SELF-NORMALIZED CRAMÉR-TYPE MODERATE DEVIATIONS UNDER DEPENDENCE

By Xiaohong Chen ${ }^{1, *}$, Qi-Man ShaO ${ }^{2, \dagger}$, Wei Biao Wu ${ }^{3, \ddagger}$ and Lihu Xu ${ }^{4, \S}$
Yale University*, Chinese University of Hong Kong ${ }^{\dagger}$, University of Chicago ${ }^{\ddagger}$ and University of Macau ${ }^{\S}$

Abstract

We establish a Cramér-type moderate deviation result for self-normalized sums of weakly dependent random variables, where the moment requirement is much weaker than the non-self-normalized counterpart. The range of the moderate deviation is shown to depend on the moment condition and the degree of dependence of the underlying processes. We consider three types of self-normalization: the equal-block scheme, the big-block-smallblock scheme and the interlacing scheme. Simulation study shows that the latter can have a better finite-sample performance. Our result is applied to multiple testing and construction of simultaneous confidence intervals for ultra-high dimensional time series mean vectors.

1. Introduction. Cramér-type moderate deviation principles for selfnormalized sums have attracted considerable attention recently. In comparison with their non-self-normalized counterpart, the range of Gaussian approximation can be much wider under same polynomial moment conditions. This explains why self-normalized Cramér-type moderate deviation for independent data has been applied to multiple testing and simultaneous confidence sets construction problems with ultra-high dimensions (i.e., the high dimensional problems in which the dimension of the unknown parameters, p, could be exponentially larger than the sample size n). See, for example, Fan, Hall and Yao [24] and Liu and Shao [31]. Let $X_{i}, 1 \leq i \leq n$, be independent mean zero random variables and $S_{n}=\sum_{i=1}^{n} X_{i}$. Define the self-normalized sum

$$
\begin{equation*}
T_{n}=\frac{S_{n}}{V_{n}} \quad \text { where } V_{n}^{2}=\sum_{i=1}^{n} X_{i}^{2} \tag{1.1}
\end{equation*}
$$

Received April 2015; revised December 2015.
${ }^{1}$ Supported by Cowles Foundation for Research in Economics.
${ }^{2}$ Supported in part by Hong Kong RGC GRF 403513 and 603710.
${ }^{3}$ Supported in part by NSF Grant DMS-11-06790.
${ }^{4}$ Supported by Macao S.A.R FDCT 049/2014/A1, MYRG2015-00021-FST. MSC2010 subject classifications. 62E20, 60F10.
Key words and phrases. Cramér-type moderate deviation, absolutely regular, functional dependence measures, ultra-high dimensional time series.

Let

$$
d_{n, \delta}=\left(\sum_{i=1}^{n} E X_{i}^{2}\right)^{1 / 2} /\left(\sum_{i=1}^{n} E\left|X_{i}\right|^{2+\delta}\right)^{1 /(2+\delta)}
$$

The following Cramér-type moderate deviation result is a version of Theorems 2.1 and 2.3 of Jing, Shao and Wang [26]:

THEOREM 1.1. Let $X_{i}, 1 \leq i \leq n$, be independent with $E X_{i}=0, E\left|X_{i}\right|^{2}>0$ and $E\left|X_{i}\right|^{2+\delta}<\infty$ for $0<\delta \leq 1$ and all i. Then there exists an absolute constant A such that

$$
\begin{equation*}
\left|\frac{P\left(T_{n} \geq x\right)}{1-\Phi(x)}-1\right| \leq A \frac{(1+x)^{2+\delta}}{d_{n, \delta}^{2+\delta}} \tag{1.2}
\end{equation*}
$$

holds for all $0 \leq x \leq d_{n, \delta}$. If in addition

$$
\begin{equation*}
\left(\sum_{i=1}^{n} E X_{i}^{2}\right) \max _{1 \leq j \leq n}\left(E\left(X_{j}^{2}\right)\right)^{\delta / 2} \leq A \sum_{i=1}^{n} E\left|X_{i}\right|^{2+\delta} \tag{1.3}
\end{equation*}
$$

then for all $0 \leq x \leq\left(d_{n, \delta}^{2+\delta} / A\right)^{1 / \delta}$,

$$
\begin{equation*}
\frac{P\left(T_{n} \geq x\right)}{1-\Phi(x)}=\exp \left(O(1) \frac{(1+x)^{2+\delta}}{d_{n, \delta}^{2+\delta}}\right) \tag{1.4}
\end{equation*}
$$

where the constant $|O(1)| \leq A$. If $E\left|X_{i}\right|^{2} \geq c>0$ and $E\left|X_{i}\right|^{2+\delta} \leq c^{\prime}<\infty$ for $0<\delta \leq 1$ and all i, then condition (1.3) is automatically satisfied, and equation (1.4) holds with $d_{n, \delta} \asymp n^{\delta /(4+2 \delta)}$ for all $0 \leq x \leq n^{1 / 2} / A$.

If in (1.1), (1.4) and (1.2), we use the non-self-normalized version with $T_{n}^{\prime}=$ $S_{n} /\left(E\left(V_{n}^{2}\right)\right)^{1 / 2}$, then the range of x such that (1.4) [or (1.2)] holds can be much narrower. The moderate deviation result of type (1.4) [or (1.2)] plays an important role in statistical inference of means since in practice one usually does not know the variance $\operatorname{var}\left(S_{n}\right)=E\left(V_{n}^{2}\right)$. Even if the latter is known, it is still advisable to use T_{n}, due to its wider range of Gaussian approximation.

There are many variations of asymptotic theories on self-normalized sums in the literature, and some allow for dependent data (see, e.g., [5, 27]). See [21, 39] for a comprehensive study and a recent review. Among the existing theories, perhaps the Cramér-type moderate deviations of self-normalized sums (Theorem 1.1) are the most useful ones for simultaneous confidence sets construction for ultra-high dimensional statistics. However, it has been an open question whether Theorem 1.1 could be generalized to dependent random variables. Such a generalization will be very useful for ultra-high dimensional statistical inference on dependent data with fat-tailed marginal distributions.

In this paper, we shall show that in general result (1.2) is not valid for the range of type $0 \leq x \leq n^{\rho}$ with any $\rho>0$ if the dependence of the underlying process $\left\{X_{t}\right\}$ decays algebraically. In the latter case, one can only allow a much narrower range $0 \leq x \leq(\kappa \log n)^{1 / 2}$ with some constant $\kappa>0$ (see Section 3 for details). On the positive side, by using block versions of V_{n}, we do establish Cramér-type moderate deviation results for self-normalized sums of weakly dependent processes with geometrically decaying dependence, under mild polynomial moment conditions. In particular, we introduce three types of self-normalized sums based on the big-block-small-block scheme, the equal-block and the interlacing scheme, respectively, and establish their associated Cramér-type moderate deviation theory. In the context of resampling theory for weakly dependent processes, block bootstrap procedures were proposed to adjust for dependence; see [7, 37] and [28], for example. The blocking technique has also been used in some recent work on time series models with slowly increasing dimension (see [10] and the reference therein). However, the accuracy of tail Gaussian approximation [of the type (1.2) or (1.4)] has not been studied before for dependent data. We show that, due to the dependence, the range of Gaussian approximation is narrower than their independent counterparts, but is still wider than their non-self-normalized ones under same polynomial moment conditions. We also present a time series two-sample moderate deviation extension. Our results are very useful for ultra-high dimensional statistical inference on dependent data with fat-tailed marginal distributions, such as multiple hypothesis testing of mean vectors of ultra-high dimensional time series models in one or two samples (see [14, 24, 31] and others for the results for independent data).

Although we focus on establishing Cramér-type moderate deviation results for weakly dependent data, our proof technique could be used to extend additional self-normalized limit theorems in [26, 31] and others surveyed in [39] from independent data to weakly dependent data with finite polynomial moments.

The rest of this paper is structured as follows. Section 2 introduces weakly dependent processes in terms of β-mixing coefficients and functional dependence measures. These notions of dependence are not nested. Together they cover a large class of widely used linear and nonlinear time series models. To ensure the validity of the Cramér-type moderate deviation with range of type $0 \leq x \leq n^{\rho}$ with some $\rho>0$, we require that the dependence measures decay geometrically quickly. Section 3 provides a linear process example and shows that (1.2) is not valid for the range $0 \leq x \leq n^{\rho}$ with any $\rho>0$. Section 4 provides three types of self-normalized sums for dependent data and derive their moderate deviation theorems. It also presents a two-sample moderate deviation extension. Section 5 gives an application to multiple test for ultra-high dimensional time series mean vectors, where the tests in [24] and [31] are generalized to the dependence setting. Section 6 presents a simulation study, which indicates that the self-normalized sums based on the interlacing scheme performs very well in finite samples. All the proofs are given in Section 7.
2. Processes with geometrically decaying dependence. There are many different notions of temporal dependence for general (nonlinear) time series; see [6] and [19] for recent reviews. In this paper, we focus on two measures of dependence that have been shown to cover a large class of time series models commonly used in statistics, econometrics, finance and engineering.
2.1. β-mixing. For a random process $\left\{X_{t}\right\}$ that may be nonstationary; let $\mathcal{I}_{-\infty}^{t}$ and $\mathcal{I}_{t+j}^{\infty}$ be σ-fields generated respectively by $\left(X_{i}, i \leq t\right)$ and $\left(X_{i}, i \geq t+j\right)$. We say that $\left\{X_{t}\right\}$ is β-mixing (or absolutely regular) if

$$
\beta(n) \equiv \sup _{t} E \sup \left\{\left|P\left(B \mid \mathcal{I}_{-\infty}^{t}\right)-P(B)\right|: B \in \mathcal{I}_{t+n}^{\infty}\right\} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Assume that there exist positive numbers a_{1}, a_{2} and τ such that

$$
\begin{equation*}
\beta(n) \leq a_{1} e^{-a_{2} n^{\tau}} \tag{2.1}
\end{equation*}
$$

If $\left\{X_{t}\right\}$ is a strictly stationary Markov process on a set $\Omega \subseteq \mathcal{R}^{d}$, let $\|\phi\|_{p}^{p}=$ $\int_{\Omega}|\phi(y)|^{p} d Q(y)$ and $\mathcal{T}_{t} \phi(x)=E\left[\phi\left(X_{t+1}\right) \mid X_{1}=x\right]$, then

$$
\beta(t)=\int \sup _{0 \leq \phi \leq 1}\left|\mathcal{T}_{t} \phi(x)-\int \phi d Q\right| d Q .
$$

The notion of β-mixing for a Markov process is closely related to the concept called V-ergodicity (Meyn and Tweedie [35]). Given a measurable function $V \geq 1$, the Markov process $\left\{X_{t}\right\}$ is V-uniformly ergodic if for all $t \geq 0$,

$$
\sup _{0 \leq \phi \leq V}\left|\mathcal{T}_{t} \phi(x)-\int \phi d Q\right| \leq c V(x) \exp (-\delta t)
$$

for positive constants c and δ. If $E\left[V\left(X_{t}\right)\right]<\infty$, then the V-uniform ergodicity implies β-mixing with an exponential decay rate. This connection is valuable because one can show that a Markov process is β-mixing by applying the famous drift criterion (for ergodicity): There are constants $\lambda \in(0,1)$ and $d \in(0, \infty)$, a norm-like function $\Gamma(\cdot) \geq 1$ and a small set \mathbf{K} such that

$$
E\left[\Gamma\left(X_{t}\right) \mid X_{t-1}\right] \leq \lambda \Gamma\left(X_{t-1}\right)+d \times 1\left\{X_{t-1} \in \mathbf{K}\right\}
$$

In this case, $\left\{X_{t}\right\}$ is geometric ergodic and β-mixing (2.1) with $\tau=1$.
Many nonlinear time series models are shown to be β-mixing via Tweedie's drift criterion approach. See, for example, Tong [41] for threshold models, Chen and Tsay [12,13] for functional coefficient autoregressive models and nonlinear additive ARX models, Masry and Tjøstheim [33] for nonlinear ARCH, Carrasco and Chen [9] for GARCH, stochastic volatility and autoregressive conditional duration, Chen, Hansen and Carrasco [16] for diffusions, Chen, Wu and Yi [17] and Beare [3] for copula-based Markov models, Douc, Moulines, Olsson and van Handel [22] for a large class of generalized hidden Markov models. See Tong [41], Fan and Yao [25] and Chen [15] for additional example models and references.
2.2. Functional dependence measures. Another useful dependence measure for (nonlinear) time series is the so-called functional dependence measure; see, for example, $\mathrm{Wu}[44,45]$. Let $\varepsilon_{t}, t \in \mathbb{Z}$, be independent and identically distributed (i.i.d.) random variables. Suppose that $\left(X_{t}\right)$ is a causal process that can be represented as

$$
\begin{equation*}
X_{t}=G_{t}\left(\mathcal{F}_{t}\right) \tag{2.2}
\end{equation*}
$$

where $G_{t}(\cdot)$ is a measurable function such that X_{t} is well-defined, and $\mathcal{F}_{t}=$ $\sigma\left(\ldots, \varepsilon_{t-1}, \varepsilon_{t}\right)$. Let $\left(\varepsilon_{i}^{*}\right)_{i \in \mathbb{Z}}$ be an i.i.d. copy of $\left(\varepsilon_{i}\right)_{i \in \mathbb{Z}}$, and $\mathcal{F}_{i}^{*}=\sigma\left(\ldots, \varepsilon_{i-1}^{*}, \varepsilon_{i}^{*}\right)$. Hence, $\varepsilon_{i}^{*}, \varepsilon_{j}, i, j \in \mathbb{Z}$, are i.i.d. Assume that, for all t, X_{t} has finite r th moment, $r>2$. Define the functional dependence measures as

$$
\begin{equation*}
\theta_{r}(m)=\sup _{i}\left\|X_{i}-G_{i}\left(\ldots, \varepsilon_{i-m-2}, \varepsilon_{i-m-1}, \varepsilon_{i-m}^{*}, \varepsilon_{i-m+1}, \ldots, \varepsilon_{i}\right)\right\|_{r} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{r}(m)=\sup _{i}\left\|X_{i}-G_{i}\left(\mathcal{F}_{i-m}^{*}, \varepsilon_{i-m+1}, \ldots, \varepsilon_{i}\right)\right\|_{r} . \tag{2.4}
\end{equation*}
$$

Note that, if $\left(X_{t}\right)$ is a stationary linear process, then $\theta_{r}(m)$ is the absolute value of the impulse response function. Hence, we can interpret $\theta_{r}(m)$ as a nonlinear generalization of impulse response functions. We say that $\left(X_{t}\right)$ is geometric moment contraction (GMC; see Wu and Shao [46]) if there exist $\rho \in(0,1), a_{1}>0$, and $0<\tau \leq 1$ such that

$$
\begin{equation*}
\Delta_{r}(m) \leq a_{1} \rho^{m^{\tau}}=a_{1} e^{-a_{2} m^{\tau}} \quad \text { with } a_{2}=-\log \rho \tag{2.5}
\end{equation*}
$$

It is easily seen that (2.5) is equivalent to $\theta_{r}(m)=O\left(\rho_{1}^{m^{\tau}}\right)$ for some $\rho_{1} \in(0,1)$. We emphasize that GMC does not imply geometric β-mixing. Andrews [1] gave a simple $\operatorname{AR}(1)$ example: $X_{t}=\left(X_{t-1}+\varepsilon_{t}\right) / 2$, where ε_{t} are i.i.d. Bernoulli(1/2). This process is not α-mixing (and hence not β-mixing), however, it satisfies GMC (2.5) with $\rho=1 / 2$ (or $a_{2}=\log 2$).

Examples of GMC. Consider the infinite order autoregressive process

$$
\begin{equation*}
X_{k+1}=R\left(\varepsilon_{k+1} ; X_{k}, X_{k-1}, \ldots\right) \tag{2.6}
\end{equation*}
$$

where ε_{k} are i.i.d. and R is a measurable function; see Wu [45] and Doukhan and Wintenberger [23]. Assume there exists a nonnegative sequence $\left(w_{j}\right)_{j \geq 1}$ with $w_{*}=\sum_{j=1}^{\infty} w_{j}<1$ such that

$$
\left\|R\left(\varepsilon_{0} ; x_{-1}, x_{-2}, \ldots\right)-R\left(\varepsilon_{0} ; x_{-1}^{\prime}, x_{-2}^{\prime}, \ldots\right)\right\|_{r} \leq \sum_{j=1}^{\infty} w_{j}\left|x_{-j}-x_{-j}^{\prime}\right|
$$

By equations (27) and (28) in Wu [45], since $\sum_{j=1}^{\infty} w_{j}<1$, (2.6) has a strictly stationary solution of the form

$$
X_{i}=G\left(\varepsilon_{i}, \varepsilon_{i-1}, \ldots\right)
$$

whose functional dependence measures $\left(\theta_{k}\right)_{k \geq 0}$ satisfies

$$
\theta_{k+1} \leq \sum_{i=1}^{k+1} w_{i} \theta_{k+1-i}
$$

To obtain a bound for θ_{k}, we define the sequence a_{k} with $a_{0}=\delta_{0}$, and

$$
\begin{equation*}
a_{k+1}=\sum_{i=1}^{k+1} w_{i} a_{k+1-i} \tag{2.7}
\end{equation*}
$$

If w_{j} decays sub-geometrically in the sense that, for some $\rho \in(0,1), \tau \in(0,1)$ and $C_{0}>0$, as $j \rightarrow \infty$,

$$
\begin{equation*}
w_{j} \sim C_{0} \rho^{j^{\tau}} \tag{2.8}
\end{equation*}
$$

Then by elementary calculations, the recursion (2.7) has the asymptotic relation

$$
\begin{equation*}
a_{k} \sim \frac{a_{0}}{\left(1-w_{*}\right)^{2}} C_{0} \rho^{k^{\tau}}, \tag{2.9}
\end{equation*}
$$

which entails GMC condition (2.5). If in (2.8) $\tau=1$, then for some $\rho_{0} \in(0,1)$, we have

$$
\begin{equation*}
a_{k} \sim \frac{a_{0}}{\left(1-w_{*}\right)^{2}} C_{2} \rho_{0}^{k} \tag{2.10}
\end{equation*}
$$

3. Cramér-type moderate deviations for linear processes with algebraically decaying coefficients. In this section, we shall construct a linear process example and show that, if the dependence measure decays only algebraically slowly, then the Cramér-type moderate deviation is not valid at $x=(K \log n)^{1 / 2}$, where K is a sufficiently large constant independent of n.

Let ε_{i} be i.i.d. Student t_{ν} random variables with degrees of freedom $v>4$; let $a_{0}=1, a_{m} \asymp m^{-\beta}, \beta>1$ and define

$$
\begin{equation*}
X_{j}=\sum_{i=0}^{\infty} a_{i} \varepsilon_{j-i} \tag{3.1}
\end{equation*}
$$

For this process, the functional dependence measure $\theta_{r}(m) \asymp m^{-\beta}$ for $r \in(0, v)$. The process is also β-mixing if $\beta>2+v^{-1}$. To this end, we let $2<r<v$ be such that $2+r^{-1}<\beta$. By Theorem 2.1 in [36], its β-mixing coefficient $\beta(n)$ is of order $O\left(n\left(n^{1-\beta}\right)^{r /(1+r)}\right)=O\left(n^{1+r(1-\beta) /(1+r)}\right)$ since $\sum_{i=m}^{\infty} a_{i}=O\left(m^{1-\beta}\right)$. By [18], we have $\operatorname{cov}\left(X_{0}, X_{n}\right)=O\left(\beta(n)^{1 / p}\right)$, where $p=r /(r-2)$. Note that $\operatorname{cov}\left(X_{0}, X_{n}\right) \asymp$ $n^{-\beta}$. Hence, we have the lower bound for $\beta(n): n^{-\beta r /(r-2)}=O(\beta(n))$.

For $S_{n}=\sum_{i=1}^{n} X_{i}$, we consider the self-normalized sum of the form

$$
\begin{equation*}
T_{n}=\frac{S_{n}}{\hat{\sigma}_{n}} \quad \text { where } \hat{\sigma}_{n}^{2}=\sum_{j, k \leq n} X_{j} X_{k} w_{j, k} \tag{3.2}
\end{equation*}
$$

Here, $w_{j, k}$ are weights such that $\left|w_{j, k}\right| \leq 1$ and $w_{j, k}=0$ if $|j-k| \geq B$, where $B=B_{n}$ is the window size parameter. For example, we can choose the triangle kernel $w_{j, k}=\max (1-|j-k| / B, 0)$, the rectangle kernel $w_{j, k}=1_{|j-k|<B}$, or, with $n=B k$ and B being the block size,

$$
\hat{\sigma}_{n}^{2}=\sum_{j=1}^{k}\left(\sum_{i=1+(j-1) B}^{j B} X_{i}\right)^{2}=\sum_{f, g \leq n} X_{f} X_{g} w_{f, g},
$$

where $w_{f, g}=1$ if there exists j such that $(j-1) B<f, g \leq j B$; see also the block normalized sum (4.3). We can view $n^{-1} \hat{\sigma}_{n}^{2}$ as a lag-window estimate of the longrun variance $\sigma_{\infty}^{2}=\sum_{j \in \mathbf{Z}} \gamma_{j}$, where $\gamma_{j}=E\left(X_{0} X_{j}\right)$ is the covariance function. In comparison with (1.1), the cross-product terms $X_{j} X_{k}$ with $j \neq k$ in the expression of $\hat{\sigma}_{n}^{2}$ are introduced to adjust for the dependence. Assuming $B_{n} \rightarrow \infty$ and $B_{n} / n \rightarrow 0$, under suitable conditions of the weights $\left(w_{j, k}\right), n^{-1} \hat{\sigma}_{n}^{2}$ is a consistent estimate of σ_{∞}^{2}.

THEOREM 3.1. Assume (3.1) and that the lag $B \asymp n^{\theta}, 0<\theta<1$. Let $y_{n}=n^{\alpha}$, $0<\alpha<(1-\theta) / 2$. Then there exists a constant $c_{1}>0$, independent of n and the weights $\left(w_{j, k}\right)$, such that for all sufficiently large n, we have

$$
\begin{equation*}
P\left(S_{n} / \hat{\sigma}_{n}>y_{n}\right) \geq c_{1} n^{-\beta \nu} \tag{3.3}
\end{equation*}
$$

Proof. We shall compare the coefficients of ε_{-n} in S_{n} and $\hat{\sigma}_{n}^{2}$. Let $X_{i}^{\circ}=X_{i}-$ $a_{n+i} \varepsilon_{-n}$ and $S_{n}^{\circ}=\sum_{i=1}^{n} X_{i}^{\circ}$. Then $S_{n}=S_{n}^{\circ}+A_{n} \varepsilon_{-n}$, where $A_{n}:=\sum_{i=1}^{n} a_{n+i} \asymp$ $n^{1-\beta}$, by the condition on a_{n}. We also write

$$
\begin{align*}
\hat{\sigma}_{n}^{2}= & \sum_{j, k \leq n} X_{j}^{\circ} X_{k}^{\circ} w_{j, k}+\sum_{j, k \leq n}\left(X_{j}^{\circ} a_{n+k}+a_{n+j} X_{k}^{\circ}\right) w_{j, k} \varepsilon_{-n} \\
& +\sum_{j, k \leq n} a_{n+j} a_{n+k} w_{j, k} \varepsilon_{-n}^{2} \tag{3.4}\\
= & Q_{n}+L_{n} \varepsilon_{-n}+f_{n} \varepsilon_{-n}^{2},
\end{align*}
$$

where $f_{n}=\sum_{j, k \leq n} a_{n+j} a_{n+k} w_{j, k}$ satisfying $\left|f_{n}\right| \leq C_{1} n^{-2 \beta} n B \leq C_{2} n^{1-2 \beta+\theta}$. In the proof of this theorem, the constants C_{1}, C_{2}, \ldots, are all independent of n and the weights $\left(w_{j, k}\right)$. Then

$$
\begin{align*}
S_{n}^{2}-y_{n}^{2} \hat{\sigma}_{n}^{2}= & \left(A_{n}^{2}-y_{n}^{2} f_{n}\right) \varepsilon_{-n}^{2}+\left(2 A_{n} S_{n}^{\circ}-y_{n}^{2} L_{n}\right) \varepsilon_{-n} \\
& +\left(S_{n}^{\circ}\right)^{2}-y_{n}^{2} Q_{n} \tag{3.5}
\end{align*}
$$

Let $g_{n}=A_{n}^{2}-y_{n}^{2} f_{n}, M_{n}=2 A_{n} S_{n}^{\circ}-y_{n}^{2} L_{n}$ and $R_{n}=\left(S_{n}^{\circ}\right)^{2}-y_{n}^{2} Q_{n}$. By the moment inequality in Theorem 2 in [44], $E\left(S_{n}^{\circ}\right)^{4} \leq C_{3} n^{2}, E\left(Q_{n}^{2}\right) \leq C_{4} n^{2},\left\|L_{n}\right\| \leq$ $C_{5} a_{n} B \sqrt{n}$. Hence, $\left\|M_{n}\right\| \leq C_{6} n^{3 / 2-\beta}$ and $\left\|R_{n}\right\| \leq C_{7} y_{n}^{2} n$. Note that $y_{n}^{2} f_{n} \leq$ $n^{2 \alpha} C_{2} n^{1-2 \beta+\theta}$, we have $g_{n} \asymp n^{2-2 \beta}$. Let $h_{n}=n^{\beta}$. Then

$$
\begin{equation*}
P\left[h_{n} \geq\left|M_{n}\right| / g_{n}+\left(\left|R_{n}\right| / g_{n}\right)^{1 / 2}\right] \rightarrow 1 \quad \text { as } n \rightarrow \infty \tag{3.6}
\end{equation*}
$$

since $n^{3 / 2-\beta} / g_{n}=o\left(h_{n}\right)$ and $y_{n}^{2} n / g_{n}=o\left(h_{n}^{2}\right)$. By the independence of ε_{-n} and (M_{n}, R_{n}), we obtain

$$
\begin{align*}
P\left(S_{n}^{2} \geq y_{n}^{2} \hat{\sigma}_{n}^{2}\right) & \geq P\left[\varepsilon_{-n} \geq\left|M_{n}\right| / g_{n}+\left(\left|R_{n}\right| / g_{n}\right)^{1 / 2}\right] \\
& \geq P\left[\varepsilon_{-n} \geq h_{n}, h_{n} \geq\left|M_{n}\right| / g_{n}+\left(\left|R_{n}\right| / g_{n}\right)^{1 / 2}\right] \tag{3.7}\\
& =P\left(\varepsilon_{-n} \geq h_{n}\right) P\left[h_{n} \geq\left|M_{n}\right| / g_{n}+\left(\left|R_{n}\right| / g_{n}\right)^{1 / 2}\right] .
\end{align*}
$$

Since ε_{i} is $t_{v}, P\left(\varepsilon_{-n} \geq h_{n}\right) \sim c_{v} h_{n}^{-v}$ for some constant $c_{v}>0$, (3.3) follows in view of the symmetry $P\left(S_{n} / \hat{\sigma}_{n}>y_{n}\right)=P\left(S_{n} / \hat{\sigma}_{n}<-y_{n}\right)$.

Note that, as $x \rightarrow \infty, 1-\Phi(x) \sim x^{-1}(2 \pi)^{-1 / 2} \exp \left(-x^{2} / 2\right)$. Theorem 3.1 implies that, if the constant $K>2 \beta v$, we have

$$
\begin{equation*}
\frac{P\left(S_{n} / \hat{\sigma}_{n}>(K \log n)^{1 / 2}\right)}{1-\Phi\left((K \log n)^{1 / 2}\right)} \rightarrow \infty \tag{3.8}
\end{equation*}
$$

It suggests that, with only finite polynomial moment condition and when the dependence decays algebraically, then the range for the Cramér-type moderate deviation can be very narrow: it cannot go beyond $(K \log n)^{1 / 2}$ with some constant K. To ensure a wider range of type $0 \leq x \leq n^{\rho}$ with some $\rho>0$, we need to impose a stronger condition on the weakness of the dependence. In the next section, we consider moderate deviations for processes that have geometrically decaying dependence.
4. Main results. Let $\left\{X_{i}, i \geq 1\right\}$ be a sequence of random variables satisfying

$$
\begin{equation*}
E\left(X_{i}\right)=\mu=0, \quad E\left|X_{i}\right|^{r} \leq c_{1}^{r} \quad \text { for all } i \tag{4.1}
\end{equation*}
$$

for $r>2$ and $c_{1}<\infty$. Write $S_{k, m}=\sum_{i=k+1}^{k+m} X_{i}$ and $S_{n}=S_{0, n}$. Assume that there exists a positive number c_{2} such that

$$
\begin{equation*}
E\left(S_{k, m}^{2}\right) \geq c_{2}^{2} m \quad \text { for all } k \geq 0, m \geq 1 \tag{4.2}
\end{equation*}
$$

We shall assume that $\left\{X_{i}\right\}$ is weakly dependent which can be either geometric β-mixing or geometric moment contracting (GMC); see Sections 4.4 and 4.5 , respectively. The condition of geometric decaying of dependence in general cannot be relaxed; see Section 3.

For independent random variables, (1.1) is the natural form for normalized sum. The situation is quite different when dependence is present. There are a few ways to account for dependence. The block normalized sum, big-block-small-block normalized sum, the interlacing normalized sum are introduced in Sections 4.1, 4.2 and 4.3, respectively. For all schemes, we can establish their moderate deviations for either geometric β-mixing or GMC processes. Blocking technique is a common way to weaken dependence; see, for example, Lin and Foster [30].
4.1. Block normalized sum. As a natural way to account for dependence, we can modify V_{n} in (1.1) by using block sums. Assume at the outset that $\mu=0$. Let $m=\left\lfloor n^{\alpha}\right\rfloor, 0<\alpha<1, k=\lfloor n / m\rfloor$,

$$
\begin{equation*}
H_{j}^{\circ}=\{i: m(j-1)+1 \leq i \leq m(j-1)+m\}, \quad 1 \leq j \leq k, \tag{4.3}
\end{equation*}
$$

and the block sums $Y_{j}^{\circ}=\sum_{l \in H_{j}^{\circ}} X_{l}$. Define

$$
\begin{equation*}
T_{n}^{\circ}=\frac{\sum_{j=1}^{k} Y_{j}^{\circ}}{V_{k}^{\circ}} \quad \text { where }\left(V_{k}^{\circ}\right)^{2}=\sum_{j=1}^{k}\left(Y_{j}^{\circ}\right)^{2} \tag{4.4}
\end{equation*}
$$

Note that, if $E\left(X_{i}\right)=0$ and $\left(X_{i}\right)$ is a stationary process, then $\left(V^{\circ}\right)^{2} /(m k)$ is the classical nonoverlapped batched mean estimate of the long-run variance $\sigma_{\infty}^{2}=$ $\sum_{j \in \mathbf{Z}} \operatorname{cov}\left(X_{0}, X_{j}\right)$. See Politis, Romano and Wolf [37] and Bühlmann [7]. In general, when μ is unknown, we let $\bar{Y}^{\circ}=k^{-1} \sum_{j=1}^{k} Y_{j}^{\circ}$,

$$
\begin{equation*}
T_{n}^{\dagger}=\frac{\sum_{j=1}^{k}\left(Y_{j}^{\circ}-m \mu\right)}{V_{k}^{\dagger}} \quad \text { where }\left(V_{k}^{\dagger}\right)^{2}=\sum_{j=1}^{k}\left(Y_{j}^{\circ}-\bar{Y}^{\circ}\right)^{2} \tag{4.5}
\end{equation*}
$$

4.2. Big-block-small-block normalized sum. In (4.4), we use consecutive blocks with equal size. As a slightly modified version, we can adopt a big-block-small-block scheme and only use big blocks. Partition $\left\{X_{i}, 1 \leq i \leq n\right\}$ into consecutive big blocks and small blocks. Let $m_{1}=\left\lfloor n^{\alpha_{1}}\right\rfloor, m_{2}=\left\lfloor n^{\alpha_{2}}\right\rfloor$, where $1>\alpha_{1}>\alpha_{2}>0, m_{*}=m_{1}+m_{2}, k=\left\lfloor n / m_{*}\right\rfloor$ and, for $1 \leq j \leq k$, put

$$
\begin{aligned}
H_{j, 1} & =\left\{i:(j-1) m_{*}+1 \leq i \leq(j-1) m_{*}+m_{1}\right\}, \\
H_{j, 2} & =\left\{i:(j-1) m_{*}+m_{1}+1 \leq i \leq j m_{*}\right\},
\end{aligned}
$$

where $H_{j, 1}$ (resp., $H_{j, 2}$) are large (resp., small) blocks, and the corresponding block sums

$$
\left\{\begin{array}{rlrl}
Y_{j, 1} & =\sum_{i \in H_{j, 1}} X_{i}, & Y_{j, 2} & =\sum_{i \in H_{j, 2}} X_{i} \tag{4.6}\\
S_{n, 1} & =\sum_{j=1}^{k} Y_{j, 1}, & S_{n, 2}=\sum_{j=1}^{k} Y_{j, 2} \\
V_{n, 1}^{2}=\sum_{j=1}^{k} Y_{j, 1}^{2}, & V_{n, 2}^{2}=\sum_{j=1}^{k} Y_{j, 2}^{2}
\end{array}\right.
$$

Consider the self-normalized big-block sum

$$
\begin{equation*}
W_{n}=\frac{S_{n, 1}}{V_{n, 1}} \tag{4.7}
\end{equation*}
$$

Under geometric β-mixing condition (2.1) or GMC condition (2.5), one can easily prove that $W_{n} \xrightarrow{d} N(0,1)$.

If the mean is common but unknown, that is, $E\left(X_{i}\right)=\mu$ for all i with μ unknown, similarly as (4.5), we consider the Student t-statistic

$$
\begin{equation*}
W_{n}^{*}=\frac{S_{n, 1}^{*}}{V_{n, 1}^{*}}=\frac{\sum_{j=1}^{k}\left(Y_{j, 1}-m_{1} \mu\right)}{\sqrt{\sum_{j=1}^{k}\left(Y_{j, 1}-\bar{Y}_{1}\right)^{2}}}, \tag{4.8}
\end{equation*}
$$

where $\bar{Y}_{1}=k^{-1} \sum_{j=1}^{k} Y_{j, 1}$.
4.3. Interlacing normalized sum. A particularly interesting case for W_{n} in (4.7) is $\alpha_{1}=\alpha_{2}=\alpha \in(0,1)$. Let $m=\left\lfloor n^{\alpha}\right\rfloor, k:=\lfloor n /(2 m)\rfloor$ and

$$
\begin{equation*}
H_{j}=\{i: 2 m(j-1)+1 \leq i \leq 2 m(j-1)+m\}, \quad 1 \leq j \leq k \tag{4.9}
\end{equation*}
$$

Note that $H_{j}=H_{j, 1}$. Let $Y_{j}=\sum_{l \in H_{j}} X_{l}, V^{2}=\sum_{j=1}^{k} Y_{j}^{2}$ and

$$
\begin{equation*}
I_{n}=\frac{\sum_{j=1}^{k} Y_{j}}{V}=\frac{\sum_{j=1}^{k} Y_{j}}{\sqrt{\sum_{j=1}^{k} Y_{j}^{2}}}, \tag{4.10}
\end{equation*}
$$

which is W_{n} in (4.7). Denote by I_{n}^{*} the interlaced version of W_{n}^{*} in (4.8):

$$
\begin{equation*}
I_{n}^{*}=\frac{\sum_{j=1}^{k}\left(Y_{j}-m \mu\right)}{\sqrt{\sum_{j=1}^{k}\left(Y_{j}-\bar{Y}\right)^{2}}} \quad \text { where } \bar{Y}=k^{-1} \sum_{j=1}^{k} Y_{j} \tag{4.11}
\end{equation*}
$$

4.4. Moderate deviation under geometric β-mixing.

THEOREM 4.1. Assume conditions (4.1), (4.2) and (2.1). Let $0<\alpha_{2} \leq \alpha_{1}<1$ and $0<\delta \leq 1, \delta<r-2$. Then there exist finite constants c_{0}, A depending only on $c_{1} / c_{2}, a_{1}, a_{2}, r$ and τ such that

$$
\begin{equation*}
\frac{P\left(W_{n} \geq x\right)}{1-\Phi(x)}=\exp \left(O(1)(1+x)^{2+\delta} n^{-\left(1-\alpha_{1}\right) \delta / 2}\right) \tag{4.12}
\end{equation*}
$$

uniformly in $0 \leq x \leq c_{0} \min \left(n^{\left(1-\alpha_{1}\right) / 2}, n^{\alpha_{2} \tau / 2}\right)$, and $|O(1)| \leq A$. In particular, we have

$$
\begin{equation*}
\frac{P\left(W_{n} \geq x\right)}{1-\Phi(x)}=1+O(1)(1+x)^{2+\delta} n^{-\left(1-\alpha_{1}\right) \delta / 2} \tag{4.13}
\end{equation*}
$$

for all $0 \leq x \leq c_{0} \min \left(n^{\left(1-\alpha_{1}\right) \delta /(4+2 \delta)}, n^{\alpha_{2} \tau / 2}\right)$ and $|O(1)| \leq A$.
If $\tau=1=\delta$ and we choose $\alpha_{1}=\alpha_{2}=1 / 2$, then (4.12) yields

$$
\begin{equation*}
\ln P\left(W_{n} \geq x_{n}\right) \sim-x_{n}^{2} / 2 \tag{4.14}
\end{equation*}
$$

as $x_{n} \rightarrow \infty$ and $x_{n}=o\left(n^{1 / 4}\right)$. Note that when X_{i} are independent with bounded 3rd moments, Theorem 1.1 gives a wider range of $x_{n}=o\left(n^{1 / 2}\right)$.

If $\tau=1=\delta$ and we choose $\alpha_{1}=\alpha_{2}=1 / 4$, then (4.13) implies

$$
\begin{equation*}
\frac{P\left(W_{n} \geq x\right)}{1-\Phi(x)}=1+O(1)(1+x)^{3} n^{-3 / 8} \rightarrow 1 \tag{4.15}
\end{equation*}
$$

uniformly in $0 \leq x \leq o\left(n^{1 / 8}\right)$. Again when X_{i} are independent, Theorem 1.1 gives a wider range of $0 \leq x \leq o\left(n^{1 / 6}\right)$.

In practice, it is more common to use the Student t-statistic W_{n}^{*} rather than the self-normalized W_{n}. We have the same result for W_{n}^{*} in (4.8). It readily follows from Theorem 4.1.

Corollary 4.1. Let conditions (4.1) (with unknown mean μ), (4.2) and (2.1) hold. Then Results (4.12) and (4.13) also hold for W_{n}^{*}.

For the block normalized sums T_{n}° and T_{n}^{\dagger} of (4.4), we have the following Theorem 4.2. Corollary 4.2 follows from Theorem 4.2.

THEOREM 4.2. Assume that (4.1), (4.2) and (2.1) hold. Let $\alpha \in(0,1)$ and $0<$ $\delta \leq 1, \delta<r-2$. Then there exist some finite positive numbers c_{0} and A depending on $\alpha, \tau, a_{1}, a_{2}, r, c_{1}$ and c_{2} such that

$$
\begin{equation*}
\frac{P\left(T_{n}^{\circ} \geq x\right)}{1-\Phi(x)}=1+O(1)\left[(1+x)^{4+\delta} n^{-\delta(1-\alpha) / 2}\right]^{1 / 4} \tag{4.16}
\end{equation*}
$$

uniformly for $0 \leq x \leq c_{0} \min \left((\log n)^{-4 /(4+\delta)} n^{(1-\alpha) \delta /(2(4+\delta))}, n^{\alpha \tau / 2}\right)$ with $|O(1)| \leq A$.

The proof of Theorem 4.2 is much more complicated and we give details in the supplemental article [11].

Corollary 4.2. Let (4.1) (with unknown mean μ), (4.2) and (2.1) hold. Let $\alpha \in(0,1)$ and $0<\delta \leq 1, \delta<r-2$. Then there exist some finite positive numbers c_{0} and A depending on $\alpha, \tau, a_{1}, a_{2}, r, c_{1}$ and c_{2} such that Result (4.16) also holds for T_{n}^{\dagger}.
4.5. Moderate deviation under geometric moment contraction. In this section, we consider time series models that satisfy the GMC condition (2.5).

THEOREM 4.3. (i) Assume (4.1), (4.2) and (2.5). Let $0<\alpha<1$ and $2<r \leq 3$. Then there exist constants $c_{0}, A>0$, depending only on $c_{1} / c_{2}, a_{1}, a_{2}, \alpha, r$ and τ such that I_{n} in (4.10) satisfies the moderate deviation

$$
\begin{equation*}
\frac{P\left(I_{n} \geq x\right)}{1-\Phi(x)}=\exp \left(O(1)(1+x)^{r} n^{(1-r / 2)(1-\alpha)}\right) \tag{4.17}
\end{equation*}
$$

for all $0 \leq x \leq c_{0} \min \left(n^{(1-\alpha) / 2}, n^{\alpha \tau / 2}\right)$ and $|O(1)| \leq A$. In particular, we have

$$
\begin{equation*}
\frac{P\left(I_{n} \geq x\right)}{1-\Phi(x)}=1+O(1)(1+x)^{r} n^{(1-r / 2)(1-\alpha)} \tag{4.18}
\end{equation*}
$$

for all $0 \leq x \leq c_{0} \min \left(n^{(1-\alpha)(r-2) / 2 r}, n^{\alpha \tau / 2}\right)$ and $|O(1)| \leq A$.
(ii) If condition (4.1) holds with unknown μ in part (1), then results (4.17) and (4.18) hold with I_{n}^{*} in (4.11).

If we increase τ or r, then the range for x can be wider. Let $\tau=1, r=3$ and $\alpha=1 / 4$. Then the moderate deviation (4.18) implies (4.15) uniformly in the range $0 \leq x \leq o\left(n^{1 / 8}\right)$. In comparison, if $\alpha_{1}>\alpha_{2}$, then the big-block-small-block selfnormalized sum (4.13) has a moderate deviation with a slightly narrower range since $\delta<1$. Similarly, the range for the block normalized sum T_{n}° is also slightly narrower.

Similarly, as Theorem 4.2, using the GMC condition (2.5), we have the following.

Corollary 4.3. Assume that (4.1) (4.2) and (2.5) hold. Let $\alpha \in(0,1)$, $2<r \leq 3$ and $\delta=r-2$. Then there exist some finite positive numbers c_{0} and A depending on $\alpha, \tau, a_{1}, a_{2}, r, c_{1}$ and c_{2} such that (4.16) holds.
4.6. Moderate deviation for two-sample statistic. The results in Sections 4.4 and 4.5 can be easily extended to the two-sample case. Let $\left\{X_{i}^{(1)}, i \geq 1\right\}$ and $\left\{X_{i}^{(2)}, i \geq 1\right\}$ be two independent sequences of random variables, both of them satisfying (2.1) or (2.5). Assume that

$$
\begin{equation*}
E\left(X_{i}^{(l)}\right)=0, \quad E\left|X_{i}^{(l)}\right|^{r} \leq c_{1}^{r}, \quad l=1,2 \text { for all } i \tag{4.19}
\end{equation*}
$$

for $r>2$ and $c_{1}<\infty$. Set $S_{k, m}^{(l)}=\sum_{i=k+1}^{k+m} X_{i}^{(l)}$ and $S_{n}^{(l)}=S_{0, n}^{(l)}$. Assume that there exist positive numbers c_{2}, a_{1}, a_{2} and τ such that

$$
\begin{equation*}
E\left(\left[S_{k, m}^{(l)}\right]^{2}\right) \geq c_{2}^{2} m \quad \text { for all } k \geq 0, m \geq 1, l=1,2 \tag{4.20}
\end{equation*}
$$

and (2.1) holds for both processes.
Assume $n_{1} \asymp n_{2} \asymp n$. For $l=1,2$, we partition $\left\{X_{i}^{(l)}, 1 \leq i \leq n_{l}\right\}$ into big blocks and small blocks. Let $m_{1}=\left\lfloor\left(n_{1}+n_{2}\right)^{\alpha_{1}}\right\rfloor, m_{2}=\left\lfloor\left(n_{1}+n_{2}\right)^{\alpha_{2}}\right\rfloor$, where $1>\alpha_{1} \geq \alpha_{2}>0, m_{*}=m_{1}+m_{2}, k_{l}=\left\lfloor n_{l} / m_{*}\right\rfloor$ for $l=1,2$, and for $1 \leq j \leq$ $\max \left(k_{1}, k_{2}\right)$, put

$$
\begin{aligned}
& H_{l ; j, 1}=\left\{i:(j-1) m_{*}+1 \leq i \leq \min \left(n_{l},(j-1) m_{*}+m_{1}\right)\right\}, \\
& H_{l ; j, 2}=\left\{i:(j-1) m_{*}+m_{1}+1 \leq i \leq \min \left(n_{l}, j m_{*}\right)\right\} .
\end{aligned}
$$

For $l=1,2$,

$$
\begin{aligned}
& Y_{j, 1}^{(l)}=\sum_{i \in H_{l ; j, 1}} X_{i}^{(l)}, \quad Y_{j, 2}^{(l)}=\sum_{i \in H_{l ; j, 2}} X_{i}^{(l)}, \\
& S_{n, 1}^{(l)}=\sum_{j=1}^{k_{l}} Y_{j, 1}^{(l)}, S_{n, 2}^{(l)}=\sum_{j=1}^{k_{l}} Y_{j, 2}^{(l)}, \\
& V_{n, 1}^{(l) 2}=\sum_{j=1}^{k_{l}}\left[Y_{j, 1}^{(l)}\right]^{2}, V_{n, 2}^{(l) 2}=\sum_{j=1}^{k_{l}}\left[Y_{j, 2}^{(l)}\right]^{2} .
\end{aligned}
$$

Consider

$$
\hat{W}_{n}=\frac{k_{1}^{-1} S_{n, 1}^{(1)}-k_{2}^{-1} S_{n, 1}^{(2)}}{\left(k_{1}^{-2} V_{n, 1}^{(1) 2}+k_{2}^{-2} V_{n, 1}^{(2) 2}\right)^{1 / 2}}
$$

THEOREM 4.4. Assume (4.19) and (4.20). Then (i) under (2.1), results (4.12) and (4.13) remain valid for \hat{W}_{n}; and (ii) under (2.5), the moderate deviations (4.17) and (4.18) hold for \hat{W}_{n} with $\alpha_{1}=\alpha_{2}$.

As Theorem 4.2, the block normalized version of Theorem 4.4 can be similarly formulated. Details are omitted.
4.7. Small sample corrections. In our interlacing normalized sum I_{n} in (4.10), if Y_{j} are i.i.d. standard normal, then $I_{n} \sim t_{k}$, a t-distribution with degrees of freedom k. Note that $k \sim n^{1-\alpha} / 2$, which is much smaller than n. In actual application of Theorem 4.3, instead of the normal distribution function Φ, we suggest using the t_{k} distribution. Similar claims can be made for $I_{n}^{*}, W_{n}, W_{n}^{*}, T_{n}^{\circ}$ and T_{n}^{\dagger} as well. See [20,43] and others for similar suggestions.
5. Applications. As the result of Jing, Shao and Wang [26] has been widely applied in statistics and econometrics for independent data, our results are very useful in similar applications with spatially dependent data and time series observations. As an illustrative yet important application, in this section we apply our theory to a time series extension of multiple tests of Fan, Hall and Yao [24] and Liu and Shao [31].

Consider the problem of constructing simultaneous confidence intervals for the mean vector $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{p}\right)^{\prime}$ of the stationary p-dimensional process

$$
\begin{equation*}
\mathbf{Z}_{i}=\left(Z_{i 1}, \ldots, Z_{i p}\right)^{\prime}=\mathbf{G}\left(\mathcal{F}_{i}\right) \tag{5.1}
\end{equation*}
$$

where $\mathcal{F}_{i}=\left(\ldots, \varepsilon_{i-1}, \varepsilon_{i}\right), \varepsilon_{i}$ are i.i.d. and $\mathbf{G}(\cdot)=\left(G^{(1)}(\cdot), \ldots, G^{(p)}(\cdot)\right)^{\prime}$ is a function such that \mathbf{Z}_{i} is well-defined. Assume that the long-run covariance matrix

$$
\begin{equation*}
\Sigma_{\infty}=\sum_{i=-\infty}^{\infty} \operatorname{cov}\left(\mathbf{Z}_{0}, \mathbf{Z}_{i}\right)=\left(\omega_{j l}\right)_{j, l \leq p} \tag{5.2}
\end{equation*}
$$

exists and satisfies the following condition.
ASSUMPTION (R0). There exists a constant $\zeta>0$ such that the long-run variance $\omega_{j j} \geq \zeta$ holds for all $j \leq p$.

We shall impose the following uniform geometric moment contraction condition, which is a uniform version of (2.5) on the component processes $Z_{i l}=$ $G^{(l)}\left(\mathcal{F}_{i}\right), 1 \leq l \leq p$. Here, for the sake of conciseness we only deal with the case $\tau=1$. Similar results can be derived when $\tau<1$, or when one uses the uniform version of the geometric β-mixing (2.1).

ASSUMPTION (G). Let $\Delta_{r}^{(l)}(m)=\left\|G^{(l)}\left(\mathcal{F}_{i}\right)-G^{(l)}\left(\mathcal{F}_{i-m}^{*}, \varepsilon_{i-m+1}, \ldots, \varepsilon_{i}\right)\right\|_{r}$ [cf. (2.4)] be the functional dependence measure for the component process $Z_{i l}=$ $G^{(l)}\left(\mathcal{F}_{i}\right), 1 \leq l \leq p$. Assume that there exist $a_{1}, a_{2}>0$ such that $\max _{l \leq p} \Delta_{r}^{(l)}(m) \leq a_{1} e^{-a_{2} m}$ holds for all $m \geq 0$.
5.1. Construction of conservative simultaneous confidence intervals. Here, for illustration purposes, we use the interlacing normalized sum. Other versions are similar. Given the data $\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{n}$, let

$$
\begin{equation*}
T_{n l}=\frac{\sum_{j=1}^{k}\left(Y_{j l}-m \mu_{l}\right)}{\sqrt{\sum_{j=1}^{k}\left(Y_{j l}-\bar{Y}_{l}\right)^{2}}}, \quad l=1, \ldots, p \tag{5.3}
\end{equation*}
$$

where $m \asymp n^{1 / 4}, k=\lfloor n /(2 m)\rfloor, Y_{j l}=\sum_{g \in H_{j}} Z_{g l}$ and H_{j} is given in (4.9), and $\bar{Y}_{l}=k^{-1} \sum_{j=1}^{k} Y_{j l}$.

Corollary 5.1. Let Assumption (R0) be satisfied. Assume that the dimension p satisfies

$$
\begin{equation*}
\log p=o\left(n^{1 / 4}\right) \tag{5.4}
\end{equation*}
$$

Let Assumption (G) be satisfied with $r=3$. Let $\alpha \in(0,1)$. Then

$$
\begin{equation*}
\frac{\bar{Y}_{l}}{m} \pm \frac{\Phi^{-1}(1-\alpha /(2 p))}{k m} \sqrt{\sum_{j=1}^{k}\left(Y_{j l}-\bar{Y}_{l}\right)^{2}} \tag{5.5}
\end{equation*}
$$

are $1-\alpha$ (conservative) simultaneous confidence intervals for $\left(\mu_{l}\right)_{l=1}^{p}$.
Proof. Note that the upper $(\alpha /(2 p))$ th quantile of a standard normal distribution $\Phi^{-1}(1-\alpha /(2 p))=O\left((\log p)^{1 / 2}\right)$, which by (5.4) is of order $o\left(n^{1 / 8}\right)$. Assumption (R0) implies that (4.2) holds for all component processes $\left(Z_{i l}\right)_{i}$. Then the corollary follows from applying Theorem 4.3 to $T_{n l}$ via the Bonferroni procedure.

As discussed in Section 4.7, the finite-sample performance can be improved if in (5.5) we use quantiles of t distributions. Namely, the quantity $\Phi^{-1}(1-\alpha /(2 p))$ is replaced by $u=u(\alpha, p, k)$ for which $P\left(\left|t_{k-1}\right| \geq u\right)=\alpha / p$, where t_{k-1} follows t-distribution with degrees of freedom $k-1$.
5.2. Simultaneous confidence intervals with asymptotically correct coverage probabilities. Due to the Bonferroni correction, the confidence intervals (5.5) can be overly wider. To construct simultaneous confidence intervals with asymptotically correct coverage probabilities, we shall make an additional assumption on the long-run correlation matrix

$$
\begin{equation*}
R=\left(\frac{\omega_{j l}}{\omega_{j j}^{1 / 2} \omega_{l l}^{1 / 2}}\right)_{j, l \leq p} \tag{5.6}
\end{equation*}
$$

where Σ_{∞} is the long-run covariance matrix of the process $\left(\mathbf{Z}_{i}\right)$; cf. (5.2).
ASSUMPTION (R). (i) There exists a constant $\zeta>0$ such that the long-run variance $\omega_{j j} \geq \zeta$ holds for all $j \leq p$; (ii) for some $\gamma>0$,

$$
\begin{equation*}
\max _{j \leq p} \#\left\{l \leq p:\left|R_{l j}\right| \geq(\log p)^{-1-\gamma}\right\}=O\left(p^{\rho}\right) \tag{5.7}
\end{equation*}
$$

holds for all $\rho>0$.
In Assumption (R), requirement (ii) indicates that, the long-run correlation between the component processes $\left(Z_{i l}\right)_{i \in \mathbb{Z}}$ and $\left(Z_{i j}\right)_{i \in \mathbb{Z}}$ are sufficiently weak. This condition is mild enough. Liu and Shao [31] proposed a similar condition for i.i.d. random vectors.

Theorem 5.1. Let Assumptions (R) and (G) be satisfied with some $r>3$. Assume that for some $\chi>0$,

$$
\begin{equation*}
(\log p)^{1+\chi}=o\left(n^{1 / 4}\right) \tag{5.8}
\end{equation*}
$$

Let \mathcal{G} follow the Gumbel distribution $P(\mathcal{G} \leq y)=\exp \left(-e^{-y / 2} / \pi^{1 / 2}\right)$. Then

$$
\begin{equation*}
\max _{l \leq p} T_{n l}^{2}-2 \log p+\log \log p \Rightarrow \mathcal{G} \tag{5.9}
\end{equation*}
$$

The convergence in (5.9) can be quite slow. In practice with relatively small sample sizes, we can apply t-distribution calibration for an improvement. Choose $\lambda=\lambda(k, \alpha, p)$ such that $P\left(\left|t_{k-1}\right| \leq \lambda\right)=(1-\alpha)^{1 / p}$. Then the asymptotically correct $1-\alpha$ simultaneous confidence intervals for $\left(\mu_{l}\right)_{l=1}^{p}$ can be constructed in the form of (5.5) with the cutoff value $\Phi^{-1}(1-\alpha /(2 p))$ therein replaced by λ. The latter simultaneous confidence intervals can be used for testing the hypothesis $H_{0}: \mu=\mu^{\circ}$, namely $\mu_{1}=\mu_{1}^{\circ}, \ldots, \mu_{p}=\mu_{p}^{\circ}$. We reject the null hypothesis at level α if there exists one of the intervals that does not include the corresponding μ_{l}°.
6. A simulation study. In this section, we shall study the finite-sample approximation accuracies for various normalized sums in Theorems 4.1, 4.2 and 4.3. Consider the AR-GARCH process

$$
\begin{equation*}
X_{i}=\rho X_{i-1}+\varepsilon_{i} \tag{6.1}
\end{equation*}
$$

where $|\rho|<1$ and $\left(\varepsilon_{i}\right)$ is the $\operatorname{GARCH}(1,1)$ process with

$$
\begin{equation*}
\varepsilon_{i}=\eta_{i} \sigma_{i}, \quad \sigma_{i}^{2}=\alpha_{0}^{2}+\alpha_{1}^{2} \eta_{i-1}^{2}+\beta_{1}^{2} \sigma_{i-1}^{2}, \tag{6.2}
\end{equation*}
$$

where η_{i} are i.i.d. random variables with mean 0 and $\alpha_{0}, \alpha_{1}, \beta_{1}$ are real parameters. The AR-GARCH process has been widely used to study heavy-tailed financial time series; see, for example, [29, 34] among others. In our simulation study, we let $\eta_{i} \sim 0.75^{1 / 2} t_{8}$ so that it has variance 1. By Basrak, Davis and Mikosch [2], let $p=p\left(\beta_{1}\right)$ be such that $E\left(\left|\beta_{1} \eta_{0}\right|^{p}\right)=1$. Then ε_{i} has finite r th moment with $r \in(0, p)$, but $E\left(\left|\varepsilon_{i}\right|^{p}\right)=\infty$.

We let $\alpha_{0}=1, \alpha_{1}=0.4, \beta_{1}=0.4, n=200$, and choose 10 levels of ρ : $\rho=0,0.1, \ldots, 0.9$. In the block normalized sum T_{n}^{\dagger} in (4.5), we let $m=10$ and $b=n / m=20$. For W_{n}^{*} of (4.8), we let $m_{2}=\left\lfloor m^{1 / 2}\right\rfloor$ and $m_{1}=m-m_{2}$. In the interlacing version I_{n}^{*} of (4.11) and in Corollaries 4.1, 4.2 and Theorem 4.3, we consider 11 levels of $x: x=2.0,2.2, \ldots, 4.0$. As discussed in Section 4.7, instead of the Gaussian approximation, more accuracy can be gained if we use the Student t-distribution. If X_{i} were i.i.d. standard normal, then I_{n}^{*} has t distribution with degrees of freedom $n /(2 m)-1=9, T_{n}^{\dagger} \sim t_{n / m-1}=t_{19}$ and $W_{n}^{*} \sim t_{k-1}=t_{19}$. When x becomes larger, as expected, the Gaussian approximation becomes worse. For example, $\left(1-P\left(t_{9} \geq 4\right)\right) /(1-\Phi(4))=49.1$.

Tables 1,2 and 3 show the ratios $P\left(T_{n}^{\dagger} \geq x\right) /\left(1-P\left(t_{b-1} \geq x\right)\right), P\left(I_{n}^{*} \geq\right.$ $x) /\left(1-P\left(t_{b / 2-1} \geq x\right)\right)$ and $P\left(W_{n}^{*} \geq x\right) /\left(1-P\left(t_{b-1} \geq x\right)\right)$, where the probabilities $P\left(T_{n}^{\dagger} \geq x\right), P\left(I_{n}^{*} \geq x\right)$ and $P\left(W_{n}^{*} \geq x\right)$ are approximated by simulating

TABLE 1
Moderate deviation ratios $P\left(T_{n}^{\dagger} \geq x\right) /\left(1-P\left(t_{b / 2-1} \geq x\right)\right)$ for the $\operatorname{AR}(1)-\operatorname{GARCH}(1,1)$ process (6.1) with $x=2,2.2, \ldots, 4.0$ and $\rho=0, \ldots, 0.9$

\boldsymbol{x}	$\boldsymbol{\rho = 0}$	$\mathbf{0 . 1}$	$\mathbf{0 . 2}$	$\mathbf{0 . 3}$	$\mathbf{0 . 4}$	$\mathbf{0 . 5}$	$\mathbf{0 . 6}$	$\mathbf{0 . 7}$	$\mathbf{0 . 8}$	$\mathbf{0 . 9}$
2	1.01	1.05	1.10	1.15	1.23	1.33	1.49	1.77	2.41	4.22
2.2	1.00	1.05	1.11	1.17	1.26	1.37	1.56	1.92	2.73	5.22
2.4	0.99	1.05	1.11	1.18	1.29	1.42	1.65	2.08	3.12	6.50
2.6	0.99	1.05	1.12	1.19	1.32	1.47	1.73	2.25	3.56	8.14
2.8	0.97	1.06	1.12	1.21	1.35	1.53	1.81	2.44	4.05	10.22
3	0.96	1.05	1.13	1.23	1.38	1.57	1.90	2.63	4.62	12.88
3.2	0.95	1.04	1.13	1.24	1.40	1.61	2.01	2.84	5.28	16.23
3.4	0.95	1.04	1.13	1.24	1.43	1.66	2.11	3.07	5.99	20.45
3.6	0.93	1.05	1.13	1.24	1.45	1.70	2.20	3.32	6.77	25.74
3.8	0.90	1.04	1.15	1.23	1.45	1.74	2.33	3.57	7.68	32.35
4	0.88	1.03	1.17	1.22	1.47	1.77	2.45	3.82	8.59	40.48

TABLE 2
Moderate deviation ratios $P\left(I_{n}^{*} \geq x\right) /\left(1-P\left(t_{b / 2-1} \geq x\right)\right)$ for the $\operatorname{AR}(1)-\operatorname{GARCH}(1,1)$ process
(6.1) with $x=2,2.2, \ldots, 4.0$ and $\rho=0, \ldots, 0.9$

\boldsymbol{x}	$\boldsymbol{\rho = \mathbf { 0 }}$	$\mathbf{0 . 1}$	$\mathbf{0 . 2}$	$\mathbf{0 . 3}$	$\mathbf{0 . 4}$	$\mathbf{0 . 5}$	$\mathbf{0 . 6}$	$\mathbf{0 . 7}$	$\mathbf{0 . 8}$	$\mathbf{0 . 9}$
2	0.98	0.98	0.98	0.98	0.98	0.98	0.98	1.00	1.09	1.71
2.2	0.97	0.97	0.97	0.97	0.97	0.98	0.97	0.99	1.10	1.83
2.4	0.97	0.96	0.96	0.96	0.96	0.97	0.97	0.99	1.10	1.93
2.6	0.96	0.95	0.95	0.95	0.96	0.96	0.95	0.98	1.10	2.04
2.8	0.95	0.94	0.94	0.94	0.94	0.96	0.94	0.97	1.10	2.15
3	0.94	0.93	0.93	0.93	0.94	0.94	0.93	0.96	1.11	2.26
3.2	0.93	0.92	0.92	0.91	0.93	0.94	0.92	0.95	1.10	2.37
3.4	0.92	0.91	0.91	0.90	0.91	0.93	0.91	0.95	1.11	2.48
3.6	0.90	0.91	0.90	0.89	0.90	0.92	0.90	0.94	1.11	2.57
3.8	0.89	0.90	0.88	0.89	0.88	0.91	0.90	0.93	1.11	2.66
4	0.88	0.89	0.87	0.88	0.88	0.91	0.89	0.92	1.11	2.76

5×10^{6} realizations of the $\operatorname{AR}(1)-\operatorname{GARCH}(1,1)$ process (6.1). When ρ is small, all the three normalized sums have comparable performance. As the dependence becomes stronger, namely ρ is bigger, or x moves away from 0 , the moderate deviation approximations for T_{n}^{\dagger} and W_{n}^{*} become worse with the latter being slightly better, while the interlacing normalized sum I_{n}^{*} has a relatively consistent good performance. The better finite-sample performance of the interlacing normalized sum can be intuitively explained by the fact that, due to the dependence, for two consecutive blocks, the second block does not add too much new information. This is especially so when the dependence is strong. In practice, we suggest using I_{n}^{*}.

TABLE 3
Moderate deviation ratios $P\left(W_{n}^{*} \geq x\right) /\left(1-P\left(t_{b-1} \geq x\right)\right)$ for the $\operatorname{AR}(1)-\operatorname{GARCH}(1,1)$ process (6.1) with $x=2,2.2, \ldots, 4.0$ and $\rho=0, \ldots, 0.9$

\boldsymbol{x}	$\boldsymbol{\rho = 0}$	$\mathbf{0 . 1}$	$\mathbf{0 . 2}$	$\mathbf{0 . 3}$	$\mathbf{0 . 4}$	$\mathbf{0 . 5}$	$\mathbf{0 . 6}$	$\mathbf{0 . 7}$	$\mathbf{0 . 8}$	$\mathbf{0 . 9}$
2	0.99	0.99	0.99	1.00	1.02	1.06	1.16	1.39	1.99	3.86
2.2	0.98	0.98	0.98	0.99	1.02	1.06	1.18	1.45	2.19	4.71
2.4	0.97	0.97	0.97	0.98	1.01	1.06	1.20	1.51	2.42	5.78
2.6	0.95	0.96	0.96	0.97	1.00	1.06	1.21	1.57	2.67	7.12
2.8	0.94	0.95	0.95	0.96	1.00	1.05	1.22	1.62	2.94	8.79
3	0.93	0.94	0.94	0.95	0.98	1.04	1.23	1.68	3.25	10.88
3.2	0.93	0.92	0.92	0.94	0.97	1.03	1.24	1.75	3.57	13.45
3.4	0.92	0.90	0.91	0.93	0.96	1.03	1.27	1.83	3.90	16.65
3.6	0.90	0.87	0.90	0.91	0.94	1.04	1.28	1.89	4.27	20.53
3.8	0.91	0.85	0.86	0.88	0.94	1.03	1.29	1.94	4.67	25.29
4	0.87	0.84	0.85	0.86	0.93	1.01	1.31	2.01	5.13	31.07

7. Proofs. The main idea of the proofs of Theorems 4.1 and 4.3 is to use m-dependence approximation. For β-mixing variables, we can apply Berbee's [4] theorem and convert them to independent variables. For GMC processes, we can also use m-dependence approximation. Then we apply the moderate deviation of [26] for independent random variables. The proof of Theorem 4.2 involves a much more delicate argument, as it requires an interesting recursive use of a tail probability inequality of self-normalized sums of dependent random variables.
7.1. Proof of Theorem 4.1. Before we prove Theorem 4.1, we first collect some preliminary lemmas.

LEMMA 7.1. Let $\xi_{i}, 1 \leq i \leq n$ be a sequence of random variables on the same probability space and define $\beta^{(i)}=\beta\left(\xi_{i},\left(\xi_{i+1}, \ldots, \xi_{n}\right)\right)$. Then the probability space can be extended with random variables $\tilde{\xi}_{i}$ distributed as ξ_{i} such that $\tilde{\xi}_{i}, 1 \leq i \leq n$ are independent and

$$
P\left(\xi_{i} \neq \tilde{\xi}_{i} \text { for some } 1 \leq i \leq n\right) \leq \beta^{(1)}+\cdots+\beta^{(n-1)}
$$

This is Lemma 2.1 of Berbee [4]. By Theorem 4.1 in Shao and Yu [40], we have the following.

Lemma 7.2. Under Assumptions (4.1) and (2.1), the following holds:

$$
\begin{equation*}
E\left|S_{k, m}\right|^{r^{\prime}} \leq c_{0} m^{r^{\prime} / 2} c_{1}^{r^{\prime}} \tag{7.1}
\end{equation*}
$$

for any $2 \leq r^{\prime}<r, m \geq 1, k \geq 0$, where c_{0} is a constant depending only on $r^{\prime}, r, a_{1}, a_{2}$ and τ.

Proof of Theorem 4.1. Clearly, (7.1) and (4.2) yield

$$
\begin{equation*}
\frac{\sum_{j=1}^{k} E\left|Y_{j, 1}\right|^{2+\delta}}{\left(\sum_{j=1}^{k} E Y_{j, 1}^{2}\right)^{(2+\delta) / 2}} \leq 2 c_{0} n^{-\left(1-\alpha_{1}\right) \delta / 2}\left(c_{1} / c_{2}\right)^{2+\delta} \tag{7.2}
\end{equation*}
$$

Let $\tilde{Y}_{j}, 1 \leq j \leq k$ be independent random variables such that \tilde{Y}_{j} and $Y_{j, 1}$ have the same distribution for each $1 \leq j \leq k$. Set

$$
\tilde{W}_{n}=\frac{\sum_{j=1}^{k} \tilde{Y}_{j}}{\left(\sum_{j=1}^{k} \tilde{Y}_{j}^{2}\right)^{1 / 2}}
$$

By Lemma 7.1 and $k \leq n /\left(2 m_{2}\right)$, we have

$$
\begin{equation*}
\left|P\left(W_{n} \geq x\right)-P\left(\tilde{W}_{n} \geq x\right)\right| \leq k \beta\left(m_{2}\right) \leq a_{1} \exp \left(-0.5 a_{2} n^{\tau \alpha_{2}}\right) \tag{7.3}
\end{equation*}
$$

We next apply Theorem 1.1 to \tilde{W}_{n}. It follows from (1.4) that

$$
\begin{equation*}
\frac{P\left(\tilde{W}_{n} \geq x\right)}{1-\Phi(x)}=\exp \left(O(1)(1+x)^{2+\delta} n^{-\left(1-\alpha_{1}\right) \delta / 2}\right) \tag{7.4}
\end{equation*}
$$

for all $0 \leq x \leq O(1) n^{\left(1-\alpha_{1}\right) / 2}$.
This and (7.3) imply that there exist finite constants c_{0}, A depending only on $c_{1} / c_{2}, a_{1}, a_{2}, r$ and τ such that

$$
\begin{align*}
\frac{P\left(W_{n} \geq x\right)}{1-\Phi(x)}= & \exp \left(O(1)(1+x)^{2+\delta} n^{-\left(1-\alpha_{1}\right) \delta / 2}\right) \\
& +O(1) \frac{\exp \left(-0.5 a_{2} n^{\tau \alpha_{2}}\right)}{1-\Phi(x)} \tag{7.5}
\end{align*}
$$

uniformly in $0 \leq x \leq c_{0} n^{\left(1-\alpha_{1}\right) / 2}$, and $|O(1)| \leq A$. This proves (4.12).
It also follows from (1.2) that

$$
\begin{equation*}
\frac{P\left(\tilde{W}_{n} \geq x\right)}{1-\Phi(x)}=1+O(1)(1+x)^{2+\delta} n^{-\left(1-\alpha_{1}\right) \delta / 2} \tag{7.6}
\end{equation*}
$$

for all $0 \leq x \leq O(1) n^{\left(1-\alpha_{1}\right) \delta /(2(2+\delta))}$. This and (7.3) imply (4.13).
7.2. Proof of Theorem 4.3. For the proof of Theorem 4.3, we need to use the following lemma.

LEMMA 7.3. Let $\zeta_{i}, 1 \leq i \leq n$ be independent nonnegative random variables with $E \zeta_{i}^{p}<\infty$, where $1<\bar{p} \leq 2$. Then for any $0<y<\sum_{i=1}^{n} E \zeta_{i}$

$$
\begin{align*}
& P\left(\sum_{i=1}^{n} \zeta_{i} \leq \sum_{i=1}^{n} E \zeta_{i}-y\right) \\
& \quad \leq \exp \left(-\frac{(p-1)}{4} \frac{y^{p /(p-1)}}{\left(\sum_{i=1}^{n} E \zeta_{i}^{p}\right)^{1 /(p-1)}}\right) \tag{7.7}
\end{align*}
$$

Proof. When $p=2$, (7.7) is Theorem 2.19 in [21] with a constant $1 / 2$. For $1<p \leq 2$, observing that

$$
e^{-x} \leq 1-x+x^{p} \quad \text { for } x \geq 0
$$

we have for $t>0$

$$
\begin{aligned}
& P\left(\sum_{i=1}^{n} \zeta_{i} \leq \sum_{i=1}^{n} E \zeta_{i}-y\right) \\
& \quad \leq e^{-t y+t \sum_{i=1}^{n} E \zeta_{i}} E e^{-t \sum_{i=1}^{n} \zeta_{i}} \\
& \quad \leq e^{-t y+t \sum_{i=1}^{n} E \zeta_{i}} \prod_{i=1}^{n}\left(1-t E \zeta_{i}+t^{p} E \zeta_{i}^{p}\right) \\
& \quad \leq \exp \left(-t y+t^{p} \sum_{i=1}^{n} E \zeta_{i}^{p}\right)
\end{aligned}
$$

Letting

$$
t=\left(\frac{y^{p}}{p \sum_{i=1}^{n} E \zeta_{i}^{p}}\right)^{1 /(p-1)}
$$

yields

$$
\begin{aligned}
& P\left(\sum_{i=1}^{n} \zeta_{i} \leq \sum_{i=1}^{n} E \zeta_{i}-y\right) \\
& \quad \leq \exp \left(-\frac{(p-1) y^{p /(p-1)}}{p^{p /(p-1)}\left(\sum_{i=1}^{n} E \zeta_{i}^{p}\right)^{1 /(p-1)}}\right) \\
& \quad \leq \exp \left(-\frac{(p-1) y^{p /(p-1)}}{4\left(\sum_{i=1}^{n} E \zeta_{i}^{p}\right)^{1 /(p-1)}}\right)
\end{aligned}
$$

as desired.

Proof of Theorem 4.3. Recall (4.10) for $Y_{j}, 1 \leq j \leq k$. Let

$$
\tilde{Y}_{j}=E\left(Y_{j} \mid \varepsilon_{l}, 2 m j-3 m+1 \leq l \leq 2 m j-m\right),
$$

and

$$
\tilde{I}_{n}=\frac{\sum_{j=1}^{k} \tilde{Y}_{j}}{\tilde{V}} \quad \text { where } \tilde{V}^{2}=\sum_{j=1}^{k} \tilde{Y}_{j}^{2}
$$

Note that \tilde{Y}_{j} are independent, and by (2.5),

$$
\begin{equation*}
\left\|Y_{j}-\tilde{Y}_{j}\right\|_{r} \leq m a_{1} e^{-a_{2} m^{\tau}} \tag{7.8}
\end{equation*}
$$

$\operatorname{Under}(2.5)$, since $X_{l}=\sum_{i=0}^{\infty} \mathcal{P}_{l-i} X_{l}$, where $\mathcal{P}_{k} \cdot=E\left(\cdot \mid \mathcal{F}_{k}\right)-E\left(\cdot \mid \mathcal{F}_{k-1}\right)$, we have by Burkholder's martingale inequality (cf. [8]) that

$$
\begin{aligned}
\left\|Y_{j}\right\|_{r} & =\left\|\sum_{i=0}^{\infty} \sum_{l \in H_{j}} \mathcal{P}_{l-i} X_{l}\right\|_{r} \\
& \leq \sum_{i=0}^{\infty}\left\|\sum_{l \in H_{j}} \mathcal{P}_{l-i} X_{l}\right\|_{r} \\
& \leq \sum_{i=0}^{\infty}(r-1)^{1 / 2}\left(\sum_{l \in H_{j}}\left\|\mathcal{P}_{l-i} X_{l}\right\|_{r}^{2}\right)^{1 / 2} \\
& \leq(r-1)^{1 / 2} \sum_{i=0}^{\infty}\left(m \theta_{r}^{2}(i)\right)^{1 / 2}=c_{3} m^{1 / 2},
\end{aligned}
$$

where $c_{3}=(r-1)^{1 / 2} \sum_{i=0}^{\infty} \theta_{r}(i)<\infty$. By condition (4.2) and (7.8), there exists a constant $c_{5}>0$ such that $E \tilde{V}^{2} \geq c_{5} n$. By Lemma 7.3 with $p=r / 2, \zeta_{j}=\tilde{Y}_{j}^{2}$ and $y=c_{5} n / 2$, we have by elementary calculations that

$$
\begin{equation*}
P\left(\tilde{V}^{2} \geq c_{5} n / 2\right) \geq 1-\exp \left(-c_{6} k\right) \geq 1-\exp \left(-c_{6}^{\prime} n^{1-\alpha}\right) \tag{7.9}
\end{equation*}
$$

for some constants $c_{6}, c_{6}^{\prime}>0$. Also (7.8) and $m \asymp n^{\alpha}$ imply

$$
P\left(\left|Y_{j}-\tilde{Y}_{j}\right| \geq n^{-9}\right) \leq n^{9 r} m^{r} a_{1}^{r} e^{-r a_{2} m^{\tau}}=O(1) \exp \left(-r a_{2} n^{\tau \alpha} / 2\right)
$$

Hence, there exist $c_{7}, c_{8}>0$ such that

$$
\begin{align*}
P\left(\left|I_{n}-\tilde{I}_{n}\right| \geq n^{-2}, \tilde{V}^{2} \geq c_{5} n\right) & \leq c_{7} n^{c_{8}} e^{-r a_{2} m^{\tau}} \\
& =O(1) \exp \left(-r a_{2} n^{\tau \alpha} / 2\right) \tag{7.10}
\end{align*}
$$

Observe that

$$
\begin{equation*}
\max _{0 \leq x \leq n}\left|\frac{1-\Phi(x)}{1-\Phi\left(x \pm n^{-2}\right)}-1\right|=O\left(n^{-1}\right) \tag{7.11}
\end{equation*}
$$

For $0 \leq x \leq c_{0} n^{\min ((1-\alpha), \tau \alpha) / 2}$ with a small constant $c_{0}>0$, it is easy to see that

$$
\exp \left(-c_{6}^{\prime} n^{1-\alpha}\right)+\exp \left(-r a_{2} n^{\tau \alpha} / 2\right)=o(1)(1-\Phi(x)) \exp \left(O(1) \frac{(1+x)^{r}}{n^{(1-\alpha) \delta / 2}}\right)
$$

Applying Theorem 1.1 to \tilde{I}_{n}, we have, for some constant $c_{4}>0$, that

$$
\begin{equation*}
\frac{P\left(\tilde{I}_{n} \geq x\right)}{1-\Phi(x)}=\exp \left(O(1) \frac{(1+x)^{r}}{k^{r / 2-1}}\right) \tag{7.12}
\end{equation*}
$$

for $0 \leq x \leq c_{4} k^{1 / 2}$. Hence, (4.17) follows from (7.12), (7.9), (7.10) and (7.11) with elementary calculations. (4.18) follows similarly.

Proof of Corollary 4.3. Using the arguments in the proof of Theorem 4.2 and the L^{r} moment inequalities in the proof of Theorem 4.3, Corollary 4.3 readily follows. Details are omitted.
7.3. Proof of Theorem 5.1. Assume without loss of generality that $\mu_{l}=0$ for all $l \leq p$. As in the proof of Theorem 4.3 let

$$
\tilde{Y}_{i l}=E\left(Y_{i l} \mid \varepsilon_{h}, 2 m i-3 m+1 \leq h \leq 2 m i-m\right), \quad 1 \leq l \leq p
$$

Let $\tilde{X}_{i l}=\tilde{Y}_{i l} / \sqrt{m}, \bar{Y}_{l}^{\diamond}=k^{-1} \sum_{j=1}^{k} \tilde{Y}_{j l}, \bar{X}_{l}^{\diamond}=k^{-1} \sum_{j=1}^{k} \tilde{X}_{j l}$ and

$$
\begin{equation*}
\tilde{T}_{n l}=\frac{\sum_{j=1}^{k} \tilde{Y}_{j l}}{\sqrt{\sum_{j=1}^{k}\left(\tilde{Y}_{j l}-\bar{Y}_{l}^{\diamond}\right)^{2}}}=\frac{\sum_{j=1}^{k} \tilde{X}_{j l}}{\sqrt{\sum_{j=1}^{k}\left(\tilde{X}_{j l}-\bar{X}_{l}^{\diamond}\right)^{2}}} \tag{7.13}
\end{equation*}
$$

By Theorem 2 in [44], there exists a constant c_{r}, only depending on r, such that $\left\|\tilde{X}_{i l}\right\|_{r} \leq c_{r} \sum_{h=0}^{\infty} \theta_{r}(h)$. Then by Assumption (G), $\left\|\tilde{X}_{i l}\right\|_{r} \leq c_{r} \sum_{h=0}^{\infty} a_{1} e^{-a_{2} h}=$
$c_{r} a_{1} /\left(1-e^{-a_{2}}\right)$. Let $\tilde{\omega}_{j l}=E\left(\tilde{X}_{i j} \tilde{X}_{i l}\right), \tilde{R}_{j l}=\tilde{\omega}_{j l} /\left(\tilde{\omega}_{j j} \tilde{\omega}_{l l}\right)^{1 / 2}$ and $\tilde{R}=\left(\tilde{R}_{j l}\right)_{j, l \leq p}$. By Assumption (G) and (7.8), $\left\|Y_{1 l}-\tilde{Y}_{1 l}\right\| \leq m a_{1} e^{-a_{2} m}$. Here the L^{2} norm $\|\cdot\|=$ $\|\cdot\|_{2}$. Again by Assumption (G),

$$
\begin{aligned}
\left|E\left(Y_{1 l} Y_{1 j}\right)-m \omega_{l j}\right| & \leq \sum_{i \in \mathbb{Z}}\left|i E\left(Z_{0 l} Z_{i j}\right)\right| \\
& =2 \sum_{i=1}^{\infty} i\left|E\left(Z_{0 l} E\left(Z_{i j} \mid \mathcal{F}_{0}\right)\right)\right| \\
& \leq 2 \sum_{i=1}^{\infty} i\left\|Z_{0 l}\right\|\left\|E\left(Z_{i j} \mid \mathcal{F}_{0}\right)\right\| \\
& \leq 2 \sum_{i=1}^{\infty} i\left\|Z_{0 l}\right\| \Delta_{2}^{(j)}(i) \\
& \leq 2 \sum_{i=1}^{\infty} i\left\|Z_{0 l}\right\| a_{1} e^{-a_{2} i} \leq C_{1}
\end{aligned}
$$

Note that $E\left(\tilde{X}_{1 l} \tilde{X}_{1 j}\right)=E\left(\tilde{Y}_{1 l} \tilde{Y}_{1 j}\right) / m$. Then we have uniformly over $j, l \leq p$ that $\left|\tilde{\omega}_{j l}-\omega_{j l}\right|=O\left(m^{-1}\right)$, which implies that $\max _{j, k \leq p}\left|\tilde{R}_{j l}-R_{j l}\right|=O\left(m^{-1}\right)$ in view of Assumption (R)(i). Let $\gamma=\chi / 2$. By (5.8), since $m \asymp n^{1 / 4}$, we have $m^{-1}=o\left((\log p)^{-1-\gamma}\right)$. Hence, Assumption (R) is also valid with $R_{j k}$ therein replaced by $\tilde{R}_{j l}$. For any constant $u>0$, we have by (5.7) that $\#\left\{j \leq p:\left|R_{j l}\right| \geq\right.$ u for some $j \neq l\}=o(p)$. Consequently, by Theorem 3.1 in [31], we have

$$
\begin{equation*}
\max _{l \leq p} \tilde{T}_{n l}^{2}-2 \log p+\log \log p \Rightarrow \mathcal{G} \tag{7.15}
\end{equation*}
$$

We remark that the original form of Theorem 3.1 in [31] is for two-sample mean comparisons. However, a careful check of its proof indicates that the argument works for the one sample case as well. Let

$$
\tilde{\sigma}_{l}^{2}=k^{-1} \sum_{j=1}^{k}\left(\tilde{X}_{j l}-\bar{X}_{l}^{\diamond}\right)^{2}
$$

By the m-dependence approximation arguments in (7.8)-(7.10), we obtain

$$
P\left(\left|T_{n l}-\tilde{T}_{n l}\right| \geq n^{-2}, \tilde{\sigma}_{l}^{2} \geq c_{1}, \text { holds for all } l \leq p\right)=O\left(p n^{c_{2}} e^{-r a_{2} m}\right)
$$

for some constants $c_{1}, c_{2}>0$. Note that, by (5.8) and $m \asymp n^{1 / 4}$, we have $p n^{c_{2}} e^{-r a_{2} m} \rightarrow 0$, which by (7.15) implies (5.9) via elementary manipulations.

Acknowledgments. We are grateful to the Editor, an Associate Editor and two anonymous referees for their helpful comments and suggestions.

SUPPLEMENTARY MATERIAL

Supplement to "Self-normalized Cramér type moderate deviations under

 dependence" (DOI: 10.1214/15-AOS1429SUPP; .pdf). The supplement gives the detailed proof for Theorem 4.2.
REFERENCES

[1] Andrews, D. W. K. (1984). Nonstrong mixing autoregressive processes. J. Appl. Probab. 21 930-934. MR0766830
[2] BASRAK, B., DAVIS, R. A. and Mikosch, T. (2002). Regular variation of GARCH processes. Stochastic Process. Appl. 99 95-115. MR1894253
[3] Beare, B. K. (2010). Copulas and temporal dependence. Econometrica 78 395-410. MR2642867
[4] Berbee, H. (1987). Convergence rates in the strong law for bounded mixing sequences. Probab. Theory Related Fields 74 255-270. MR0871254
[5] Bercu, B. and Touati, A. (2008). Exponential inequalities for self-normalized martingales with applications. Ann. Appl. Probab. 18 1848-1869. MR2462551
[6] Bradley, R. (2007). Introduction to Strong Mixing Conditions. Kendrick Press, Heber City, UT.
[7] BÜhlmann, P. (2002). Bootstraps for time series. Statist. Sci. 17 52-72. MR1910074
[8] BURKholder, D. L. (1988). Sharp inequalities for martingales and stochastic integrals. Astérisque 157-158 75-94. MR0976214
[9] CARRASCO, M. and Chen, X. (2002). Mixing and moment properties of various GARCH and stochastic volatility models. Econometric Theory 18 17-39. MR1885348
[10] Chang, J., Chen, S. X. and Chen, X. (2015). High dimensional generalized empirical likelihood for moment restrictions with dependent data. J. Econometrics 185 283-304. MR3300347
[11] Chen, X., Shao, Q., Wu, W. and Xu, L. (2016). Supplement to "Self-normalized Cramértype moderate deviations under dependence." DOI:10.1214/15-AOS1429SUPP.
[12] Chen, R. and Tsay, R. (1993). Nonlinear additive ARX models. J. Amer. Statist. Assoc. 88 955-967.
[13] Chen, R. and Tsay, R. S. (1993). Functional-coefficient autoregressive models. J. Amer. Statist. Assoc. 88 298-308. MR1212492
[14] Chen, S. X. and Qin, Y. (2010). A two-sample test for high-dimensional data with applications to gene-set testing. Ann. Statist. 38 808-835. MR2604697
[15] CHEN, X. (2012). Penalized sieve estimation and inference of semi-nonparametric dynamic models: A selective review. In Advances in Economics and Econometrics, 2010 World Congress of the Econometric Society Book Volumes Cambridge Univ. Press, Cambridge.
[16] Chen, X., Hansen, L. P. and Carrasco, M. (2010). Nonlinearity and temporal dependence. J. Econometrics 155 155-169. MR2607192
[17] Chen, X., Wu, W. B. and Yi, Y. (2009). Efficient estimation of copula-based semiparametric Markov models. Ann. Statist. 37 4214-4253. MR2572458
[18] Davydov, Y. A. (1968). Convergence of distributions generated by stationary stochastic processes. Theory Probab. Appl. 13 691-696.
[19] Dedecker, J., Doukhan, P., Lang, G., León, J. R., Louhichi, S. and Prieur, C. (2007). Weak Dependence: With Examples and Applications. Lecture Notes in Statistics 190. Springer, New York. MR2338725
[20] Delaigle, A., Hall, P. and Jin, J. (2011). Robustness and accuracy of methods for high dimensional data analysis based on Student's t-statistic. J. R. Stat. Soc. Ser. B. Stat. Methodol. 73 283-301. MR2815777
[21] DE La Peña, V. H., Lai, T. L. and Shao, Q. (2009). Self-Normalized Processes: Limit Theory and Statistical Applications. Springer, Berlin. MR2488094
[22] Douc, R., Moulines, E., Olsson, J. and van Handel, R. (2011). Consistency of the maximum likelihood estimator for general hidden Markov models. Ann. Statist. 39 474513. MR2797854
[23] Doukhan, P. and Wintenberger, O. (2008). Weakly dependent chains with infinite memory. Stochastic Process. Appl. 118 1997-2013. MR2462284
[24] FAN, J., Hall, P. and YaO, Q. (2007). To how many simultaneous hypothesis tests can normal, Student's t or bootstrap calibration be applied? J. Amer. Statist. Assoc. 102 12821288. MR2372536
[25] FAN, J. and YAO, Q. (2003). Nonlinear Time Series: Nonparametric and Parametric Methods. Springer, New York. MR1964455
[26] Jing, B., SHAO, Q. and WANG, Q. (2003). Self-normalized Cramér-type large deviations for independent random variables. Ann. Probab. 31 2167-2215. MR2016616
[27] Juodis, M. and RaČKauskas, A. (2005). A remark on self-normalization for dependent random variables. Lith. Math. J. 45 142-151.
[28] Lahiri, S. N. (2003). Resampling Methods for Dependent Data. Springer, New York. MR2001447
[29] Lange, T. (2011). Tail behavior and OLS estimation in AR-GARCH models. Statist. Sinica 21 1191-1200. MR2827520
[30] Lin, D. and Foster, D. (2014). The power of a few large blocks: A credible assumption with incredible efficiency. Working paper.
[31] LiU, W. and SHAO, Q. (2013). A Carmér moderate deviation theorem for Hotelling's T^{2} statistic with applications to global tests. Ann. Statist. 41 296-322. MR3059419
[32] Liu, W., Shao, Q. and WANG, Q. (2013). Self-normalized Cramér type moderate deviations for the maximum of sums. Bernoulli 19 1006-1027. MR3079304
[33] MASRY, E. and TuøSTHEIM, D. (1995). Nonparametric estimation and identification of nonlinear ARCH time series. Econometric Theory 11 258-289. MR1341250
[34] Meitz, M. and SAikkonen, P. (2011). Parameter estimation in nonlinear AR-GARCH models. Econometric Theory 27 1236-1278. MR2868839
[35] Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability. Springer, London. MR1287609
[36] Pham, T. D. and Tran, L. T. (1985). Some mixing properties of time series models. Stochastic Process. Appl. 19 297-303. MR0787587
[37] Politis, D. N., Romano, J. P. and Wolf, M. (1999). Subsampling. Springer, New York. MR1707286
[38] Sakhanenko, A. I. (1991). Estimates of Berry-Esseen type for the probabilities of large deviations. Siberian Math. J. 32 647-656.
[39] Shao, Q. and WANG, Q. (2013). Self-normalized limit theorems: A survey. Probab. Surv. 10 69-93. MR3161676
[40] Shao, Q. and Yu, H. (1996). Weak convergence for weighted empirical processes of dependent sequences. Ann. Probab. 24 2098-2127. MR1415243
[41] Tong, H. (1990). Nonlinear Time Series: A Dynamical System Approach. Oxford Statistical Science Series 6. Clarendon Press, Oxford. MR1079320
[42] Van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3. Cambridge Univ. Press, Cambridge. MR1652247
[43] WANG, Q. and Hall, P. (2009). Relative errors in central limit theorems for Student's t statistic, with applications. Statist. Sinica 19 343-354. MR2487894
[44] Wu, W. B. (2005). Nonlinear system theory: Another look at dependence. Proc. Natl. Acad. Sci. USA 102 14150-14154 (electronic). MR2172215
[45] Wu, W. B. (2011). Asymptotic theory for stationary processes. Stat. Interface 4 207-226. MR2812816
[46] Wu, W. B. and ShaO, X. (2004). Limit theorems for iterated random functions. J. Appl. Probab. 41 425-436. MR2052582

X. Chen	Q.-M. Shao
Department of Economics	Department of Statistics
Yale University	Chinese University of Hong Kong
30 Hillhouse Ave., Box 208281	Shatin, N.T.
New Haven, Connecticut 06520	Hong Kong
USA	E-MAIL: qmshao@sta.cuhk.edu.hk
E-MAIL: xiaohong.chen@yale.edu	
W. B. Wu	L. XU
Department of Statistics	Faculty of Science and Technology
University of Chicago	University of Macau
5734 S University Ave	Avenida da Universidade, Taipa
Chicago, Illinois 60637	Macau
USA	China
E-MAIL: wbwu@galton.uchicago.edu	E-MAIL: lihuxu@umac.mo

