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Comment on Article by Dawid and Musio∗,†

Christopher M. Hans‡ and Mario Peruggia§

Dawid and Musio present interesting results on how to affect model comparison using
proper scoring rules, focusing chiefly on Bayesian model comparison. Among the reasons
stated to justify the proposed approach we note:

1. The insensitivity of the procedure to a renormalization of the prior distribution,

2. The flexibility and/or robustness of the method when implemented using a pre-
quential score.

The focus of the article is on the derivation of consistency results for the proper
scoring rule methods based both on their implementation through a multivariate score
and a prequential score. There are very many such results in the article, but the gist of
the argument is that some form of proper scoring rule method can produce a consistent
procedure even in cases when the standard Bayesian approach fails to do so or when it
fails altogether, as is the case when improper priors are used and Bayes factors cannot
be calculated.

Consistent model selection is unquestionably a desirable property as is the formula-
tion of a coherent, universal framework for statistical inference. The Bayesian approach
using proper priors accomplishes the latter. The proposed proper scoring rule methods
mend the complications that arise when the Bayesian approach is used with improper
priors. However, the beauty of the coherent Bayesian inferential framework is lost when
model comparison is no longer based on the likelihood score. As in all compromises,
something is gained at the expense of losing something else, or, as some would say,
there is no free lunch!

Then, for those situations in which the Bayesian approach is not broken, two ques-
tions arise naturally:

1. When does a proper scoring rule model comparison produce a different answer
than a log-score model comparison?

2. For those situations in which the answers are different, can an argument be made
for preferring the proper scoring rule method?

This suggests juxtaposing the proposed method to model comparison methods that
compare directly the (log-) likelihoods for the various models.
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Focusing on the technically simpler situations, such as that of the univariate Gaus-
sian process of Section 6.1, may be helpful to develop some deeper intuition. The ad-
denda in the cumulative prequential delta log-scores of (7) in the article are given by
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and the addenda in the cumulative prequential delta Hyvärinen scores are given by
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where (μPi , σ
2
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) and (μQi , σ

2
Qi
) are the conditional means and variances of xi given

xi−1 (all the observations preceding xi), under models P and Q, respectively.

Note that, for the case of a covariance stationary Gaussian process, σ2
Pi

and σ2
Qi

are
constant in i. As a consequence, the cumulative prequential delta scores based on the
Hyvärinen rule and the log-score are perfectly linearly related whenever σ2

Pi
= σ2

Qi
= τ2.

As an example, this is the case for two iid sequences with possibly different means
and equal variances and for two zero-mean, AR(1) sequences with possibly different
autoregressive parameters and equal innovation variances. The delta scores are also
perfectly linearly related if the two covariance stationary Gaussian process have equal
conditional means μPi = μQi and possibly different conditional variances σ2

Pi
= τ2P

and σ2
Qi

= τ2Q. As an example, this is the case for two iid sequences with equal means
and possibly different variances and for two zero-mean, AR(1) sequences with equal
autoregressive parameters and possibly different innovation variances.

For Gaussian processes with non-stationary covariance structure, the prequential
delta scores based on the Hyvärinen rule and on the log-score may not be perfectly lin-
early related. Is it then possible to characterize with necessary and sufficient conditions
the Gaussian processes for which the two delta scores are perfectly linearly related?
When the delta scores are not perfectly linearly related, how do they differ both in a
finite-sample and an asymptotic sense?

Regardless of whether the delta scores are or are not perfectly linearly related, there
remains the question of how model comparison decisions based on the two scores differ.
To address this issue, we look at comparisons between two models and conform to the
recommendation made by the authors in Section 4, which is to select the model with the
lower prequential score. When using the log-score, this corresponds to using the Bayes
decision rule under 0–1 loss and assuming equal prior probabilities for the two models.
When using the Hyvärinen score, there does not appear to be any principled way to
justify the use of the zero cut-off for the difference in prequential scores, although, if
the delta log-score and the delta Hyvärinen scores are perfectly linearly related, such
a cut-off for the delta Hyvärinen score can be readily made to correspond to infinitely
many Bayes rules under generalized 0–1 loss for an appropriate choice of prior model
probabilities.

An inspection of the expressions for SL,i(xi, Qi) − SL,i(xi, Pi) and SH,i(xi, Qi) −
SH,i(xi, Pi) reveals that the squared departures of the observations from their condi-
tional means are normalized by the conditional variance in the log-score and by the
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Figure 1: Cumulative prequential delta Hyvärinen scores vs. delta log-scores for 100
simulated data sets. False positive identifications of Q as the data generating model are
highlighted by color. The three points in the right panel plotted with a black center
correspond to the three time series in Figure 2.

squared conditional variance in the Hyvärinen score. Beside the unnatural fact that the
normalized terms are no longer unitless, this suggests that the delta Hyvärinen score
may be more sensitive than the delta log-score to the presence of outlying observations
when the alternative model has larger variance than the model generating the data.

This point is illustrated in Figure 1, which is based on 100 simulated data sets of
size 101 from a zero-mean Gaussian AR(1) process P with autoregressive parameter φ
equal to 0.5 and innovation variance equal to 1. The alternative model, Q, is taken to be
a zero-mean Gaussian AR(1) process with autoregressive parameter φ equal to 0.1 and
innovation variance equal to 4. The prequential delta log-scores and delta Hyvärinen
scores are built based on the conditional distributions of observations 2 through 101.
These distributions are Gaussian with mean equal to φ times the preceding observation
and variance equal to the innovation variance.

For each simulated data set, we calculate the cumulative prequential delta scores

Δ101
L (x101;P,Q) =

101∑

i=2

(SL,i(xi, Qi)− SL,i(xi, Pi))

and

Δ101
H (x101;P,Q) =

101∑

i=2

(SH,i(xi, Qi)− SH,i(xi, Pi)).

Correct identification of the data generating model under score ∗ corresponds to

Δ101
∗ (x101;P,Q) > 0.

The left panel of Figure 1 shows that both the delta log-score and the delta Hyvärinen
score correctly identify model P as the data generating model in all 100 simulations.
The right panel corresponds to the same simulated data sets with the exception that,
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Figure 2: Three sample contaminated times series (with the outlier depicted in red) and
their misclassification status according to the cumulative prequential delta Hyvärinen
scores and delta log-scores. These three series correspond to the points plotted with a
black center in the right panel of Figure 1.

in each data set, the 50th observation in the sequence of 101 is contaminated by adding
7 to it, making the observation an additive outlier. The figure shows that the delta
Hyvärinen score is much more sensitive to the presence of the additive outlier. In 10 out
of 100 cases both methods incorrectly select model Q, in 50 cases they both correctly
select model P , but there are 40 cases in which only the method based on the delta
Hyvärinen score incorrectly selects model Q.

Figure 2 displays three sample contaminated times series (with the outlier depicted
in red) that were analyzed in the simulations. The first series is misclassified by both
delta scores, the second is misclassified by the delta Hyvärinen score only, and the third
is correctly classified by both delta scores. These three series correspond to the points
plotted with a black center in the right panel of Figure 1.

The normalization by the square of the variance (or an estimate of the variance)
appears throughout the article (cf. (34), (43), and (70)) leading one to suspect that in
all these situations the Hyvärinen score may similarly be impacted by the presence of
outliers. While the dependencies in the data may have played some role in our simu-
lation, we are convinced that the variance normalization is the main issue. In fact, we
were able to simulate examples with similar features after setting φ equal to zero in both
processes, thus eschewing the effect of serial correlations. Such a choice, however, causes
the delta scores to be perfectly linearly related and makes the figures harder to decipher
due to overplotting, which is why we presented the simulation based on correlated data
instead.

Our simulation, following the set-up of Section 6.1, is based solely on a comparison
of the likelihoods for the two models. However, it is reasonable to conjecture that the
sensitivity of the Hyvärinen score to the presence of outliers will be injected, via the
likelihood, also when Bayesian model comparisons are carried out, irrespective of the
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type of prior distribution specified for the model parameters (proper, improper, subjec-
tive, or objective, as the case might be). Related questions are as follows. Is it possible
to modify the prequential Hyvärinen score so as to alleviate its sensitivity to the pres-
ence of outliers? How does the method behave in the face of other model violations?
Are other model comparison methods based on different proper scoring rules not as
sensitive to the presence of outliers?

In summary, the authors have proposed an interesting method for performing Bayes-
ian model selection when improper priors are used for within-model parameters by
replacing the log marginal likelihood with a proper scoring rule. The method avoids
the machinations associated with several of the alternative approaches that the authors
mention toward the end of Section 2 at the expense of moving even farther away from
the formal Bayesian paradigm. The authors justify their approach in part by proving
consistency for model selection in certain settings.

While the paper provides a framework for approaching the problem, important
choices still must be made in order to implement the strategy, both with proper and
improper priors. We have seen that these choices can have a substantial impact on the
finite-sample properties of the methods. Our investigation was limited to the Hyvärinen
score, as this is the score most thoroughly discussed in the paper. The authors note that
they “confined attention to the most basic homogeneous rule, the Hyvärinen score” for
simplicity, but that “there are no clear theoretical grounds for preferring one [homoge-
neous scoring rule] over another.” In light of our investigation above, we wonder whether
some theoretical progress might be made by identifying a limited set of properties that
might be of interest (e.g., scale invariance, robustness to model violations, etc.) and
identifying classes of scoring rules and variants of the prequential score that perform
appropriately with respect to one or all of these considerations. We believe that further
research in this direction would give the framework a stronger theoretical footing and
provide guidance to practitioners who wish to use the methods.


