translates into a sparse precision ma-
trix Q(#2), which is of extreme importance for the numerical algorithms used by
INLA. The latent field x may have additional linear constraints of the form Ax = e
for an ¢ x ng matrix A of rank ¢, where ¢ is the number of constraints and ng
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the size of the latent field. The hierarchical model is then completed with an ap-
propriate prior distribution for the m-dimensional hyperparameter of the model
0 =(01,0-):

e Stage 3.0 ~ 1 (0).

The structure of a non-Gaussian DLM is composed by an observation equation
describing the relationship between the observations y {y;; t =1, ..., ng4}, which
are connected to a linear combination of the state parameters a {a;;t =1, ..., ng},
and a system of equations describing the evolution of a. For example:

Vi =a; + vy, v~ N(,01),
ar = a1 + wy, wy ~ 7 (+)

in which a; is the state vector at time t, #; is the Gaussian variance of v, and
the noises w; could follow a non-Gaussian distribution. We emphasize that the
structure described above could be more flexible allowing any linear combination
and addition of covariates. Furthermore, this is an extension over the traditional
DLM where we now can have a non-Gaussian distribution for the noise w; in the
system equation.

If w; is assumed to be Gaussian, this structure falls naturally into the class of
LGMs (see Section 2.3). To help understand the INLA review of Section 2.2, we
can rewrite a LGM using a hierarchical structure with three stages. To elucidate
the understanding of notation in our examples, we highlight that state vector a
does not necessarily corresponds to the latent field x. Since our approach lies in
a augmented likelihood function, the dimension of the latent field x is larger than
the dimension of y and a.

However, if a Gaussian distribution is not assumed for wy, it is no longer pos-
sible to write the model as a hierarchical structure with the Gaussian assumption
in the second stage. To accommodate the non-Gaussian DLM, it is necessary to
expand the class of LGMs defined early to allow that nodes of the latent field have
non-Gaussian distributions. We then rewrite stage 2 of the hierarchical model as

e Stage 2"V (xG, XNG) 02 ~ 7 (x|02) = N'(xG; 0, Q7 1(82)) x [, 7 (xng, |02),
—_—

X

where Xg and xng represent the Gaussian and independent non-Gaussian terms of
the latent field, respectively. As a result, the distribution of the latent field is not
Gaussian, which precludes the use of INLA to fit this class of models.

Section 2.2 summarizes how to perform inference, within the R-INLA frame-
work, on models where the non-Gaussian components of the latent field belong to
the class of near-Gaussian distributions. Later, in Section 2.4 we introduce how to
perform inference when the non-Gaussian components have a dependent structure,
specifically belonging to the class of non-Gaussian DLMs.
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2.2 INLA review
Using the hierarchical representation of LGMs given in Section 2.1, we have that
the joint posterior distribution of the unknowns is

ng

7 (x, 0ly) o (@) (x10) [ [ 7 (y:1x:, 0)

=1

n 1 w
x 7 (0)]Q(8)| /2 exp[_ixTQ(a)x + > log{m (yslxs, 0)}].

t=1

The approximated posterior marginals of interest 7 (x;|y), t = 1,...,n4 and
7(0jly), j=1,..., m returned by INLA have the following form
A (xly) = 7 (x: 10", y)7 (0" ]y) A6, @.1)
u
701y = [ 7@ o, 2.2)

where {77(0™|y)} are the density values computed during a grid exploration on
7 (0]y), for given approximations of 7 (x;|0,y) and 7 (8]y).

Looking at equations (2.1)-(2.2), we can see that the method can be divided
into three main tasks. First, propose an approximation 77 (|y) to the joint posterior
of the hyperparameters 7 (f]y), second propose an approximation 7 (x;|@, y) to the
marginals of the conditional distribution of the latent field given the data and the
hyperparameters 7 (x; |0, y) and last explore 77 (f]y) on a grid and use it to integrate
out # in equation (2.1) and @ _; in equation (2.2).

The approximation used for the joint posterior of the hyperparameters 7 (0]y) is

m(x,0,y)

Ol TEO
O 0.y =0

2.3)
where 7g(x|0,y) is a Gaussian approximation to the full conditional of x, and
x*(#) is the mode of the full conditional for x, for a given 6. The full conditional
of the latent field when dealing with LGMs is given by

m(x]0,y) ocexp{—%xTQ<0>x+ ngxt)}, (2.4)
teT

where 7 is an index set and g; (x;) = log 7w (y;|x;, #1). The Gaussian approximation
used by INLA is obtained by matching the modal configuration and the curvature
at the mode. The good performance of INLA is highly dependent on the appropri-
ateness of the Gaussian approximation in equation (2.4) and this turns out to be the
case when dealing with LGMs because the Gaussian prior assigned to the latent
field has a non-negligible effect on the full conditional, specially in terms of shape
and correlations. Besides, the likelihood function is usually well behaved and not
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very informative on X. It is very important to note that equation (2.3) is equiv-
alent to the Laplace approximation of a marginal posterior distribution (Tierney
and Kadane, 1986), and it is exact if 7 (x]y, #) is Gaussian, in which case INLA
gives exact results up to small integration error due to the numerical integration of
equations (2.1) and (2.2).

For approximating 7 (x;|6,y), three options are available in R-INLA. The so
called Laplace, Simplified Laplace and Gaussian which are ordered in terms of
accuracy. We refer to Rue, Martino and Chopin (2009) for a detailed description of
these approximations and Martins et al. (2012) on how to compute equation (2.2)
efficiently.

Martins and Rue (2014) have demonstrated how INLA can be used to perform
inference in latent models where some independent components of the latent field
have a non-Gaussian distribution, in which case the latent field is no longer Gaus-
sian. Their approach approximates the distribution of the non-Gaussian compo-
nents 7 (XNG|6#2) by a Gaussian distribution g (xnG|62) and corrects this approx-
imation with the correction term

CT = n(xnG|02) /76 (XNG[02)

in the likelihood. Taking into consideration the above approximation and correc-
tion term, we can rewrite our latent model with the following hierarchical structure:

o Stage 1.z|x,0 ~ m(z|x,0) = ]_[ff{kﬂ(zﬂx,, 0), where
7T (yelxe, 01), for1 <t <ngy,
(2%, 0) =
7 (xXNG, 102) /G (xNG, 102), forng <t <ng+k

and z is an augmented response vector with z; = y; if t < ng and z; = 0 if
ng <t <ng+k, where k is the length of xng. It is important to emphasize that
Stage 1 above is not the likelihood function, but expressing the model using this
form makes the practical definition of the non-Gaussian latent model within the
R-INLA framework easier to understand.

The latent field has now a Gaussian approximation replacing the non-Gaussian
distribution of xNG,

e Stage 2. (xG, XNG) |02 ~ 7 (x]02) = N (xG; 0, Q7 1(62)) x 76 (xnG02),
—_—

X

which means that 77 (x|60;) is now Gaussian distributed.

Martins and Rue (2014) have shown that the main impact of this strategy occurs
in the Gaussian approximation to the full conditional of the latent field that now
takes the form

1 ng ng+k
m(x]0,y) ocexp —ExTQ<0)x+th<xt)+ Yo oh(x)p. (25)

t=1 t=ng+1
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where g;(x;) = logm(y;|x;, @) as before and

h:(x;) =1og CT; =log w (XNG, |02) — log mG(XNG, |02).

The key for a good accuracy of INLA depends on the behavior of %, (x;) which is
influenced by the distribution 7 (XnG, |#2) of the non-Gaussian components and by
the Gaussian approximation 7G(XNg, |02) to this non-Gaussian distribution. Also
good results are obtained when mG(XNg, |02) is chosen to be a zero mean and low
precision Gaussian distribution such that

G (XNG, |02) o constant

and m (XNG, |02) is not too far away from a Gaussian, for which they coined the
term near-Gaussian distributions. This means that the application of INLA within
the context of non-Gaussian DLLM will yield accurate results as long as these com-
ponents are distributed according to a flexible distribution around the Gaussian, as
in the Student’s ¢ case for example, which is unimodal and symmetric.

2.3 R-INLA for DLM

In this section, we present a simple dynamic model to illustrate the framework to
perform fast Bayesian inference within R-INLA. The INLA approach could be
used to estimate any dynamic structure that could be written as a latent Gaussian
model described in Section 2.1, however the approach presented here is motivated
to overcome some limitations of R- INLA. Suppose as a Toy example the following
first order univariate dynamic linear model

yl=a[+vt9 UINN(()’QI)’t:la---’nd’ (26)
al=al—1+wt’ thN(O702)7t=29--~7nd' (27)

It is possible to fit the model given by equations (2.6) and (2.7) using the stan-
dard latent models available in R-INLA and we are aware that the corresponding
model could be estimated through the well-known Kalman Filter (Kalman, 1960).
However, this simple model is useful to illustrate the framework used in this paper,
which allow us to fit more complex dynamic models that would otherwise not be
available through R-INLA. The presented approach involves an augmented model
structure in which the system equations are treated as observation equations.

The key step is to equate to zero the system equations of the state-space model,
so that

O=a; —a;—1 — wy, wy ~N(0,60),t=2,...,nq4. (2.8)

Then it is possible to build an augmented model by merging the “faked zero obser-
vations” from equation (2.8) to the actual observations {y;,t =1, ..., ng} of equa-
tion (2.6). In addition, the “faked observations” are assumed to follow a Gaussian
distribution with high and fixed precision to represent the fact that those artificial
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observations are deterministically known. Instead of using this Gaussian distribu-
tion with high and fixed precision and mean given by ¢; = a; — a;—; — w; for the
artificial observations, as in Ruiz-Cardenas, Krainski and Rue (2012), we use in
what follows a Gaussian with variance 6, and mean n; = a; — a,—1. This is an
equivalent representation and will make it easier to describe in Section 2.4 the ex-
tension of this approach to dynamic models with non-Gaussian error terms in the
system equations.

To complete the model definition, note that there is no information about a; be-
yond the temporal evolution given by equation (2.7), and so we only need to know
the perturbations wy, t =2, ..., ng to estimate the states ay, since {w;} are the only
stochastic term in system equation (equation (2.7)). This characteristic of dynamic
models allow to represent the dependence structure as a function of the indepen-
dent perturbation terms. To represent this within R-INLA, let a = {a1, ..., an,}
be formed by independent random variables each following a Gaussian distribu-
tion with fixed and low precision and encode the temporal evolution present in
equation (2.8) using the copy feature available in R-INLA (Martins et al., 2012).
Finally, inverse-gamma priors are assigned to the variances 61 and 6. The reason
to use this augmented model is that it allows us to encode the dynamic evolution
of equation (2.7) using standard generic tools available in R-INLA, instead of re-
quiring the implementation of a different dynamic structure for each possible type
of dynamic model.

2.4 R-INLA for non-Gaussian DLM

We now present how to perform fast Bayesian inference on non-Gaussian DLM
through the R- INLA package. We first formalize the augmented model described
in Section 2.3 and the likelihood correction described in Section 2.2 in this frame-
work. We then show how our approach can be exploited to fit non-Gaussian DLM
using R-INLA. The results of formalizing our approach overcomes the limitation
assumption of independence for the non-Gaussian components in the latent field
and, moreover, generalizes the DLM class of models.

The augmented model approach described in Section 2.3 can be represented
using a hierarchical framework. Similar to Section 2.2, assume we have an aug-
mented response vector z with z; = y; if t <ngand z; =0ifn <t <2n5 — 1
and

o Stage 1.z|x,0 ~m(z|x,0) = tzidl_ln(ztlxtﬂ), where
7 (ye|x, 61), forl <t <ny,
n(ztlx,,o)z{ (el 01) d (2.9)
7w (z¢|xs, 62), forn <t <2n4g—1

with 77 (v |xs, 01) £ N (g x0, 1) and 7(z:]xz, 62) = N(0; 1, 62). Note that, as
mentioned in Section 2.3, we have used a Gaussian distribution with variance given
by 6, as the likelihood for the artificial zero observations. Internally, for R- INLA,
the (4n; — 1)-dimensional latent field is defined as
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o Stage 2X: (n17 ---,nnd, T’nd-i-la ~~'sn2nd—1$al’ "~aal’ld)a

where a is given independent Gaussian priors with low and fixed precision, n; =
a; + sy is the linear predictor connected to the observation y;, for t = 1,...,n4
and n; = a; — a;—1 + s; is the linear predictor connected with the artificial zero
observations, fort =ng +1,...,2n5 — 1, and s; is a small noise represented by a
Gaussian distribution with zero mean and high and fixed precision to eliminate a
rank deficiency in the above representation of x. Finally, priors are assigned to the
hyperparameters of the model:

e Stage 3. 61 ~1G(ay, by), 62 ~1G(ay, by).

By comparing this hierarchical representation with the likelihood correction ap-
proach described in Section 2.2, we note that we are approximating the distribution

of the state vectora={a;,t =1, ..., ng}, defined by equation (2.7), which is orig-
inally given by a Gaussian with precision matrix Q, =6, 'R, with

1 -1 0 --- 0 0 0

-1 2 -1 --- 0 0 0
o -1 2 .- 0 0 0
R=[: = i ]

0 0 o --- 2 -1 0

0 0 o --- -1 2 -1

0 0 o --- 0 -1 1

by a very low precision independent Gaussian distribution. In the correction ap-
proach

m(a) & constant

and this approximation is corrected in the likelihood function by adding the fol-
lowing correction term

2ng—1
CT= [] n(lx,62)

t=ng+1

with 7 (z;|x;, 62) defined in equation (2.9). Note that this representation also cor-
responds to those “faked zero observations” of equation (2.8). once we have iden-
tified this, observe that the log likelihood g;(x;) and the log correction term 4, (x;)
in equation (2.5) both have quadratic forms, which implies that the full conditional
of the latent field 7 (x]y, #) is Gaussian distributed, meaning that R-INLA gives
exact results up to a small integration error, as mentioned in Section 2.2.

Next, assume the following non-Gaussian DLM,

}’t=at+vt, UINN(anl)at:15"'and9 (210)

a; = a;_1 + wy, wy~1(0,7,v),t=2,...,nq, 2.11)
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which can be written in a hierarchical structure
)’t|at, 91 ~ N(al’v 01)9
at|at—lv ‘[7 v~ t(at—lv .[7 v)v
T ~7(T), v~ (v), 01~ w(61)

highlighting the fact that the latent field is no longer Gaussian. Note that the
0, = (7, v) and the distribution of v; in equation (2.10) could have a non-Gaussian
distribution as well, since non-Gaussian likelihood functions are already stan-
dard in R-INLA, but using a Gaussian here makes the final impact of the non-
Gaussianity of w; more easily visible and analyzed in Section 3. As mentioned in
Section 1, the motivation of using heavier tailed distributions such as Student-¢ in
the noise of the latent system is to robustify the model. Robustifying the model
means that the dynamic system is less sensitive to different types of outliers. By
allowing this higher flexibility of w, we can better handle what is called inno-
vative outliers in time series literature (Fox, 1972, Masreliez and Martin, 1977,
Mc Quarrie and Tsai, 2003).

By a similar argument made in Section 2.3, we note that we only need to
know the stochastic terms {w;,t =2, ...,n4} and the system dynamics in equa-
tion (2.11) to estimate a = (ay, ..., an,). Consequently, if we include those pieces
of information in the likelihood function through a correction term, we can assign
independent Gaussian priors with zero mean and low and fixed precisions for a,
which will lead to the following hierarchical model:

e Stage 1.z|x,0 ~ m(z]x,0) = tzidl_l 7 (z:|x;, 0), where
7T (e |xe, 601), for1 <t <ny,
7T (z¢|xs,0) =
n(lexl’tav)v fornd<t§2nd—1

with 7 (y; |x;, 61) i/\/(yt; xr,01) and 7 (z¢|x, T, V) L 1(0; x1, T, ).

L4 Stage 2 X= (nla ceey ni’lda nnd+17 DR 772dn—1» al» ) and)’
where a and » are the same as defined earlier. Finally, priors are assigned to the
hyperparameters of the model:
e Stage 3.0 ~ m(0) with @ = (61, T, v).

We see that the hierarchical model above is very similar to the one presented by
equation (2.9) and the difference is on the correction term

2ng—1
CT: 1_[ H(Ztlx[,f, U)5

t=ng+1

which is no longer Gaussian distributed, leading to a full conditional of the form
equation (2.5) with a non-Gaussian log correction term /;(x;). As we have showed,
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this configuration fits the framework summarized in Section 2.2 and therefore we
can apply the results to the context of non-Gaussian dependent latent fields, specif-
ically DLMs. Thus, R-INLA provides accurate results for non-Gaussian DLM, as
long as the non-Gaussian distribution attributed to the error terms of the system
equations are not too far from a Gaussian distribution, as discussed in Section 1.
This assumption is satisfied by the Student-# distribution, as well as for other dis-
tributions that corrects the Gaussian in terms of skewness and/or kurtosis.

3 Simulation study

In this section, we present the results of a Monte Carlo simulation for the Toy Ex-
ample defined in Section 2.4 (see equations (2.10) and (2.11)) to better understand
the benefits of fitting a non-Gaussian DLM with INLA. Moreover, we investigate
the property of different model selection criteria available from R-INLA in this
context. We have chosen to perform a contamination study similar to the ones
presented in Pinheiro, Liu and Wu (2001) and in Martins and Rue (2014) where
the noise w; from equation (2.11) is contaminated with the following mixture of
Gaussian distributions

w~(1=p)x N©,62) 4+ px f x NO,6), t=1,...,nq,

where p is the expected percentage of innovative outliers in the latent system and f
is a fixed value indicating the magnitude of the contamination. We have generated
all possible scenarios with n; = 100, 250, 500, p = 0, 0.05, 0.1, 0.15, 0.20, 0.25
and f =2,4,8, resulting in a total of 54 different scenarios. For each of them,
1000 datasets were simulated and analyzed. The true variance parameter of the
observational and system noises are set to 61, 6, = 2.

In R-INLA, the Student’s ¢ likelihood is parametrized in terms of its marginal
precision 7 and degrees of freedom v. This is advantageous because the precision
parameter under the Gaussian and the Student’s ¢ distribution possess the same
interpretation allowing the same prior to be used for t whether we refer to the
Gaussian or to the Student’s ¢+ model. In this Monte Carlo experiment, we have
used a Gamma' prior with shape and rate parameters given by 1 and 2.375 for
both the observational and system noise precision parameters. The prior for v is
based on the framework of (Martins et al., 2014). In their context, the prior is
design for the flexibility parameters, which in this case is the degrees of freedom
v, in such way that the basic model plays a central role in the more flexible one. In
our context, it means that the prior for the degrees of freedom is constructed such
that the mode of the prior happens to be in the value that recovers the Gaussian
model and deviations from the Gaussian model are penalized based on the distance
between the basic and the flexible model. The prior specification consists in the

11f X ~ Gamma(a, b) then E(X) = %
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choice of the degree of flexibility (df) parameter, O < df < 1, which represents the
percentage of prior mass attributed to the degrees of freedom between 2 and 10.
We have set df = 0.3 in our applications. We refer to (Martins et al., 2014) for
more details about priors for flexibility parameters.

As mentioned in the Introduction, a model based on the student’s ¢ distribution
is expected to be more robust with respect to outliers in a contaminated data setup
when compared to a similar model based on Gaussian distributions. To assess the
gain in performance of the more flexible model based on the student’s ¢ distribu-
tion, we will compute the mean squared error (MSE), the conditional predictive
ordinate (CPO) (Gelfand, Dey and Chang, 1992, Dey, Chen and Chang, 1997) and
deviance information criteria (DIC) (Spiegelhalter et al., 2002). The intuition be-
hind the CPO criterion is to choose a model with higher predictive power measured
in terms of predictive density.

For the jth simulated dataset of a given scenario, let a;; be the true latent vari-
able at time . We will denote by d;;, ¢ and @;; 7 the posterior mean of a;; computed
by the Gaussian and student’s ¢t model, respectively. The student-# model efficiency
over the Gaussian one to estimate a;; for each dataset j is defined by

_ 2 @y —a)®
YL @y — arj)?
which can be viewed as ratio of the respective MSEs centered at 0.
Figure 1 represents the median over {E;, j =1, ..., 1000} for each scenario.

The results were as expected. There were slight efficiency improvements for close
contamination patterns while the efficiency gains become larger as we move to

E; 1,

Median Efficiency
f=2 f=4 f=8

0 5 1 15 20 25 0 5 10 15 20 25 0 5 1 15 20 25
% of Expected Contamination % of Expected Contamination % of Expected Contamination
Figure 1 Median of efficiencies for magnitude f =2 (left), f = 4 (center) and f = 8 (right),
ng = 100 (solid line), ng = 250 (dashed line) and ng = 500 (dotted line). We have the percentage of
expected contamination in the x-axis and the median of efficiency in the y-axis.
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higher contamination patterns, reaching efficiency gains greater than 15% for some
critical scenarios. The efficiency gains are higher for moderate expected contami-
nation percentage, around 10% in our case, and this non-monotonic behavior can
be explained by the fact that once the data becomes too much contaminated, not
even the more flexible model based on the student’s ¢ distribution can continue to
give increasingly better results when compared to the Gaussian model, although
the more flexible one continues to improve upon it.

To compare the model fitting, we use the DIC as well as the CPO criteria. First,
we define the relative DIC (RDIC) as

DICg; — DIC,;
DIC,;

for each one of the simulated data, j =1, ..., 1000. In the top part of Figure 2,
we plot the median of RDIC values obtained by the fitted Gaussian model and by
fitted the student’s ¢ model for each scenario. From this figure, we observe the
same pattern of Figure 1.

The summary statistic provided by the CPO criteria is called logarithm of the
pseudo marginal likelihood (LPML) which evaluates the predictive power of a
model. Therefore, to compare both models the LPML difference is used. To make
it comparable to other goodness-of-fit measures, for example, DIC, we define the
-LPML by

RDIC; = : (3.1)

n4
-LPMLj =— (Z log{n(yi |y;)}) ’
i=1 j
where j is the jth dataset in a given scenario. In this definition, lower values of
-LPML indicates better predictive power. In order to compare both approaches,
we have computed the logarithm of the Pseudo Bayes Factor (IPsBF) (Geisser and
Eddy, 1979) for each iteration. This measure is defined as

IPSBF; = -LPML,; — (-LPMLg;) = LPMLg; — LPML,;.

To make the comparison equivalent to the RDIC presented in equation (3.1), we
define the relative IPsBF (RPsBF) as

LPMLG; — LPML;;
LPML, ’

From the bottom part of Figure 2, all conclusions from the MSE and RDIC
can be applied in the context of the RPsBF measure, but the gain becomes more
evident. Moreover, we can see from the bottom part of Figure 2 that when the sim-
ulated scenario is stable with low expected proportion and low contamination, the
median of the RPsBF is small and not significant. However, for larger sample size
and contamination it is showed that the student-r approach is preferable for most
of the scenarios and highlights this choice when the magnitude of the contamina-
tion increase reaching values of this median relative difference even higher than

RPsBF; =
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Figure 2 Top: Median of RDIC, in the y-axis, for all scenarios; Bottom: Median of RPsBF, in
the y-axis, for all scenarios. We have the percentage of expected contamination in the x-axis and
all scenarios are: f =2 (left), f =4 (center) and f =8 (right), ng = 100 (solid line), ng = 250
(dashed line) and ngz = 500 (dotted line).

10% in some cases. One curious fact observed is that in the most critical scenario
where p =0.25, f =8 and ngy = 500 the RPsBF values pointed incisively to the
Gaussian approach, indicating that, since the generation process has too much con-
tamination and generates to many innovative outliers, even the student-¢ approach
is not able to control for this behavior producing predictive measures that are less
accurate.

From the simulation study, we can conclude that the more flexible model is
preferred over the traditional one in most of the scenarios analyzed, and the gap
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between the models are higher when a moderate number of innovative outliers are
involved.

4 Data application

The goal of this section is to analyze Brazilian Homicide rates with approximate
Bayesian Inference for Dynamic Models using R-INLA. We have accessed data of
death in Brazilian cities from 1980 to 2010 made freely available by the Brazil’s
public healthcare system—DATASUS.? This database of homicides, not natural
death,? has a standard national structure containing age, sex, civil state, occupation,
naturality, local residence of the victim and local of occurrence of the event that
was used to compute the total number of homicides by city. The time series under
study represents the number of events standardized by each city population. R-
INLA applied to this longitudinal data offers a singular opportunity, not common
in studies of this nature in Brazil, of evaluating the impact of safety public policies
on crime pattern, specially on temporal pattern. In addition, numerous international
studies point to the relevance of the impact assessment of crime prevention policies
(Sherman and Weisburd, 1995, Sherman et al., 1997, Sherman, 1998).

Homicides studies is a broad field of sociological research (see, for example,
Jacobs and Richardson (2008)). Homicides represent a specific criminal category
that, although with less cases than property crimes, as burglary and robbery, it gen-
erates strong population demand for public policies of prevention. In this sense,
studies that deal with the temporal dynamic of homicides try to associate, in a
general way, this behavior with economic, social and political factors. For in-
stance, high Brazilian homicide rates could be due to high levels of unemployment,
poverty and economic inequality (Mir, 2004). Other factors, like age structure of
population (Graham and Bowling, 1995, Flood-Page et al., 2000) and disordered
population growth, or inequality in social conditions, are considered in order to
explain these rates, mainly in the largest cities (Mayhew and Levinger, 1976, Blau
and Blau, 1982). Considering disordered population growth as a feasible explana-
tion for criminal raising, researchers from the Chicago sociological school, since
the beginning of the 20th century, have been observing how the urban environment
produces criminogenic conditions as a result of ecological factors (Wirth, 1938,
Burguess, 1925, Harris, 1976). Urbanization and social differentiation produces
an impersonal environment causing weakened social controls and permitting de-
viant behavior to occur more frequently. In this context, it is important the So-
cial Disorganization Theory (Shaw and McKay, 1942) in the political perspective.
While the fast urban growth is linked to social disorganization, Gaviria and Pages
(2002) shows the negative relation between urban growth and trust level of police

2www.datasus. gov.br/.

3External causes.
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and judiciary power. Their results suggest that rapid urbanization can, under some
circumstances, set in motion a dynamic of mutual reinforcement between increas-
ing crime rates and crumbling law enforcement institutions. In addition, alteration
in the criminal historic behavior is associated to law-enforcement elements, such
as increase of the number of police officers, expenses with safety policies and in-
crease of imprisonment rates. Analyzing data from New York City, Zimring (2007)
concluded that “there is a strong evidence that changing the number of cops, as
well policing tactics, has a important impact in crime” (pg. 151).

Specifically in Brazil, Goertzel and Kahn (2009), while studying the behav-
ior of the strong decline of homicides rates in Sdo Paulo state since 2000s, have
concluded that more repressive police models and disarmament policies reduced
substantially homicides and other violent crimes in the state. Statistically, it was
expected that, in regions where some policies of criminal prevention and control
were applied, the rates could suffer from sudden structural changes. This fact re-
quires a robust approach to model them, such as the assumption of heavy-tailed
distribution for the latent system noise to handle possible innovative outliers as
discussed in Section 3.

The model adapted was similar to equations (2.6) and (2.7). However, to model
each time series we considered the state capital cities grouped according to a spe-
cific criterion. Specifically, we have used the following capital division:

e Group 1 (G1)—Sao Paulo and Rio de Janeiro.
e Group 2 (G2)—Belo Horizonte, Recife, Vitéria and Porto Alegre.
e Group 3 (G3)—All the 21 remaining capitals.

The main characteristic that motivated this division consists on the different ur-
banization processes occurred in Brazil. As demonstrated in Santos (2005), the
complex urban and territorial Brazilian organization bears deep differences be-
tween regions in terms of urbanization. In that sense, the cities division groups
were adapted from the study regarding the urbanization process of the Brazilian
society between 1940 and 2010, in particular, concerning the evolution of urban
population in the metropolitan clusters in this period (de Brito and de Pinho, 2012).
For each group created, we have one tendency estimated for the capitals and one
tendency estimated for all first order spatial neighbours (those which share border
with the capital). Thus, for each group, there is a model for the capitals and another
one for the capitals neighbours, totaling six models.

We can see in Figure 3 the homicide rate analysis for G1, G2 and G3. According
to this graph, some features can be pointed such as the presence of unusual rates.
Two cities in G2 between 1995 and 2000 present high level in homicide rates
compared to their usual levels. Moreover, we also highlight unusual values for
some series in G3, first observed in two series close to 1990 and second a sudden
raise after 2005 in one time series. Therefore, since we have these features a robust
approach to estimate such data is justified.
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Figure 3  Capital Homicide Rate data for each group. G1: Sdo Paulo and Rio de Janeiro; G2: Belo
Horizonte, Recife, Vitoria and Porto Alegre; G3: All the 21 remaining capitals.

Let Y;;; be the Homicide Rate of city i = 1,...,n; in group [ =1,...,6 at
time ¢, then we have the following model:

Yiii = ay + vgig, v ~ N(0,61;),t=1,...,31,
arg = ag—1y + wy, wy ~(0,60y),t=2,...,31,

where wy; is either Gaussian or student-# and n; is the number of cities in group /.

To complete the model specification, it is necessary to specify the priors for
the hyperparameters. In our case, we have to specify priors for the precision of
each group in the observational equation and a single prior for the system equa-
tion precision. The prior of the precision of the observational equation is created
to cover with high probability the variances of all Brazilian cities, setting a prior
91_”1 ~ Gamma(5, 500),i =1,...,nyand [ =1, ..., 6 we cover with 90% of prob-
ability the values between the 25th and 75th quantiles of the cities sample variance.
For the precision prior for the latent equation, a prior 92_11 ~ Gamma(1, 0.1) is used
for all cases. Finally, the same prior set in the simulation study for the degrees of
freedom v assuming 30% of probability of prior mass for v values between 2 and
10 is used.

It is important to emphasize that the latent state represented by the vector a, can
be interpreted as the non-observed mean tendency of the cities of each modeling.

To understand the temporal trends, sociological literature analyzes the context
of how interpersonal violence spreads. Analyzing a historical time series of more
than 30 years of delinquency and crime, Shaw and McKay (1942) verified that not
only crime, but several social problems were related to a disorganized social envi-
ronment. The theoretical approach developed by these authors helps to understand
the effects of a unplanned urbanization process in criminal behavior. In largest
context like Latin America de urban crime is, to an important extent, a conse-
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Figure 4 Division posterior tendencies, a, for each group of Student-t approach. G1: Sdo Paulo
and Rio de Janeiro; G2: Belo Horizonte, Recife, Vitoria and Porto Alegre; G3: All the 21 remaining
capitals.

quence of the inability of many cities in the region to keep up with the increasing
demands for public safety brought about by a hasty and disorderly urbanization
process (Gaviria and Pages, 2002). So, in Brazilian big cities, the economic devel-
opment was followed by the appearance of urban enclaves (such as slums) where
the impairment of the traditional mechanisms of social control promotes an envi-
ronment of differentiated criminal opportunities (Sutherland, Cressey and Lucken-
bill, 1992). For more information about Social Disorganization Theory, we refer
to Shaw and McKay (1942) and Kubrin and Weitzer (2003).

Figure 4 presents the posterior tendency, a, of each group capital and neighbours
for the adjusted student-+ model. The tendency of the first group tells us that its
urbanization process started earlier when compared to the other groups because
the homicide rate started to get higher first. Another aspect was that until 2000,
all the tendencies were nearly linear for all groups. However, a reverse tendency
was observed as result of investments and criminal control policies established
in G1 (Goertzel and Kahn, 2009). The other two groups are heading towards the
same behavior, but they still didn’t show it in such an evident way, as seen in
G1, the effect of safety policies. In G2 some states already adopted some safety
measures, for example, Minas Gerais, which capital is Belo Horizonte, with the
creation of Integracdo da Gestdo em Seguranga Piiblica (IGESP) in May 2005,
and Pernambuco, which capital is Recife, with the creation of the Pacto Pela Vida
in May 2007.

In order to assess the goodness of fit of our robust approach, we computed the
-LPMLs and the DICs for every model, as can be seen in Table 1. From Table 1, all
criteria, -LPMLs and DICs, pointed to the robust approach assuming the Student-¢
distribution for the system noise. To verify the evidence that the robust approach
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Table 1  Quality measures of the division. G1: Sdo Paulo and Rio de Janeiro; G2: Belo Horizonte,
Recife, Vitoria and Porto Alegre; G3: All the 21 remaining capitals

Gl G2 G3

Gaussian  Student-r  Gaussian  Student-r  Gaussian  Student-7

-LPML Capitals 229.09 227.81 496.72 496.45 2481.70 2473.55
Neighbours ~ 3536.78 3517.38 2379.98 2375.89 3026.54 3002.48
DIC Capitals 460.22 459.64 997.44 996.60 4960.98 4946.32

Neighbours ~ 7063.15 7030.68 4753.67 4746.94 6040.70 6004.27

Table 2 Pseudo Bayes Factor criteria

2PsBF Evidence against Gaussian
(—1,1] Worth mention

(1,5] Positive

(5,91 Strong

(9, 00) Very strong

outperforms significantly the traditional one, in the real data set, we chose to ana-
lyze Table 2 which was proposed and used in Prates et al. (2010). From Table 2,
we can see that the PsBF, which is the -LPML difference as presented in Section 3,
have a positive evidence against the Gaussian model for the capital modeling in G1
(2PsBF = 2.56) and a strong evidence against the Gaussian model for the neigh-
boring modeling in G2 (2PsBF = 8.18). However, the bigger gain in favor of the
Student-# model is verified for the neighboring modeling in G1 and G3 as well
as the capitals in this last group, with all having strong evidence in terms of the -
LPML differences. Since for each group we have many first order neighbours time
series, for G1, G2 and G3 there are 30, 24 and 152 neighbours respectively, anal-
ysis suggests that as the number of cities increases there is a demand for a more
robust approach.

In our real data application, the gain in terms of predictive power was very
clear. We also should point out that there is evidence of deviation from Gaussianity
when we look to the posterior distribution of the v in the student-# model. From
Table 3, we can see the posterior median and 95% credible intervals (CI). The
median measure indicates that the student-¢ distribution is concentrated in medium
values of the degrees of freedom but the 95% CI are highly asymmetric reaching
very high values.

5 Conclusions

This paper describes how to perform Bayesian inference using R—INLA to esti-
mate non-Gaussian Dynamic Models when the evolution noise has a non-Gaussian
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Table 3  Posterior measures of the v of Student-t approach. G1: Sdo Paulo and Rio de Janeiro; G2:
Belo Horizonte, Recife, Vitoria and Porto Alegre; G3: All the 21 remaining capitals

Group Type Median 95% Credible interval

Gl Capitals 35.53 (5.84; 441.30)
Neighbours 28.46 (6.04; 339.38)

G2 Capitals 39.93 (6.73; 533.77)
Neighbours 31.69 (5.56;445.12)

G3 Capitals 32.23 (5.14;434.54)
Neighbours 5591 (21.69; 556.67)

distribution. Such models can be viewed as part of latent hierarchical models where
a non-Gaussian Random Field is assumed for the latent field and, therefore, inval-
idates the direct use of the INLA methodology that requires that the latent field
must be Gaussian.

Using a random walk example, we presented how to use an augmented struc-
ture to overcome the Gaussian limitation of INLA for the latent field. The key to
understand why our approach works relies on the fact that we approximate the
non-Gaussian latent field through a Gaussian distribution and corrects this approx-
imation in the likelihood function trying to minimize the loss of this approxima-
tion for dependent models. We discussed and explained the reasons to make this
approximative approach and, specially, where in the R-INLA calculations it will
impact.

Through simulations, we showed the necessity of more robust models when the
time series suffer sudden structural changes. From our results, we observe that
Gaussian models are sensitive to structural changes while our approach assuming
a student-¢ field is robust. Specifically, our simulation study presented an incisive
demand to avoid the usual Gaussian assumption in most contaminated scenarios.
There are indication that some public policies for crime control can generate a
positive effect in crime’s temporal tendencies allowing the presence of structural
changes identified with our proposed approach. It is evident that other control fac-
tors might help to confirm this hypothesis, however it is very likely that invest-
ments in security policies, such as those implemented in G1 and G2, have con-
tribution in the dynamic observed. Our homicide rate application pointed-out, as
expected, that public policies could play an important role to explain homicides
dynamics through a robust approach due to the characteristic of these kind of data.
Although we analyzed homicide rate because of their sociological impacts, we
are aware that this extension would also be well justified in other fields such as
stochastic volatility models (see, for example, Jacquier, Polson and Rossi, 2003).

As mentioned in Section 2, a natural extension of the model class presented
is the DGLM, where one could assume a non-Gaussian distribution for the ob-
served data and, consequently, impacting equation (2.5) which both g;(x;) and
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h;(x;) could have a non-quadratic form. This extension is investigated in a differ-
ent manuscript. The main advantage of the model structure presented here is that it
allows users to fit basically any complex structured non-Gaussian dynamic model
with fast and good accuracy using a friendly tool already available.

We believe that the applied community can make good use of this methodology
when necessary. For real time series data is not rare to observe structural breaks
and a robust approach, as the one presented, may be more adequate to adjust this
type of data. Furthermore, we have formalized how to use the R-INLA software
for non-Gaussian dynamic models in a simple way.
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