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Incorporating Marginal Prior Information
in Latent Class Models

Tracy A. Schifeling∗ and Jerome P. Reiter†

Abstract. We present an approach to incorporating informative prior beliefs
about marginal probabilities into Bayesian latent class models for categorical data.
The basic idea is to append synthetic observations to the original data such that
(i) the empirical distributions of the desired margins match those of the prior
beliefs, and (ii) the values of the remaining variables are left missing. The degree
of prior uncertainty is controlled by the number of augmented records. Posterior
inferences can be obtained via typical MCMC algorithms for latent class mod-
els, tailored to deal efficiently with the missing values in the concatenated data.
We illustrate the approach using a variety of simulations based on data from the
American Community Survey, including an example of how augmented records
can be used to fit latent class models to data from stratified samples.

Keywords: categorical, Dirichlet process, missing, mixture, stratified, survey.

1 Introduction

Mixtures of products of multinomial distributions, also known as latent class mod-
els (Goodman, 1974), are used to model multivariate categorical data in many areas
of application, including, for example, genomics (Dunson and Xing, 2009), marketing
(Kamakura and Wedel, 1997), and political science (Si et al., 2015). They also serve
as engines for multiple imputation of missing data (Vermunt et al., 2008; Gebregziab-
her and DeSantis, 2010; Si and Reiter, 2013; Manrique-Vallier and Reiter, 2014b). The
defining feature of latent class models is an assumption of latent conditional indepen-
dence: within any class the variables follow independent multinomial distributions. This
conditional independence makes latent class models particularly useful for contingency
tables with large numbers of cells, as the models can capture complex dependence struc-
tures automatically. Bayesian versions of latent class models can be efficiently estimated
with MCMC algorithms (Ishwaran and James, 2001; Dunson and Xing, 2009; Jain and
Neal, 2004).

In many settings amenable to latent class modeling, the analyst may have informa-
tive prior beliefs about the distributions of subsets of the variables. For example, the
analyst may know with high precision the distributions of demographic variables from
external sources, such as censuses or large national surveys. This information could come
in the form of joint distributions (e.g., the probabilities of all combinations of gender
and race), conditional distributions (e.g., the probabilities of all combinations of race
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given gender), or univariate marginal distributions (e.g., the probabilities for all com-
binations of race and all combinations of gender, separately). It is not obvious how to
incorporate such prior information in Bayesian latent class models because the implied
marginal probabilities are tensor products. One approach is the marginally specified
prior distribution of Kessler et al. (2015). However, as Kessler et al. (2015) admit, the
approximations in this approach can be computationally expensive to implement.

In this article, we propose a simple, yet highly flexible method for incorporating
prior information in Bayesian latent class models. The basic idea is to append synthetic
observations to the original data such that (i) the empirical distributions of the desired
margins match those in the prior beliefs, and (ii) the values for the remaining variables
are left completely missing. For example, to add prior information reflecting that 50% of
individuals are female, we can append hypothetical records with only gender recorded
and all other variables missing, ensuring that half the augmented records have female
for gender. The number of added records is a function of the desired level of prior pre-
cision: increasing numbers of records implies increasing certainty in the prior marginal
probabilities. After adding the hypothetical records, we estimate the latent class model
on the concatenated data with MCMC algorithms. For margins with values in the aug-
mented records, the posterior distribution of the corresponding marginal probabilities
is pulled toward the empirical distributions in the augmented records. However, adding
the augmented data does not distort conditional distributions of the remaining variables
(given the variables with augmented data), since by design the augmented data do not
offer information about these conditional distributions. Indeed, as we illustrate, because
of this feature the augmented records can be leveraged to correct estimates of the joint
distribution of all variables for informative sampling.

Our approach to expressing informative prior distributions is related to the ap-
proaches suggested in Greenland (2007) and Kunihama and Dunson (2013). Greenland
(2007) adds synthetic records to encode a prior distribution for relative risks, and Ku-
nihama and Dunson (2013) represent prior information by generating pseudo-records
with values for all variables using pre-specified, generalized linear models. Unlike these
methods, by adding partially complete records our approach allows analysts to encode
prior information for arbitrary sets of margins.

The remainder of the article is organized as follows. In Section 2, we briefly re-
view the particular latent class model that we use, which is a truncated version of
the Dirichlet process mixture of product multinomials model (DPMPM) developed by
Dunson and Xing (2009). In Section 3, we present results of simulations illustrating the
augmented record approach, including a discussion of how many records to add. In Sec-
tion 4, we describe how augmented records can be used to account for disproportionate
sampling rates in stratified simple random samples. In Section 5, we conclude with a
brief discussion of other applications of the augmented record approach.

2 Review of the DPMPM

In describing the DPMPM, we closely follow the presentation in Si and Reiter (2013).
Suppose the data comprise n individuals measured on p categorical variables. Let Xij
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be the value of variable j for individual i, where i = 1, . . . , n and j = 1, . . . , p. Let
Xi = (Xi1, . . . , Xip). Without loss of generality, we assume that the possible values
of Xij are in {1, . . . , dj}, where dj ≥ 2 is the total number of categories for variable
j. Let D be the contingency table formed from all levels of all p variables, so that D
has d = d1 × d2 × · · · × dp cells. We denote each cell in D as (c1, . . . , cp), where each
cj ∈ {1, . . . , dj}. For all cells in D, let θc1,...,cp = Pr(Xi1 = c1, . . . , Xip = cp) be the
probability that individual i is in cell (c1, . . . , cp). We require the

∑
D θc1,...,cp = 1. Let

θ = {θc1,...,cp : cj ∈ (1, . . . , dj), j = 1 . . . , p} be the collection of all d cell probabilities.

We suppose that each individual i belongs to exactly one ofH∗ latent classes. For i =
1, . . . , n, let zi ∈ {1, . . . , H∗} indicate the class of individual i, and let πh = Pr(zi = h).
We assume that π = (π1, . . . , πH∗) is the same for all individuals. Within any class, we
suppose that each of the p variables independently follows a class-specific multinomial
distribution. This implies that individuals in the same latent class have the same cell
probabilities. For any value x, let φhjx = Pr(Xij = x | zi = h) be the probability
of Xij = x given that individual i is in class h. Let φ = {φhjx : x = 1, . . . , dj , j =
1, . . . , p, h = 1, . . . , H∗} be the collection of all φhjx. For prior distributions on π and φ,
we use the truncated stick breaking representation of Sethuraman (1994).

Putting it all together, we have

Xij |zi, φ ∼ Categorical(φzij1, . . . , φzijdj ) for all i, j (1)

zi|π ∼ Categorical(π1, . . . , πH∗) for all i (2)

πh = Vh

∏
g<h

(1− Vg) for h = 1, . . . , H∗ (3)

Vh ∼ Beta(1, α) for h = 1, . . . , H∗ − 1, VH∗ = 1 (4)

α ∼ Gamma(aα, bα) (5)

φhj = (φhj1, . . . , φhjdj ) ∼ Dirichlet(aj1, . . . , ajdj ) (6)

where the Gamma distribution has mean aα/bα.

We set aj1 = · · · = ajdj = 1 for all j to correspond to uniform distributions.
Following Dunson and Xing (2009) and Si and Reiter (2013), we set (aα = 0.25, bα =
0.25), which represents a small prior sample size and hence vague specification for the
Gamma distribution. In practice, we find these specifications allow the data to dominate
the prior distribution. The posterior distribution of all parameters can be estimated
using a blocked Gibbs sampler (Ishwaran and James, 2001; Si and Reiter, 2013).

We recommend making H∗ as large as possible while still offering fast computation.
Using an initial proposal for H∗, say H∗ = 30, analysts can examine the posterior dis-
tributions of the sampled number of unique classes across MCMC iterations to diagnose
if H∗ is large enough. Significant posterior mass at a number of classes equal to H∗ sug-
gests that more classes be added. We note that one can use other MCMC algorithms to
estimate the posterior distribution that avoid truncation, for example, a slice sampler
(Walker, 2007; Dunson and Xing, 2009; Kalli et al., 2009) or an exact blocked sampler
(Papaspiliopoulos, 2008).
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From (1) and (2), we can see that the probability of any cell (c1, . . . , cp) ∈ D can be
expressed as

θc1,...,cp =

H∗∑
h=1

πh

p∏
j=1

φhjcj . (7)

Marginal probabilities are computed similarly, taking the product only over the values of
j in the margin of interest. This expression reveals the challenge in specifying informative
prior distributions for margins in θ: one has to influence both φ and π. One possibility
is to fix (aj1, . . . , ajdj ) to correspond to the desired prior probabilities with a very large
prior sample size that dominates n—this would force the posterior marginal probability
to equal the prior marginal probability for variable j. However, this could severely
constrain the ability of the model to capture relationships among the other variables
since the prior distribution would encourage the latent classes to be comprised of cases
with empirical distributions that match the prior distribution.

3 Adding marginal information to the DPMPM model

We now turn to the augmented records approach to incorporating prior information
about marginal probabilities in the DPMPM model. Let A index the set of variables
for which we have informative prior beliefs. Suppose that we create nA cases to append
to the original data. Let XA include the hypothetically recorded data for the variables
in A for the nA augmented cases; data for all variables not in A are left missing for
these cases. Let XO include all the data for the n cases collected in the sample, and
let Xobs = (XO, XA) be the concatenated data. The exact format of Xobs depends
on the information in A. When A includes the full joint distribution for {Xj : j ∈
A}, the analyst adds XA as in Figure 1a. When A includes only univariate marginal
distributions, the analyst adds augmented data comprising only marginal information
for each variable {Xj : j ∈ A}, as in Figure 1b. In the latter case, different augmented
sample sizes can be used for each margin depending on the levels of prior precision
desired by the analyst.

Let Θ = {z1, . . . , zn+nA
, π, α, φ}. Treating XA as if it were data, the likelihood

function for the augmented data DPMPM is

p(Xobs|Θ) =

⎛
⎝∏

j∈A

n+nA∏
i=1

p(Xij |zi, φ)

⎞
⎠

⎛
⎝∏

j /∈A

n∏
i=1

p(Xij |zi, φ)

⎞
⎠ (8)

=

⎛
⎝∏

j∈A

H∗∏
h=1

dj∏
cj=1

φ

∑n+nA
i=1,zi=h I(Xij=cj)

hjcj

⎞
⎠

⎛
⎝∏

j /∈A

H∗∏
h=1

dj∏
cj=1

φ

∑n
i=1,zi=h I(Xij=cj)

hjcj

⎞
⎠ .

(9)

Using the default prior distributions in (3)–(6), the posterior distribution of the pa-
rameters can be readily estimated with a Gibbs sampler; see Appendix A for the full
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Figure 1: Graphical representations of augmented surveys.

conditionals. The model allows the nA additional records to be in any of the latent
classes, favoring allocations that best describe Xobs.

When nA is very large, it can be computationally expensive to update each aug-
mented case’s zi one at a time. In many contexts, however, the number of unique
combinations in XA is substantially smaller than nA; for example, there are two unique
combinations when A includes only gender. To update all zi for the augmented cases,
we can compute the conditional probability (given XA) for each unique combination.
We then sample the values of zi for all augmented records with the same combination
at once using a multinomial distribution. When the number of unique combinations
in XA is large, it can be beneficial to update all zi in parallel. One also can reduce
computational burdens by using approximations to the full posterior distribution (e.g.,
as in Johndrow et al., 2014).

To illustrate the augmented sample approach and the role of nA, we use three simu-
lation scenarios. In the first scenario, we assume an analyst with very precise (essentially
known) estimates of marginal probabilities. Here, we consider prior information compris-
ing a bivariate distribution as in Figure 1a and information comprising two univariate
margins as in Figure 1b. In the second scenario, we assume an analyst with imprecise
estimates of marginal probabilities. Here, we only show results for prior information
comprising a bivariate distribution. We use a small p in these two scenarios to facili-
tate repeated sampling studies. In the third scenario, we illustrate the approach for a
larger p.

For all simulations, and throughout the remainder of the article, we use data from
the 2012 American Community Survey (ACS) Public Use Microdata Sample (PUMS)
of North Carolina. We include only individuals with age greater than or equal to 18
to avoid structural zeros, i.e., impossible combinations like married five year old. The
latent class model from Section 2 does not handle structural zeros correctly without
adjustments; see Manrique-Vallier and Reiter (2014a) for an approach that does so.
The resulting data comprise N = 76706 individuals and the variables in Table 1. In the
following simulations, XO and the information used to generate XA both come from this
ACS PUMS population. In practice, of course, the survey data in XO and the marginal
information for XA typically come from different sources.
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PUMS variable Categories
Gender 1=male, 2=female
Age 1=18–29, 2=30–44, 3=45–59, 4=60+
Recoded detailed race code 1=White alone, 2=Black or African American

alone, 3=American Indian alone, 4=other, 5=two
or more races, 6=Asian alone

Educational attainment 1=less than high school diploma, 2=high school
diploma or GED or alternative credential,
3=some college, 4=associate’s degree or higher

Marital status 1=married, 2=widowed, 3=divorced, 4=sepa-
rated, 5=never married

Language other than English spoken at home 1=yes speaks another language, 2=no speaks
only English

World area of birth 1=US state, 2=PR and US island areas, Oceania
and at sea, 3=Latin America, 4=Asia, 5=Europe,
6=Africa, 7=Northern America

Military service 1=yes active duty at some point, 2=no training
for Reserves/National Guard only, 3=no never
served in the military

When last worked 1=within the past 12 months, 2=1–5 years ago,
3=over 5 years ago or never worked

Disability recode 1=with a disability, 2=without
Health ins. coverage recode 1=with health insurance coverage, 2=no
Mobility status (lived here 1 year ago) 1=yes same house (non movers), 2=no outside

US and PR, 3=no different house in US or PR
School enrollment 1=no has not attended in the last 3 months,

2=yes public school or public college, 3=yes pri-
vate school or college or home school

Recoded detailed Hispanic origin 1=not Spanish/Hispanic/Latino, 2=Span-
ish/Hispanic/Latino

Table 1: Subset of variables from ACS PUMS 2012. Categories for age, race, educational
attainment, world area of birth, military service, and Hispanic origin have been collapsed
from their original number of levels due to insufficient sample sizes.

3.1 Scenario 1. Adding known margins

When the analyst knows some marginal probabilities precisely, the analyst should aug-
ment the sample with enough records so that nA � n. As evident from (9), doing so
ensures that the information about the marginal probabilities in A comes primarily from
XA. The empirical distributions in XA are constructed to match the known marginal
probabilities.

We illustrate this approach using a repeated sampling simulation, treating the N
records in the ACS PUMS data as a population. Each XO comprises n = 10000 ran-
domly sampled individuals from the N records in the ACS PUMS. Each record is
measured on p = 5 variables including gender, age group, race, educational attainment,
and marital status, so that the implied contingency table has d = 960 cells. We consider
an analyst who knows the joint distribution of age group and marital status in the
population, which we take from the N records.

We augment each XO with nA = 100000 synthetic individuals, setting XA so that
the empirical frequencies of the cross tabulations of age group and marital status match
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Figure 2: Distribution across the 100 simulations of differences in posterior means and
corresponding population percentages for all marginal probabilities. Left panel displays
results with the augmented joint margin of age group and marital status, and right
panel displays results based on collected data only.

those from the known joint marginal probabilities. We run the DPMPM model on Xobs

with H∗ = 30, running three MCMC chains each for 50,000 iterations and tossing the
first 20,000 as burn-in. We identified this number of MCMC iterates as sufficient based
on exploratory runs using the diagnostics of Gelman and Rubin (1992) for α and all the
univariate marginal probabilities. We repeat the process of generating Xobs and fitting
the model 100 times. For comparison, we also fit the DPMPM on the 100 sampled XO

without any augmented records.

Figure 2 displays how adding XA affects the estimates of univariate marginal prob-
abilities. After adding the augmented data, the posterior means of the marginal proba-
bilities for age group and marital status are very close to the frequencies in XA (which
equal the population percentages). In contrast, when the DPMPM is estimated using
only XO, the posterior means for the age group and marital status marginal proba-
bilities are substantially more variable. Figure 3 shows similar patterns for the joint
probabilities of age group and marital status. We note that in Figure 2, the posterior
means for the marginal probabilities for variables not in A are similar whether or not
one adds XA.

Figure 4 displays the posterior means and corresponding population values for all
960 θc1,...,cp . The posterior means are quite similar whether or not one adds XA. When
not using XA, the average root mean squared error (RMSE) of the posterior means is
3.8 × 10−4 with 95% of the RMSEs within (3.2 × 10−4, 4.6 × 10−4). When using XA,
the average RMSE is 3.8× 10−4, with 95% of RMSEs within (3.1 × 10−4, 4.5× 10−4).
These results indicate that using augmented data to represent prior beliefs on marginal
probabilities does not distort other aspects of the posterior distribution of θ.
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Figure 3: Distribution across the 100 simulations of posterior means versus correspond-
ing population percentages for joint distribution of age group and marital status. Left
panel displays results with the augmented joint margin of age group and marital status,
and right panel displays results based on collected data only.

We also run 100 simulations where the analyst precisely knows the distributions of
age group and marital status marginally but not jointly. Here, we add nA = 200000
records as in Figure 1b, allocating 100000 to each margin. The results for the 21 uni-
variate marginal probabilities are similar to those in Figure 2a, and the results for the
960 cell probabilities are similar to those in Figure 4a. When using XA in this scenario,
the average RMSE of the posterior means of the 960 probabilities is 3.9×10−4 with 95%
of RMSEs within (3.3 × 10−4, 4.7 × 10−4). These RMSEs are not noticeably different
from those in the simulation with known joint age–marital status distribution, although
they tend to be slightly higher. However, the posterior probabilities in the joint distri-
bution of age group and marital status exhibit variability that is substantially closer to
that seen in Figure 3b than in Figure 3a. This is not surprising, as in this scenario XA

does not add information about the conditional distributions for age group and marital
status. For brevity, we do not display the figures here.

3.2 Scenario 2. Adding imprecise margins

With imprecise margins, we no longer set nA � n; instead, we allow nA essentially to
control the prior precision. Suppose that the analyst’s prior beliefs for the probabilities

in A are centered at some θ
(0)
A . When adding augmented data for joint distributions as in

Figure 1a, analysts can think of nA as the prior sample size in a Dirichlet distribution

with shape parameter θ
(0)
A . When adding augmented data for marginal distributions

only, analysts specify an augmented sample size for each margin separately. In both
cases, the analyst can determine nA by matching the mean and standard deviation in
the prior information (e.g., reported estimates of means and standard errors from na-
tional surveys) to the first two moments of Dirichlet distributions. For example, Table 2
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Figure 4: Posterior mean estimates of cell probabilities versus corresponding population
values for all 960 cells in the table. Left panel displays results with the augmented
joint margin of age group and marital status, and right panel displays results based on
collected data only.

displays approximate 95% prior intervals on πj for each possible age group and mari-
tal status combination j for various nA. See Appendix B for further discussion of the
reasonableness of interpreting nA as the prior sample size of a Dirichlet distribution.

To illustrate the incorporation of imprecise marginal information, we modify the sim-
ulation from Section 3.1. We add prior information on the joint distribution of age group
and marital status, using a prior sample size of nA = 10000. Results are summarized
in Figure 5. As intended, the posterior intervals for the age group and marital status
marginal and joint probabilities are wider than those estimated with nA = 100000,
yet narrower than those estimated with nA = 0. The average RMSE of the 960 poste-
rior means is again similar to the no-margin and precise-margin cases (the average is
3.7× 10−4 with 95% of RMSEs between 3.2× 10−4 and 4.4× 10−4).

3.3 Scenario 3. Adding information with larger p

We now use a random sample of n = 10000 records and the p = 14 variables in Table 1,
which correspond to a contingency table with more than 8.7 million cells. We add
nA = 99991 (not a multiple of 1000 due to rounding considerations) augmented records
with recorded multivariate responses to gender, age group, race, educational attainment,
marital status, language other than English, and world area of birth. We construct the
augmented data as follows. We compute the population percentage of each combination
of these seven variables from the N ACS PUMS cases. For example, the population
percentage of people who are male, age 18–29, of white race, have less than a high
school diploma, are married, who speak another language other than English, and were
born in a US state is 0.0039%. The cross-tabulation of these seven variables results in
13440 distinct sub-groups, which we allocate to the nA cases approximately proportional
to their population shares.
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Age group, marital status True percent nA = 100000 nA = 10000 nA = 1000
Age 18–29, married 3.96 (3.84, 4.08) (3.61, 4.37) (2.89, 5.24)
Age 18–29, widowed 0.01 (0.01, 0.02) (0.00, 0.06) (0, 0.35)
Age 18–29, divorced 0.29 (0.26, 0.32) (0.20, 0.41) (0.11, 0.85)

Age 18–29, separated 0.27 (0.24, 0.31) (0.19, 0.40) (0.11, 0.85)
Age 18–29, never married 14.04 (13.82, 14.26) (13.40, 14.71) (11.81, 16.04)

Age 30–44, married 14.05 (13.85, 14.26) (13.37, 14.72) (11.95, 16.07)
Age 30–44, widowed 0.13 (0.11, 0.16) (0.08, 0.23) (0.03, 0.54)
Age 30–44, divorced 2.43 (2.34, 2.54) (2.13, 2.75) (1.57, 3.55)

Age 30–44, separated 1.01 (0.95, 1.08) (0.83, 1.23) (0.51, 1.81)
Age 30–44, never married 5.34 (5.20, 5.46) (4.90, 5.81) (4.03, 6.79)

Age 45–59, married 18.04 (17.81, 18.27) (17.28, 18.72) (15.48, 20.39)
Age 45–59, widowed 0.84 (0.79, 0.89) (0.68, 1.04) (0.39, 1.49)
Age 45–59, divorced 4.47 (4.34, 4.59) (4.12, 4.89) (3.28, 5.88)

Age 45–59, separated 1.08 (1.01, 1.14) (0.91, 1.30) (0.63, 1.92)
Age 45–59, never married 3.12 (3.01, 3.23) (2.79, 3.47) (2.18, 4.31)

Age 60+, married 18.66 (18.43, 18.90) (17.84, 19.43) (16.30, 20.79)
Age 60+, widowed 6.70 (6.56, 6.87) (6.20, 7.22) (5.21, 8.21)
Age 60+, divorced 3.73 (3.61, 3.85) (3.36, 4.09) (2.68, 5.02)

Age 60+, separated 0.53 (0.49, 0.58) (0.42, 0.69) (0.23, 1.17)
Age 60+, never married 1.28 (1.21, 1.35) (1.07, 1.51) (0.73, 2.16)

Table 2: 95% prior intervals for margins corresponding to different values of nA.

To investigate the effects of adding prior information, we examine the Cramér’s V
statistic for every pair of variables j and j′. This measures strength of bivariate associa-
tions. Figure 6a displays the Cramér’s V statistic computed from the N observations in
the ACS PUMS data. Dunson and Xing (2009) define a model-based version of Cramér’s
V statistic as

ρ2jj′ =
1

min {dj , dj′} − 1

dj∑
cj=1

dj′∑
cj′=1

(θcj ,cj′ − θcjθcj′ )
2

θcjθcj′
(10)

where θcj ,cj′ =
∑H∗

h=1 πhφh,j,cjφh,j′,cj′ and θcj =
∑H∗

h=1 πhφh,j,cj .

We estimate each ρ2jj′ using the models fit to Xobs and only to X0 using a posterior
simulation approach, as done by Dunson and Xing (2009). For each analysis, we run
three chains of the MCMC algorithm for 80000 iterations after a burn-in of 20000
iterations, and save every 30th draw. Figures 6b and 6c display the posterior means of
ρjj′ for all pairs of variables. The posterior means of ρjj′ across the variables are similar
to the population Cramér’s V statistics whether we use Xobs or XO alone. This would
not have been the case if, for example, the augmented data encouraged the model to
estimate accurately the distribution of the seven variables in the added margin at the
expense of the remaining variables. Put another way, the fit based on Xobs is not shrunk
toward independence relative to the fit based on XO.
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Figure 5: Results of 100 simulation runs when nA = 10000. The left panel displays the
distribution of differences in posterior means and corresponding population percentages
for all univariate distributions, and the right panel displays the posterior means versus
the corresponding population percentages for the joint distribution of age group and
marital status.

We also consider the joint probabilities in the four-way table involving gender and
language spoken other than English (both variables included in A), and school en-
rollment and Hispanic (not included in A). After adding XA, the average RMSE of
these joint probabilities is 0.0016 with 95% of values between (0.0009, 0.0025). Without
adding XA, the average RMSE of these probabilities is 0.0021 with 95% of values be-
tween (0.0010, 0.0036). Thus, even though the school enrollment and Hispanic variables
are not included in XA, using the informative prior distribution improves the estimates
of the joint probabilities in this four-way table.

Finally, we note that we ran four additional simulations and got similar results for
the model-based Cramér’s V statistic and the four-way table.

4 Using augmented records to account for stratified
sampling

The DPMPM and other Bayesian latent class models effectively treatXO as coming from
a simple random sample. When this is not the case, these and other joint models can
result in unreliable inferences about population parameters. In this section, we illustrate
how augmented data can be used to adjust for unequal probabilities of selection resulting
from stratified random sampling.

We again treat the ACS PUMS data as the population, and use the same p = 5
variables as in the simulation in Section 3.1. We sample n = 10000 records comprising
simple random samples of 2500 records from each of four strata, namely African Amer-
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Figure 6: The top figure shows Cramér’s V statistic on the population data. The bottom
figures show the model-based Cramér’s V statistic on the sample of n = 10000 records
from the ACS data, with and without augmented records.

icans aged 18 to 29, African Americans over age 30, non-African Americans aged 18 to
29, and non-African Americans over age 30. The population shares of the four strata
are, in order, 4.2%, 15.3%, 14.4%, and 66.1%. Thus, the stratified sample greatly over-
represents younger African Americans and greatly under-represents older non-African
Americans. Not surprisingly, when we fit the DPMPM model without correcting for
the stratification, the resulting estimates of marginal probabilities are badly biased, as
illustrated in Figure 7b.

In many stratified sampling contexts, the population shares of the strata, and hence
of the variables defining the stratification, are known and available for analysis. This
suggests that we can treat the known shares as precise prior information and use the
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Figure 7: Difference in posterior means and population quantities for marginal proba-
bilities in the stratified sampling simulation. The left panel fits the model after adding
nA = 90000 samples, the right panel fits the DPMPM without any adjustment for
stratified sampling. The scales of the vertical axes differ in the two displays to improve
interpretation in each display.

techniques of Section 3.1. Specifically, we can create augmented records so that the
distributions of the stratification variables in the concatenated data match the known
population shares. We set nA large enough that Xobs (including XO) is centered at the
population distribution of the stratification variables with negligible variance. Alterna-
tively, when N is not too large and finite population corrections matter, we can set
nA = N − n and choose XA so that the distribution of Xobs exactly matches that in
the population.

We run 100 simulations as follows. For each stratified sample of size 10000, we
generate nA = 90000 records so that the distribution of age group and race in the con-
catenated data closely matches the known population shares, leaving all other variables
missing in XA. We assume the analyst knows the joint distribution of all race and all
age group combinations, not just the four probabilities used in the stratification. As
shown in Figure 7a, the DPMPM estimated on Xobs results in accurate estimates of the
marginal probabilities. This is also the case for the joint distribution of age group and
race, as shown in Figure 8, and for the 960 cell probabilities, as shown in Figure 9.

We now offer some intuition on how augmented records can adjust estimated joint
distributions for stratified sampling. When stratifying on A, by designXO is not sampled
from the population marginal distribution of A. However, because units are collected
within strata using simple random samples (this is the standard stratified sampling
design), XO is sampled from the population conditional distribution of {Xj : j /∈ A}
given XA. Since for large n the DPMPM can accurately estimate the distribution of
the generative process for XO, the DPMPM estimated with only XO inaccurately esti-
mates the marginal distribution of variables in A, but it should accurately estimate the
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Figure 8: Posterior mean estimates versus corresponding population values of age group
by race joint probabilities. The left panel fits the model with nA = 90000 augmented
samples. Across all 100 simulations, all 24 95% credible intervals contain the true joint
probability. The right panel fits the model without adjusting for the stratified sampling.

conditional distribution of {Xj : j /∈ A} given XA. Since XA provides information only
about the marginal distribution of A, the DPMPM estimated with Xobs still should ac-
curately estimate the conditional distributions of {Xj : j /∈ A} given XA. However, XA

encourages the DPMPM to estimate the marginal distributions of A accurately. Fusing
the accurate estimates of the marginals of A and conditionals given A results in accu-
rate estimates of the joint distribution. We note that the intuition above assumes that
XO includes all variables used in stratification; otherwise, the conditional distributions
implied by the DPMPM are likely to be inaccurate.

The augmented records approach can be further understood using the framework
put forth by Kunihama et al. (2014). To adjust the DPMPM for stratified sampling,
Kunihama et al. (2014) suggest re-weighting the DPMPM mixture components accord-
ing to their estimated population shares. The estimated shares are derived from sums
of the survey weights of the records in XO. Augmented records serve a similar function:
like estimated shares, they increase or decrease the DPMPM mixture weights to reflect
the population distribution of A. The DPMPM tends to assign augmented cases to com-
ponents occupied by observed cases with similar values of A. These augmented records
should not change the distributions of A (or the other variables) within components.
Rather, they adjust the mixture weights, as the shares of the components reflect the
shares of each combination of A in Xobs.

Sometimes the available stratum information is coarser than the corresponding vari-
ables used in the analysis; for example, the analyst knows the true proportion of African
Americans of age 30 and up from metadata about the survey design, but does not know
the breakdown of age 30–44 African Americans, age 45–59 African Americans, and age
60 and up African Americans. In this case, the analyst can construct XA to match the
known percentages at the available coarse scale, and allocate the within-stratum records
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Figure 9: Posterior mean estimates of cell probabilities versus corresponding population
values for all 960 cells in the table. Left panel displays results with nA = 90000 added
samples to correct for stratification, and right panel displays results with no added
samples.

to match additional prior beliefs about the finer-scale variables. The analyst can cre-
ate different versions of XA to reflect different assumptions about the within-stratum
allocations, and estimate the DPMPM model on each of the augmented margins as a
sensitivity analysis.

5 Concluding remarks

The simulation results presented here suggest that using augmented data is a flexible
and convenient way to incorporate prior information about marginal probabilities in
latent class models. Augmented categorical cases also could be used to represent prior
information on marginal probabilities in other types of mixture models, including mod-
els for mixed scale data (e.g., Zhou et al., 2014; Dunson and Bhattacharya, 2011; Wade
et al., 2011). The same strategy applies—add nA cases to reflect prior beliefs about
marginal probabilities—with appropriate adjustments to the full conditional distribu-
tions. The mixture component indicators for the augmented records can be updated in
batch, using only XA to determine the component probabilities.

The general augmented data approach can be adapted to represent prior information
about distributions of continuous variables. For example, to represent the prior belief
that the marginal distribution of some continuous variable follows a distribution f , an-
alysts can augment the data with nA � n cases drawn from f . Alternatively, analysts
can make nA small to represent relatively weak prior beliefs about the distribution.
Analysts can calibrate nA by examining the properties of summary quantities, such as
moments and quantiles, over repeated draws of nA values of XA from the prior distri-
bution. This approach could be used to adjust inferences for probability proportional to
size samples. The analyst augments XO with XA generated to reflect the known, or at
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least accurately estimated, size distribution in A. We note that the computations with
continuous data generally are more challenging, since typically the number of unique
values of XA will be close to nA.

The approach could be applied in contexts with non-exchangeable data as well. For
example, when data comprise people nested within households, analysts may have prior
information from census counts on the number of individuals per household, and the
distributions of gender and race within households. Given a sample XO of households,
analysts could append augmented household records reflecting those prior beliefs, and
estimate appropriate joint models that account for the nested structure (Hu, 2015).

The augmented data approach potentially could improve inferences in other contexts
as well. For example, many surveys suffer from unit nonresponse that is not missing
at random. If the analyst has external information about the marginal distributions of
some of the missing variables, she can augment the sample in a manner like the stratified
sampling application and estimate the model on the concatenated data. In this way, the
analyst can adjust inferences for nonignorable nonresponse (assuming the data for the
variables not in the augmented margins are missing at random). A similar approach
could help correct inferences (again under certain conditions) made with convenience
samples. We plan to investigate these applications in future research.

Appendix A: Posterior computation

We use a Gibbs sampler to estimate the posterior distributions of the unknown quantities
(z, V, π, α, φ). The full conditionals are similar to those in Si and Reiter (2013), modified
to incorporate the augmented data. For the augmented data, we do not fill in the missing
values of the variables not in A, preferring to marginalize over the missing data. It would
be straightforward to impute these missing values, as each variable is independent within
latent classes.

The steps of the Gibbs sampler are as follows:

1. To update zi for cases in the original data, i.e., where i = 1, . . . , n, sample from a
categorical distribution with

p(zi = h|Xi1, . . . Xip, π, φ) =
πh

∏p
j=1 φhjXij∑H∗

k=1 πk

∏p
j=1 φkjXij

. (11)

2. To update zi for cases in the augmented data, i.e., where i = n + 1, . . . , n + nA,
sample from a categorical distribution with

p(zi = h|{Xij : j ∈ A}, π, φ) =
πh

∏
j∈A φhjXij∑H∗

k=1 πk

∏
j∈A φkjXij

. (12)

This can be done efficiently by sampling values of z for the recorded combina-
tions in XA. That is, for each recorded combination in XA, we compute (12) and
sample the values of z for all augmented records with that combination using a
multinomial distribution.
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3. To update Vh for h = 1, . . . , H∗ − 1, we sample from

p(Vh|α, z) = Beta

(
nh + 1, α+

H∗∑
k=h+1

nk

)
(13)

where nh =

n+nA∑
i=1

1(zi = h). Set VH∗ = 1. Then, πh = Vh

∏
g<h(1 − Vg) for

h = 1, . . . , H∗.

4. To update α, sample from

p(α|V1, . . . , VH∗−1) = Gamma (H∗ + aα − 1, bα − log (πH∗)) . (14)

5. To update φhj for variables with no augmented margin, i.e., for j /∈ A, where
h = 1, . . . , H∗, sample from

p(φhj |Xobs, z) = Dirichlet

⎛
⎜⎝1 +

n∑
i=1
zi=h

1(Xij = 1), . . . , 1 +

n∑
i=1
zi=h

1(Xij = dj)

⎞
⎟⎠ .

(15)

6. To update φhj for variables with augmented margin, i.e., for j ∈ A, where h =
1, . . . , H∗, sample from

p(φhj |Xobs, z) = Dirichlet

⎛
⎜⎝1 +

n+nA∑
i=1
zi=h

1(Xij = 1), . . . , 1 +

n+nA∑
i=1
zi=h

1(Xij = dj)

⎞
⎟⎠ .

(16)

Appendix B: Interpretation of nA as prior sample size of
Dirichlet distribution

In Section 3.2, we suggest thinking of nA as a prior sample size in a Dirichlet distribution.
To illustrate that this is a reasonable interpretation, we now present results of simulation
studies in which we approximate the prior distribution on φmale = Pr(gender = male)
implied by adding records with only gender recorded.

We take a sample of size n = 100 individuals from the PUMS data for whom we
observe gender, age group, race, educational attainment, and marital status. We add
an augmented sample comprising gender only for nA ∈ {100, 1000, 10000}. We run the
DPMPM model on this Xobs for T = 5000 iterations after the burn-in (also 5000 runs),
and save the posterior draws of φmale. We repeat the process 100 times.

Rearranging Bayes rule, the implied prior distribution of φmale given the collected
data X0 is

p(φmale) =
p(φmale|X0)p(X0)

p(X0|φmale)
. (17)
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Figure 10: Comparison of theoretical Beta CDF to empirical prior CDF under different
settings of nA.

For any simulation run, each of the components on the right hand side of (17) can be
readily approximated from the converged MCMC samples. Thus, we can approximate
p(φmale) along a grid of values from 0 to 1. Let k1 be the number of males in the sample
of n = 100 records. At each multiple of 0.001 between 0 and 1, the approximation is

p(φmale = x) ∝
1
T

∑T
t=1 I(x− 0.0005 < φ

(t)
male ≤ x+ 0.0005)

n!
k1!(n−k1)!

xk1(1− x)n−k1
. (18)

Figure 10 compares the approximated prior cumulative distributions (in gray) to the
theoretical Beta(k2 + 1, nA − k2 + 1) cumulative distributions (in dashed black line),
where k2 is the number of males in the added margin. For all values of nA, the Beta
distribution is a close match, suggesting that it is reasonable to think of nA as the prior
sample size of a Dirichlet distribution.
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