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SELF-NORMALIZED CRAMÉR-TYPE MODERATE DEVIATIONS
UNDER DEPENDENCE
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WEI BIAO WU3,‡ AND LIHU XU4,§

Yale University∗, Chinese University of Hong Kong†, University of Chicago‡

and University of Macau§

We establish a Cramér-type moderate deviation result for self-normalized
sums of weakly dependent random variables, where the moment require-
ment is much weaker than the non-self-normalized counterpart. The range
of the moderate deviation is shown to depend on the moment condition and
the degree of dependence of the underlying processes. We consider three
types of self-normalization: the equal-block scheme, the big-block-small-
block scheme and the interlacing scheme. Simulation study shows that the
latter can have a better finite-sample performance. Our result is applied to
multiple testing and construction of simultaneous confidence intervals for
ultra-high dimensional time series mean vectors.

1. Introduction. Cramér-type moderate deviation principles for self-
normalized sums have attracted considerable attention recently. In comparison
with their non-self-normalized counterpart, the range of Gaussian approximation
can be much wider under same polynomial moment conditions. This explains why
self-normalized Cramér-type moderate deviation for independent data has been
applied to multiple testing and simultaneous confidence sets construction prob-
lems with ultra-high dimensions (i.e., the high dimensional problems in which the
dimension of the unknown parameters, p, could be exponentially larger than the
sample size n). See, for example, Fan, Hall and Yao [24] and Liu and Shao [31].
Let Xi,1 ≤ i ≤ n, be independent mean zero random variables and Sn = ∑n

i=1 Xi .
Define the self-normalized sum

Tn = Sn

Vn

where V 2
n =

n∑
i=1

X2
i .(1.1)
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Let

dn,δ =
(

n∑
i=1

EX2
i

)1/2/(
n∑

i=1

E|Xi |2+δ

)1/(2+δ)

.

The following Cramér-type moderate deviation result is a version of Theorems 2.1
and 2.3 of Jing, Shao and Wang [26]:

THEOREM 1.1. Let Xi,1 ≤ i ≤ n, be independent with EXi = 0, E|Xi |2 > 0
and E|Xi |2+δ < ∞ for 0 < δ ≤ 1 and all i. Then there exists an absolute constant
A such that ∣∣∣∣P(Tn ≥ x)

1 − �(x)
− 1

∣∣∣∣ ≤ A
(1 + x)2+δ

d2+δ
n,δ

(1.2)

holds for all 0 ≤ x ≤ dn,δ . If in addition(
n∑

i=1

EX2
i

)
max

1≤j≤n

(
E

(
X2

j

))δ/2 ≤ A

n∑
i=1

E|Xi |2+δ(1.3)

then for all 0 ≤ x ≤ (d2+δ
n,δ /A)1/δ ,

P(Tn ≥ x)

1 − �(x)
= exp

(
O(1)

(1 + x)2+δ

d2+δ
n,δ

)
,(1.4)

where the constant |O(1)| ≤ A. If E|Xi |2 ≥ c > 0 and E|Xi |2+δ ≤ c′ < ∞ for
0 < δ ≤ 1 and all i, then condition (1.3) is automatically satisfied, and equation
(1.4) holds with dn,δ � nδ/(4+2δ) for all 0 ≤ x ≤ n1/2/A.

If in (1.1), (1.4) and (1.2), we use the non-self-normalized version with T ′
n =

Sn/(E(V 2
n ))1/2, then the range of x such that (1.4) [or (1.2)] holds can be much

narrower. The moderate deviation result of type (1.4) [or (1.2)] plays an important
role in statistical inference of means since in practice one usually does not know
the variance var(Sn) = E(V 2

n ). Even if the latter is known, it is still advisable to
use Tn, due to its wider range of Gaussian approximation.

There are many variations of asymptotic theories on self-normalized sums in the
literature, and some allow for dependent data (see, e.g., [5, 27]). See [21, 39] for
a comprehensive study and a recent review. Among the existing theories, perhaps
the Cramér-type moderate deviations of self-normalized sums (Theorem 1.1) are
the most useful ones for simultaneous confidence sets construction for ultra-high
dimensional statistics. However, it has been an open question whether Theorem 1.1
could be generalized to dependent random variables. Such a generalization will be
very useful for ultra-high dimensional statistical inference on dependent data with
fat-tailed marginal distributions.
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In this paper, we shall show that in general result (1.2) is not valid for the range
of type 0 ≤ x ≤ nρ with any ρ > 0 if the dependence of the underlying process
{Xt } decays algebraically. In the latter case, one can only allow a much narrower
range 0 ≤ x ≤ (κ logn)1/2 with some constant κ > 0 (see Section 3 for details). On
the positive side, by using block versions of Vn, we do establish Cramér-type mod-
erate deviation results for self-normalized sums of weakly dependent processes
with geometrically decaying dependence, under mild polynomial moment condi-
tions. In particular, we introduce three types of self-normalized sums based on
the big-block-small-block scheme, the equal-block and the interlacing scheme, re-
spectively, and establish their associated Cramér-type moderate deviation theory.
In the context of resampling theory for weakly dependent processes, block boot-
strap procedures were proposed to adjust for dependence; see [7, 37] and [28],
for example. The blocking technique has also been used in some recent work on
time series models with slowly increasing dimension (see [10] and the reference
therein). However, the accuracy of tail Gaussian approximation [of the type (1.2)
or (1.4)] has not been studied before for dependent data. We show that, due to the
dependence, the range of Gaussian approximation is narrower than their indepen-
dent counterparts, but is still wider than their non-self-normalized ones under same
polynomial moment conditions. We also present a time series two-sample mod-
erate deviation extension. Our results are very useful for ultra-high dimensional
statistical inference on dependent data with fat-tailed marginal distributions, such
as multiple hypothesis testing of mean vectors of ultra-high dimensional time se-
ries models in one or two samples (see [14, 24, 31] and others for the results for
independent data).

Although we focus on establishing Cramér-type moderate deviation results for
weakly dependent data, our proof technique could be used to extend additional
self-normalized limit theorems in [26, 31] and others surveyed in [39] from inde-
pendent data to weakly dependent data with finite polynomial moments.

The rest of this paper is structured as follows. Section 2 introduces weakly de-
pendent processes in terms of β-mixing coefficients and functional dependence
measures. These notions of dependence are not nested. Together they cover a large
class of widely used linear and nonlinear time series models. To ensure the validity
of the Cramér-type moderate deviation with range of type 0 ≤ x ≤ nρ with some
ρ > 0, we require that the dependence measures decay geometrically quickly. Sec-
tion 3 provides a linear process example and shows that (1.2) is not valid for the
range 0 ≤ x ≤ nρ with any ρ > 0. Section 4 provides three types of self-normalized
sums for dependent data and derive their moderate deviation theorems. It also
presents a two-sample moderate deviation extension. Section 5 gives an applica-
tion to multiple test for ultra-high dimensional time series mean vectors, where the
tests in [24] and [31] are generalized to the dependence setting. Section 6 presents
a simulation study, which indicates that the self-normalized sums based on the in-
terlacing scheme performs very well in finite samples. All the proofs are given in
Section 7.
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2. Processes with geometrically decaying dependence. There are many dif-
ferent notions of temporal dependence for general (nonlinear) time series; see [6]
and [19] for recent reviews. In this paper, we focus on two measures of dependence
that have been shown to cover a large class of time series models commonly used
in statistics, econometrics, finance and engineering.

2.1. β-mixing. For a random process {Xt } that may be nonstationary; let I t−∞
and I∞

t+j be σ -fields generated respectively by (Xi, i ≤ t) and (Xi, i ≥ t + j ). We
say that {Xt } is β-mixing (or absolutely regular) if

β(n) ≡ sup
t

E sup
{∣∣P (

B|I t−∞
) − P(B)

∣∣ : B ∈ I∞
t+n

} → 0 as n → ∞.

Assume that there exist positive numbers a1, a2 and τ such that

β(n) ≤ a1e
−a2n

τ

.(2.1)

If {Xt } is a strictly stationary Markov process on a set 	 ⊆ Rd , let ‖φ‖p
p =∫

	 |φ(y)|p dQ(y) and Ttφ(x) = E[φ(Xt+1)|X1 = x], then

β(t) =
∫

sup
0≤φ≤1

∣∣∣∣Ttφ(x) −
∫

φ dQ

∣∣∣∣dQ.

The notion of β-mixing for a Markov process is closely related to the concept
called V -ergodicity (Meyn and Tweedie [35]). Given a measurable function V ≥ 1,
the Markov process {Xt } is V -uniformly ergodic if for all t ≥ 0,

sup
0≤φ≤V

∣∣∣∣Ttφ(x) −
∫

φ dQ

∣∣∣∣ ≤ cV (x) exp(−δt)

for positive constants c and δ. If E[V (Xt)] < ∞, then the V -uniform ergodicity
implies β-mixing with an exponential decay rate. This connection is valuable be-
cause one can show that a Markov process is β-mixing by applying the famous
drift criterion (for ergodicity): There are constants λ ∈ (0,1) and d ∈ (0,∞), a
norm-like function �(·) ≥ 1 and a small set K such that

E
[
�(Xt)|Xt−1

] ≤ λ�(Xt−1) + d × 1{Xt−1 ∈ K}.
In this case, {Xt } is geometric ergodic and β-mixing (2.1) with τ = 1.

Many nonlinear time series models are shown to be β-mixing via Tweedie’s
drift criterion approach. See, for example, Tong [41] for threshold models, Chen
and Tsay [12, 13] for functional coefficient autoregressive models and nonlinear
additive ARX models, Masry and Tjøstheim [33] for nonlinear ARCH, Carrasco
and Chen [9] for GARCH, stochastic volatility and autoregressive conditional du-
ration, Chen, Hansen and Carrasco [16] for diffusions, Chen, Wu and Yi [17] and
Beare [3] for copula-based Markov models, Douc, Moulines, Olsson and van Han-
del [22] for a large class of generalized hidden Markov models. See Tong [41], Fan
and Yao [25] and Chen [15] for additional example models and references.
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2.2. Functional dependence measures. Another useful dependence measure
for (nonlinear) time series is the so-called functional dependence measure; see, for
example, Wu [44, 45]. Let εt , t ∈ Z, be independent and identically distributed
(i.i.d.) random variables. Suppose that (Xt) is a causal process that can be repre-
sented as

Xt = Gt(Ft ),(2.2)

where Gt(·) is a measurable function such that Xt is well-defined, and Ft =
σ(. . . , εt−1, εt ). Let (ε∗

i )i∈Z be an i.i.d. copy of (εi)i∈Z, and F∗
i = σ(. . . , ε∗

i−1, ε
∗
i ).

Hence, ε∗
i , εj , i, j ∈ Z, are i.i.d. Assume that, for all t , Xt has finite r th moment,

r > 2. Define the functional dependence measures as

θr(m) = sup
i

∥∥Xi − Gi

(
. . . , εi−m−2, εi−m−1, ε

∗
i−m, εi−m+1, . . . , εi

)∥∥
r(2.3)

and

�r(m) = sup
i

∥∥Xi − Gi

(
F∗

i−m, εi−m+1, . . . , εi

)∥∥
r .(2.4)

Note that, if (Xt) is a stationary linear process, then θr(m) is the absolute value of
the impulse response function. Hence, we can interpret θr(m) as a nonlinear gen-
eralization of impulse response functions. We say that (Xt) is geometric moment
contraction (GMC; see Wu and Shao [46]) if there exist ρ ∈ (0,1), a1 > 0, and
0 < τ ≤ 1 such that

�r(m) ≤ a1ρ
mτ = a1e

−a2m
τ

with a2 = − logρ.(2.5)

It is easily seen that (2.5) is equivalent to θr(m) = O(ρmτ

1 ) for some ρ1 ∈ (0,1).
We emphasize that GMC does not imply geometric β-mixing. Andrews [1] gave
a simple AR(1) example: Xt = (Xt−1 + εt )/2, where εt are i.i.d. Bernoulli(1/2).
This process is not α-mixing (and hence not β-mixing), however, it satisfies GMC
(2.5) with ρ = 1/2 (or a2 = log 2).

Examples of GMC. Consider the infinite order autoregressive process

Xk+1 = R(εk+1;Xk,Xk−1, . . .),(2.6)

where εk are i.i.d. and R is a measurable function; see Wu [45] and Doukhan
and Wintenberger [23]. Assume there exists a nonnegative sequence (wj )j≥1 with
w∗ = ∑∞

j=1 wj < 1 such that

∥∥R(ε0;x−1, x−2, . . .) − R
(
ε0;x′−1, x

′−2, . . .
)∥∥

r ≤
∞∑

j=1

wj

∣∣x−j − x′−j

∣∣.
By equations (27) and (28) in Wu [45], since

∑∞
j=1 wj < 1, (2.6) has a strictly

stationary solution of the form

Xi = G(εi, εi−1, . . .),
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whose functional dependence measures (θk)k≥0 satisfies

θk+1 ≤
k+1∑
i=1

wiθk+1−i .

To obtain a bound for θk , we define the sequence ak with a0 = δ0, and

ak+1 =
k+1∑
i=1

wiak+1−i .(2.7)

If wj decays sub-geometrically in the sense that, for some ρ ∈ (0,1), τ ∈ (0,1)

and C0 > 0, as j → ∞,

wj ∼ C0ρ
jτ

.(2.8)

Then by elementary calculations, the recursion (2.7) has the asymptotic relation

ak ∼ a0

(1 − w∗)2 C0ρ
kτ

,(2.9)

which entails GMC condition (2.5). If in (2.8) τ = 1, then for some ρ0 ∈ (0,1), we
have

ak ∼ a0

(1 − w∗)2 C2ρ
k
0 .(2.10)

3. Cramér-type moderate deviations for linear processes with algebraically
decaying coefficients. In this section, we shall construct a linear process exam-
ple and show that, if the dependence measure decays only algebraically slowly,
then the Cramér-type moderate deviation is not valid at x = (K logn)1/2, where K

is a sufficiently large constant independent of n.
Let εi be i.i.d. Student tν random variables with degrees of freedom ν > 4; let

a0 = 1, am � m−β , β > 1 and define

Xj =
∞∑
i=0

aiεj−i .(3.1)

For this process, the functional dependence measure θr(m) � m−β for r ∈ (0, ν).
The process is also β-mixing if β > 2 + ν−1. To this end, we let 2 < r < ν be such
that 2+ r−1 < β . By Theorem 2.1 in [36], its β-mixing coefficient β(n) is of order
O(n(n1−β)r/(1+r)) = O(n1+r(1−β)/(1+r)) since

∑∞
i=m ai = O(m1−β). By [18], we

have cov(X0,Xn) = O(β(n)1/p), where p = r/(r − 2). Note that cov(X0,Xn) �
n−β . Hence, we have the lower bound for β(n): n−βr/(r−2) = O(β(n)).

For Sn = ∑n
i=1 Xi , we consider the self-normalized sum of the form

Tn = Sn

σ̂n

where σ̂ 2
n = ∑

j,k≤n

XjXkwj,k.(3.2)
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Here, wj,k are weights such that |wj,k| ≤ 1 and wj,k = 0 if |j − k| ≥ B , where
B = Bn is the window size parameter. For example, we can choose the triangle
kernel wj,k = max(1 − |j − k|/B,0), the rectangle kernel wj,k = 1|j−k|<B , or,
with n = Bk and B being the block size,

σ̂ 2
n =

k∑
j=1

( jB∑
i=1+(j−1)B

Xi

)2

= ∑
f,g≤n

Xf Xgwf,g,

where wf,g = 1 if there exists j such that (j −1)B < f,g ≤ jB; see also the block
normalized sum (4.3). We can view n−1σ̂ 2

n as a lag-window estimate of the long-
run variance σ 2∞ = ∑

j∈Z γj , where γj = E(X0Xj) is the covariance function. In
comparison with (1.1), the cross-product terms XjXk with j �= k in the expres-
sion of σ̂ 2

n are introduced to adjust for the dependence. Assuming Bn → ∞ and
Bn/n → 0, under suitable conditions of the weights (wj,k), n−1σ̂ 2

n is a consistent
estimate of σ 2∞.

THEOREM 3.1. Assume (3.1) and that the lag B � nθ , 0 < θ < 1. Let yn = nα ,
0 < α < (1 − θ)/2. Then there exists a constant c1 > 0, independent of n and the
weights (wj,k), such that for all sufficiently large n, we have

P(Sn/σ̂n > yn) ≥ c1n
−βν.(3.3)

PROOF. We shall compare the coefficients of ε−n in Sn and σ̂ 2
n . Let X◦

i = Xi −
an+iε−n and S◦

n = ∑n
i=1 X◦

i . Then Sn = S◦
n + Anε−n, where An := ∑n

i=1 an+i �
n1−β , by the condition on an. We also write

σ̂ 2
n = ∑

j,k≤n

X◦
jX

◦
kwj,k + ∑

j,k≤n

(
X◦

j an+k + an+jX
◦
k

)
wj,kε−n

+ ∑
j,k≤n

an+j an+kwj,kε
2−n(3.4)

=: Qn + Lnε−n + fnε
2−n,

where fn = ∑
j,k≤n an+j an+kwj,k satisfying |fn| ≤ C1n

−2βnB ≤ C2n
1−2β+θ . In

the proof of this theorem, the constants C1,C2, . . . , are all independent of n and
the weights (wj,k). Then

S2
n − y2

nσ̂ 2
n = (

A2
n − y2

nfn

)
ε2−n + (

2AnS
◦
n − y2

nLn

)
ε−n

(3.5)
+ (

S◦
n

)2 − y2
nQn.

Let gn = A2
n − y2

nfn, Mn = 2AnS
◦
n − y2

nLn and Rn = (S◦
n)2 − y2

nQn. By the mo-
ment inequality in Theorem 2 in [44], E(S◦

n)4 ≤ C3n
2, E(Q2

n) ≤ C4n
2, ‖Ln‖ ≤

C5anB
√

n. Hence, ‖Mn‖ ≤ C6n
3/2−β and ‖Rn‖ ≤ C7y

2
nn. Note that y2

nfn ≤
n2αC2n

1−2β+θ , we have gn � n2−2β . Let hn = nβ . Then

P
[
hn ≥ |Mn|/gn + (|Rn|/gn

)1/2] → 1 as n → ∞(3.6)



1600 CHEN, SHAO, WU AND XU

since n3/2−β/gn = o(hn) and y2
nn/gn = o(h2

n). By the independence of ε−n and
(Mn,Rn), we obtain

P
(
S2

n ≥ y2
nσ̂ 2

n

) ≥ P
[
ε−n ≥ |Mn|/gn + (|Rn|/gn

)1/2]
≥ P

[
ε−n ≥ hn,hn ≥ |Mn|/gn + (|Rn|/gn

)1/2]
(3.7)

= P(ε−n ≥ hn)P
[
hn ≥ |Mn|/gn + (|Rn|/gn

)1/2]
.

Since εi is tν , P(ε−n ≥ hn) ∼ cνh
−ν
n for some constant cν > 0, (3.3) follows in

view of the symmetry P(Sn/σ̂n > yn) = P(Sn/σ̂n < −yn). �

Note that, as x → ∞, 1 − �(x) ∼ x−1(2π)−1/2 exp(−x2/2). Theorem 3.1 im-
plies that, if the constant K > 2βν, we have

P(Sn/σ̂n > (K logn)1/2)

1 − �((K logn)1/2)
→ ∞.(3.8)

It suggests that, with only finite polynomial moment condition and when the de-
pendence decays algebraically, then the range for the Cramér-type moderate devi-
ation can be very narrow: it cannot go beyond (K logn)1/2 with some constant K .
To ensure a wider range of type 0 ≤ x ≤ nρ with some ρ > 0, we need to im-
pose a stronger condition on the weakness of the dependence. In the next section,
we consider moderate deviations for processes that have geometrically decaying
dependence.

4. Main results. Let {Xi, i ≥ 1} be a sequence of random variables satisfying

E(Xi) = μ = 0, E|Xi |r ≤ cr
1 for all i(4.1)

for r > 2 and c1 < ∞. Write Sk,m = ∑k+m
i=k+1 Xi and Sn = S0,n. Assume that there

exists a positive number c2 such that

E
(
S2

k,m

) ≥ c2
2m for all k ≥ 0,m ≥ 1.(4.2)

We shall assume that {Xi} is weakly dependent which can be either geometric
β-mixing or geometric moment contracting (GMC); see Sections 4.4 and 4.5, re-
spectively. The condition of geometric decaying of dependence in general cannot
be relaxed; see Section 3.

For independent random variables, (1.1) is the natural form for normalized sum.
The situation is quite different when dependence is present. There are a few ways
to account for dependence. The block normalized sum, big-block-small-block nor-
malized sum, the interlacing normalized sum are introduced in Sections 4.1, 4.2
and 4.3, respectively. For all schemes, we can establish their moderate deviations
for either geometric β-mixing or GMC processes. Blocking technique is a com-
mon way to weaken dependence; see, for example, Lin and Foster [30].
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4.1. Block normalized sum. As a natural way to account for dependence, we
can modify Vn in (1.1) by using block sums. Assume at the outset that μ = 0. Let
m = �nα�, 0 < α < 1, k = �n/m�,

H ◦
j = {

i : m(j − 1) + 1 ≤ i ≤ m(j − 1) + m
}
, 1 ≤ j ≤ k,(4.3)

and the block sums Y ◦
j = ∑

l∈H ◦
j
Xl . Define

T ◦
n =

∑k
j=1 Y ◦

j

V ◦
k

where
(
V ◦

k

)2 =
k∑

j=1

(
Y ◦

j

)2
.(4.4)

Note that, if E(Xi) = 0 and (Xi) is a stationary process, then (V ◦)2/(mk) is the
classical nonoverlapped batched mean estimate of the long-run variance σ 2∞ =∑

j∈Z cov(X0,Xj ). See Politis, Romano and Wolf [37] and Bühlmann [7]. In gen-

eral, when μ is unknown, we let Ȳ ◦ = k−1 ∑k
j=1 Y ◦

j ,

T †
n =

∑k
j=1(Y

◦
j − mμ)

V
†
k

where
(
V

†
k

)2 =
k∑

j=1

(
Y ◦

j − Ȳ ◦)2
.(4.5)

4.2. Big-block-small-block normalized sum. In (4.4), we use consecutive
blocks with equal size. As a slightly modified version, we can adopt a big-
block-small-block scheme and only use big blocks. Partition {Xi,1 ≤ i ≤ n} into
consecutive big blocks and small blocks. Let m1 = �nα1�,m2 = �nα2�, where
1 > α1 > α2 > 0, m∗ = m1 + m2, k = �n/m∗� and, for 1 ≤ j ≤ k, put

Hj,1 = {
i : (j − 1)m∗ + 1 ≤ i ≤ (j − 1)m∗ + m1

}
,

Hj,2 = {
i : (j − 1)m∗ + m1 + 1 ≤ i ≤ jm∗

}
,

where Hj,1 (resp., Hj,2) are large (resp., small) blocks, and the corresponding
block sums ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yj,1 = ∑
i∈Hj,1

Xi, Yj,2 = ∑
i∈Hj,2

Xi,

Sn,1 =
k∑

j=1

Yj,1, Sn,2 =
k∑

j=1

Yj,2,

V 2
n,1 =

k∑
j=1

Y 2
j,1, V 2

n,2 =
k∑

j=1

Y 2
j,2.

(4.6)

Consider the self-normalized big-block sum

Wn = Sn,1

Vn,1
.(4.7)
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Under geometric β-mixing condition (2.1) or GMC condition (2.5), one can easily

prove that Wn
d.→ N(0,1).

If the mean is common but unknown, that is, E(Xi) = μ for all i with μ un-
known, similarly as (4.5), we consider the Student t-statistic

W ∗
n = S∗

n,1

V ∗
n,1

=
∑k

j=1(Yj,1 − m1μ)√∑k
j=1(Yj,1 − Ȳ1)2

,(4.8)

where Ȳ1 = k−1 ∑k
j=1 Yj,1.

4.3. Interlacing normalized sum. A particularly interesting case for Wn in
(4.7) is α1 = α2 = α ∈ (0,1). Let m = �nα�, k := �n/(2m)� and

Hj = {
i : 2m(j − 1) + 1 ≤ i ≤ 2m(j − 1) + m

}
, 1 ≤ j ≤ k.(4.9)

Note that Hj = Hj,1. Let Yj = ∑
l∈Hj

Xl , V 2 = ∑k
j=1 Y 2

j and

In =
∑k

j=1 Yj

V
=

∑k
j=1 Yj√∑k
j=1 Y 2

j

,(4.10)

which is Wn in (4.7). Denote by I ∗
n the interlaced version of W ∗

n in (4.8):

I ∗
n =

∑k
j=1(Yj − mμ)√∑k

j=1(Yj − Ȳ )2
where Ȳ = k−1

k∑
j=1

Yj .(4.11)

4.4. Moderate deviation under geometric β-mixing.

THEOREM 4.1. Assume conditions (4.1), (4.2) and (2.1). Let 0 < α2 ≤ α1 < 1
and 0 < δ ≤ 1, δ < r − 2. Then there exist finite constants c0,A depending only on
c1/c2, a1, a2, r and τ such that

P(Wn ≥ x)

1 − �(x)
= exp

(
O(1)(1 + x)2+δn−(1−α1)δ/2)

(4.12)

uniformly in 0 ≤ x ≤ c0 min(n(1−α1)/2, nα2τ/2), and |O(1)| ≤ A. In particular, we
have

P(Wn ≥ x)

1 − �(x)
= 1 + O(1)(1 + x)2+δn−(1−α1)δ/2,(4.13)

for all 0 ≤ x ≤ c0 min(n(1−α1)δ/(4+2δ), nα2τ/2) and |O(1)| ≤ A.

If τ = 1 = δ and we choose α1 = α2 = 1/2, then (4.12) yields

lnP(Wn ≥ xn) ∼ −x2
n/2(4.14)
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as xn → ∞ and xn = o(n1/4). Note that when Xi are independent with bounded
3rd moments, Theorem 1.1 gives a wider range of xn = o(n1/2).

If τ = 1 = δ and we choose α1 = α2 = 1/4, then (4.13) implies

P(Wn ≥ x)

1 − �(x)
= 1 + O(1)(1 + x)3n−3/8 → 1(4.15)

uniformly in 0 ≤ x ≤ o(n1/8). Again when Xi are independent, Theorem 1.1 gives
a wider range of 0 ≤ x ≤ o(n1/6).

In practice, it is more common to use the Student t-statistic W ∗
n rather than the

self-normalized Wn. We have the same result for W ∗
n in (4.8). It readily follows

from Theorem 4.1.

COROLLARY 4.1. Let conditions (4.1) (with unknown mean μ), (4.2) and
(2.1) hold. Then Results (4.12) and (4.13) also hold for W ∗

n .

For the block normalized sums T ◦
n and T †

n of (4.4), we have the following The-
orem 4.2. Corollary 4.2 follows from Theorem 4.2.

THEOREM 4.2. Assume that (4.1), (4.2) and (2.1) hold. Let α ∈ (0,1) and 0 <

δ ≤ 1, δ < r −2. Then there exist some finite positive numbers c0 and A depending
on α, τ , a1, a2, r , c1 and c2 such that

P(T ◦
n ≥ x)

1 − �(x)
= 1 + O(1)

[
(1 + x)4+δn−δ(1−α)/2]1/4(4.16)

uniformly for 0 ≤ x ≤ c0 min((logn)−4/(4+δ)n(1−α)δ/(2(4+δ)), nατ/2) with
|O(1)| ≤ A.

The proof of Theorem 4.2 is much more complicated and we give details in the
supplemental article [11].

COROLLARY 4.2. Let (4.1) (with unknown mean μ), (4.2) and (2.1) hold. Let
α ∈ (0,1) and 0 < δ ≤ 1, δ < r − 2. Then there exist some finite positive numbers
c0 and A depending on α, τ , a1, a2, r , c1 and c2 such that Result (4.16) also holds
for T †

n .

4.5. Moderate deviation under geometric moment contraction. In this section,
we consider time series models that satisfy the GMC condition (2.5).

THEOREM 4.3. (i) Assume (4.1), (4.2) and (2.5). Let 0 < α < 1 and 2 < r ≤ 3.
Then there exist constants c0,A > 0, depending only on c1/c2, a1, a2, α, r and τ

such that In in (4.10) satisfies the moderate deviation

P(In ≥ x)

1 − �(x)
= exp

(
O(1)(1 + x)rn(1−r/2)(1−α))(4.17)
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for all 0 ≤ x ≤ c0 min(n(1−α)/2, nατ/2) and |O(1)| ≤ A. In particular, we have

P(In ≥ x)

1 − �(x)
= 1 + O(1)(1 + x)rn(1−r/2)(1−α)(4.18)

for all 0 ≤ x ≤ c0 min(n(1−α)(r−2)/2r , nατ/2) and |O(1)| ≤ A.
(ii) If condition (4.1) holds with unknown μ in part (1), then results (4.17) and

(4.18) hold with I ∗
n in (4.11).

If we increase τ or r , then the range for x can be wider. Let τ = 1, r = 3 and
α = 1/4. Then the moderate deviation (4.18) implies (4.15) uniformly in the range
0 ≤ x ≤ o(n1/8). In comparison, if α1 > α2, then the big-block-small-block self-
normalized sum (4.13) has a moderate deviation with a slightly narrower range
since δ < 1. Similarly, the range for the block normalized sum T ◦

n is also slightly
narrower.

Similarly, as Theorem 4.2, using the GMC condition (2.5), we have the follow-
ing.

COROLLARY 4.3. Assume that (4.1) (4.2) and (2.5) hold. Let α ∈ (0,1),
2 < r ≤ 3 and δ = r − 2. Then there exist some finite positive numbers c0 and
A depending on α, τ , a1, a2, r , c1 and c2 such that (4.16) holds.

4.6. Moderate deviation for two-sample statistic. The results in Sections 4.4
and 4.5 can be easily extended to the two-sample case. Let {X(1)

i , i ≥ 1} and

{X(2)
i , i ≥ 1} be two independent sequences of random variables, both of them

satisfying (2.1) or (2.5). Assume that

E
(
X

(l)
i

) = 0, E
∣∣X(l)

i

∣∣r ≤ cr
1, l = 1,2 for all i(4.19)

for r > 2 and c1 < ∞. Set S
(l)
k,m = ∑k+m

i=k+1 X
(l)
i and S

(l)
n = S

(l)
0,n. Assume that there

exist positive numbers c2, a1, a2 and τ such that

E
([

S
(l)
k,m

]2) ≥ c2
2m for all k ≥ 0,m ≥ 1, l = 1,2;(4.20)

and (2.1) holds for both processes.
Assume n1 � n2 � n. For l = 1,2, we partition {X(l)

i ,1 ≤ i ≤ nl} into big
blocks and small blocks. Let m1 = �(n1 + n2)

α1�,m2 = �(n1 + n2)
α2�, where

1 > α1 ≥ α2 > 0, m∗ = m1 + m2, kl = �nl/m∗� for l = 1,2, and for 1 ≤ j ≤
max(k1, k2), put

Hl;j,1 = {
i : (j − 1)m∗ + 1 ≤ i ≤ min

(
nl, (j − 1)m∗ + m1

)}
,

Hl;j,2 = {
i : (j − 1)m∗ + m1 + 1 ≤ i ≤ min(nl, jm∗)

}
.
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For l = 1,2,

Y
(l)
j,1 = ∑

i∈Hl;j,1
X

(l)
i , Y

(l)
j,2 = ∑

i∈Hl;j,2
X

(l)
i ,

S
(l)
n,1 =

kl∑
j=1

Y
(l)
j,1, S

(l)
n,2 =

kl∑
j=1

Y
(l)
j,2,

V
(l)2
n,1 =

kl∑
j=1

[
Y

(l)
j,1

]2
, V

(l)2
n,2 =

kl∑
j=1

[
Y

(l)
j,2

]2
.

Consider

Ŵn = k−1
1 S

(1)
n,1 − k−1

2 S
(2)
n,1

(k−2
1 V

(1)2
n,1 + k−2

2 V
(2)2
n,1 )1/2

.

THEOREM 4.4. Assume (4.19) and (4.20). Then (i) under (2.1), results (4.12)
and (4.13) remain valid for Ŵn; and (ii) under (2.5), the moderate deviations (4.17)
and (4.18) hold for Ŵn with α1 = α2.

As Theorem 4.2, the block normalized version of Theorem 4.4 can be similarly
formulated. Details are omitted.

4.7. Small sample corrections. In our interlacing normalized sum In in (4.10),
if Yj are i.i.d. standard normal, then In ∼ tk , a t-distribution with degrees of free-
dom k. Note that k ∼ n1−α/2, which is much smaller than n. In actual application
of Theorem 4.3, instead of the normal distribution function �, we suggest using
the tk distribution. Similar claims can be made for I ∗

n , Wn, W ∗
n , T ◦

n and T †
n as well.

See [20, 43] and others for similar suggestions.

5. Applications. As the result of Jing, Shao and Wang [26] has been widely
applied in statistics and econometrics for independent data, our results are very
useful in similar applications with spatially dependent data and time series obser-
vations. As an illustrative yet important application, in this section we apply our
theory to a time series extension of multiple tests of Fan, Hall and Yao [24] and
Liu and Shao [31].

Consider the problem of constructing simultaneous confidence intervals for the
mean vector μ = (μ1, . . . ,μp)′ of the stationary p-dimensional process

Zi = (Zi1, . . . ,Zip)′ = G(Fi),(5.1)

where Fi = (. . . , εi−1, εi), εi are i.i.d. and G(·) = (G(1)(·), . . . ,G(p)(·))′ is a func-
tion such that Zi is well-defined. Assume that the long-run covariance matrix

�∞ =
∞∑

i=−∞
cov(Z0,Zi) = (ωjl)j,l≤p(5.2)
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exists and satisfies the following condition.

ASSUMPTION (R0). There exists a constant ζ > 0 such that the long-run vari-
ance ωjj ≥ ζ holds for all j ≤ p.

We shall impose the following uniform geometric moment contraction con-
dition, which is a uniform version of (2.5) on the component processes Zil =
G(l)(Fi ), 1 ≤ l ≤ p. Here, for the sake of conciseness we only deal with the case
τ = 1. Similar results can be derived when τ < 1, or when one uses the uniform
version of the geometric β-mixing (2.1).

ASSUMPTION (G). Let �
(l)
r (m) = ‖G(l)(Fi )−G(l)(F∗

i−m, εi−m+1, . . . , εi)‖r

[cf. (2.4)] be the functional dependence measure for the component process Zil =
G(l)(Fi ), 1 ≤ l ≤ p. Assume that there exist a1, a2 > 0 such that
maxl≤p �

(l)
r (m) ≤ a1e

−a2m holds for all m ≥ 0.

5.1. Construction of conservative simultaneous confidence intervals. Here,
for illustration purposes, we use the interlacing normalized sum. Other versions
are similar. Given the data Z1, . . . ,Zn, let

Tnl =
∑k

j=1(Yjl − mμl)√∑k
j=1(Yjl − Ȳl)2

, l = 1, . . . , p,(5.3)

where m � n1/4, k = �n/(2m)�, Yjl = ∑
g∈Hj

Zgl and Hj is given in (4.9), and

Ȳl = k−1 ∑k
j=1 Yjl .

COROLLARY 5.1. Let Assumption (R0) be satisfied. Assume that the dimen-
sion p satisfies

logp = o
(
n1/4)

.(5.4)

Let Assumption (G) be satisfied with r = 3. Let α ∈ (0,1). Then

Ȳl

m
± �−1(1 − α/(2p))

km

√√√√√ k∑
j=1

(Yjl − Ȳl)2,(5.5)

are 1 − α (conservative) simultaneous confidence intervals for (μl)
p
l=1.

PROOF. Note that the upper (α/(2p))th quantile of a standard normal dis-
tribution �−1(1 − α/(2p)) = O((logp)1/2), which by (5.4) is of order o(n1/8).
Assumption (R0) implies that (4.2) holds for all component processes (Zil)i . Then
the corollary follows from applying Theorem 4.3 to Tnl via the Bonferroni proce-
dure. �
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As discussed in Section 4.7, the finite-sample performance can be improved if
in (5.5) we use quantiles of t distributions. Namely, the quantity �−1(1 −α/(2p))

is replaced by u = u(α,p, k) for which P(|tk−1| ≥ u) = α/p, where tk−1 follows
t-distribution with degrees of freedom k − 1.

5.2. Simultaneous confidence intervals with asymptotically correct coverage
probabilities. Due to the Bonferroni correction, the confidence intervals (5.5) can
be overly wider. To construct simultaneous confidence intervals with asymptoti-
cally correct coverage probabilities, we shall make an additional assumption on
the long-run correlation matrix

R =
(

ωjl

ω
1/2
jj ω

1/2
ll

)
j,l≤p

,(5.6)

where �∞ is the long-run covariance matrix of the process (Zi ); cf. (5.2).

ASSUMPTION (R). (i) There exists a constant ζ > 0 such that the long-run
variance ωjj ≥ ζ holds for all j ≤ p; (ii) for some γ > 0,

max
j≤p

#
{
l ≤ p : |Rlj | ≥ (logp)−1−γ } = O

(
pρ)

(5.7)

holds for all ρ > 0.

In Assumption (R), requirement (ii) indicates that, the long-run correlation be-
tween the component processes (Zil)i∈Z and (Zij )i∈Z are sufficiently weak. This
condition is mild enough. Liu and Shao [31] proposed a similar condition for i.i.d.
random vectors.

THEOREM 5.1. Let Assumptions (R) and (G) be satisfied with some r > 3.
Assume that for some χ > 0,

(logp)1+χ = o
(
n1/4)

.(5.8)

Let G follow the Gumbel distribution P(G ≤ y) = exp(−e−y/2/π1/2). Then

max
l≤p

T 2
nl − 2 logp + log logp ⇒ G.(5.9)

The convergence in (5.9) can be quite slow. In practice with relatively small
sample sizes, we can apply t-distribution calibration for an improvement. Choose
λ = λ(k,α,p) such that P(|tk−1| ≤ λ) = (1 − α)1/p . Then the asymptotically cor-
rect 1 − α simultaneous confidence intervals for (μl)

p
l=1 can be constructed in

the form of (5.5) with the cutoff value �−1(1 − α/(2p)) therein replaced by λ.
The latter simultaneous confidence intervals can be used for testing the hypothesis
H0 : μ = μ◦, namely μ1 = μ◦

1, . . . ,μp = μ◦
p . We reject the null hypothesis at level

α if there exists one of the intervals that does not include the corresponding μ◦
l .
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6. A simulation study. In this section, we shall study the finite-sample ap-
proximation accuracies for various normalized sums in Theorems 4.1, 4.2 and 4.3.
Consider the AR-GARCH process

Xi = ρXi−1 + εi,(6.1)

where |ρ| < 1 and (εi) is the GARCH(1,1) process with

εi = ηiσi, σ 2
i = α2

0 + α2
1η2

i−1 + β2
1σ 2

i−1,(6.2)

where ηi are i.i.d. random variables with mean 0 and α0, α1, β1 are real parameters.
The AR-GARCH process has been widely used to study heavy-tailed financial
time series; see, for example, [29, 34] among others. In our simulation study, we
let ηi ∼ 0.751/2t8 so that it has variance 1. By Basrak, Davis and Mikosch [2],
let p = p(β1) be such that E(|β1η0|p) = 1. Then εi has finite r th moment with
r ∈ (0,p), but E(|εi |p) = ∞.

We let α0 = 1, α1 = 0.4, β1 = 0.4, n = 200, and choose 10 levels of ρ:
ρ = 0,0.1, . . . ,0.9. In the block normalized sum T †

n in (4.5), we let m = 10 and
b = n/m = 20. For W ∗

n of (4.8), we let m2 = �m1/2� and m1 = m − m2. In the
interlacing version I ∗

n of (4.11) and in Corollaries 4.1, 4.2 and Theorem 4.3, we
consider 11 levels of x: x = 2.0,2.2, . . . ,4.0. As discussed in Section 4.7, instead
of the Gaussian approximation, more accuracy can be gained if we use the Student
t-distribution. If Xi were i.i.d. standard normal, then I ∗

n has t distribution with de-
grees of freedom n/(2m) − 1 = 9, T †

n ∼ tn/m−1 = t19 and W ∗
n ∼ tk−1 = t19. When

x becomes larger, as expected, the Gaussian approximation becomes worse. For
example, (1 − P(t9 ≥ 4))/(1 − �(4)) = 49.1.

Tables 1, 2 and 3 show the ratios P(T †
n ≥ x)/(1 − P(tb−1 ≥ x)), P(I ∗

n ≥
x)/(1 − P(tb/2−1 ≥ x)) and P(W ∗

n ≥ x)/(1 − P(tb−1 ≥ x)), where the proba-
bilities P(T †

n ≥ x), P(I ∗
n ≥ x) and P(W ∗

n ≥ x) are approximated by simulating

TABLE 1
Moderate deviation ratios P(T

†
n ≥ x)/(1 − P(tb/2−1 ≥ x)) for the AR(1)–GARCH(1,1) process

(6.1) with x = 2,2.2, . . . ,4.0 and ρ = 0, . . . ,0.9

x ρ = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2 1.01 1.05 1.10 1.15 1.23 1.33 1.49 1.77 2.41 4.22
2.2 1.00 1.05 1.11 1.17 1.26 1.37 1.56 1.92 2.73 5.22
2.4 0.99 1.05 1.11 1.18 1.29 1.42 1.65 2.08 3.12 6.50
2.6 0.99 1.05 1.12 1.19 1.32 1.47 1.73 2.25 3.56 8.14
2.8 0.97 1.06 1.12 1.21 1.35 1.53 1.81 2.44 4.05 10.22
3 0.96 1.05 1.13 1.23 1.38 1.57 1.90 2.63 4.62 12.88
3.2 0.95 1.04 1.13 1.24 1.40 1.61 2.01 2.84 5.28 16.23
3.4 0.95 1.04 1.13 1.24 1.43 1.66 2.11 3.07 5.99 20.45
3.6 0.93 1.05 1.13 1.24 1.45 1.70 2.20 3.32 6.77 25.74
3.8 0.90 1.04 1.15 1.23 1.45 1.74 2.33 3.57 7.68 32.35
4 0.88 1.03 1.17 1.22 1.47 1.77 2.45 3.82 8.59 40.48
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TABLE 2
Moderate deviation ratios P(I∗

n ≥ x)/(1 − P(tb/2−1 ≥ x)) for the AR(1)–GARCH(1,1) process
(6.1) with x = 2,2.2, . . . ,4.0 and ρ = 0, . . . ,0.9

x ρ = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2 0.98 0.98 0.98 0.98 0.98 0.98 0.98 1.00 1.09 1.71
2.2 0.97 0.97 0.97 0.97 0.97 0.98 0.97 0.99 1.10 1.83
2.4 0.97 0.96 0.96 0.96 0.96 0.97 0.97 0.99 1.10 1.93
2.6 0.96 0.95 0.95 0.95 0.96 0.96 0.95 0.98 1.10 2.04
2.8 0.95 0.94 0.94 0.94 0.94 0.96 0.94 0.97 1.10 2.15
3 0.94 0.93 0.93 0.93 0.94 0.94 0.93 0.96 1.11 2.26
3.2 0.93 0.92 0.92 0.91 0.93 0.94 0.92 0.95 1.10 2.37
3.4 0.92 0.91 0.91 0.90 0.91 0.93 0.91 0.95 1.11 2.48
3.6 0.90 0.91 0.90 0.89 0.90 0.92 0.90 0.94 1.11 2.57
3.8 0.89 0.90 0.88 0.89 0.88 0.91 0.90 0.93 1.11 2.66
4 0.88 0.89 0.87 0.88 0.88 0.91 0.89 0.92 1.11 2.76

5 × 106 realizations of the AR(1)–GARCH(1,1) process (6.1). When ρ is small,
all the three normalized sums have comparable performance. As the dependence
becomes stronger, namely ρ is bigger, or x moves away from 0, the moderate de-
viation approximations for T †

n and W ∗
n become worse with the latter being slightly

better, while the interlacing normalized sum I ∗
n has a relatively consistent good

performance. The better finite-sample performance of the interlacing normalized
sum can be intuitively explained by the fact that, due to the dependence, for two
consecutive blocks, the second block does not add too much new information. This
is especially so when the dependence is strong. In practice, we suggest using I ∗

n .

TABLE 3
Moderate deviation ratios P(W∗

n ≥ x)/(1 − P(tb−1 ≥ x)) for the AR(1)–GARCH(1,1) process
(6.1) with x = 2,2.2, . . . ,4.0 and ρ = 0, . . . ,0.9

x ρ = 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2 0.99 0.99 0.99 1.00 1.02 1.06 1.16 1.39 1.99 3.86
2.2 0.98 0.98 0.98 0.99 1.02 1.06 1.18 1.45 2.19 4.71
2.4 0.97 0.97 0.97 0.98 1.01 1.06 1.20 1.51 2.42 5.78
2.6 0.95 0.96 0.96 0.97 1.00 1.06 1.21 1.57 2.67 7.12
2.8 0.94 0.95 0.95 0.96 1.00 1.05 1.22 1.62 2.94 8.79
3 0.93 0.94 0.94 0.95 0.98 1.04 1.23 1.68 3.25 10.88
3.2 0.93 0.92 0.92 0.94 0.97 1.03 1.24 1.75 3.57 13.45
3.4 0.92 0.90 0.91 0.93 0.96 1.03 1.27 1.83 3.90 16.65
3.6 0.90 0.87 0.90 0.91 0.94 1.04 1.28 1.89 4.27 20.53
3.8 0.91 0.85 0.86 0.88 0.94 1.03 1.29 1.94 4.67 25.29
4 0.87 0.84 0.85 0.86 0.93 1.01 1.31 2.01 5.13 31.07
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7. Proofs. The main idea of the proofs of Theorems 4.1 and 4.3 is to use
m-dependence approximation. For β-mixing variables, we can apply Berbee’s [4]
theorem and convert them to independent variables. For GMC processes, we can
also use m-dependence approximation. Then we apply the moderate deviation of
[26] for independent random variables. The proof of Theorem 4.2 involves a much
more delicate argument, as it requires an interesting recursive use of a tail proba-
bility inequality of self-normalized sums of dependent random variables.

7.1. Proof of Theorem 4.1. Before we prove Theorem 4.1, we first collect
some preliminary lemmas.

LEMMA 7.1. Let ξi,1 ≤ i ≤ n be a sequence of random variables on the
same probability space and define β(i) = β(ξi, (ξi+1, . . . , ξn)). Then the proba-
bility space can be extended with random variables ξ̃i distributed as ξi such that
ξ̃i ,1 ≤ i ≤ n are independent and

P(ξi �= ξ̃i for some 1 ≤ i ≤ n) ≤ β(1) + · · · + β(n−1).

This is Lemma 2.1 of Berbee [4]. By Theorem 4.1 in Shao and Yu [40], we have
the following.

LEMMA 7.2. Under Assumptions (4.1) and (2.1), the following holds:

E|Sk,m|r ′ ≤ c0m
r ′/2cr ′

1 ,(7.1)

for any 2 ≤ r ′ < r , m ≥ 1, k ≥ 0, where c0 is a constant depending only on
r ′, r, a1, a2 and τ .

PROOF OF THEOREM 4.1. Clearly, (7.1) and (4.2) yield∑k
j=1 E|Yj,1|2+δ

(
∑k

j=1 EY 2
j,1)

(2+δ)/2
≤ 2c0n

−(1−α1)δ/2(c1/c2)
2+δ.(7.2)

Let Ỹj ,1 ≤ j ≤ k be independent random variables such that Ỹj and Yj,1 have
the same distribution for each 1 ≤ j ≤ k. Set

W̃n =
∑k

j=1 Ỹj

(
∑k

j=1 Ỹ 2
j )1/2

.

By Lemma 7.1 and k ≤ n/(2m2), we have∣∣P(Wn ≥ x) − P(W̃n ≥ x)
∣∣ ≤ kβ(m2) ≤ a1 exp

(−0.5a2n
τα2

)
.(7.3)

We next apply Theorem 1.1 to W̃n. It follows from (1.4) that

P(W̃n ≥ x)

1 − �(x)
= exp

(
O(1)(1 + x)2+δn−(1−α1)δ/2)

(7.4)
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for all 0 ≤ x ≤ O(1)n(1−α1)/2.
This and (7.3) imply that there exist finite constants c0,A depending only on

c1/c2, a1, a2, r and τ such that

P(Wn ≥ x)

1 − �(x)
= exp

(
O(1)(1 + x)2+δn−(1−α1)δ/2)

(7.5)

+ O(1)
exp(−0.5a2n

τα2)

1 − �(x)

uniformly in 0 ≤ x ≤ c0n
(1−α1)/2, and |O(1)| ≤ A. This proves (4.12).

It also follows from (1.2) that

P(W̃n ≥ x)

1 − �(x)
= 1 + O(1)(1 + x)2+δn−(1−α1)δ/2(7.6)

for all 0 ≤ x ≤ O(1)n(1−α1)δ/(2(2+δ)). This and (7.3) imply (4.13). �

7.2. Proof of Theorem 4.3. For the proof of Theorem 4.3, we need to use the
following lemma.

LEMMA 7.3. Let ζi,1 ≤ i ≤ n be independent nonnegative random variables
with Eζ

p
i < ∞, where 1 < p ≤ 2. Then for any 0 < y <

∑n
i=1 Eζi

P

(
n∑

i=1

ζi ≤
n∑

i=1

Eζi − y

)

(7.7)

≤ exp
(
−(p − 1)

4

yp/(p−1)

(
∑n

i=1 Eζ
p
i )1/(p−1)

)
.

PROOF. When p = 2, (7.7) is Theorem 2.19 in [21] with a constant 1/2. For
1 < p ≤ 2, observing that

e−x ≤ 1 − x + xp for x ≥ 0,

we have for t > 0

P

(
n∑

i=1

ζi ≤
n∑

i=1

Eζi − y

)

≤ e−ty+t
∑n

i=1 EζiEe−t
∑n

i=1 ζi

≤ e−ty+t
∑n

i=1 Eζi

n∏
i=1

(
1 − tEζi + tpEζ

p
i

)

≤ exp

(
−ty + tp

n∑
i=1

Eζ
p
i

)
.
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Letting

t =
(

yp

p
∑n

i=1 Eζ
p
i

)1/(p−1)

yields

P

(
n∑

i=1

ζi ≤
n∑

i=1

Eζi − y

)

≤ exp
(
− (p − 1)yp/(p−1)

pp/(p−1)(
∑n

i=1 Eζ
p
i )1/(p−1)

)

≤ exp
(
− (p − 1)yp/(p−1)

4(
∑n

i=1 Eζ
p
i )1/(p−1)

)
,

as desired. �

PROOF OF THEOREM 4.3. Recall (4.10) for Yj , 1 ≤ j ≤ k. Let

Ỹj = E(Yj |εl,2mj − 3m + 1 ≤ l ≤ 2mj − m),

and

Ĩn =
∑k

j=1 Ỹj

Ṽ
where Ṽ 2 =

k∑
j=1

Ỹ 2
j .

Note that Ỹj are independent, and by (2.5),

‖Yj − Ỹj‖r ≤ ma1e
−a2m

τ

.(7.8)

Under (2.5), since Xl = ∑∞
i=0 Pl−iXl , where Pk· = E(·|Fk)−E(·|Fk−1), we have

by Burkholder’s martingale inequality (cf. [8]) that

‖Yj‖r =
∥∥∥∥∥

∞∑
i=0

∑
l∈Hj

Pl−iXl

∥∥∥∥∥
r

≤
∞∑
i=0

∥∥∥∥ ∑
l∈Hj

Pl−iXl

∥∥∥∥
r

≤
∞∑
i=0

(r − 1)1/2
( ∑

l∈Hj

‖Pl−iXl‖2
r

)1/2

≤ (r − 1)1/2
∞∑
i=0

(
mθ2

r (i)
)1/2 = c3m

1/2,
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where c3 = (r − 1)1/2 ∑∞
i=0 θr(i) < ∞. By condition (4.2) and (7.8), there exists a

constant c5 > 0 such that EṼ 2 ≥ c5n. By Lemma 7.3 with p = r/2, ζj = Ỹ 2
j and

y = c5n/2, we have by elementary calculations that

P
(
Ṽ 2 ≥ c5n/2

) ≥ 1 − exp(−c6k) ≥ 1 − exp
(−c′

6n
1−α)

(7.9)

for some constants c6, c
′
6 > 0. Also (7.8) and m � nα imply

P
(|Yj − Ỹj | ≥ n−9) ≤ n9rmrar

1e
−ra2m

τ = O(1) exp
(−ra2n

τα/2
)
.

Hence, there exist c7, c8 > 0 such that

P
(|In − Ĩn| ≥ n−2, Ṽ 2 ≥ c5n

) ≤ c7n
c8e−ra2m

τ

(7.10)
= O(1) exp

(−ra2n
τα/2

)
.

Observe that

max
0≤x≤n

∣∣∣∣ 1 − �(x)

1 − �(x ± n−2)
− 1

∣∣∣∣ = O
(
n−1)

.(7.11)

For 0 ≤ x ≤ c0n
min((1−α),τα)/2 with a small constant c0 > 0, it is easy to see that

exp
(−c′

6n
1−α) + exp

(−ra2n
τα/2

) = o(1)
(
1 − �(x)

)
exp

(
O(1)

(1 + x)r

n(1−α)δ/2

)
.

Applying Theorem 1.1 to Ĩn, we have, for some constant c4 > 0, that

P(Ĩn ≥ x)

1 − �(x)
= exp

(
O(1)

(1 + x)r

kr/2−1

)
(7.12)

for 0 ≤ x ≤ c4k
1/2. Hence, (4.17) follows from (7.12), (7.9), (7.10) and (7.11) with

elementary calculations. (4.18) follows similarly. �

PROOF OF COROLLARY 4.3. Using the arguments in the proof of Theo-
rem 4.2 and the Lr moment inequalities in the proof of Theorem 4.3, Corollary 4.3
readily follows. Details are omitted. �

7.3. Proof of Theorem 5.1. Assume without loss of generality that μl = 0 for
all l ≤ p. As in the proof of Theorem 4.3 let

Ỹil = E(Yil|εh,2mi − 3m + 1 ≤ h ≤ 2mi − m), 1 ≤ l ≤ p.

Let X̃il = Ỹil/
√

m, Ȳ �
l = k−1 ∑k

j=1 Ỹj l , X̄�
l = k−1 ∑k

j=1 X̃jl and

T̃nl =
∑k

j=1 Ỹj l√∑k
j=1(Ỹj l − Ȳ �

l )2
=

∑k
j=1 X̃jl√∑k

j=1(X̃jl − X̄�
l )2

.(7.13)

By Theorem 2 in [44], there exists a constant cr , only depending on r , such that
‖X̃il‖r ≤ cr

∑∞
h=0 θr(h). Then by Assumption (G), ‖X̃il‖r ≤ cr

∑∞
h=0 a1e

−a2h =
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cra1/(1−e−a2). Let ω̃j l = E(X̃ij X̃il), R̃j l = ω̃j l/(ω̃jj ω̃ll)
1/2 and R̃ = (R̃j l)j,l≤p .

By Assumption (G) and (7.8), ‖Y1l − Ỹ1l‖ ≤ ma1e
−a2m. Here the L2 norm ‖ · ‖ =

‖ · ‖2. Again by Assumption (G),∣∣E(Y1lY1j ) − mωlj

∣∣ ≤ ∑
i∈Z

∣∣iE(Z0lZij )
∣∣

= 2
∞∑
i=1

i
∣∣E(

Z0lE(Zij |F0)
)∣∣

≤ 2
∞∑
i=1

i‖Z0l‖
∥∥E(Zij |F0)

∥∥(7.14)

≤ 2
∞∑
i=1

i‖Z0l‖�(j)
2 (i)

≤ 2
∞∑
i=1

i‖Z0l‖a1e
−a2i ≤ C1.

Note that E(X̃1lX̃1j ) = E(Ỹ1l Ỹ1j )/m. Then we have uniformly over j, l ≤ p that
|ω̃j l − ωjl| = O(m−1), which implies that maxj,k≤p |R̃j l − Rjl| = O(m−1) in
view of Assumption (R)(i). Let γ = χ/2. By (5.8), since m � n1/4, we have
m−1 = o((logp)−1−γ ). Hence, Assumption (R) is also valid with Rjk therein re-
placed by R̃j l . For any constant u > 0, we have by (5.7) that #{j ≤ p : |Rjl| ≥
u for some j �= l} = o(p). Consequently, by Theorem 3.1 in [31], we have

max
l≤p

T̃ 2
nl − 2 logp + log logp ⇒ G.(7.15)

We remark that the original form of Theorem 3.1 in [31] is for two-sample mean
comparisons. However, a careful check of its proof indicates that the argument
works for the one sample case as well. Let

σ̃ 2
l = k−1

k∑
j=1

(
X̃jl − X̄�

l

)2
.

By the m-dependence approximation arguments in (7.8)–(7.10), we obtain

P
(|Tnl − T̃nl| ≥ n−2, σ̃ 2

l ≥ c1,holds for all l ≤ p
) = O

(
pnc2e−ra2m

)
for some constants c1, c2 > 0. Note that, by (5.8) and m � n1/4, we have
pnc2e−ra2m → 0, which by (7.15) implies (5.9) via elementary manipulations.

Acknowledgments. We are grateful to the Editor, an Associate Editor and two
anonymous referees for their helpful comments and suggestions.



MODERATE DEVIATIONS FOR STUDENTIZED STATISTICS 1615

SUPPLEMENTARY MATERIAL

Supplement to “Self-normalized Cramér type moderate deviations under
dependence” (DOI: 10.1214/15-AOS1429SUPP; .pdf). The supplement gives the
detailed proof for Theorem 4.2.
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