Bayesian Analysis (2016) 11, Number 3, pp. 697-724

On the Stick-Breaking Representation
for Homogeneous NRMls

S. Favaro*, A. Lijoif, C. Nava!, B. Nipotif, I. PriinsterY, and Y. W. Teh!

Abstract. In this paper, we consider homogeneous normalized random measures
with independent increments (hNRMI), a class of nonparametric priors recently
introduced in the literature. Many of their distributional properties are known
by now but their stick-breaking representation is missing. Here we display such
a representation, which will feature dependent stick-breaking weights, and then
derive explicit versions for noteworthy special cases of hNRMI. Posterior charac-
terizations are also discussed. Finally, we devise an algorithm for slice sampling
mixture models based on hNRMIs, which relies on the representation we have
obtained, and implement it to analyze real data.

Keywords: Bayesian Nonparametrics, generalized Dirichlet process, normalized
generalized gamma process, normalized random measures with independent
increments, normalized stable process, normalized inverse-Gaussian process,
random probability measure, stick-breaking representation.

1 Introduction

Normalized random measures with independent increments (NRMIs) have been intro-
duced in Regazzini et al. (2003) and represent a broad class of nonparametric priors,
which includes the Dirichlet process prior as a special case. Other notable members
of this class are the o-stable NRMI (Kingman, 1975), the normalized inverse-Gaussian
process (Lijoi et al., 2005b), the generalized gamma NRMI (Lijoi et al., 2007; Pitman,
2003), and a generalized Dirichlet process obtained via normalization of superposed
gamma processes (Regazzini et al., 2003; Lijoi et al., 2005a). Distributional properties
of general NRMI have been studied in great detail so far. For example, characterizations
of their predictive structure and of their posterior distribution are provided in James
et al. (2009). See also Lijoi and Priinster (2010) for a review.

The probability distribution of an NRMI p is a discrete nonparametric prior thus
implying that
p= Zﬁj dy, (1)
j>1

where the p;’s are random weights such that » .., p; = 1, almost surely, the Y;’s
are random locations, and J, is a unit point mass at c. An important open problem
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concerning NRMIs is to provide their stick-breaking representation. This amounts to
identifying a sequence of [0, 1]-valued random variables (V;);>1 such that the random
weights of an NRMI in (1) coincide in distribution with

j—1

h=w, p;=V;i[[Ja-V) j=23,. ... (2)

=1

The rationale of the term “stick-breaking” is apparent. Suppose one has a unit length
stick and breaks it into two bits of length V; and 1—V;. The first bit represents p; and in
order to obtain p; it is enough to split the remaining part, of length
1 — V4, into two parts having respective lengths V2(1 — V;) and (1 — V52)(1 — V4). The
former will coincide with py and the latter will be split to generate p3, and so on.
Stick-breaking priors are very popular in Bayesian Nonparametrics practice, mainly be-
cause of the availability of computational algorithms that allow sampling both a priori
and a posteriori; see Ishwaran and James (2001); Papaspiliopoulos and Roberts (2008);
Walker (2007); Yau et al. (2011). Moreover, the stick-breaking construction has proved
to be very fruitful for defining more general models capable of dealing with partially
exchangeable observations; see the seminal contributions by MacEachern (1999, 2000),
whereas a recent account can be found in the monograph edited by Hjort et al. (2010).

A description of the sequence (V;);>1 that characterizes various well-known non-
parametric priors has been provided in the literature. The first important contribution
is Sethuraman (1994) who has shown that the Dirichlet process admits a representation
as in (1) with independent and identically distributed (i.i.d.) stick-breaking weights (2)
of the form

Vi ~ beta(1,a), (3)

namely a beta distribution with parameters 1 and a, where a stands for the total mass
parameter of the Dirichlet process. Other members of the class of NRMIs for which a
stick-breaking representation is known are the o-stable NRMI (Perman et al., 1992)
and recently the normalized inverse-Gaussian process (Favaro et al., 2012). It is worth
pointing out that in the former case the V;’s are still independent but, unlike in the
Dirichlet process, not identically distributed, whereas in the latter case the V;’s are
neither identically distributed nor independent. Outside the class of NRMIs, Perman
et al. (1992) identify the stick-breaking representation of the two-parameter Poisson—
Dirichlet process which admits a particularly simple stick-breaking representation with
the V;’s in (2) being independent and

Vi ~ beta(l — 0,0 + io), >0, §>—0. (4)

Moreover, Favaro and Walker (2013) provide a stick-breaking representation for Gibbs-
type priors, a class of nonparametric priors due to Gnedin and Pitman (2006). Finally,
Teh et al. (2007) derive a stick-breaking representation of the beta process: although
not a random probability measure, this is a key model in various applications involving
the Bayesian nonparametric approach.

In this paper, we establish the stick-breaking representation for general homogeneous
NRMIs, which essentially correspond to NRMIs whose weights p;’s and locations Y}’s in
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(1) are independent. The results will then be specialized to two cases, namely the gen-
eralized Dirichlet process and the generalized gamma NRMI: these have already found
applications in several contexts, most notably mixture modeling and species sampling.
Similarly to what happens in the case of the normalized inverse-Gaussian process, the
weights V; are dependent. We shall then focus on the insights that the stick-breaking
representation yields for these processes in terms of their posterior characterizations.
It is important to stress that characterizations for NRMIs are useful also beyond the
exchangeable setting where a discrete nonparametric is specified directly on the data.
In general, when a discrete random probability measure is used at a latent level within
complex nonparametric models, its posterior structure, conditional on the latent vari-
ables it generates and the other model components, is analogous to that of the simple
exchangeable case considered here. This remark clearly applies also to NRMIs, which
are large but still quite tractable class of random probability measures. It then comes
to no surprise that, in addition to mixture models and dependent processes, some other
nice uses of NRMIs appeared recently. For instance, complex models featuring NRMIs
as key components were considered in Caron (2012), Caron and Fox (2015) and Caron
et al. (2014) for analyzing data related to rankings and graphs.

The paper is structured as follows. In Section 2, we recall some basic elements on
completely random measures, define NRMIs and the two special cases we will consider
in detail. In Section 3, we establish their stick-breaking representation. Their posterior
characterization is discussed in Section 4. In Section 5, we devise an algorithm for
sampling mixture models based on hNRMIs that, in turn, is implemented in Section 5.3
to analyze real data. Section 6 is dedicated to the concluding remarks. All proofs are
gathered in Section 7.

2 Normalized random measures with independent
increments

We start by recalling the notions of completely random measure and of NRMI. The
former is a popular tool for defining, under suitable transformations, a random proba-
bility measure whose distribution acts as a prior for Bayesian inference; see Lijoi and
Priinster (2010) for a review of discrete nonparametric priors using completely random
measures as a unifying concept.

Let X be a separable and complete metric space with 2~ denoting its Borel o-algebra.
Moreover, My is the space of boundedly finite measures on X which is endowed with a
suitable topology that allows one to introduce the associated Borel o-algebra .#x. For
details on the definition of (Mx, .#x) see Daley and Vere-Jones (2008).

Definition 1. A measurable function ji defined on some probability space (Q, %, P)
and taking values in (Mx, .#x) is a completely random measure (CRM) if for any d > 2
and any pairwise disjoint sets Ay, ..., Aq in 2", the random variables i(A1), ..., i(Aq)
are mutually independent.

CRMs have been introduced in Kingman (1967) and a detailed treatment can be
found in Kingman (1993). For our purposes it is important to recall that CRMs are
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almost surely discrete, i.e., i can always be represented as ), J; dy,, and that the
Laplace transform of fi(B), for any B in 2", admits the following representation:

E [om#0)] :exp{— /R e V(dv,dx)} (5)

for any A > 0, with v being a measure on Rt x X such that

/ min{v, 1} v(dv,dx) < oo (6)
B JR+

for any B in 2 . The measure v is known as the Lévy intensity of fi and regulates the
intensity of the jumps of a CRM and their locations. By virtue of (5), it characterizes
the CRM fi. In the following, we shall assume that v can be factorized as

v(dv,dz) = p(dv) a(dz) (7)

where p is some measure on Rt and o a measure on X. This factorization assumption
is equivalent to dealing with CRMs fi = .., Jidy, for which the jumps J; and the
locations Y; are independent. When [ has an intensity for which (7) holds true, it is
termed homogeneous CRM.

As mentioned above, one can define random probability measures via suitable trans-
formations of a CRM. A natural transformation to consider is “normalization”. For such
an operation to be well-defined, one needs the total (random) mass i(X) to be both
positive and finite, almost surely. Necessary and sufficient conditions that ensure that
0 < 1(X) < oo, with probability 1, are

p(RT) =00 and a(X) € (0,00); (8)

see Regazzini et al. (2003). The first condition corresponds to requiring the CRM to
jump infinitely often on any finite set and essentially boils down to ruling out compound
Poisson processes. The second condition allows us to write « = aPy with a := a(X) > 0
and P, a probability measure, a notation often used in the sequel.

Definition 2. Let i be a homogeneous CRM on X such that the conditions in (8) hold
true. Then a homogeneous normalized random measure with independent increments

(hNRMI) p on (X, 2") is defined as

The discreteness of CRMs clearly implies that an hNRMI p is discrete, almost surely,
and it can be represented as in (1) with p; = J;/>,~, Ji for any ¢ > 1 and the random
locations Y; i.i.d. with distribution Py = «/a. Moreover, by virtue of the homogeneity
assumption (7), the random probability masses p; are independent from the Y;’s. In
view of this remark, and with the additional assumption of « being non-atomic, hN-
RMIs represent a subclass of Poisson—Kingman models (Pitman, 2003) and, a fortiori,
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of species sampling models (Pitman, 1996b). Clearly, nonhomogeneous NRMI do not
belong to these classes of models.

We now close this section by recalling the two special cases of homogeneous NRMIs
for which a stick-breaking representation will be discussed. They can be seen as different
generalizations of the Dirichlet process.

2.1 Generalized Dirichlet process

Consider a CRM i characterized by the Lévy intensity (7) with

eJv

p(dv):Z ” dv. (9)

where v is a positive integer. The corresponding Laplace transform (5) admits a closed
form expression given by

AR (y))®
E [e A (B)} _ {()\Zl—w (10)

where, for any integer n and real ¢ > 0, (¢), = I'(¢c + n)/I'(¢) is the n—th ascending
factorial of ¢. The expression in (10) also suggests an interesting interpretation of fi.
Indeed, for any B in 2" such that «(B) > 0, the random variable fi(B) is distributed
as the sum of v independent gamma random variables with shape and scale parameters
«(B) and j, respectively, for j = 1,...,~. In other terms, fi(B) is a generalized gamma
convolution with Thorin measure tg = «(B) 22:1 0. See Bondesson (1992) for this
noteworthy class of infinitely divisible distributions. Incidentally, note that when X =
R™, such a CRM coincides with a Lévy process that belongs to a special class for which
quasi—invariance properties have been studied in Von Renesse et al. (2008).

The hNRMI obtained by normalizing a homogeneous CRM [ with Lévy intensity as
in (9) is termed generalized Dirichlet process with parameters (v, a, Py), where a = aP,.
In symbols p ~ GD(, a, Py). Note that when v = 1, fi reduces to a gamma CRM and the
resulting p is the Dirichlet process with base measure « introduced in Ferguson (1973).
The present generalization of the Dirichlet process has first appeared in Regazzini et al.
(2003) where the probability distribution of its mean functional is studied. Lijoi et al.
(2005a) determined the finite-dimensional distributions of GD(v, a, Py) and expressions
for their predictive distributions and used them for density estimation within mixture
models. Moreover, in Favaro et al. (2011) GD(v, a, Py) models have been explored in
relation to species sampling problems.

2.2 Normalized generalized gamma process

For any o € (0,1) and 7 > 0, the Lévy intensity (7) identified by

1

—1l—0c —7v
T —o) v e " dv (11)

p(dv) =
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gives rise to a CRM i that takes on the name of generalized gamma process; see Brix
(1999) where this CRM has been originally proposed. The Laplace transform of ji(B)
coincides with

E [e*’\ﬂ(B)} = exp {@ [(A+7)7 — T"}} . (12)

When 7 — 0, the Laplace transform in (12) reduces to exp{—«a(B)A?/o} and [ is a
o-stable CRM. Its normalization yields the o-stable hNRMI introduced by Kingman
(1975). On the other hand, if ¢ — 0, then the Laplace transform in (12) tends to
[7/(A+7)]*B) which is the Laplace transform of a gamma random variable with shape
and scale parameter equal to «(B) and 7, respectively. Hence, the normalization of
[t in this case identifies a Dirichlet process with base measure «. Another noteworthy
instance is obtained by setting ¢ = 1/2 in (11) which leads to the inverse Gaussian
CRM and, after normalization, to the normalized inverse-Gaussian process (Lijoi et al.,
2005b). The random probability measure obtained by normalizing fi characterized by
(11) encompasses all this special cases and is termed normalized generalized gamma
process. Its parameters are (o, 8, Py) where § = a77/0 with a = aPy and it will be
denoted as p ~ NGG(o, 3, Py); see Lijoi et al. (2007). Alternatively, such a random
probability measure can also be constructed as exponentially tilted o-stable Poisson—
Kingman model as shown in Pitman (2003).

3 Stick-breaking representation

As mentioned in Section 1, stick-breaking representations are available for some hNRMIs
commonly used in Bayesian nonparametric modeling such as, e.g., the Dirichlet process
and the o-stable hNRMI. For both processes, the V;’s in (2) are independent, with
identity in distribution holding true only for the Dirichlet process. More recently, Favaro
et al. (2012) have obtained a stick-breaking representation of the normalized inverse-
Gaussian process and the ith weight V;, conditional on (V3,...,V;_1), has a normalized
generalized inverse Gaussian distribution with parameters depending on (V1,...,V;_1).
Here we go beyond these three cases and provide a general result that holds true for
any hNRMI.

Before proceeding, first note that the dependence among the V; weights in the nor-
malized inverse-Gaussian case is not surprising and actually will be the general rule for
hNRMIs. This can be explained by the fact that hNRMIs are invariant under size-biased
permutation. Indeed, by virtue of a result in Pitman (1996a), the only invariant under
size-biased permutation random probability measure whose random masses admit a
stick-breaking representation with independent weights is the two-parameter Poisson—
Dirichlet process. All other random probability measures enjoying the invariance under
size-biased permutation property will necessarily have dependent stick-breaking weights
(2). Now, as far as the class of hANRMISs is concerned, the only two members that can be
seen as instances of the two-parameter Poisson—Dirichlet process are the Dirichlet and
the normalized o-stable processes. Hence, beyond these two cases, the stick-breaking
representation of hNRMIs will have dependent weights and, for our purposes, it is
enough to record this fact; see Pitman (1996b) and Favaro et al. (2012) for a discussion
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of the implications of invariance under size-biased permutation for the computation of
quantities of interest in Bayesian inference.

The following result, which essentially is an adaptation of Theorem 2.1 in Perman

et al. (1992), displays the conditional distributions of each V;, given Vi,...,V;_4, in
terms of the Lévy intensity of the CRM f underlying the hNRMI at issue and of the
density function fr of the total mass i(X). In order to simplify notation, henceforth
we set wy = 1 and w; = [[7Z] (1 —v;), for j =2,3,. ...
Proposition 1. Suppose p = Y .., Pidy, is an hNRMI characterized by a Lévy in-
tensity v as in (7) where p(dv) = p(v)dv. Then the random probability masses (p;)i>1
admit stick-breaking representation (2) with weights sequence (V;);>1 such that the dis-
tribution of Vy has support on (0, 1) and density (with respect to the Lebesgue measure)
given by

+o00
fv(v1) = avl/o t p(tvy) fr(tws)dt (13)

and the conditional distribution of V;|Vi,...,V;_1 has support on (0,1) and density
(with respect to the Lebesgue measure)

o Ty p(tvjw) fr(twig)dt
Jo 2 T2 p(tvjwy) fr(tw;)dt

fvi(vilvr,ve, ..., vi—1) = av; w; (14)

Note that the stick-breaking representation (3) of the Dirichlet process can be easily
recovered from Proposition 1. In this case, fr(t) = t*"le~!/I'(a) and p(v) = e Vo~ L. If
these are plugged into (13) and (14), the integrals can be computed quite straightfor-
wardly and the representation (3) easily follows.

Relying on this general result, which characterizes the stick-breaking weights in terms
of the jump part of the Lévy intensity p and the law of the (random) total mass i(X), we
now provide descriptions of the stick-breaking representations of the two special cases
of hNRMIs sketched in Section 2.

3.1 Generalized Dirichlet process

An application of Proposition 1, combined with the availability of the density function
fr of i(X), leads to a description of the distribution of the stick-breaking weights of
a generalized Dirichlet process p ~ GD(«, ). Note that, when v > 1, from expression
(7.6.4) in Exton (1976) one has

Na
fr(t) = I%e“’ttwl@?_l)(awl); yast,2t, ..., (v —1)t) (15)

where @gn) is the confluent form of the fourth Lauricella hypergeometric function and
a"=Y is a vector of size v — 1 with all the components equal to a.
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Proposition 2. If p ~ GD(v, a, Py), then its stick-breaking representation has depen-
dent weights such that V; has density function given by

v—1 —a

o) = a@)rwrt 3 et {1 -z, ) (16)

j1=0
where z1 = (U1 +yws) /wy with ¥7 = v1(1+ j1). Moreover, for any i > 2, the conditional
distribution of V;, given Vi, ..., V;_1 has density

vlwz(l — Ui)il

fvi(ilvr, .o vi1) = a

Sz,
doci . Filh {(1 - z¢_1)7_1} ; { } (17)

where C; is the set of all indices (j1,...,7:) € {0,...,v —1}%, z; = (0; + ywiz1)/wit1
and v; = y_,_; vewe(1 + jo).

3.2 The normalized generalized gamma process

As already noted, the Dirichlet, the normalized o-stable and the normalized inverse-
Gaussian processes, for which a stick-breaking representation is known, are special in-
stances of normalized generalized gamma processes. It is therefore of interest to derive
an explicit stick-breaking representation for this rich subclass of hANRMI. By resorting
to Proposition 1, we are now in a position to provide such a result.

Proposition 3. Suppose p is a normalized generalized gamma process obtained by
normalizing a CRM having intensity (11). Then p admits stick-breaking representation
in terms of a dependent stick-breaking sequence (V;);>1 such that V; has density

o) = S s () ri-5i ) as)

T'(o)I'(1-o0) = i (1 —wv)d o L—v)°
where 8 = a1 /o and, for any i > 2 the conditional density of V;, given Vi,...,V;_1, is
fvi(ilv, . vim1)
S (io); 85 F(Z-_ i. 8 )
UF((Z B 1)0) —0o io—1 J20 J! wngl o’ warl
“T-o) TG Y )
-0 o —(i1—1)o); B . ;
22520 %iﬂ r (Z* - ivﬂ%)

where the w;’s are defined immediately before the statement of Proposition 1.

The stick-breaking representation for the o-stable NRMI can be recovered as a spe-
cial case, by letting 8 — 0. In fact, the sum in (18) and the ratio of sums in (19) converge
to 1 and ¢ — 1, respectively. This leads to an independent sequence (V;);>1, such that
V; ~ beta(l — o,i0), for i > 1. A second remarkable special case, which can be recov-
ered via Proposition 3, is the normalized inverse-Gaussian process. The stick-breaking
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representation of such process is studied in Favaro et al. (2012) where closed-form ex-
pressions for the distributions of the V;’s are provided. The same expressions can be,
in principle, recovered from (18) and (19). Nonetheless, a more direct approach relies
on the availability of a closed form expression for fr, namely a simple inverse Gaussian
density. This can be plugged into Proposition 1 to obtain the result.

Remark. In addition to being a subclass of hNRMIs (and of general NRMIs), nor-
malized generalized gamma processes belong also to a different class of nonparametric
priors, namely Gibbs-type priors which have been introduced by Gnedin and Pitman
(2006). As shown in Lijoi et al. (2008), NGG(o, 8, Py) processes are the only NRMIs
being also of Gibbs-type. Note that in the Gibbs framework the NGG(o, 8, Py) pro-
cess is obtained as a suitable mixture of normalized o-stable CRM rather than by
normalizing a generalized gamma CRM but the representations are equivalent in distri-
bution. Now, a stick-breaking representation for Gibbs-type priors has been derived in
Favaro and Walker (2013), and therefore one can alternatively use their result, instead
of Proposition 1, as the starting point for deriving a stick-breaking characterization of
the NGG(o, 8, Py) process given in Proposition 3.

4 Posterior representation

In this section, we provide an explicit representation of the posterior distribution of an
hNRMI represented in stick-breaking form. This has the merit of shedding light on the
structure underlying such processes.

Start by considering a sequence of X-valued exchangeable random elements (X, )n>1,
defined on (2, #,P). Further assume that the sequence is directed by an hNRMI or,
equivalently, that the de Finetti measure of the exchangeable sequence is the law of an
hNRMI. Then, the X;’s are conditionally i.i.d. given a hNRMI p, i.e.,

Xp X p i=1,...m,
p ~ hNRMI

Given the discreteness of hNRMI, a sample X () := (X1,...,X,) will feature ties with
positive probability, and one observes k < n distinct observations, (X7, ..., X}), with

frequencies (nq,...,ng) such that Z§:1 n; =n.

As shown in James et al. (2006) the only conjugate hNRMI is the Dirichlet process.
However, a sort of conditional conjugacy still holds for all NRMIs in the sense that,
conditionally on a suitable latent variable, the posterior distribution is still an NRMI
with updated Lévy intensity and fixed points of discontinuity in correspondence of the
observations X’s. This posterior characterization in terms of CRMs, proven in James
et al. (2009), forms the basis for obtaining the posterior stick-breaking characterization
of an hNRMI. Before stating the result, let us introduce a latent random variable U,
whose density function, conditionally on X (™, is given by

k
fu, (u) u e ¥ H K, (1) (20)
j=1
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where 9 (u) is the Laplace exponent of a homogeneous CRM /i, namely ¢ (u) = a [ (1—
e~ ") p(dv) and ky,, (u) = fooo vMie” % p(dw), the n;th moment of the exponentially tilted
jump part of the Lévy intensity of ji.

Proposition 4. Let p be an hNRMI with Lévy intensity (7). Then, conditionally on
X and U, p coincides in distribution with the random probability measure

k
Po,u ﬁu + Z Piju 6XJ* (21)

j=1

where p, is an hNRMI admitting stick-breaking representation (2) with dependent
weights (V; ., )i>1. Specifically, V1, has density function given by

o0
(i) = aviy ew(w/ the " p(tvr ) fr(tws ) dt (22)
0
and, for any ¢ > 2, the conditional density of V;,, given Vi ,,...,Vi_1, Is
fVi,u (Ui,u|U1,uv V2,05« - - 7'02'7141)

fo-‘roo tio—ut (Hj’:l P(t’l]j,uwj,u)) fr(twiyq,,)dt

+o0 pi1g—ut (TT1 ’ 23)
Sy ttemnt (TI2) pltvgawa) ) fr(twsa)de

= A V4 qy Wi

where w; ,, = H;;ll(l — V), for i = 2,3,..., w1, = 1 and fr denotes the density

function of the (prior) total mass ji(X). Furthermore,

T, T

=g Pju = ————— =2 (24)
T+ E?:l Jzyu ’ T+ Zf:l Ji,u

©o,u

where the random variables T, and J,,, for i = 1,...,k, are independent and admit
densities of the form fr, (t) = e¥W =" fr.(t) and f;, , (y) < y"ie Wp(y), fori =1,...,k,
respectively.

We now focus again on the two special cases considered before, namely the general-
ized Dirichlet and the normalized generalized gamma processes.

4.1 Generalized Dirichlet process

For the generalized Dirichlet process the posterior stick-breaking representation can be
deduced from (21) with p, of the form (2) and the dependent weights (V;,);>1 turn
out to be such that V; , has density function

~y—1

P (1) =ae?®@ ()2 wzl S aa {107 (= z), ) (@9)

’
11=0
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where we recall that ¥ (u) = a 23:1 log(1+u/j), 21,4 = (V1,4 +YWau) /W2, and ¥y, =
v1,4(1 4+ 41). On the other hand, for any ¢ > 2, the conditional density of V; ,, given
‘/1,1“ R ‘/;_171“ is

fV.L-,u (Ui,u|U1,ua ’Ug’u, CIa 7vi71,u)

. . 1—w; —a
= avuuwz,u( Uz,u) — Z Zz_,qu {(1 — Zi,u)v,l} (26)
201 Pt {(1 - Zz‘—l,u)v,l} C

where, as before, v;,, = 22:1 Ve Wen(1 4 jo) and 2 = (4 + Ui + YWit1,0)/Wit1
for any ¢ > 2. Details for the determination of the two densities in (25) and (26) are
displayed in Section 7.5. The description of the posterior is then completed by providing
the distribution of the other quantities involved in Proposition 4: the independent jumps
Jiu at the distinct values of the observations have density

n;—1 v —(j+u)s
S Zj:l €

L(ni) [C(nj,u+1) = C(nj,u+ 7+ 1)]

friu(s) =

where ((s,q) = >_;°,(l + )% is the generalized Riemann Zeta (or Hurwitz) function,
and the probability distribution of the total mass T is characterized by a density
fr, (t) = e¥(W e~u f1.(t) where fr is the density of the prior total mass in (15). Finally,
the latent random variable U,, has density function

ol k
fo (u) oc ! {H(i—l—u)_a} H [C(nj,u+1) —((nj,u+~y+1)].

i=1 j=1

4.2 The normalized generalized gamma process

When p is a normalized generalized gamma process with Lévy intensity as in (11), from
Proposition 4, one can work out a particularly simple stick-breaking representation of
Du- Indeed, the density functions of V4 ,, and V; |V u, - .., Vic1,, are exactly as in (18)
and (19), respectively, with 3 replaced by 8, = a(u + 7)? /0. Therefore, p,, coincides
with the prior but for an updated parameter which depends on the latent variable U,,;
see Section 7.6 for details. For the special case where o = 1/2, this is in accordance
with the posterior representation obtained for the normalized inverse-Gaussian process
in Favaro et al. (2012).

The description of the posterior in Proposition 4 is completed by noting that the
independent jumps J; ,, at the distinct observations are gamma distributed, with scale

and shape parameters coinciding with (v + 7) and n; — o, respectively. Moreover, T,
has distribution fr, (t) = e*s e~ (+7! £ (#). Finally, the latent random variable U,

admits density function

un—l (i)
fUn(u)O(me 2 (utT) .
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5 Simulation algorithm

In this section, we illustrate how Proposition 1, and in turn Propositions 2 and 3, can
be exploited in order to devise a slice sampling algorithm for mixture models built on
hNRMIs. We start by considering a random density function f; defined as

folw) = /X K(zly)d(y),

where k(x|y) is a continuous kernel density function and p is an hNRMI. This is equiv-
alent to considering the following hierarchical model

X X | Y1, Y N K(XGY),

~ iid  ~
Yilp = p

5 ~ hNRML

Moreover, by exploiting (1), we can write

fala) =D Bik(|Y;). (28)

j=1

The infinite-dimensionality of (28) can be tackled by following the slice sampling ap-
proach introduced in Walker (2007). Specifically, if X ~ f;5, we introduce a random
variable U such that the joint distribution of (X,U) is given by

fou(w,u) = Z]l{u<ﬁj}k($|yj)~
j=>1

We observe that U is assumed uniformly distributed and that, conditionally on U, the
distribution of X reduces to a finite mixture

fowalu) = 5= 3 HlalYy)

JEAy

where A, = {j : p; > U} has finite size and N, = 3 4 §;. At this point, an additional
latent variable D can be introduced, referring to the component of the mixture from
which X is taken. This leads to the joint density function

fﬁ,U,D(xa u, d) = ]l{u<ﬁd}k(x‘yd) (29)

For improving the efficiency of the algorithm, here we implement the so-called slice-
efficient sampler by Kalli et al. (2011); see also Papaspiliopoulos (2008). Specifically, we
replace (29) with

foup(@,u,d) = e, co-eaypak(z]Yy),

for some £ > 0. The complete likelihood then becomes

H efdi ]l{u7 <e—&d; }ﬁdlk(l‘AYdl )

i=1
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The variables that need to be updated at each iteration of the sampler are {(Y;,5,),j =
1,2,...5(DyyU;),i = 1,...,n}. It can be easily checked that if, for every ¢ > 1, condi-
tionally on U; = u;, we set N; = |—(1/€)logu; |, with |z| being the integer part of x,
then it is enough to sample p; and Y; for j =1,..., N = max IV;. As for the conditional
sampling of the Y}’s, the D;’s and the U,’s, we refer to Walker (2007) and Kalli et al.
(2011). The focus of this section is on the sampling of the random probabilities p; for
the class of hNRMIs.

Equations (13) and (14) represent the starting point for deriving the joint distribu-
tion of VIN) = (17,...,Vy), for every N > 1, conditionally on D) = (Dy,...,D,). It
is easy to show that

fvaopo (v1, ... 0N [dy, .o dy) o
o N j—1
Hv'“ - "“/ tN Hp <tvj H(l - vi)> ( H (1—wv; > dt¢,  (30)
0 j=1 i=1 i=1

where n; = Z;-L:l I¢q,—iy and m; = Z;-L:l 114,>:}- Moreover, the joint distribution of
VN) and the total mass T, conditionally on D™ has density function

fT’V(N)‘D(n)(t,Ul,...,/UN|d17...,dn)O(
N
tNHv?j(l Jp(thH )fT (tHl—m). (31)
j=1

Equation (31) easily leads to the full conditional distributions for T and V;, for every
i1=1,...,N, that are needed for the sampler. Specifically, we have

Frirest (t| rest) oc tV H p (tvj [Ta- ) fr (tH (1 — v ) (32)

and
N
fvirest (vi | rest) oc v (1 —vy)™ fr (t]._.[ (1 - ) HP (’5”7 H (1= > (33)
1=1

Remark. Within conditional samplers, a natural competitor for the slice sampler in
mixture models is the algorithm implied by the series representation of increasing Lévy
processes in Ferguson and Klass (1972). Though the Ferguson & Klass sampler is at-
tractive since it generates the jumps in decreasing order, on the other hand, it requires
truncating the series at a certain threshold and is therefore only approximate. On the
contrary, the slice sampler is exact, but it does not generate the probability weights
in decreasing order since it is based on the stick-breaking representation. When the
weights’ distribution is heavy tailed, this might imply the necessity of simulating a very
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large number of weights. If the stick-breaking representation is not simple or the over-
all model is complex, it turns out to be cumbersome to simulate the required number
of jumps and hence one ends up truncating. And, among approximate algorithms, the
Ferguson & Klass is preferable, given the weights arranged in decreasing order and the
possibility to control the error of approximation, for instance, by moment-matching
techniques as proposed in Arbel and Priinster (2015). Hence, there is no algorithm
which is preferable in general, but rather one has to make an informed choice based
on the model (and, in particular, the effort needed to invert the Lévy measure in the
Ferguson & Klass algorithm and to simulate the stick-breaking weights within the slice
sampler) and the application at hand.

Next, we investigate how the full conditional distributions (32) and (33) specialize
when we consider a generalized Dirichlet process or a normalized generalized gamma
process as mlxmg measures p. To simplify the notation, we introduce the random vari-
ables W := HZ L(1=V;) and W .= [T =V;).

5.1 Generalized Dirichlet process

For the generalized Dirichlet process, the joint conditional distribution (31) reduces to

fT’V(N)‘D(n)(t,/Ul,-..,UN|d17..., o 74T 1H 1—U)mj+j7N
¥
X @éw_l)(a(vfl);ya;tw,%w, .. — 1)tw) Ze (vH(A—w))
1=1

Accordingly, we have

y
frirest (| rest) oc t”“_1<1>(2771) (™Y ya; tw, 2tw, . . ., (v —1)tw) Z e tOH—w) (34)
=1

and, for every i =1,..., N,

fv,rest (vi | rest) o

v

o1 — vi)m”i_NCI)gy_l)(a(W_l); ~ya; tw, 2tw, . .., (y — 1)tw) Z et H—w)
=1

(35)

where we recall that w depends on v;. Devising a random variate generator for the full
conditional distribution (34) is not straightforward and goes beyond the goal of the
paper. Nonetheless, it is important to observe that recent developments on the approx-
imate evaluation of the confluent form of the fourth Lauricella hypergeometric function
<I>(2") (see Butler and Wood (2015) and reference therein to the code available online)
suggest that a suitable Metropolis—Hastings algorithm can be implemented. Sampling
from the full conditional in (35) is less cumbersome since, due to its compact support,
one can either rely on a suitable discretized approximation or on an acceptance/rejection
algorithm.
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5.2 The normalized generalized gamma process

For the normalized generalized gamma process, the joint conditional distribution (31)
reduces to

N
fT,V(NHD(") (t, Viy...,UN | dl, ey dn) X tN(l_”)e_tT H U;Ljig(l — ’Uj)mj_(N_j)UfU(tw).
j=1
Accordingly, we have
fT\rest(t | rest) o tN(lig)eitTfo(tw) (36)
and, for every t =1,..., N,
Furest (vi | rest) oc o7 (1 — v ™~ £ (1 — wy)tw). (37)

If a random variable T" is distributed according to the density in (36), then the random
variable S = T'W has density function proportional to

g(s) oc NPT/ (), (38)

that corresponds to the so-called gamma tilted stable distribution. In the following
illustration, we rely on an efficient exact random variate generator for (38), recently
developed in Favaro et al. (2015). As for the full conditionals (37) for the V;’s, we resort
to a discrete approximation of (37) as it turns out to be a good compromise in terms
of accuracy and ease of implementation. Specifically, we consider a fine partition of
the domain [0, 1] made of intervals of the same size (100 intervals in the illustration of
Section 5.3) and approximate (37) with a uniform distribution on each interval.

Finally, notice that a different approach to slice sampling mixture models based on
the normalized generalized gamma process can be found in Favaro and Walker (2013),
where the Kanter’s representation for f, (Kanter, 1975) is exploited.

5.3 Illlustration on acidity data

In order to appreciate the practical impact of the distributional results we have been
describing so far, we display an illustrative application based on the implementation
of the slice-efficient sampler, for the normalized generalized gamma case, discussed in
Sections 5 and 5.2. We investigate the performance of the algorithm by analyzing a
dataset consisting of measurements of an acid neutralizing capacity (ANC) index in a
sample of 155 lakes in North-Central Wisconsin, USA. A low value of ANC can lead to
a loss of biological resources. The identification of clusters of lakes is important for the
determination of lake characteristics which can be used to predict higher acidification.
These data were studied by several authors and were considered on a log-scale as we
do. The estimates for the number of clusters K55, under different approaches, typically
range between 2 and 5; see, for example, Richardson and Green (1997) where a fairly
equal support for 3-5 components is obtained. For illustrative purposes, we focus on
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two values of o, namely 0 = 1/2 (corresponding to the normalized inverse-Gaussian
process) and o = 1/4. The comparison between these two models is interesting as it
gives some insight on the feasibility, for o # 1/2, of the computational approach that
we propose. The case corresponding to o = 1/2 is used as a basis for comparison as it
stands out for its ease of implementation: the stable density involved in (36) and (37)
can be written in closed form and the resulting full conditional distributions can be
evaluated with negligible computational burden.

For the sake of simplicity, and without loss of generality, we set a = 1. In order to
compare the normalized generalized gamma models with different specifications of o,
we fix the other parameter 7 in way that the induced prior distributions on K755 have
the same mode; see Lijoi et al. (2007) for more detail on this centering strategy, where
the distribution of K155 for the normalized generalized gamma priors is also provided.
Moreover, in order to compare the performance of the normalized generalized gamma
models as o varies, we opt for a misspecification of the prior centering of K755, namely
in 15 which is significantly larger than the number of components found in previous
studies of the same dataset.

Since for a given o € (0, 1) there is an interval (7', 7") satisfying this requirement,
then we pick 7% € (7,7") such that P - ;) (K155 = 15) = max ¢ 1) Pr,o) (K155 =
15). For example, as shown in the left panel of Figure 1, when o = 1/2, for every
7 € [0.093,0.126] the prior mode for Ki55 is in 15. In this domain, we pick the value
7* = 0.110 since it maximizes P(r,1/2)(K155 = 15). Similarly, when ¢ = 1/4 we obtain
7" = 6.800. From Figure 1 it is apparent that, for a given o, the mode shifts to the
right as 7 increases. This is in accordance with the interpretation given in Lijoi et al.
(2007) of 7 as a location parameter. Moreover, o controls the variability, but, at the
same time, larger values of ¢ imply also a shift to the right of the distribution of Kis5.
Consequently, for large o it is not always possible to center the distribution on the
desired value if too small. For instance, in the example we consider with n = 155, the
largest value of ¢ compatible with a mode in 15 is 0.606. Larger values of ¢ lead to a

15 15
o 10 » 10
< =
o o
= £
5 5
0 0
0 0.03 0.06 0.09 0.12 0 3 6 9 12
T T
(a) Normalized inverse-Gaussian (b) Normalized generalized gamma with o = 1/4

Figure 1: Analysis of the role of 7 in determining the mode of the prior distribution of
Kiss.
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mode in values larger than 15 even if 7 is set equal to its lowest possible value, namely 0.

The illustration is integrated by comparing the performance of these two models
with the simpler model based on the Dirichlet process, case corresponding to o — 0,
for which we have set the total mass parameter a = 3.912 in order to achieve the same
prior guess for Kiss5.

We complete model (27) with a quite standard specification, similar to the one
adopted by Walker (2007). Namely, we assume that k(-|]-) is a Gaussian kernel and
that, for every i > 1, Y; is the parameter vector (M;, S?) whose components are mean
and variance of the Gaussian kernel. The base measure P, is assumed normal-inverse-
gamma, that is, a priori, the M;’s and the S2’s are independent i.i.d. sequences such
that each M; is normally distributed with mean m and variance 1/s, whereas each S?
is such that 1/S5? has gamma distribution with both shape and scale parameters equal

to €. Finally, we set m = X, s = 0.05, ¢ = 0.5 and £ = 0.5.

We ran the MCMC algorithm for 100,000 iterations after 20,000 of burn-in. After
thinning we have stored a sample of 2,000 iterations that, in turn, were used for es-
timating the sampling density function. For each model, posterior estimates, together
with samples from the predictive density function, are plotted in Figure 2. Given one
can always fit a mixture with more components than needed, it is not surprising that
there are no significant differences between posterior estimates obtained by means of
the three models.

In terms of number of clusters, the considered models show different features. In
Table 1, the posterior distributions for the number of components K55 are reported.
While the two models based on the normalized inverse-Gaussian and the normalized
generalized gamma with o = 1/4, lead to posterior distributions for K55 with mode in 4,
the model based on the Dirichlet process has posterior mode in 5. The difference between
the three models is more apparent if we look at the posterior mean E[K 55| X ™)] that
is equal to 3.817, 4.862 and 5.511 for the normalized inverse-Gaussian, the normalized
generalized gamma with o = 1/4, and Dirichlet process, respectively. Moreover, for the
same three models, the posterior variance is equal to 0.849, 1.673 and 2.526, and the
posterior probability that Kis5 < 5 is equal to 0.955, 0.717 and 0.534, respectively.
These results clearly show that a larger value of ¢ makes the model more robust with
respect to misspecifications of the a priori number of components. In contrast, if the
a priori centering is close to the “correct” value, the posterior distributions of Kiss
essentially coincide. This is in line with the findings of Lijoi et al. (2007), where the role
of o is studied in detail.

The considered diagnostic tools suggest, for the three models, convergence of the
chain. Moreover, after thinning, the autocorrelation of the chain is smoothed out sig-
nificantly. It is worth noting that while the choice of o does not seem to influence the
mixing behavior of the corresponding MCMC algorithms, it has an impact on the com-
putational time required to run the algorithm. Among the three models, the Dirichlet
process leads to the fastest algorithm due to the simple updating mechanism for the
stick-breaking weights that characterizes it. The algorithm based on the normalized
generalized gamma process with o = 1/4 is significantly slower than the one built on
the normalized inverse-Gaussian process. This is due to the updating of the V;’s in the
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0.8 T T T T T T T T T 0.8
0.4 1 0.4
. . o
3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 3
(a) Acidity data (b) Normalized inverse-Gaussian
0.8 0.8,

0.4 1 0.4r

3 35 4 45 5 55 6 65 7 75 3 85 4 45 5 55 6 65 7 75

(¢) Normalized generalized gamma with o = 1/4 (d) Dirichlet process

Figure 2: (a) Histogram of the acidity dataset; (b)—(d) Dashed lines are samples of
predictive densities whereas continuous lines are the posterior expected values of f;
that are used as posterior density estimates, obtained through the MCMC algorithm
under three different prior specifications.

normalized generalized gamma process case by means of the approach described in Sec-
tion 5.2, which requires the evaluation, over a grid of values, of the density of a positive
o-stable random variable at every iteration. This task is generally computationally quite
demanding when o # 1/2 and leads to a slower algorithm.

6 Concluding remarks

We have provided some new distributional results for hNRMIs that are relevant for
achieving a stick-breaking representation. Indeed, one can rely on Proposition 1 to
provide the densities of the stick-breaking weights V;, once p and fr have been specified.
This has been illustrated for two examples, namely the generalized Dirichlet process and
the normalized generalized gamma process. Despite the expressions we obtain might look
somehow involved in these two cases, they still shed some light on their distributional
structure, which is the main goal of the paper. Moreover, they also allow the formulation
of simulation algorithms for hierarchical mixture models as discussed in Section 5. As for
the actual implementation of the suggested MCMC sampler we have confined ourselves
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NIG NGG Dirichlet
7=0.110 | (6 =1/4,7 =6.800) | a = 3.912
mode 4 4 5

mean 3.817 4.862 5.511
K55 <2 0.032 0.007 0.007
Kis5 =3 0.374 0.128 0.077
Kis5 =4 0.392 0.292 0.196
Kis5 =5 0.157 0.291 0.254
Kis5 =6 0.037 0.177 0.219
Kis5 =7 0.006 0.074 0.137
Kis5 =8 0.001 0.024 0.069
Kis5 =9 < 0.001 0.006 0.028
Kis5 > 10 < 0.001 0.001 0.013

Table 1: Posterior mode, posterior mean and posterior probabilities for the number of
components K155 for the normalized inverse-Gaussian (NIG), the normalized generalized
gamma (NGG) and the Dirichlet process.

to the normalized generalized gamma case. In principle, the same can be done for any
hNRMI, the only difficulties lying in simulating from the full conditionals of T" and V;.

Finally, it should be noted that it would be interesting to have distributional rep-
resentations of the stick-breaking weights in terms of some random variables that can
be easily simulated for hNRMIs in general. This would allow to truncate the series at
a fixed threshold and obtain approximate realizations of p in a straightforward way.
For the normalized inverse-Gaussian case, i.e., a normalized generalized gamma process
with o = 1/2 such a representation has been achieved in Favaro et al. (2012) and cru-
cially depends on the availability of a closed form expression of the density function fr.
Hence, the route taken in Favaro et al. (2012) cannot be extended to the normalized
generalized gamma and, a fortiori, to the general hANRMI case. A new strategy has to
be devised for the derivation of simple random variate representations of the V;’s.

7 Proofs

7.1 Proof of Proposition 1

The proof follows by first noting that hNRMIs are invariant under size-biased permu-
tation and then rephrasing the result displayed in Theorem 2.1 of Perman et al. (1992)
for subordinators, namely when X = R and a(dz) = dz, in the context of CRMs with
intensity (7). Indeed, a subordinator on [0, 1], as the one in Perman et al. (1992), has
jumps independent from locations that, in turn, are distributed according to a uniform
distribution on [0, 1]. Given this independence, one can simply take the sequence of
jumps, indexed, say, by the integers, and attach labels generated independently by an
arbitrary (non-atomic) probability measure on a Polish space. This then corresponds to
a CRM and the stated result follows. O



716 On the Stick-Breaking Representation for Homogeneous NRMIs

7.2 Proof of Proposition 2

By virtue of Proposition 1, one has

+o0 71

fvl (1}1) = C]?i?;g: A Z e—(j1+1)t’01e—7t(1—1}1)(t(l _ Ul))'ya—l

J1=0
% (I)gv—l)(a(wfl); ya;t(1 —wv1), ..., (v — 1)t(1 —vy))dt

=1 4
(1 _ vl)'ya—l Z / e~ tw1(G1+)+y(1—v1))pya—1
51=070
x 5 (@O qa;t(1 = 1), (y = D1 — v1)) dt.

a(y)?
['(ya)

The change of variable z = t(v1(j1 + 1) + (1 —v1)) and (2.4.10) in Exton (1976) lead
to

-1
a(’)’!)a a—1 ] 1 oo — —1
fvi(v1) = wy —_ e %279
)= a2 e

X @971) a7 ya; 0z yeees 2= D dz
U1 + yws U1+ yws

v—1
1
=a(Y)*wl* ! g —_
(7) 2 (,l—)l+,yw2)’ya

i1=0

x O~ ya; a('y_l)"ya' w2 (v — Dws .
D ) ) ’@1*‘7U&7 71_]1_i_’yu)2

Here Fj(jn) is the Lauricella function of the fourth type (see Section 2 in Exton (1976))

and, since Fgl) (b1, vy b, .oy Xy) = H?:l(l—xi)_bi, the following simplification

occurs:
1 i, 1 Pty in -
v =a ne w’m_ —_ 1-— —)
fVl( 1) ('Y ) 2 Z: (@1 + ,wa)'ya L. D1 + yws
J1=0 i=1
~v—1 ~y—1
=a () w3 (1 +yw) " [[ @1 + ywa — iwa) 7,
71=0 i=1

and some simple algebra yields (16). As for the conditional distribution of Vi, given
Vi,...,Vi_1, we shall resort to (14). In particular, similarly to the determination of the
density of Vi, the integral in the numerator of (14) is

o) 7
i 1
t" fr(twisq toiw;) dt = (Y)*w? et S
A f ( i+ )J:l—[llo( J J) (,Y) i+1 2 (’Ui‘i”}’wi+l)’ya
X Fg’_l) (’Ya;a(“’l);va; _ Wit1 L (:Y - 1)wi+1>
Vi + YWit1 Ui + Ywig1
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and the same simplification of F' 1(77_1) used before now applies so that

| trtwinn) T ptewsw) de

0 i

—a
1 _ Ui + YW1
a, a—1 1 +
O i o (Ui +ywit1)? {( ) Witt )y

In a similar fashion, one works out the integral in the denominator of (14), and the
result in (17) follows. O

7.3 Proof of Proposition 3

Note that in this case the density of the total mass T is not known in closed form.
Anyhow, since the distribution of the generalized gamma CRM can be obtained as an
exponential tilting of the distribution of the o-stable CRM (Pitman, 2003), one then
has

aT

fr(t) = €5 e £, (1)

where f, is the density of a positive o-stable random variable such that
I e f-(s)ds = exp{—aX” /o}. This implies that

> 1 leg, —1-0 7t
= ty] —— 1o T T THL £ (1(] — dt
fva(v1) a/o LT = o) vy e T fr(t(1 = vy))

= avl_oe% > —o —Ttvy —T7t(1-v1) 1-—
(o) / te e fo(t(1 —vyp)) dt

0

_ avl_ge% > o—1 > —(u+7)t 1—
7“1_0)”0)/0 " /O o £ (H(1 = v1)) dt du

where we have used the fact that t=°I'(c) = [;° u”~! e “!du. The inner integral above

is nothing but the Laplace transform of f,, and then one has

fvi(v1)
—g at? 0o
=20 °° ! u"te” Wdu
INl1-—o0)(c) 1—v1 Jy

av=% e*s 1 Ul_l(l vy) [ ss07 o
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which coincides with (18), after setting 8 := a7 /0. As for the determination of the
density of V;, conditional on Vi,...,V;_1, one can proceed in a similar fashion as for
fv,. Indeed, note that the integral appearing in the numerator of (14) now coincides
with

Ié; 7 —1— 00 )
e (Hl:1 ’Ulwl)i o / tfia' efq—tzle vjw; —Ttwi41 fﬂ(tw“_l) dt
0

(T —0))

(M ow) ™ [ 0
- (Pl(ll—U))i /o 77 e fotwigs) dt

B (H; 17szz)71*" ) o o
= = o —(y+7)t ‘
(T(1—0)) I(io) /0 y /0 e Jo(twiy1)dt dy

— o’ (g vew) ™' /Oo o1 e_%% dy
T o) o) wn  Jy

where the first equality above follows from the identity 25:1 vw; +w;+1 = 1. A similar
change of variable and power series expansion as the one used for V; leads then to
determining the numerator as

ef il wﬁ;l (1—io), B j B
i r(i-Z, .
> (- 0a)

(M= 0)) Llio)a* (T vpwn) e =5 70 wiy " wiy

The expression for the integral in the denominator is similar, with ¢ replaced by ¢ — 1,
and the result in (19) follows. O
7.4 Proof of Proposition 4

The proof follows immediately by adapting the posterior characterization of NRMIs
given in Theorems 1 and 2 of James et al. (2009) and combining it with the stick-
breaking representation given in Proposition 1. O

7.5 Details for the determination of (25) and (26)

In view of (22), one has

i, (V1) = avyy et (w) / te Ut p(tvr ) fr(tws,,) dt
0

—1
P (u) a(Py!)a ya—1 < e —t(u+01,u+ywa2,4) pya—1
=e Wy Z e Lu 2wl g
0

['(va) =

X @év_l)(a(v_l); ya; twa .y, - . ., (7 — D)twsa,,) dt.
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The change of variable z = t(u + 01 4 + ywa,,) and (2.4.10) in Exton (1976) yield

~y—1
1
fvi (i) = ae?™ (1o )t _
1, ( u) ( ) 2u jlzzo (U+U1,u+'7w27u)’ya
X F](J*l) va; a0 ~a; _ Wau e, (7__ Vw2, .
U+ Viu + YW2,4 u+ V1,0 + YW2 4,

Finally, the usual simplification of the Lauricella function above and some simple algebra

lead to (25). Similarly, one recovers (26) upon noting that the numerator of (23) can
be rewritten as
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which, by virtue of the simplification of FI(Dn)(c; biy.. . bpsc 1, ..., xy,), reduces to
_ —1 _ —a
(fy!)u (_1)«1 1 wf+1,u Z 1 (1 u + Ui+ 'ywHLU)
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The integral in the denominator can be evaluated in a similar fashion, and, combining
the two, one obtains (26). O



720 On the Stick-Breaking Representation for Homogeneous NRMIs

7.6 Details of the posterior stick-breaking weights
for the normalized generalized gamma process

If one recalls that (u) = a[(u + 7)° — 77] /0 and sets 5 = a7% /o, one has

ae?W+8 g

v (Vi) = T(-0) /O teTutgmlmoylmo T oA £ ((1 — ) dit
Bu y=0 [0
_ ae " vy —o —(utT7)t
= — t - (t(1 — dt
ol [ e - )

aeﬂu ’U;U /oc X /oo

_ o— —(y+u+7)t

= Yy e Jo(t(1 — 1)) dt dy,
I'(1—o)l(o) Jo 0

and this basically coincides with the same integral evaluated for the determination of
fv, with 7 replaced by u+7. Hence, the density function of V4 ,, coincides with (18) with
B replaced by S8, = a(u + 7)%/0; see proof of Proposition 3. For the determination of
the density of V; ,,, conditional on Vi ,, ..., Vi_1 4, for any ¢ > 2, one proceeds as in the
proof of (19) and computes separately the integrals in the numerator and denominator
of (23). The numerator is

+oo i
/ tie=t (T p(tvuwsa)} fr(twiss,) dt
0 ;
Jj=1

e T (vjuwg) 7
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An analogous expression can be established for the denominator, and the ratio will pro-

vide an expression for the density of V; ,,, conditional on Vi, ..., V;_1 4, that coincides
with (19) where 8 is replaced by 3,. O
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