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ON MARGINAL SLICED INVERSE REGRESSION FOR
ULTRAHIGH DIMENSIONAL MODEL-FREE FEATURE SELECTION
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Wisconsin-Madison

Model-free variable selection has been implemented under the suffi-
cient dimension reduction framework since the seminal paper of Cook [Ann.
Statist. 32 (2004) 1062–1092]. In this paper, we extend the marginal coor-
dinate test for sliced inverse regression (SIR) in Cook (2004) and propose a
novel marginal SIR utility for the purpose of ultrahigh dimensional feature
selection. Two distinct procedures, Dantzig selector and sparse precision ma-
trix estimation, are incorporated to get two versions of sample level marginal
SIR utilities. Both procedures lead to model-free variable selection consis-
tency with predictor dimensionality p diverging at an exponential rate of the
sample size n. As a special case of marginal SIR, we ignore the correlation
among the predictors and propose marginal independence SIR. Marginal in-
dependence SIR is closely related to many existing independence screening
procedures in the literature, and achieves model-free screening consistency in
the ultrahigh dimensional setting. The finite sample performances of the pro-
posed procedures are studied through synthetic examples and an application
to the small round blue cell tumors data.

1. Introduction. For regression problems between a response Y ∈ R and a p-
dimensional predictor x = (X1,X2, . . . ,Xp)T ∈ Rp , variable or feature selection
aims to identify the subset of important predictors and to enhance the model in-
terpretability with parsimonious representation. Research on variable selection in
linear models and generalized linear models has gained considerable momentum in
the past two decades, which include key developments such as LASSO [Tibshirani
(1996)], SCAD [Fan and Li (2001)], group LASSO [Yuan and Lin (2006)], adap-
tive LASSO [Zou (2006)], Dantzig selector [Candes and Tao (2007)], etc. In the
presence of ultrahigh dimensional predictor space, where p diverges with an ex-
ponential rate of the sample size n, Fan and Lv (2008) first proposed the sure
independence screening (SIS) procedure for feature screening in linear models.
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By ranking the marginal utility calculated as the Pearson correlation between the
response and each individual predictor, the SIS is screening consistent in the sense
that, with probability tending to one as n → ∞, the top-ranked predictors retained
by SIS include all the important predictors. Fan, Samworth and Wu (2009) and
Fan and Song (2010) further extended SIS to generalized linear models by ranking
the features according to the marginal likelihood-based utilities. Screening consis-
tency, however, is weaker than selection consistency which further requires that,
with probability tending to one, the set of selected predictors does not contain any
irrelevant predictor.

Variable selection in the model-free setting aims to identify all the important
predictors without knowledge about the link function between the response Y and
the predictor x. Many model-free variable selection methods in the literature are
developed under the framework of sufficient dimension reduction [Cook (1998),
Li (1991)], as sufficient dimension reduction searches linear combinations of x
such that Y is independent of x given these linear combinations, without requiring
estimation of the unknown link function between Y and x. A series of sparse suffi-
cient dimension reduction methods are motivated by combining penalized regres-
sion and sufficient dimension reduction, such as Ni, Cook and Tsai (2005), Li and
Nachtsheim (2006), Li (2007), Li and Yin (2008), Zhou and He (2008), Bondell
and Li (2009), Chen, Zou and Cook (2010) and Yu et al. (2013). By noticing
that Pearson correlation measures dependence in linear models, model-free fea-
ture screening methods in the ultrahigh dimensional setting can be designed from
more general dependence measures. For example, distance correlation [Székely,
Rizzo and Bakirov (2007)], Kendall’s tau and maximal correlation have been used
for feature screening in Li, Zhong and Zhu (2012), Li et al. (2012) and Huang and
Zhu (2014), respectively. Model-free feature screening in discriminant analysis has
been studied in Mai and Zou (2013), Cui, Li and Zhong (2015) and Pan, Wang and
Li (2015). More recently, Mai and Zou (2015) proposed the fused Kolmogorov
filter approach, which connects feature screening for continuous response and dis-
crete response.

Although there is a vast literature of applying sufficient dimension reduction for
model-free variable selection, result on developing selection consistency for ultra-
high dimensional setting is scant. While model-free variable selection consistency
has been established in the diverging p and p < n setting [Jiang and Liu (2014),
Wu and Li (2011)] and screening consistency has been proved in the ultrahigh
dimensional setting [Li, Zhong and Zhu (2012), Mai and Zou (2015), Zhu et al.
(2011); Yu, Dong and Zhu (2016)], there is no selection consistency result in the ul-
trahigh dimensional setting. One has to apply two methods in two stages to achieve
selection consistency, as suggested by Jiang and Liu (2014). In the first stage, a
consistent screening is applied in the ultrahigh dimensional setting to reduce the
dimension to something less than n, and then a selection consistent method needs
to be used in the second stage. Furthermore, due to the interplay between the re-
gression coefficients and the correlation among the predictors, the independence
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screening method may not consistently rank the utility of active predictors ahead of
the utility of the inactive predictors even in linear models. Although independence
screening is easy to implement, correlation among predictors may cause problems.

To fill the aforementioned gaps, we propose an approach called marginal sliced
inverse regression (SIR) for model-free variable selection. Our first two proce-
dures are based on the same population level marginal SIR utility, but use Dantzig
selector and sparse precision matrix estimation as different sample level estima-
tion schemes. Unlike the popular independence screening procedures in the liter-
ature, where the construction of the marginal utility assumes that the predictors
are independent, our two marginal SIR procedures take into account the correla-
tion among the predictors. By ranking and thresholding the corresponding sample
level marginal SIR utilities, both procedures achieve model-free variable selection
consistency in the ultrahigh dimensional setting. Marginal SIR with Dantzig se-
lector exploits the intrinsic sparsity structure in the marginal utility, and requires
the minimum assumptions to achieve the desirable selection consistency property.
Marginal SIR with sparse precision matrix estimation uses a plug-in sample level
utility, and incorporates the correlation among the predictors for variable selec-
tion by plugging in the sparse precision matrix estimator. As a special case of our
marginal SIR, we also describe a marginal independence SIR, which is obtained by
using a diagonal matrix as a working covariance matrix for x. The population level
marginal independence SIR utility can be viewed as a generalized Pearson corre-
lation. As a result, our proposal of marginal independence SIR is closely related to
the popular independence screening procedures based on Pearson correlation and
distance correlation. Last but not least, to determine the threshold value for variable
selection in application, we propose to minimize the classification error through
cross-validation. The classification can be applied directly with the discrete re-
sponse. For continuous response, SIR naturally leads to the discretized response
through slicing, which can be used for our purpose of classification. We demon-
strate through extensive numerical studies that the data-driven threshold works
well across a wide range of models.

The rest of the paper is organized as follows. The principle of marginal SIR is
discussed in Section 2, where we propose the population level marginal SIR util-
ity. Two sample level utilities for marginal SIR are developed in Sections 3 and 4,
respectively, where we use Dantzig selector and sparse precision matrix estima-
tion to facilitate the sample utility estimation. Both procedures achieve model-free
selection consistency with p diverging at the exponential rate of n. Section 5 stud-
ies marginal independence SIR for feature screening and its model-free screening
consistency property. The connections and the differences between our proposals
with some popular independence screening procedures are also discussed. Sec-
tion 6 considers the threshold value for variable selection or feature screening.
Finite sample performances of the proposed methods are studied in Section 7 and
we conclude the paper with some discussions in Section 8. The proofs for the main
theorems are relegated to the Appendix.
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2. The principle of the marginal SIR. Throughout the paper, we denote
‖A‖∞ = max1≤i≤p,1≤j≤q |aij | and ‖A‖1 = max1≤j≤q

∑p
i=1 |aij | for any matrix

A = (aij ) ∈ Rp×q . We assume that � = Var(x) is finite. Without loss of general-
ity, we assume that E(Xk) = 0 and Var(Xk) = 1 for k = 1, . . . , p. For predictor
x = (X1,X2, . . . ,Xp)T, denote I = {1,2, . . . , p} as the full index set. Let A be
the active index set which corresponds to all relevant predictors for the response Y .
Then Ac, the complement of A in I , is the index set that corresponds to all irrel-
evant predictors. Denote xA = {Xk : k ∈ A} as the vector containing all the active
predictors, and we have Y ⊥⊥ x|xA, that is, Y is independent of x given xA. And
the existence and the uniqueness of the active index set A is further guaranteed by
Yin and Hilafu (2015).

We first briefly review the concept of sufficient dimension reduction and show
its connection with model-free variable selection. The primary goal of sufficient
dimension reduction is to make inference about the central space between Y and x.
The central space is a subspace of Rp denoted by SY |x. Let βi ∈ Rp , i = 1, . . . , d ,
be the basis of SY |x. Then the column space of β i ’s satisfies Span(β1, . . . ,βd) =
SY |x. The central space is defined such that Y ⊥⊥ x|(βT

1 x, . . . ,βT
d x), that is, Y is

independent of x given βT
1 x, . . . , βT

d x as d linear combinations of x. Please refer to
Cook (1998) for more discussions about the central space, and sufficient dimension
reduction in general. For j = 1, . . . , p, let βi,j be the j th element of β i . The two
types of conditional independence Y ⊥⊥ x|xA and Y ⊥⊥ x|(βT

1 x, . . . ,βT
d x) imply

that
∑d

i=1 |βi,j | > 0 for j ∈ A and
∑d

i=1 |βi,j | = 0 for j ∈ Ac. In other words, if j

belongs to the active set A, then Y must depend on Xj through at least one of the
d linear combinations. If j belongs to the inactive set Ac, then none of the d linear
combinations involve Xj .

The connection above implies that we may attempt to recover the active set
A through estimation of the central space SY |x. SIR [Li (1991)] is one of the
most popular methods in the sufficient dimension reduction literature. Suppose
{J1, . . . , JH } is a measurable partition of the sample space of Y . The main idea
of SIR is that the intraslice mean E(x|Y ∈ J�) can be used to recover the central
space through the relationship that �−1E(x|Y ∈ J�) ∈ SY |x, � = 1, . . . ,H . SIR re-
lies on the assumption that E(x|βT

1 x, . . . , βT
d x) is linear in βT

1 x, . . . , βT
d x, which is

referred to as the linear conditional mean (LCM) assumption. The LCM assump-
tion is satisfied when x has an elliptically contoured distribution. Diaconis and
Freedman (1984) and Hall and Li (1993) showed that the LCM assumption holds
to a reasonable approximation when p increases with d . Following Cook (2004),
we further assume the coverage condition:

(C1) Span{�−1E(x|Y ∈ J�), � = 1, . . . ,H } =SY |x.

The coverage condition (C1) holds for a wide range of models. We will assume
(C1) to facilitate the theoretical derivations of our model-free variable selection
procedures.
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Let p� = E{I (Y ∈ J�)} denote the probability of Y in the �th slice, where I (·) is
the indicator function. Information across different slices of Y can be summarized
as � = ∑H

�=1 p�E(x|Y ∈ J�)E
T(x|Y ∈ J�). Denote the kernel matrix for SIR as

M = �−1��−1. Assumption (C1) then implies that the column space of M sat-
isfies Span(M) = SY |x. Since M contains all the regression information between
Y and x, it is natural for us to consider the diagonal element of M as the marginal
utility for the corresponding predictor. Specifically, let ek be the standard unit vec-
tor in Rp with 1 being the kth element and 0 otherwise. We consider the following
utility for Xk :

mk = eT
k �−1��−1ek.(2.1)

We will refer to mk as the population level marginal SIR utility. The key property
of mk is summarized in the next result.

Proposition 2.1. Assume condition (C1) holds. Then mk > 0 if k ∈ A and
mk = 0 if k ∈ Ac.

PROOF. Let β1, . . . ,βd be the basis of SY |x. Under condition (C1), we have
Span(β1, . . . ,βd) = Span(M). Also note that M is positive definite. Thus, M can
be written as M = ∑d

i=1 δiβiβ
T
i for some positive constants δi . Let βi,j be the j th

element of β i , j = 1, . . . , p. It follows from (2.1) that mk = ∑d
i=1 δiβ

2
i,k . If k ∈A,

then βi,k �= 0 for at least one of i = 1, . . . , d , and mk > 0 as a result. Similarly, if
k ∈ Ac, then βi,k = 0 for all i = 1, . . . , d , and thus mk = 0. �

Proposition 2.1 implies that we may use the sample estimator of mk to separate
the active predictors in A from the irrelevant predictors in Ac.

For subscript k ∈ I , denote x−k ∈ Rp−1 as (X1, . . . ,Xk−1,Xk+1, . . . ,Xp)T.
From the definition of the active set A, it is easy to see that Y ⊥⊥ x|x−k if and
only if k ∈ Ac. Proposition 2.1 thus implies that mk = 0 if and only if Y ⊥⊥ x|x−k .
Thus, we can view mk as the conditional dependence measure between Y and
x given x−k . Unlike existing marginal screening methods that measure the de-
pendence between Y and Xk without considering x−k , our marginal utility mk

naturally considers the potential correlation among the predictors. Furthermore,
consider hypotheses

H0 : Y ⊥⊥ x|x−k versus Ha : Y is not independent of x given x−k.(2.2)

Then the sample estimator of mk in (2.1) can be used to construct a test statistic for
hypotheses (2.2), which is known as the marginal coordinate test [Cook (2004)] in
the sufficient dimension reduction literature.
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3. Marginal SIR with the Dantzig selector. To apply Dantzig selector for
the estimation of the marginal SIR utility mk in (2.1), we introduce some notation
first. Recall that p� = E{I (Y ∈ J�)}, � = 1, . . . ,H . Let u� = E{xI (Y ∈ J�)}. Then
� = ∑H

�=1 p�E(x|Y ∈ J�)E
T(x|Y ∈ J�) can be written as � = ∑H

�=1 u�uT
� /p�.

Plugging � into (2.1), we obtain

mk = eT
k

(
H∑

�=1

α�α
T
�

/
p�

)
ek, α� = �−1u�.(3.1)

Under assumption (C1), α� = p��
−1E(x|Y ∈ J�) ∈ SY |x. Let β1, . . . ,βd be

the basis of SY |x and denote βi,j as the j th element of βi , j = 1, . . . , p. Then
α� ∈ SY |x can be written as a linear combination of the βi ’s. Since

∑d
i=1 |βi,j | = 0

for j ∈ Ac, it follows that the j th element of α� must be zero for j ∈ Ac. Due to
the condition at the outset that Y ⊥⊥ x|xA, we conclude that α� has at most a

nonzero elements, where a denotes the cardinality of A. In other words, α� is
intrinsically sparse under the coverage condition (C1). From expression (3.1), we
can thus estimate mk through finding the sparse estimators of α� = �−1u� for
� = 1, . . . ,H .

Given an i.i.d. sample {(Y (i),x(i)) : i = 1, . . . , n}, we consider the following
optimization problem for the estimation of α�:

min‖ϑ‖1 such that ‖�̂ϑ − û�‖∞ ≤ �n and ϑ ∈ Rp.(3.2)

Here, �̂ = ∑n
i=1 x(i)(x(i))T/n, û� = ∑n

i=1 x(i)I (Y (i) ∈ J�)/n, and �n will be
specified later. The solution of the constrained optimization problem (3.2) is de-
noted as α̂�. Note that (3.2) has exactly the same form as the original Dantzig se-
lector in Candes and Tao (2007). The only difference is that the original response
Y is now replaced by I (Y ∈ J�). Solving α� from (3.2), we avoid the direct esti-
mation of �−1 when n < p. Define Y� ∈ Rn with the ith element as I (Y (i) ∈ J�),
and define X ∈ Rn×p with the element in the ith row and j th column as X

(i)
j , the

j th element of x(i). Then we have �̂ = X TX /n, û� = X TY�, and the constraint in
(3.2) becomes ‖X TXϑ − X TY�‖∞ ≤ n�n. The primal–dual interior point algo-
rithm in Candes and Tao (2007) can be used to solve this constrained optimization
problem.

After plugging into (3.1) the sample estimators p̂� = ∑n
i=1 I (Y (i) ∈ J�)/n

and α̂�, the marginal utility mk is now estimated by

m̂k =
H∑

�=1

eT
k α̂�α̂

T
� ek/p̂�.(3.3)

For a given threshold γn, the active set A is estimated by including the predictors
such that m̂k exceeds γn, or Â = {k ∈ I : m̂k ≥ γn}. The following conditions
are needed for the theoretical development about the selection procedure based
on m̂k :
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(C2) There exist 0 < ς < 1/4 and 0 < b < ∞ such that E{exp(tX2
k)} ≤ b for all

|t | ≤ ς , k = 1, . . . , p. In addition, there exist positive constants λmin and λmax such
that 0 < λmin ≤ λmin(�) ≤ λmax(�) ≤ λmax < ∞, where λmin(�) and λmax(�) are
the smallest and largest eigenvalues of �, respectively.

(C3) There exists 0 < f < ∞ such that ‖�−1‖1 ≤ f .
(C4) There exists 0 < ξ < 1−2φ such that f 2a2 logp = O(nξ ), where a is the

cardinality of A and φ is specified in condition (C5).
(C5) There exist 0 < c < ∞ and φ ≤ 1/2 such that mink∈A mk > 2cn−φ .

Condition (C2) requires that x satisfy the subexponential tail probability uni-
formly in p. This is a commonly assumed condition in the high dimensional infer-
ence literature. See, for example, Wang (2009), Cai and Liu (2011), Cai, Liu and
Luo (2011) and Li, Zhong and Zhu (2012). Condition (C3) is commonly used for
sparse precision matrix estimation; see Cai, Liu and Luo (2011). Condition (C4)
allows the predictor dimension p to diverge at the exponential rate of n. And con-
dition (C3) and condition (C4) together indicate that we also allow the �1 norm of
the precision matrix also diverge to infinity in a certain manner as n and p go to
infinity. Condition (C5) is naturally motivated from Proposition 2.1, and requires
that the marginal utility mk for k ∈ A cannot be too weak. Conditions similar to
(C5) have been used in Fan and Lv (2008), Li, Zhong and Zhu (2012) and Mai and
Zou (2015).

Theorem 3.1. Let �n = π0a(logp/n)1/2, where π0 is defined in (A.28) in the
Appendix.

(a) Under conditions (C1), (C2), (C3) and (C4),

Pr
{

max
1≤k≤p

|m̂k − mk| ≥ π1f a(logp/n)1/2
}

≤ 4p−τ−2 + 8p−τ−1 + 24p−τ ,

where τ > 0 and π1 is defined in (A.38) in the Appendix.
(b) If, in addition, condition (C5) also holds, then with γn = cn−φ ,

Pr(A = Â) ≥ 1 − (
8p−τ−2 + 16p−τ−1 + 48p−τ )

.

Theorem 3.1 confirms that the marginal SIR with the Dantzig selector achieves
the variable selection consistency in the ultrahigh dimensional setting. By exploit-
ing the specific form of mk in (3.1), our proposal naturally connects the marginal
coordinate test in the sufficient dimension reduction literature and Dantzig selector
for the purpose of model-free variable selection in the ultrahigh dimensional set-
ting. This result broadens the scope of model-free variable selection via sufficient
dimension reduction methods, as the selection consistency of existing methods is
established when p is fixed [Bondell and Li (2009); Chen, Zou and Cook (2010)],
p = o(n1/4) [Wu and Li (2011)] and p = o(n1/2) [Jiang and Liu (2014)].

Moreover, we can follow Cai, Liu and Luo (2011) to further relax the
exponential-type tails condition (C2) imposed on the predictors x as the
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polynomial-type tails condition. When the predictors have polynomial-type tails,
the predictor dimension p can still be much larger than the sample size n. How-
ever, the predictor dimension p can only diverge at the polynomial rate of n rather
than the exponential rate of n.

4. Marginal SIR with sparse precision matrix estimation. As an alternative
to the Dantzig selector approach described in the previous section, the marginal
utility mk can also be estimated if an estimator of �−1 is available. By combining
a regularized estimator of �−1 and LASSO, Li and Shao (2015) demonstrate that
variable selection consistency can be achieved in a linear regression model with
ultrahigh dimension. We will extend their result to the model-free setting.

Given an i.i.d. sample {(Y (i),x(i)) : i = 1, . . . , n}, our idea is to plug in the es-
timators of �−1 and � to get the sample version of mk = eT

k �−1��−1ek . Es-
timating the precision matrix � = �−1 in the high-dimensional setting is very
challenging. Under some sparsity assumptions, there are several proposals for es-
timating the sparse precision matrix. See, for example, Bickel and Levina (2008),
Friedman, Hastie and Tibshirani (2008), and Fan, Feng and Wu (2009). We adopt
the constrained �1 minimization approach in Cai, Liu and Luo (2011), which has
been shown to enjoy desirable theoretical properties. Denote � = (ωij )1≤i,j≤p .
Let �̂1 = (ω̂1

ij )1≤i,j≤p be the solution of the following optimization problem:

min‖�‖1, such that ‖�̂� − Ip‖∞ ≤ �n and � ∈ Rp×p.

Here, �̂ = ∑n
i=1 x(i)(x(i))T/n, and �n will be specified later. As �̂1 is generally

not symmetric, we get the final estimator �̂ = (ω̂ij )1≤i,j≤p by symmetrizing �̂1
as follows:

ω̂ij = ω̂ji = ω̂1
ij I

(
ω̂1

ij ≤ ω̂1
ji

) + ω̂1
jiI

(
ω̂1

ji ≤ ω̂1
ij

)
.

On the other hand, the sample version of � = ∑H
�=1 u�uT

� /p� is the classi-
cal moment estimator. Recall that p� = E{I (Y ∈ J�)} and u� = E{xI (Y ∈ J�)},
� = 1, . . . ,H . The estimator of � thus becomes �̂ = ∑H

�=1 û�ûT
� /p̂�, where

p̂� = ∑n
i=1 I (Y (i) ∈ J�)/n and û� = ∑n

i=1 x(i)I (Y (i) ∈ J�)/n. After plugging in
�̂ and �̂, we get the sample level marginal utility as

m̂∗
k = eT

k �̂�̂�̂ek.(4.1)

We emphasize that m̂∗
k in (4.1) and m̂k in (3.3) are different estimators of the same

population utility mk in (2.1). Recall that I = {1,2, . . . , p} denotes the full index
set. For a given threshold γ ∗

n , the active set A is simply estimated by including the
predictors such that m̂∗

k exceeds γ ∗
n , or Â∗ = {k ∈ I : m̂∗

k ≥ γ ∗
n }.

The following conditions are needed before we state the properties of the selec-
tion procedure based on m̂:
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(C3*) There exist 0 < f < ∞ and 0 < s < ∞ such that ‖�‖1 ≤ f and
max1≤i≤p

∑p
j=1 |ωij |q ≤ s for 0 ≤ q < 1.

(C4*) There exists 0 < ξ < 1 − 2φ such that p > n and f 4a2 logp = O(nξ ),
where a is the cardinality of A and φ is specified in condition (C5).

Condition (C3*) is commonly made for sparse precision matrix estimation. See,
for example, Cai, Liu and Luo (2011). Compared with (C3), (C3*) requires the ad-
ditional condition that �−1 is s-sparse in the sense that there are at most s nonzero
elements in each row of �−1. Condition (C4*) also allows the predictor dimension
p to diverge at the exponential rate of n, although the rate is slower than that in
(C4) if f diverges to infinity.

Theorem 4.1. Let �n = 2ς−2(2+τ +ς−1e2b2)(logp/n)1/2 for some τ > 0.

(a) Under conditions (C1), (C2), (C3*) and (C4*),

Pr
{

max
1≤k≤p

∣∣m̂∗
k − mk

∣∣ ≥ π2f
2a(logp/n)1/2

}
≤ 24p−τ−1 + 8p−τ ,

where π2 is defined in (A.25) in the Appendix.
(b) If, in addition, condition (C5) holds, then with γ ∗

n = cn−φ ,

Pr
(
A = Â∗) ≥ 1 − (

48p−τ−1 + 16p−τ )
.

Theorem 4.1 ensures that the active set Â∗ recovered by m̂∗
k in (4.1) is consistent

for the true active set A. Under different sets of conditions, Theorems 3.1 and 4.1
imply that we can estimate the marginal SIR utility either through m̂k in (3.3)
or m̂∗

k in (4.1) and achieve model-free variable selection consistency. By making
use of the additional information that �−1 is sparse, we may have some gain in
using m̂∗

k at least in terms of finite sample performance. We will evaluate the finite
sample performances of both methods in Section 7.

In some applications �−1 is not sparse but � is. Using a sparse consistent es-
timator �̂ such as that in Bickel and Levina (2008), we can obtain a similar m̂∗

k

with �̂ in (4.1) replaced by �̂
−1

. Selection consistency of this m̂∗
k can be similarly

established.

5. Marginal independence SIR and its connections with others. In the
seminal sure independence screening paper by Fan and Lv (2008), it was demon-
strated that one can construct a marginal utility for feature screening without using
the correlation among the predictors. Note that the diagonal elements of � are
all ones by the assumption that Var(Xk) = 1, k = 1, . . . , p. If we ignore the cor-
relation among the predictors and replace � with Ip in the marginal SIR utility
mk = eT

k �−1��−1ek , we obtain a new marginal utility

mI
k =

H∑
�=1

p�E
2(Xk|Y ∈ J�),(5.1)
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which is the kth diagonal element of � = ∑H
�=1 p�E(x|Y ∈ J�)E

T(x|Y ∈ J�). We
refer to mI

k as the marginal independence SIR utility. Note that this utility ignores
the correlation so that it can only lead to screening consistency like the SIS in Fan
and Lv (2008). On the other hand, it is much simpler to estimate mI

k compared
with the estimation of mk or m∗

k .
Recall that the SIR kernel matrix is M = �−1��−1. Consider eigenvalue de-

composition Mνi = λiνi , i = 1, . . . , p. Here, νi ∈ Rp is the eigenvector corre-
sponding to ith eigenvalue λi , and the j th component of νi is denoted as νi,j ,
j = 1, . . . , p. Parallel to Proposition 2.1, we reveal the connection between mI

k
and the active set A in the following result.

Proposition 5.1. Assume condition (C1) holds, Cov(Xi,Xj ) has the same
sign for 1 ≤ i �= j ≤ p, and Var(Xi) = 1 for i = 1, . . . , p. Suppose there exists
� ∈ {1, . . . , d} such that ν�,j has the same sign for all j ∈ A, then mI

k > 0.

PROOF. Under the coverage assumption (C1), we have Span(M) = SY |x.
Since the basis of SY |x is d-dimensional, we know the rank of M is d . Thus
the eigenvalue decomposition of M is M = ∑d

i=1 λiνiν
T
i . From the definition of

M = �−1��−1, we have

� = �M� =
d∑

i=1

λi(�νi )(�νi )
T =

d∑
i=1

λiζ iζ
T
i ,

where ζ i = �νi for i = 1, . . . , d . Recall that mI
k is the kth diagonal element of �.

Thus, we have mI
k = ∑d

i=1 λiζ
2
i,k , where ζi,k is the kth component of ζ i . Note that

M is positive definite and λi > 0 for i = 1, . . . , d . It follows that mI
k > 0 as long

as ζi,k �= 0 for at least one of i = 1, . . . , d .
It remains to show ζ�,k �= 0. Note that ν� ∈ Span(M) = SY |x. By the definition

of the active set A and the central space SY |x, we have ν�,j = 0 for j ∈ Ac. Thus,
the kth component of ζ � = �ν� becomes

ζ�,k =
p∑

j=1

Cov(Xk,Xj )ν�,j = ∑
j∈A

Cov(Xk,Xj )ν�,j .

Since Cov(Xk,Xj )ν�,j has the same sign for all j ∈ A, we have ζ�,k �= 0 and
mI

k > 0 as a result. �

Consider an i.i.d. sample {(Y (i),x(i)) : i = 1, . . . , n}, and denote the kth el-
ement of x(i) as X

(i)
k . The estimator of � is �̂ = ∑H

�=1 û�ûT
� /p̂�, where p̂� =∑n

i=1 I (Y (i) ∈ J�)/n and û� = ∑n
i=1 x(i)I (Y (i) ∈ J�)/n. The sample estimator of

mI
k is the kth diagonal element of �̂, and can be calculated as

m̂I
k =

H∑
�=1

û2
�,k

/
p̂�,(5.2)
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where û�,k = ∑n
i=1 X

(i)
k I (Y (i) ∈ J�)/n is the kth element of û�. For a given thresh-

old γ I
n , the active set A is estimated by including the predictors such that m̂I

k ex-
ceeds γ I

n , or ÂI = {k ∈ I : m̂I
k ≥ γ I

n }.
To study the theoretical property of the marginal independent SIR based inde-

pendence screening method, we assume the following conditions:

(C6) There exist 0 < ς < 1/4 and 0 < b < ∞ such that E{exp(tX2
k)} ≤ b for

all |t | ≤ ς , k = 1, . . . , p.
(C7) There exists 0 < ξ < 1−2φ such that logp = O(nξ ), where φ is specified

in condition (C8).
(C8) There exist 0 < c < ∞ and φ ≤ 1/2 such that mink∈A mI

k > 2cn−φ .

Condition (C6) is the first part of (C2). The assumptions about � in the second
part of (C2) is no longer needed. Condition (C7) is parallel to (C4) and (C4*),
and similar conditions have been used in Fan and Lv (2008) and Li et al. (2012).
Condition (C8) is parallel to (C5), and we require that the marginal utility mI

k for
k ∈ A cannot be too small.

Theorem 5.1. (a) Under conditions (C6) and (C7),

Pr
{

max
1≤k≤p

∣∣m̂I
k − mI

k

∣∣ ≥ π3(logp/n)1/2
}

≤ 8p−τ−1,

where τ > 0 and π3 is defined in (A.9) in the Appendix.
(b) If, in addition, condition (C8) holds, then with γ I

n = cn−φ ,

Pr
(
A ⊆ ÂI ) ≥ 1 − 8ap−τ−2.

Theorem 5.1 indicates that we can achieve screening consistency with mI
k . Un-

der the assumption that Xk and Y are uniformly bounded, Li, Zhong and Zhu
(2012) established a similar sure screening property based on the marginal distance
correlation utility. Our condition (C6) is weaker, as it only assumes the exponential
tail of predictor x.

In the rest of this section, we reveal the connections of marginal independence
SIR with some existing popular screening procedures. Recall that existing inde-
pendence screening methods [Fan and Lv (2008); Huang and Zhu (2014), Li,
Zhong and Zhu (2012)] are developed based on dependence measures like Pearson
correlation, distance correlation, maximal correlation, etc. The next result states
that mI

k can be also viewed as a dependence measure between Ỹ and Xk , where
Ỹ = ∑H

�=1 �I (Y ∈ J�) is the discretized version of Y .

Proposition 5.2. Let T (Ỹ ) be a transformation of Ỹ and denote the Pear-
son correlation between T (Ỹ ) and Xk as Corr{T (Ỹ ),Xk}. Then mI

k in (5.1) sat-
isfies mI

k = maxT Corr2{T (Ỹ ),Xk}, where the maximization is over all mapping
T : R �→ R, and the transformation to get the maximum is T (Ỹ ) = E(Xk|Ỹ ) or
T (Ỹ ) = −E(Xk|Ỹ ).
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PROOF. Denote Lk(T ) = Corr2{T (Ỹ ),Xk}. Recall that E(Xk) = 0 and
Var(Xk) = 1. Thus, E(X2

k) = 1 and we have

Lk(T ) = E2{T (Ỹ )Xk}
E{T 2(Ỹ )}E(X2

k)
= E2{T (Ỹ )Xk}

E{T 2(Ỹ )} .

Plugging in E{T (Ỹ )Xk} = E{T (Ỹ )E(Xk|Ỹ )}, we get

Lk(T ) = E2{T (Ỹ )E(Xk|Ỹ )}
E{T 2(Ỹ )}E{E2(Xk|Ỹ )}E

{
E2(Xk|Ỹ )

}
.

Because E{E2(Xk|Ỹ )} = Var{E(Xk|Ỹ )} = mI
k , we have

Lk(T ) = Corr2{
T (Ỹ ),E(Xk|Ỹ )

}
mI

k ≤ mI
k,

where the maximum is achieved when Corr2{T (Ỹ ),E(Xk|Ỹ )} = 1. Thus, the cor-
responding transformation is T (Ỹ ) = ±E(Xk|Ỹ ). �

Denote the absolute Pearson correlation between Xk and Y as mP
k =

|Corr(Xk,Y )|. And denote the squared distance correlation [Székely, Rizzo and
Bakirov (2007)] between Xk and Y as mD

k = dCorr2(Xk,Y ). Feature screening
procedures based on mP

k and mD
k have been studied in Fan and Lv (2008) and Li,

Zhong and Zhu (2012), respectively. We reveal the connections between mI
k , mP

k

and mD
k in the next result.

Proposition 5.3. Suppose condition (C1) holds, β1, . . . ,βd is the basis of
SY |x, Var(Xk) = Var(Y ) = 1 and E(Xk) = 0.

(a) If x satisfies the LCM condition that E(x|βT
1 x, . . . , βT

d x) is linear in
βT

1 x, . . . , βT
d x and mP

k > 0, then mI
k > 0.

(b) If (x, Y ) is jointly normally distributed and mD
k > 0, then mI

k > 0.

PROOF. For part (a), because mI
k ≥ 0, all we need is to derive a contradic-

tion assuming that mI
k = 0 and mP

k > 0. From Proposition 2.1, we know mI
k = 0

implies k ∈ Ac under condition (C1). As a result, βi,k = 0 for i = 1, . . . , d ,
where βi,k be the kth component of β i . Under the LCM assumption, it can
be shown that �−1E(xY) ∈ SY |x. This implies the existence of constants ρi ,
i = 1, . . . , d , such that E(xY) = �(

∑d
i=1 ρiβi ). The kth element of E(xY) is thus

E(XkY ) = �(
∑d

i=1 ρiβi,k) = 0. Under the assumption that Var(Xk) = Var(Y ) = 1
and E(Xk) = 0, we have mP

k = |E(XkY )| = 0, which contradicts mP
k > 0. The

proof of part (a) is completed.
For part (b), since (Xk,Y ) is bivariate normal, Theorem 7 in Székely, Rizzo

and Bakirov (2007) implies that mD
k > 0 if and only if mP

k > 0. For normally
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distributed x, the LCM assumption is satisfied. From the conclusion of part (a), it
follows that mD

k > 0 guarantees mI
k > 0. �

Mai and Zou (2015) recently proposed the fused Kolmogorov filter for high
dimensional feature screening, which uses the following marginal utility:

mF
k = max

1≤� �=�≤H
sup
x∈R

∣∣F(Xk ≤ x|Y ∈ J�) − F(Xk ≤ x|Y ∈ J�)
∣∣,(5.3)

where F(Xk|Y) is the conditional distribution function of Xk given Y . By noting
that

∑H
�=1 p� = 1 and

∑H
�=1 p�E(Xk|Y ∈ J�) = 0, the marginal independence SIR

utility in (5.1) can be rewritten as

mI
k =

H∑
�=1

p�

[
H∑
�=1

p�
{
E(Xk|Y ∈ J�) − E(Xk|Y ∈ J�)

}]2

.

There is clear resemblance between mF
k and mI

k . While the former measures
the maximum difference between the conditional distribution functions F(Xk|Y)

across different slices, the latter measures the cumulative difference between the
conditional mean E(Xk|Y) across different slices.

The marginal independent SIR ignores the off-diagonal information contained
in �. As a result, the key condition (C8) for marginal independent SIR, which
implies that mI

k > 0 for k ∈ A, might be violated. This is a limitation shared by
all the marginal utilities that do not use the full information in �. The following
example illustrates the possible effect of the correlation among predictors on such
screening methods.

EXAMPLE 1. Suppose x = (X1,X2, . . . ,Xp)T ∼ N(0,�). Let Var(Xi) =
1, Cov(Xi,Xj ) = 0.6 for |i − j | = 1, and Cov(Xi,Xj ) = 0 for |i − j | > 1,
1 ≤ i, j ≤ p. Let Y = βTx + ε, where ε ∼ N(0,1) is independent of x, and
β = (1.2,−2,0, . . . ,0)T. The active set for the linear regression model is A =
{1,2}. Consider five utilities for X1: the marginal absolute Pearson correlation
mP

1 = |Corr(X1, Y )| from Fan and Lv (2008), the marginal squared distance cor-
relation utility mD

1 = dCorr2(X1, Y ) from Li, Zhong and Zhu (2012), the marginal
fused Kolmogorov filter utility mF

1 as defined in (5.3), the marginal indepen-
dence SIR utility mI

1 as defined in (5.1), and the marginal SIR utility m1 as de-
fined in (2.1). Because Cov(X1, Y ) = 0, we have mP

1 = 0. Because (X1, Y ) is
bivariate normal, the zero Pearson correlation guarantees that X1 and Y are in-
dependent. It follows that their squared distance correlation mD

1 = 0. Because
F(X1|Y ∈ J�) = F(X1) for any � = 1, . . . ,H , or the conditional distribution func-
tion F(X1|Y) is the same as the unconditional distribution function F(X1), we
have F(X1|Y ∈ J�) − F(X1|Y ∈ J�) = 0 and mF

1 = 0 as a result. It is easy to see
that mI

1 = 0 as well. The zero marginal utilities mP
1 = mD

1 = mF
1 = mI

1 = 0 imply
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that all four independence screening methods will fail to recover the active predic-
tor X1. The screening consistency result of Theorem 5.1 is no longer applicable
here, as condition (C8) is not satisfied. On the other hand, Proposition 2.1 guar-
antees that m1 > 0, and the procedures based on the marginal SIR estimators in
Sections 3 and 4 can still recover X1.

6. A data-driven threshold. Theorems 3.1, 4.1 and 5.1 show that properly
chosen threshold values γn, γ ∗

n and γ I
n can lead to desirable theoretical properties.

The theoretically optimal threshold values depend on the unknown signal strength
φ in conditions (C5) and (C8), and will be difficult to determine in practice. We
discuss how to choose data-driven threshold values in this section. Since the goal
of independence screening is to screen out most of the irrelevant predictors and
to retain all the active predictors, it is common practice to be more conservative
and retain a larger predictor set. For marginal independence SIR in Section 5,
we follow the convention in the independence screening literature, and retain the
predictors corresponding to the top [n/ logn] ranked m̂I

k values, where [n/ logn]
is the integer part of n/ logn.

For marginal SIR utilities m̂k in Section 3 and m̂∗
k in Section 4, the final ac-

tive sets are estimated by Â = {k ∈ I : m̂k ≥ γn} and Â∗ = {k ∈ I : m̂∗
k ≥ γ ∗

n }.
The goal of marginal SIR is variable selection, where we want to retain all the
active predictors and exclude all the inactive predictors simultaneously, and more
precise threshold values are needed as a result. We focus on the Dantzig selec-
tor based utility m̂k , and the threshold for the sparse precision matrix based util-
ity m̂∗

k can be decided in a similar fashion. Recall that Ỹ = ∑H
�=1 �I (Y ∈ J�) is

the discretized version of Y . Let {γ g
n = c

g
γ (logp/n)1/2, g = 1, . . . ,G} be a set

of threshold values to choose from. For example, we can take c
g
γ = 0.1g for

g = 1, . . . ,20 in practice. As SIR with discretized response Ỹ is closely related
to linear discriminant analysis [Cook and Yin (2001)], we recommend to perform
cross-validation with linear discriminant analysis to choose the optimal thresh-
old value. For t = 1, . . . , T , let D

(t)
1 and D

(t)
2 be the t th partition of the sample

{(Ỹ (i),x(i)) : i = 1, . . . , n}. Here Ỹ (i) is the discretized version of Y (i), and takes
on integer values from 1 to H . First use D

(t)
1 as the training data and D

(t)
2 as the

testing data. For fixed threshold value γ
g
n , g = 1, . . . ,G, the working active set

estimated from D
(t)
1 is denoted by Âg,(t)

1 = {k ∈ I : m̂k ≥ γ
g
n }. Perform multiclass

linear discriminant analysis based on predictors from the working active set Âg,(t)
1

in the training data D
(t)
1 , and we get a classification rule for Ỹ (i). Apply this clas-

sification rule to the testing data D
(t)
2 , and denote the testing classification error

as �
g,(t)
2 . Now switch the roles of D

(t)
1 and D

(t)
2 , where D

(t)
2 becomes the training

data and D
(t)
1 is the testing data. Repeat the above procedure and we get the testing

classification error �
g,(t)
1 . The cumulative classification error over T partitions is
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�g = ∑T
t=1(�

g,(t)
1 + �

g,(t)
2 ). The optimal threshold value γ

g
n is then determined

by minimizing �g over g = 1, . . . ,G.

7. Numerical studies. In this section, the finite sample performances of the
proposed methods are evaluated in simulation studies as well as a real data exam-
ple.

7.1. Synthetic examples. We generate Y from the following four models:

I : Y = (1.2X1 − 2X2 − 2Xp−1 + 1.2Xp)3 + ε,

II : Y = 1.2X1 − 1.2X2 + 0.5Xp + exp(2Xp−1 − 1.5Xp)ε,

III : Y = exp(X1 + X2 − 2Xp−1) sgn(Xp) + ε,

IV : Y = X3
1 − 0.5X3

2 + 3 sin(Xp−1) − 3 sin(0.8Xp) + ε,

where x = (X1, . . . ,Xp)T and ε ∼ N(0,1) is independent of x. We consider four
ways to generate x. In the first three cases, x is multivariate normal with mean 0
and covariance �. Denote σij as the element in the ith row and j th column of �.
In case (1), � = Ip . In case (2), σij = 0.6|i−j | for 1 ≤ i, j ≤ p. For this case,
� has a banded structure, and the values of the entries of � decay as they move
away from the diagonal. In case (3), σij = 0.6 for 1 ≤ i �= j ≤ p and σii = 1 for
i = 1, . . . , p. This case serves as a dense � example. We consider discrete x in
case (4). Let W ∼ Geometric(0.8) with mean E(W) = 1.25. Then X1, . . . ,Xp are
i.i.d. with W − E(W).

The performances of five model-free feature screening and selection meth-
ods are compared across different model configurations. Our proposals are the
marginal independence SIR (I-MSIR), the marginal SIR with sparse precision
matrix estimation (SP-MSIR) and the marginal SIR with Dantzig selector (DS-
MSIR). We also include two benchmark methods in the model-free feature screen-
ing literature: the distance correlation based sure independence screening (DC-
SIS) in Li, Zhong and Zhu (2012), and the fused Kolmogorov filter (FKF) in Mai
and Zou (2015). For DC-SIS, FKF and I-MSIR, we retain the predictors with the
top [n/ logn] ranked marginal utilities, which are the sample estimators of mD

k ,
mF

k and mI
k , respectively. For SP-MSIR and DS-MSIR, we use the data-driven

method in Section 6 to determine the threshold values γn and γ ∗
n .

We consider sample size n = 300 and p = 1000. The active predictors in all
four models are X1, X2, X999 and X1000. Based on 100 repetitions, we report
the frequencies of each active predictor being selected as f1, f2, f999 and f1000.
A frequency close to one is desirable, as it means that the corresponding active
predictor is selected with high frequency. According to the marginal utilities, the
average ranks of each active predictor are reported as r1, r2, r999 and r1000. A small
average rank is desirable, as this means that the corresponding active predictor
is highly ranked among all predictors. The average selected model size and the
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TABLE 1
Results for normal x in case (1). Based on 100 repetitions, the frequencies of active predictors being

selected, the average ranks of active predictors, the average selected model size, and the average
oracle model size are reported

Model Method f1 f2 f999 f1000 r1 r2 r999 r1000 SMS OMS

I DC-SIS 1.00 1.00 1.00 1.00 3.55 1.48 1.54 3.50 52.0 4.07
FKF 0.99 1.00 1.00 1.00 4.51 1.48 1.52 3.70 52.0 5.19

I-MSIR 1.00 1.00 1.00 1.00 3.71 1.51 1.49 3.52 52.0 4.23
SP-MSIR 0.99 1.00 1.00 1.00 3.62 1.50 1.50 3.57 4.31 4.19
DS-MSIR 1.00 1.00 1.00 1.00 3.51 1.47 1.53 3.57 4.51 4.06

II DC-SIS 0.81 0.79 1.00 1.00 48.27 46.94 1.09 2.62 52.0 70.98
FKF 0.99 1.00 1.00 1.00 2.00 1.83 2.66 3.73 52.0 4.20

I-MSIR 1.00 1.00 1.00 1.00 2.54 2.38 1.74 3.44 52.0 4.08
SP-MSIR 1.00 1.00 1.00 0.99 2.62 2.40 1.68 3.55 7.92 4.23
DS-MSIR 1.00 1.00 1.00 1.00 2.81 2.42 1.91 4.26 9.75 5.27

III DC-SIS 0.79 0.69 1.00 0.93 39.88 62.52 1.01 22.56 52.0 93.02
FKF 0.96 0.98 1.00 1.00 9.73 7.66 2.00 1.00 52.0 13.50

I-MSIR 1.00 1.00 1.00 1.00 4.35 4.69 1.05 1.95 52.0 5.99
SP-MSIR 0.98 0.98 1.00 1.00 4.11 4.60 1.06 1.94 6.32 5.64
DS-MSIR 0.96 0.93 1.00 1.00 4.58 5.66 1.19 1.81 8.97 7.04

IV DC-SIS 1.00 1.00 1.00 1.00 1.89 4.19 1.59 2.53 52.0 4.14
FKF 1.00 0.96 1.00 1.00 2.88 11.98 1.26 1.90 52.0 12.02

I-MSIR 1.00 1.00 1.00 1.00 1.76 4.28 1.78 2.49 52.0 4.31
SP-MSIR 1.00 0.98 1.00 1.00 1.74 4.65 1.88 2.40 10.99 4.67
DS-MSIR 1.00 0.96 1.00 1.00 1.64 6.67 2.01 2.39 8.69 6.71

average oracle model size are reported as SMS and OMS. Here, the selected model
size is determined by either [n/ logn] or the data-driven threshold, and the oracle
model size is the smallest model size to include all the active predictors. The OMS
will be large if one of r1, r2, r999 and r1000 is large. The OMS is always larger than
or equal to four, and a value close to four is desirable.

For x ∼ N(0, Ip) in case (1), we summarize the results in Table 1. DC-SIS
works well for Model I and Model IV, as all four active predictors are selected with
frequency one. DC-SIS does not work well for Model II and Model III, where X1
and X2 can be missed with large frequency. We confirm from r1 and r2 that the
average DC-SIS ranks for X1 and X2 in Models II and III are very large, and the
OMS values for these two models based on DC-SIS are large as well. The other
four methods generally work well, with I-MSIR being the most consistent and
selecting all active predictors with frequency one across all the models. Our data-
driven threshold values for SP-MSIR and DS-MSIR work well, and the average
selected model size is generally close to the average oracle model size.

We summarize in Table 2 the results of x ∼ N(0,�), where σij = 0.6|i−j | for
1 ≤ i, j ≤ p. The independence assumption among the predictor no longer holds.
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TABLE 2
Results for normal x in case (2). Based on 100 repetitions, the frequencies of active predictors being

selected, the average ranks of active predictors, the average selected model size, and the average
oracle model size are reported

Model Method f1 f2 f999 f1000 r1 r2 r999 r1000 SMS OMS

I DC-SIS 0.04 1.00 1.00 0.07 488.58 1.40 1.60 520.48 52.0 672.57
FKF 0.01 1.00 1.00 0.07 549.00 1.46 1.55 510.25 52.0 690.63

I-MSIR 0.01 1.00 1.00 0.02 531.54 1.39 1.61 526.72 52.0 681.94
SP-MSIR 0.85 1.00 1.00 0.82 19.36 1.58 1.42 28.46 17.78 38.85
DS-MSIR 1.00 1.00 1.00 1.00 3.66 1.48 1.52 3.42 4.63 4.08

II DC-SIS 0.79 0.85 1.00 0.90 48.76 26.66 1.04 16.31 52.0 74.58
FKF 0.84 0.93 1.00 0.95 37.82 13.76 1.36 14.09 52.0 55.84

I-MSIR 0.85 0.92 1.00 0.93 34.48 13.98 1.13 14.03 52.0 54.06
SP-MSIR 1.00 1.00 1.00 0.99 2.67 2.50 1.37 3.98 15.03 4.52
DS-MSIR 0.98 0.99 1.00 0.96 4.52 3.45 1.99 7.24 4.63 16.81

III DC-SIS 0.97 0.95 1.00 0.99 8.77 13.72 1.00 3.49 52.0 16.72
FKF 1.00 1.00 1.00 1.00 4.29 4.09 2.00 1.00 52.0 4.86

I-MSIR 1.00 1.00 1.00 1.00 3.87 3.85 1.30 1.70 52.0 4.47
SP-MSIR 1.00 0.99 1.00 1.00 3.57 3.54 1.20 1.80 5.29 4.11
DS-MSIR 0.99 0.97 1.00 1.00 3.64 4.52 1.33 1.68 6.17 5.16

IV DC-SIS 1.00 0.94 1.00 1.00 1.07 20.02 2.06 4.14 52.0 20.28
FKF 1.00 0.17 1.00 0.99 1.91 244.74 1.38 5.46 52.0 245.20

I-MSIR 1.00 0.10 0.99 0.91 1.07 453.82 3.29 18.29 52.0 455.06
SP-MSIR 1.00 0.73 1.00 1.00 1.36 34.57 2.09 2.55 16.58 34.57
DS-MSIR 1.00 0.91 1.00 1.00 1.49 14.52 2.17 2.37 17.95 14.55

As discussed in Example 1 of Section 6, the correlation among the predictors can
negatively affect the performances of independence screening methods such as
DC-SIS, FKF and I-MSIR. All three independence screening methods cannot se-
lect X1 and X1000 in Model I, and have a large frequency to miss X1 in Model II.
FKF and I-MSIR will miss X2 in Model IV as well. By taking into account the cor-
relation among the predictors, SP-MSIR and DS-MSIR enjoy much better overall
performances. Due to the exponentially decaying correlations in the off-diagonal
elements, the sparse precision matrix assumption holds in this case, and the decent
performance of SP-MSIR is as expected. DS-MSIR has the best overall perfor-
mances, and the data-driven threshold values work well as before.

For x ∼ N(0,�) in case (3), we have σij = 0.6 for 1 ≤ i �= j ≤ p and σii = 1
for i = 1, . . . , p. From the results in Table 3, we clearly see that the independence
screening methods DC-SIS, FKF and I-MSIR do not work well. This is similar
to our findings in Table 2. Moreover, due to the constant correlation among the
predictors, the precision matrix is no longer sparse, with the off-diagonal elements
of the precision matrix all equal to −0.0025. Thus, we expect SP-MSIR to fail.
This is confirmed by the low SP-MSIR frequencies, such as f1 = 0.10 and f1000 =
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TABLE 3
Results for normal x in case (3). Based on 100 repetitions, the frequencies of active predictors being

selected, the average ranks of active predictors, the average selected model size and the average
oracle model size are reported

Model Method f1 f2 f999 f1000 r1 r2 r999 r1000 SMS OMS

I DC-SIS 0.00 1.00 1.00 0.00 999.38 1.50 1.50 999.44 52.0 1000.0
FKF 0.00 1.00 1.00 0.00 998.51 1.49 1.51 996.88 52.0 999.96

I-MSIR 0.00 1.00 1.00 0.00 999.16 1.48 1.52 999.41 52.0 999.99
SP-MSIR 0.10 1.00 1.00 0.13 190.55 1.54 1.46 207.46 7.45 293.12
DS-MSIR 0.98 1.00 1.00 0.99 4.17 1.45 1.55 3.92 5.33 4.99

II DC-SIS 1.00 0.04 1.00 0.57 2.37 703.59 1.25 181.32 52.0 750.07
FKF 1.00 0.05 0.97 0.53 1.82 751.61 5.73 140.24 52.0 776.07

I-MSIR 0.00 0.04 1.00 0.58 2.37 774.94 1.95 116.65 52.0 804.12
SP-MSIR 1.00 0.93 1.00 0.96 1.79 4.55 1.70 4.00 7.15 5.90
DS-MSIR 0.96 0.94 0.94 0.94 7.26 3.36 3.06 11.90 8.36 19.02

III DC-SIS 0.03 0.01 1.00 1.00 711.55 677.93 1.20 1.80 52.0 808.44
FKF 0.10 0.06 1.00 1.00 504.78 457.78 2.00 1.00 52.0 644.95

I-MSIR 0.04 0.07 1.00 0.00 589.14 527.76 1.53 1.43 52.0 706.09
SP-MSIR 0.67 0.68 1.00 1.00 19.97 24.97 1.00 2.00 5.78 32.78
DS-MSIR 0.95 0.95 1.00 1.00 5.35 4.86 1.00 2.05 5.94 7.09

IV DC-SIS 1.00 0.00 1.00 0.13 1.81 837.09 1.19 651.26 52.0 853.08
FKF 1.00 0.00 1.00 0.22 2.35 838.80 1.00 512.52 52.0 857.91

I-MSIR 1.00 0.00 1.00 0.13 1.65 885.48 1.35 672.18 52.0 891.67
SP-MSIR 1.00 0.43 1.00 0.99 1.72 39.78 1.34 3.16 6.05 39.79
DS-MSIR 1.00 0.93 1.00 1.00 1.95 10.01 1.77 2.40 8.67 10.12

0.13 in Model I, f1 = 0.67 and f2 = 0.68 in Model III and f2 = 0.43 in Model IV.
As it does not rely on the sparse precision matrix estimation, DS-MSIR still works
well in this setting.

We summarize in Table 4 the results of discrete x. The results here are similar
to the normal independent predictor case presented in Table 1. We see that all
the methods generally work well, with the exception of DC-SIS in Model II. We
conclude that our proposed methods I-MSIR, SP-MSIR and DS-MSIR still work
well with nonnormal predictors. In addition, we observe from Table 1 and Table 4
that the average oracle model size of SP-MSIR is generally smaller than that of DS-
MSIR. This observation suggests that when the precision matrix is very sparse, we
can potentially benefit from the sparse precision matrix estimation.

The computational costs for the proposed variable selection or screening meth-
ods are investigated next. We report in Table 5 the average computation time of
each method for Model I based on 100 replications, where n is fixed to be 300 and
p is set as 1000, 2000 and 3000. All the computations are done on a Lenovo laptop
with 2.4 GHz CPU and 8 GB memory.
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TABLE 4
Results for discrete x in case (4). Based on 100 repetitions, the frequencies of active predictors
being selected, the average ranks of active predictors, the average selected model size and the

average oracle model size are reported

Model Method f1 f2 f999 f1000 r1 r2 r999 r1000 SMS OMS

I DC-SIS 1.00 1.00 1.00 1.00 1.71 3.17 3.43 1.69 52.0 4.00
FKF 1.00 1.00 1.00 1.00 3.19 1.76 1.94 3.11 52.0 4.00

I-MSIR 1.00 1.00 1.00 1.00 3.40 1.63 1.68 3.29 52.0 4.00
SP-MSIR 1.00 1.00 1.00 1.00 3.27 1.72 1.73 3.28 5.16 4.00
DS-MSIR 1.00 1.00 1.00 1.00 3.22 1.93 1.76 3.09 6.10 4.00

II DC-SIS 0.82 0.78 1.00 0.39 37.12 47.20 1.09 110.45 52.0 116.42
FKF 1.00 1.00 1.00 1.00 1.39 1.68 3.30 3.83 52.0 4.20

I-MSIR 1.00 1.00 1.00 1.00 1.41 1.69 2.95 4.84 52.0 4.89
SP-MSIR 1.00 1.00 1.00 0.90 1.45 1.65 3.01 5.80 5.79 5.90
DS-MSIR 1.00 1.00 1.00 0.95 1.41 1.71 3.23 15.27 16.24 15.60

III DC-SIS 1.00 1.00 0.99 0.94 1.67 1.65 3.96 19.71 52.0 19.71
FKF 1.00 1.00 1.00 0.78 2.58 2.42 1.00 45.36 52.0 45.36

I-MSIR 1.00 1.00 1.00 0.97 2.48 2.54 1.00 7.67 52.0 7.69
SP-MSIR 1.00 1.00 1.00 0.84 2.55 2.43 1.03 6.67 5.58 6.68
DS-MSIR 1.00 1.00 1.00 0.93 2.45 2.61 1.02 15.53 12.38 15.61

IV DC-SIS 1.00 1.00 1.00 1.00 2.57 4.00 1.45 1.99 52.0 4.01
FKF 1.00 1.00 1.00 1.00 3.06 3.47 1.99 1.48 52.0 4.00

I-MSIR 1.00 1.00 1.00 1.00 2.94 3.85 1.80 1.41 52.0 4.00
SP-MSIR 1.00 1.00 1.00 1.00 2.98 3.76 1.74 1.52 5.34 4.00
DS-MSIR 1.00 1.00 1.00 0.95 2.98 3.85 1.73 1.49 5.94 4.05

Among the three independence screening methods DC-SIS, FKF and I-MSIR,
we see from Table 5 that our proposed I-MSIR is the fastest in all settings. Be-
tween SP-MSIR and DS-MSIR, SP-MSIR is faster when p = 1000, but becomes
prohibitively slow when p = 3000. The computation time of DS-MSIR is very

TABLE 5
Average running time (in seconds) of each method for Model I based on 100 replications

p = 1000 p = 2000 p = 3000

Case Case Case Case Case Case Case Case Case Case Case Case
Method (1) (2) (3) (4) (1) (2) (3) (4) (1) (2) (3) (4)

DC-SIS 35.2 34.9 34.9 35.0 69.6 69.9 69.9 69.6 105 104 105 104
FKF 11.9 12.1 12.0 11.9 24.5 25.0 24.3 24.1 35.5 35.6 35.6 35.9
I-MSIR 0.521 0.509 0.510 0.514 1.01 1.01 1.00 1.03 1.51 1.50 1.51 1.49
SP-MSIR 19.5 22.1 45.2 18.9 135 156 502 136 488 531 2070 507
DS-MSIR 32.7 31.0 34.7 33.8 41.8 40.9 42.3 42.5 51.4 51.3 53.1 52.2
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reasonable. DS-MSIR is not as fast as FKF or I-MSIR, but is faster than DC-SIS.
This is very encouraging, as the independence screening methods aim to achieve
screening consistency, while DS-MSIR is designed to achieve variable selection
consistency.

For all methods, the computation time increases as p increases. For fixed p

across the four cases of the distribution of x, the computation time of each method
is generally rather stable. The exception here is case (2) and case (3) for the SP-
MSIR method. Recall that case (2) corresponds to normal x with AR type covari-
ance structure, while case (3) corresponds to normal x with constant correlations
among the predictors. As SP-MSIR relies on the sparsity assumption of the pre-
cision matrix, our observation here implies that the computation time of the SP-
MSIR algorithm depends on the sparseness of the precision matrix. Generally, it
takes longer for the SP-MSIR algorithm in the case when the precision matrix is
less sparse. The performances of these variable selection methods with p = 2000
and 3000 are consistent with the simulation results with p = 1000, and thus are
omitted here.

7.2. An application to the small round blue cell tumors classification. In this
section, we apply our proposals to the children cancer data [Khan et al. (2001)]
for classifying small round blue cell tumors (SRBCT). The SRBCT data consists
of four types of tumor in childhood, including Ewing’s sarcoma, rhabdomyosar-
coma, neuroblastoma and Burkitt lymphoma. There are 83 tumor samples and the
expression measurements on 2308 genes for each sample are provided. We ran-
domly split the SRBCT data into the training set of 55 observations and the testing
set of 28 observations. We first perform feature screening and selection based on
the training set, build a classification rule with the linear discriminant analysis,
and then apply this rule to the testing set. The same five methods are compared
as in the previous section. Based on 100 repetitions, Table 6 reports the average
training error, the average testing error and the average number of genes selected.
We observe that I-MSIR has smaller classification errors than DC-SIS and FKF.
Compared with the two existing methods DC-SIS and FKF, SP-MSIR has similar
or better testing classification errors with fewer genes selected. DS-MSIR enjoys
the best classification performances, and only selects an average of 9 genes out of
the 2308 total genes.

TABLE 6
Classification results for the SRBCT data based on 100 repetitions

Method DC-SIS FKF I-MSIR SP-MSIR DS-MSIR

Average training error (%) 2.16 5.76 1.33 7.05 0.76
Average testing error (%) 11.00 19.89 6.36 11.07 6.32
Average model size 13 13 13 6.60 9.06
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8. Discussions. Marginal independence SIR and marginal SIR are proposed
for model-free feature screening and variable selection in this paper. Marginal in-
dependence SIR is closely related to existing independence screening methods
such as the SIS, distance correlation based SIS and fused Kolmogrov filter. While
these independence screening methods share similar theoretical properties, our
proposal of marginal independence SIR has better overall finite sample perfor-
mances. Marginal SIR naturally connects the marginal coordinate tests in the suffi-
cient dimension reduction literature and the ultrahigh dimensional feature screen-
ing literature, and opens new avenues for model-free feature selection. Both the
sparse precision matrix based and the Dantzig selector based marginal SIR pro-
cedures achieve selection consistency in the ultrahigh dimensional setting. As our
proposed methods are developed based on the marginal coordinate test wit SIR,
they are expected to inherit the limitations of SIR. Although our discussions in this
paper focus on SIR only, other popular sufficient dimension reduction methods in
the literature like sliced average variance estimation (SAVE) [Cook and Weisberg
(1991)] and directional regression (DR) [Li and Wang (2007)] can be considered
as well to fix such limitations. Marginal coordinate tests for SAVE and DR have
been studied in Shao, Cook and Weisberg (2007) and Yu and Dong (2016). How
to extend these procedures in the ultrahigh dimensional setting is worth future in-
vestigation.

Another issue for real application is the choice of number of slices when the
response is continuous. For the original SIR, Cook and Zhang (2014) proved
that combining several slicing schemes works better than the usual practice re-
lying on a single slicing scheme. The combining slicing scheme suggested in
Cook and Zhang (2014) motivates us to consider the fused version of marginal
SIR. Suppose mk(H) is the marginal SIR utility (Dantzig selector version or the
sparse precision matrix version) with H slices. The fused marginal SIR utility
can be defined as

∑T
H=2 mk(H), k = 1, . . . , p, where different slicing scheme

is combined to get the marginal utility for the kth variable. For the marginal
independence SIR utility mI

k(H), the fused utility can be defined similarly as∑T
H=2 mI

k(H). We can follow Cook and Zhang (2014) and Mai and Zou (2015)
to choose T = [logn]. However, the theoretical properties of these fused utilities
based on SIR as well as the choice of the tuning parameter T warrant future re-
search.

APPENDIX: PROOFS OF THEOREMS

We first prove Theorem 5.1, and then we provide the proofs of Theorems 4.1
and 3.1.

PROOF OF THEOREM 5.1. For part (a), first note that |I (Y (i) ∈ J�) − p�| ≤ 1
and Var{I (Y (i) ∈ J�)−p�} ≤ 1/4. By the Bernstein’s inequality [van der Vaart and
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Wellner (1996)], we have

Pr

(∣∣∣∣∣
n∑

i=1

{
I
(
Y (i) ∈ J�

) − p�

}∣∣∣∣∣ ≥ (2 + τ)(n logp)1/2

)

≤ 2 exp
(−(2 + τ)2n logp/

[
2
{
n/4 + (2 + τ)(n logp)1/2/3

}]) ≤ 2p−τ−2.

It follows that

Pr
{|p̂� − p�| ≥ (2 + τ)(logp/n)1/2} ≤ 2p−τ−2.(A.1)

Let pmin = min{p1, . . . , pH }. From |p̂−1
� − p−1

� | = |p̂� − p�|/p�p̂�, we have

Pr
{∣∣p̂−1

� − p−1
�

∣∣ ≥ (4 + 2τ)p−2
min(logp/n)1/2}

(A.2)
≤ Pr

{|p̂� − p�| ≥ (2 + τ)(logp/n)1/2} + Pr
(
p�p̂� ≤ p2

min/2
)
.

We have logp/n ≤ p2
min/(4 + 2τ)2 < 1/4 by condition (C7). It follows that

Pr
(
p�p̂� ≤ p2

min/2
) ≤ 2p−τ−2.(A.3)

(A.1), (A.2) and (A.3) together lead to

Pr
{∣∣p̂−1

� − p−1
�

∣∣ ≥ (4 + 2τ)p−2
min(logp/n)1/2} ≤ 4p−τ−2.(A.4)

Condition (C6) guarantees maxk |u�,k| ≤ maxk E|Xk| ≤ 2b1/2. Together with
(A.4), we have

Pr
{∣∣(p̂−1

� − p−1
�

)
u2

�,k

∣∣ ≥ (16 + 8τ)bp−2
min(logp/n)1/2} ≤ 4p−τ−2.(A.5)

From condition (C6), we have

E
{
exp

(
tX2

kI (Y ∈ J�)
)} ≤ E

{
exp

(
tX2

k

)} ≤ b for |t | ≤ ς and

E
{
exp

(
t
∣∣XkI (Y ∈ J�)

∣∣)} ≤ E
{
exp

(|tXk|)} ≤ eb for |t | ≤ ς.

Let π4 = 2+τ +ς−1e2b2. Following similar arguments in the proof of Theorems 1
and 4 in Cai, Liu and Luo (2011), we have

Pr
{|û�,k − u�,k| ≥ ς−1π4(logp/n)1/2} ≤ 2p−τ−2.(A.6)

Note that |û2
�,k −u2

�,k| ≤ |û�,k −u�,k|(2|u�,k|+ |û�,k −u�,k|). Let π5 = p−1
minς

−1π4

(4b1/2 + ς−1π4/2). Then

Pr
{∣∣p−1

�

(
û2

�,k − u2
�,k

)∣∣ ≥ π5(logp/n)1/2}
≤ Pr

{|û�,k − u�,k| ≥ ς−1π4(logp/n)1/2}
+ Pr

{(
2|u�,k| + |û�,k − u�,k|) ≥ 4b1/2 + ς−1π4(logp/n)1/2}

.
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From (A.6), the first term of the right-hand side of the above inequality is bounded
by 2p−τ−2. Together with maxk |u�,k| ≤ 2b1/2, the second term of the right-hand
side of the above inequality is also bounded by 2p−τ−2. Thus, we have

Pr
{∣∣p−1

�

(
û2

�,k − u2
�,k

)∣∣ ≥ π5(logp/n)1/2} ≤ 4p−τ−2.(A.7)

From the definition of mI
k and m̂I

k , it can be shown that

∣∣m̂I
k − mI

k

∣∣ ≤
H∑

�=1

(∣∣(p̂−1
� − p−1

�

)
u2

�,k

∣∣ + ∣∣p−1
�

(
û2

�,k − u2
�,k

)∣∣).(A.8)

Define positive constant π3 as

π3 = H
{
(16 + 8τ)bp−2

min + π5
}
.(A.9)

Combining (A.5), (A.7) and (A.8), we can derive that

Pr
{∣∣m̂I

k − mI
k

∣∣ ≥ π3(logp/n)1/2} ≤ 8p−τ−2.(A.10)

The conclusion of part (a) is then completed by noting that

Pr
{

max
1≤k≤p

∣∣m̂I
k − mI

k

∣∣ ≥ π3(logp/n)1/2
}

≤ p max
1≤k≤p

Pr
{∣∣m̂I

k − mI
k

∣∣ ≥ π3(logp/n)1/2}
.

Now we turn to part (b). If A � ÂI , then there must exist some k ∈ A such
that m̂I

k < cn−φ . It follows from condition (C8) that |m̂I
k − mI

k | > cn−φ for some
k ∈ A. Recall that a denotes the cardinality of A. Thus,

Pr
(
A ⊆ ÂI ) ≥ 1 − Pr

{∣∣m̂I
k − mI

k

∣∣ > cn−φ for some k ∈ A
}

≥ 1 − a Pr
{∣∣m̂k − mk

∣∣ ≥ cn−φ}
(A.11)

≥ 1 − a Pr
{|m̂k − mk| ≥ cn(ξ−1)/2}

,

where the last inequality follows from condition (C7). (A.11) together with logp =
O(nξ ) and (A.10) lead to Pr(A ⊆ ÂI ) ≥ 1 − 8ap−τ−2. �

PROOF OF THEOREM 4.1. For part (a), it can be shown that

m̂∗
k − mk = Tk,1 + 2Tk,2 + 2Tk,3 + Tk,4 + Tk,5,(A.12)

where

Tk,1 = eT
k �(�̂ − �)�ek, Tk,2 = eT

k ��(�̂ − �)ek,

Tk,3 = eT
k (�̂ − �)�(�̂ − �)ek, Tk,4 = eT

k (�̂ − �)(�̂ − �)�ek and

Tk,5 = eT
k (�̂ − �)(�̂ − �)(�̂ − �)ek.
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By the definitions of �̂ and �, we have

‖�̂ − �‖∞ = max
1≤k,j≤p

∣∣∣∣∣
H∑

�=1

û�,kû�,j /p̂� − u�,ku�,j /p�

∣∣∣∣∣.(A.13)

(A.13) together with (A.8), (A.9) and (A.10) in the proof of Theorem 5.1 lead to

Pr
{‖�̂ − �‖∞ ≥ π3(logp/n)1/2} ≤ 8p−τ−1.(A.14)

Let π6 = 8ς−2(2 + τ + ς−1e2b2)2. From Theorem 1 and Theorem 4 in Cai, Liu
and Luo (2011), we have

Pr
{‖�̂ − �‖∞ ≥ π6f

2(logp/n)1/2} ≤ 4p−τ .(A.15)

Now we turn to Tk,i , i = 1, . . . ,5. For Tk,1 = eT
k �(�̂ − �)�ek , we have

Pr
{

max
1≤k≤p

|Tk,1| ≥ π3f
2(logp/n)1/2

}

≤ Pr
{‖�̂ − �‖∞‖�‖2

1 ≥ π3f
2(logp/n)1/2}

.

From (A.14) and condition (C3), we have

Pr
{

max
1≤k≤p

|Tk,1| ≥ π3f
2(logp/n)1/2

}
≤ 8p−τ−1.(A.16)

Let π7 = dλ−1
minλmaxπ6. For Tk,2 = eT

k ��(�̂ − �)ek , we have

Pr
{

max
1≤k≤p

|Tk,2| ≥ π7f
2a(logp/n)1/2

}
(A.17)

≤ Pr
{‖�̂ − �‖∞‖����‖1 ≥ π7af

2(logp/n)1/2}
.

Recall that M = ��� has eigenvalue decomposition M = ∑d
i=1 λiνiν

T
i . It fol-

lows that ν2
i,k ≤ 1 and

∑p
j=1 |νi,j | ≤ a, where νi,j is the j th element of νi ,

j = 1, . . . , p. In addition, we see that λi ≤ λ−1
min because M can be rewritten as

M = �−1/2 Cov{E(z|Ỹ )}�−1/2, where z = �−1/2{x − E(x)} is the standardized
predictor. We also have νT

i �2νi ≤ λ2
max from condition (C2). Thus, we have

‖����‖1 ≤
d∑

i=1

λi |νi |1|�νi |∞ ≤
d∑

i=1

λiλmaxa ≤ dλ−1
minλmaxa.(A.18)

From (A.15), (A.17) and (A.18), we have

Pr
{

max
1≤k≤p

|Tk,2| ≥ π7f
2a(logp/n)1/2

}
≤ 4p−τ .(A.19)

We now deal with Tk,3 = eT
k (�̂ − �)�(�̂ − �)ek . From Lemma 1 in Cai, Liu

and Luo (2011), we know that ‖�̂‖1 ≤ ‖�‖1 ≤ f and ‖�̂ − �‖1 ≤ 2f . Together
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with (A.18), we have

Tk,3 ≤ ∥∥(�̂ − �)�
∥∥∞‖����‖1‖�̂ − �‖1

≤ 2dλ−1
minλmaxf a

{∥∥�̂(� − �̂)
∥∥∞ + ‖�̂�̂ − Ip‖∞

}
.

Plug in ‖�‖1 ≤ f and the constraint ‖�̂�̂ − Ip‖∞ ≤ �n, we get

Tk,3 ≤ 2dλ−1
minλmaxf a

(
f ‖� − �̂‖∞ + �n

)
.(A.20)

Let π8 = 8dλ−1
minλmaxς

−2π2
4 . From equation (28) in Cai, Liu and Luo (2011), we

have

Pr
{‖� − �̂‖∞ ≤ 2ς−2π2

4 (logp/n)1/2} ≤ 4p−τ .(A.21)

Plug (A.21) in to (A.20), and we have

Pr
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}
≤ 4p−τ .(A.22)

For Tk,4 = eT
k (�̂−�)(�̂−�)�ek , we have max1≤k≤p |Tk,4| ≤ ‖�̂−�‖1‖(�̂−

�)‖∞|�|1. From ‖�‖1 ≤ f and ‖�̂ − �‖1 ≤ 2f , we have
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Together with (A.14), we have

Pr
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For Tk,5 = eT
k (�̂ − �)(�̂ − �)(�̂ − �)ek , we have
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Together with (A.14), we have
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}
≤ 8p−τ−1.(A.24)

Define positive constant π2 as

π2 = 7π3 + 2π7 + 2π8.(A.25)
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Apply (A.16), (A.19), (A.22), (A.23) and (A.24) to (A.12). Evoke the definition of
π2 in (A.25) and we get the desired result in part (a).

Now we turn to part (b). From the definition Â∗ = {k ∈ I : m̂∗
k ≥ γ ∗

n }, we have
A = Â∗ if and only if both maxk∈Ac |m̂∗

k | < γn and mink∈A |m̂∗
k | ≥ γn. It follows

that

Pr(A= Â) ≥ 1 − Pr
(

max
k∈Ac

∣∣m̂∗
k

∣∣ ≥ γn

)
− Pr

(
min
k∈A

∣∣m̂∗
k

∣∣ < γn

)
.(A.26)

Because mk = 0 for k ∈ Ac from Proposition 2.1, we have

Pr
(

max
k∈Ac

∣∣m̂∗
k

∣∣ ≥ γn

)
= Pr

(
max
k∈Ac

∣∣m̂∗
k − mk

∣∣ ≥ γn

)
≤ Pr

(
max

1≤k≤p

∣∣m̂∗
k − mk

∣∣ ≥ γn

)
.

From condition (C5), we have

Pr
(
min
k∈A

∣∣m̂∗
k

∣∣ < γn

)
≤ Pr

(
max
k∈A

∣∣m̂∗
k − mk

∣∣ ≥ γn

)
≤ Pr

(
max

1≤k≤p

∣∣m̂∗
k − mk

∣∣ ≥ γn

)
.

Plug the two inequalities above into (A.26) and we get

Pr(A = Â) ≥ 1 − 2 Pr
(

max
1≤k≤p

∣∣m̂∗
k − mk

∣∣ ≥ γn

)
.(A.27)

From condition (C4*) and the result of part (a), we have Pr(max1≤k≤p |m̂∗
k −mk| ≥

γn) ≤ Pr(max1≤k≤p |m̂∗
k − mk| ≥ π2f

2a logp/n1/2) ≤ 24p−τ−1 + 8p−τ . Plug it
into (A.27) and we get the desired result in part (b). �

PROOF OF THEOREM 3.1. For part (a), define positive constant π0 as follows:

π0 = 2ς−2π2
4 d1/2λ

−1/2
min + ς−1π4.(A.28)

By the definition of α�, we know that
∑H

�=1 α�α
T
� /p� = M = ∑d

i=1 λiνiν
T
i . It fol-

lows that ‖α�‖∞ ≤ (
∑d

i=1 λi)
1/2 max1≤i,j≤p |νi,j | ≤ d1/2λ

−1/2
min . Because there are

at most a nonzero elements in α�, we further have

‖α�‖1 ≤ d1/2λ
−1/2
min a.(A.29)

Due to the constraint ‖�̂α̂� − û�‖∞ ≤ �n, we have

Pr
{∥∥�̂(α̂� − α�)

∥∥∞ ≥ 2�n

} ≤ Pr{‖�̂α� − û�‖∞ ≥ �n}.(A.30)

From (A.6), (A.21) and (A.29), we get

Pr
{‖�̂α� − û�‖ ≥ �n

}
= Pr

{‖�̂α� − û�‖ ≥ π0a(logp/n)1/2}
(A.31)

≤ Pr
{∥∥(�̂ − �)

∥∥∞‖α�‖1 ≥ 2ς−2π2
4 d1/2λ

−1/2
min a(logp/n)1/2}

+ Pr
{‖û� − u�‖∞ ≥ ς−1π4(logp/n)1/2} ≤ 4p−τ + 2p−τ−1.
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It follows from (A.30) and (A.31) that

Pr
{∥∥�̂(α̂� − α�)

∥∥∞ ≥ 2�n

} ≤ 4p−τ + 2p−τ−1.(A.32)

Because Pr{‖(�̂ − �)(α̂� − α�)‖∞ ≥ 2�n} ≤ Pr{‖α̂� − α�‖1 ≥ 2d1/2λ
−1/2
min a} +

Pr{‖(�̂ − �)‖∞ ≥ 2ς−2π2
2 (logp/n)1/2} ≤ (4p−τ + 2p−τ−1) + 4p−τ , together

with (A.32), we have

Pr
{∥∥�(α̂� − α�)

∥∥∞ ≥ 4�n

}
≤ Pr

{∥∥�̂(α̂� − α�)
∥∥∞ ≥ 2�n

}
(A.33)

+ Pr
{∥∥(�̂ − �)(α̂� − α�)

∥∥∞ ≥ 2�n

} = 12p−τ + 4p−τ−1.

From (A.33) and ‖α̂� − α�‖∞ ≤ ‖�−1‖1‖�(α̂� − α�)‖∞, we have

Pr
{|α̂� − α�|∞ ≥ 4π0f a(logp/n)1/2} ≤ 4p−τ−1 + 12p−τ .(A.34)

By the triangular inequality, we have

|m̂k − mk| ≤
H∑

�=1

(∣∣(p̂−1
� − p−1

�

)
α2

�,k

∣∣ + ∣∣p−1
�

(
α̂2

�,k − α2
�,k

)∣∣).(A.35)

Let π9 = 8p−1
minπ0(d

1/2λ
−1/2
min + π0). Then we have

Pr
{∣∣p−1

�

(
α̂2

�,k − α2
�,k

)∣∣ ≥ π9f a(logp/n)1/2}
≤ Pr

{(
2|α�,k| + |α̂�,k − α�,k|) ≥ 2d1/2λ

−1/2
min + 2π0

}
+ Pr

{|α̂�,k − α�,k| ≥ 4π0f a(logp/n)1/2}
.

From condition (C4), we assume that f a(logp/n)1/2 ≤ 1/2. Together with
(A.34), we have

Pr
{∣∣p−1

�

(
α̂2

�,k − α2
�,k

)∣∣ ≥ π9f a(logp/n)1/2} ≤ 8p−τ−1 + 24p−τ .(A.36)

Let π10 = (4 + 2τ)p−2
mindλ−1

min. Similar to (A.5), we have

Pr
{∣∣(p̂−1

� − p−1
�

)
α2

�,k

∣∣ ≥ π10(logp/n)1/2} ≤ 4p−τ−2.(A.37)

Define positive constant π1 as

π1 = π9f aH + π10H.(A.38)

(A.35), (A.36), (A.37) and definition of π1 in (A.38) together lead to the result of
part (a).

The proof of part (b) is similar to part (b) of Theorem 4.1, and is thus omitted.
�
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