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INNOVATED SCALABLE EFFICIENT ESTIMATION IN
ULTRA-LARGE GAUSSIAN GRAPHICAL MODELS1

BY YINGYING FAN AND JINCHI LV

University of Southern California

Large-scale precision matrix estimation is of fundamental importance
yet challenging in many contemporary applications for recovering Gaussian
graphical models. In this paper, we suggest a new approach of innovated scal-
able efficient estimation (ISEE) for estimating large precision matrix. Moti-
vated by the innovated transformation, we convert the original problem into
that of large covariance matrix estimation. The suggested method combines
the strengths of recent advances in high-dimensional sparse modeling and
large covariance matrix estimation. Compared to existing approaches, our
method is scalable and can deal with much larger precision matrices with
simple tuning. Under mild regularity conditions, we establish that this proce-
dure can recover the underlying graphical structure with significant probabil-
ity and provide efficient estimation of link strengths. Both computational and
theoretical advantages of the procedure are evidenced through simulation and
real data examples.

1. Introduction. The surge of big data in an unprecedented scale has brought
us an enormous amount of information about individuals in a spectrum of con-
temporary applications including social networks, online marketing and modern
healthcare. It is often of practical interest to uncover the underlying network
formed by a large number of individuals that are sparsely related. Graphical mod-
els provide a flexible way to specify the conditional independence structure among
a set of nodes. See, for example, [29, 42] for detailed accounts and applications of
such models. In Gaussian graphical models, the conditional independence struc-
ture is fully characterized by the zero entries in the precision (inverse covariance)
matrix. For instance, the nonzero entries of a precision matrix estimated from ge-
nomic data detect interactions among genes or proteins of potential interest. The
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precision matrix also appears in many other applications such as classification and
portfolio management.

The problem of identifying zeros in the precision matrix was termed as co-
variance selection in [9], which serves as a parsimonious way to simplify the
model on the covariance structure. A stepwise estimation procedure was proposed
therein based on the rule that the covariance matrix estimator is positive definite
and matches the sample one on a set of entries, while its inverse has zeros in the
remaining entries. In the Gaussian setting, it was shown that such a covariance
model attains maximum entropy (simplicity) and the proposed covariance matrix
estimator has the appealing property of being the restricted maximum likelihood
estimate. Such a procedure works for the case when the number of variables p is
low but becomes computationally expensive as p increases.

Large precision matrix estimation has attracted much recent attention of many
researchers. Broadly speaking, existing methods can be classified into two classes:
the penalized likelihood or empirical risk methods, and the penalized regression or
Dantzig selector type optimization methods. The former class includes, for exam-
ple, [13, 22, 37, 45, 47]. These methods share a common feature that the precision
matrix is estimated by maximizing the penalized Gaussian likelihood or minimiz-
ing the penalized empirical risk. The latter class includes, for instance, [5, 6, 35,
36, 38, 44]. Such methods convert the problem of precision matrix estimation into
a nodewise or pairwise regression, or optimization problem and then apply the
technique of high-dimensional regularization using the Lasso or Dantzig selec-
tor type methods. In particular, optimal rates of convergence for estimating sparse
precision matrix have been established in [6]. The aforementioned methods are
efficient in estimating precision matrix in moderate dimensions, but may become
computationally inefficient when dealing with a huge number of nodes.

To address the important issue of scalability that is crucial to uncovering ultra-
large Gaussian graphical models, in this paper we suggest a new method, called
the innovated scalable efficient estimation (ISEE), for large precision matrix es-
timation. Our approach is motivated by the idea of the innovated transformation,
which is a linear transformation of the p-variate random vector for the p nodes us-
ing the precision matrix; see (3) for formal definition. A simple observation is that
the covariance matrix of the transformed p-variate random vector is exactly the
precision matrix of the original p-variate random vector. Aided by such a transfor-
mation, we convert the original problem of large precision matrix estimation into
that of large covariance matrix estimation. To estimate the innovated data matrix,
the so-called oracle empirical matrix [see (8) for formal definition], which is un-
available to practitioners, we exploit the scaled Lasso regression in [40] applied p

times based on a partition of all the p nodes. After obtaining such a data matrix,
we treat it as a “sample” from the innovated p-variate random vector, and apply
the approach of thresholding in [3] to construct a sparse precision matrix estimator.

The innovated transformation is related to the term “innovation” used in the
time series literature [23] and has been utilized by other researchers in various
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contexts. For example, it was proposed and exploited in [23] for detecting sparse
signals when the noises are correlated. It was used in [18] for high-dimensional
optimal classification with correlated features. See also [27] for a discussion of the
innovated transformation in the multiple testing setting.

The suggested ISEE method combines the strengths of recent advances in both
fields of high-dimensional sparse modeling and large covariance matrix estima-
tion. The scaled Lasso is a convex regularization method that is tuning free and
admits efficient implementation, while the thresholding method for large covari-
ance matrix estimation is easy to implement and powered by appealing theoretical
properties. As a consequence, there is only one tuning parameter for ISEE which
is the threshold. To select such a threshold, we adapt the method of the cross-
validation in [2, 3] for large covariance matrix estimation. Since we apply the
cross-validation to the estimated oracle empirical matrix, not the original data ma-
trix, there is no need to repeat the sparse regression step, and thus the ISEE enjoys
computational efficiency. As such, ISEE is scalable and can deal with much larger
precision matrices with simple tuning, compared to existing approaches. In addi-
tion to the computational advantage, we have also shown that the suggested pro-
cedure can recover the underlying graphical structure with significant probability
and provide efficient estimation of link strengths under mild regularity conditions.

The rest of the paper is organized as follows. Section 2 introduces the suggested
approach of ISEE for large Gaussian graphical models, and discusses its com-
putation in large or ultra-large scale. We present the asymptotic efficiency of the
new method in Section 3. Section 4 details some examples of applications for our
method. We provide several numerical examples in Section 5. Section 6 discusses
some extensions of the suggested method to a few settings. The proofs of some
main results are relegated to the Appendix. Additional proofs of main results and
technical details are provided in the Supplementary Material [21].

2. Innovated scalable efficient estimation in ultra-large Gaussian graphical
models.

2.1. Model setting. Consider the Gaussian graphical model G = (V ,E) for a
p-variate random vector

x = (X1, . . . ,Xp)T ∼ N(μ,�),(1)

where μ is a p-dimensional mean vector, � = (σjk) is a p × p covariance matrix,
and G is an undirected graph associated with x with V = {X1, . . . ,Xp} the set
of vertices (or nodes) and E = {(j, k)} the set of edges (or links) between the
vertices. In this model, the lack of an edge (j, k) between a pair of vertices Xj

and Xk is characterized by the probabilistic property that these two components
are independent conditional on the remaining p − 2 vertices. In other words, the
existence of an edge amounts to conditional dependence between the two vertices
given all other ones. Denote by � = (ωjk) the precision matrix, that is, the inverse
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�−1 of the covariance matrix �. It is well known in the Gaussian graphical model
theory that there is an edge (j, k) between a pair of vertices Xj and Xk if and
only if the corresponding entry ωjk of the precision matrix � is nonzero. See, for
example, [29] for a detailed account of graphical models. Such a characterization
of the edge set shows that the problem of recovering the Gaussian graph G is
equivalent to recovering the support

supp(�) = {
(j, k) : ωjk �= 0

}
modulo symmetry,(2)

meaning the equivalence of links between nodes j and k in undirected graphs, of
the precision matrix �. In particular, the strength of each link (j, k) is character-
ized by the magnitude of the corresponding entry ωjk .

Suppose (xi )
n
i=1 is an independent and identically distributed (i.i.d.) sample

from the Gaussian graphical model (1). Without loss of generality, assume that the
mean vector μ = 0 throughout the paper. One natural and important question is
how to efficiently recover the graphical structure and infer about the link strengths
in large scale, that is, when the number of nodes p is large compared to the sample
size n. We will address this problem in the remaining part of the paper.

2.2. Innovated scalable efficient estimation. Estimating the precision matrix
� associated with the Gaussian graph G is challenging even in moderate dimen-
sionality p. Directly inverting the sample covariance matrix is infeasible since it is
singular when p > n. To overcome this difficulty, various methods have been pro-
posed. As discussed in the Introduction, a common limitation of these methods is
that they are computationally intensive which can restrain their applications when
estimating very large graphs.

To address these challenges, we propose a new procedure called the innovated
scalable efficient estimation (ISEE) for effective and efficient large precision ma-
trix estimation. The main idea of our approach is to convert the problem of esti-
mating large precision matrix � to that of estimating large covariance matrix. Our
method is motivated by the following linear transformation:

x̃ = �x.(3)

Observe that the p-variate transformed random vector x̃ in (3) still has a Gaussian
distribution with mean 0 and covariance matrix

cov(̃x) = � cov(x)� = ��� = �.(4)

Thus, if the transformed vector x̃ were observable, then estimating the precision
matrix � could be achieved by estimating the covariance matrix of the p-variate
Gaussian random vector x̃. Our new view of this problem naturally provides flexi-
ble alternative ways of Gaussian graph estimation powered by recent developments
in large covariance matrix estimation. See, for example, [2–4, 7, 12, 28, 39], among
others.
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The transformation (3) with the precision matrix � is termed as innovation in
the time series literature. We thus refer to (3) as the innovated transformation and
incorporate the word “innovated” in the name of ISEE. As mentioned in the Intro-
duction, such a transformation has also been used in other settings. The innovated
transformation (3) is, however, not directly applicable for large precision matrix
estimation because the transformed vector x̃ is unobservable. Estimating x̃ by the
two parts according to (3) is infeasible since it depends on the unknown precision
matrix � which is our estimation target. We overcome this difficulty by breaking
the long vector x̃ into small subvectors and then estimating each one as a whole
with the representation (3), which we describe in detail as follows.

We start with introducing some notation that will be used repeatedly in our pre-
sentation. For any subsets A,B ⊂ {1, . . . , p}, denote by xA a subvector of x formed
by its components with indices in A, and �A,B = (ωjk)j∈A,k∈B a submatrix of �
with rows in A and columns in B . We also use the shorthand notation �A for �A,A

for convenience. Note that by the definition of x̃, we can write the subvector x̃A in
the following form:

x̃A = �A,AηA,(5)

where ηA = xA + �−1
A,A�A,AcxAc with Ac the complement of set A.

The estimation of the two terms on the right-hand side of (5) is interrelated
and can be achieved simultaneously and effectively through linear regression tech-
niques. The essence of our proposal comes from a simple yet useful fact in Gaus-
sian graphical model theory. Recall that in the Gaussian graphical model (1), it
holds for any subset A ⊂ {1, . . . , p} that

xA|xAc ∼ N
(−�−1

A,A�A,AcxAc,�−1
A,A

)
.(6)

The conditional distribution (6) suggests a multivariate linear regression model

xA = CT
AxAc + ηA,(7)

where CA = −�Ac,A�−1
A,A is a matrix of regression coefficients, and ηA is the

vector of model errors which takes the form introduced in (5) and has a multivariate
Gaussian distribution N(0,�−1

A,A).
The representation of the subvector xA in (7) suggests that regression techniques

can be exploited to estimate the unknown subvector x̃A. To see this, let η̂A be the
residual vector obtained by using some regression technique to fit model (7). Then
the unknown matrix �A,A can be estimated as the inverse of the sample covariance
matrix of the model residual vector η̂A. Denote by �̂A the resulting estimator. Then
we can estimate the subvector x̃A in (5) as x̂A = �̂Aη̂A.

Let (Al)
L
l=1 be a partition of the index set {1, . . . , p}, that is,

⋃L
l=1 Al =

{1, . . . , p} and Al ∩ Am = ∅ for any 1 ≤ l �= m ≤ L. Although the ideas of our
approach are applicable to the case of general |Al|, to simplify the presentation
we focus our attention on the case of |Al| = 2 when the number of nodes p is
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even, and the case of |Al| = 2 or 3 when p is an odd number. Without loss of gen-
erality, throughout the paper we consider the specific partition Al = {2l − 1,2l}
for 1 ≤ l ≤ L − 1 and AL = {2L − 1, . . . , p} with L = �p/2	 the integer part of
p/2. The ISEE repeats the above procedure for each Al with 1 ≤ l ≤ L to obtain
estimated subvectors x̂Al

’s, and then stacks all these subvectors together to form
an estimate x̂ of the oracle innovated vector x̃ = �x. By doing so, the problem of
estimating the precision matrix based on the original vector x reduces to that of
estimating the covariance matrix based on the estimated transformed vector x̂.

By its nature, the ISEE breaks large-scale precision matrix estimation into
smaller-scale linear regression problems, each of which can be solved effectively
and efficiently. Thanks to the scalability of ISEE, it has advantages over existing
methods in estimating very large precision matrices. Detailed comparisons of ISEE
with existing methods are given in Section 2.4.

2.3. Estimation procedure by ISEE. We now discuss in detail the implemen-
tation of the ISEE procedure. To ease the presentation, we introduce some matrix
notation. Denote by X = (x1, . . . ,xn)

T the n × p data matrix. We refer to the in-
novated data matrix

X̃ = (̃x1, . . . , x̃n)
T = X�(8)

as the oracle empirical matrix, which is unavailable to practitioners. Using matrix
notation, the multivariate linear regression model (7) can be written as

XA = XAcCA + EA,(9)

where XA and XAc are the submatrices of X with columns in A and its complement
Ac, respectively, and EA is an n×|A| model error matrix with rows as i.i.d. copies
of ηT

A. Then the corresponding submatrix X̃A can be written as

X̃A = (X�)A = XA�A,A + XAc�Ac,A
(10)

= (
XA + XAc�Ac,A�−1

A,A

)
�A,A = EA�A,A.

The representation in (10) provides the foundation for the estimation of the oracle
empirical matrix X̃.

Many existing methods can be used to fit the Gaussian linear regression model
(7) and obtain the estimates for �A,A and ηA. To avoid the issue of overfitting
caused by high dimensionality, some kind of regularization, however, needs to be
applied to control model complexity. There is a large body of literature on regular-
ization methods; see, for example, [8, 15, 17, 33, 41, 46, 48], among many others.
See also [20] for the connections and differences for a wide class of regulariza-
tion methods in high dimensions, and [32] for characterizations of the impacts of
high dimensionality in finite samples. For our implementation, we suggest to use
the scaled Lasso method proposed in [40]. We opt to work with this method for
two main reasons. First, scaled Lasso is a natural likelihood-based extension of
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the Lasso [41] that is tuning free and admits efficient implementation; see (12) for
details about its tuning-free feature. The efficient implementation of scaled Lasso
greatly reduces the computational cost of ISEE. Second, as seen from (5), we are
interested in the prediction property (i.e., the estimation of ηA) instead of the vari-
able selection property (i.e., the estimation of CA) when fitting (7). The sampling
properties of scaled Lasso as revealed in [40] guarantee the accuracy in estimating
�A,A and ηA, and thus the scaled Lasso is sufficient for our purpose. We also re-
mark that alternatively one can also exploit regularization methods for multivariate
linear regression models instead of fitting one response at a time as in the scaled
Lasso.

For each node j in the index set A, let us consider the univariate linear regres-
sion model for response Xj , which is the j th column of the data matrix X, given
by the multivariate linear regression model (9)

Xj = XAcβj + Ej ,(11)

where the (p − |A|)-dimensional vector βj is the column of the regression co-
efficient matrix CA corresponding to node j and the n-dimensional error vector
Ej is the corresponding column of the error matrix EA. In model (11), node j is
regressed on all nodes in the complement set Ac. As mentioned before, in contrast
to the conventional setting, our object of interest now is on the error vector Ej ,
instead of directly on the regression coefficient vector βj . Thus we treat the re-
gression coefficient vector βj as a nuisance parameter, and estimate it along with
the error standard deviation using the penalized least squares with the scaled Lasso

(
β̂j , θ̂

1/2
j

) = arg min
β∈Rp−|A|,σ≥0

{‖Xj − XAcβ‖2
2

2nσ
+ σ

2
+ λ‖β∗‖1

}
,(12)

where β∗ is the Hadamard (componentwise) product of two (p−|A|)-dimensional
vectors β and (n−1/2‖Xk‖2)k∈Ac with Xk the kth column of X, λ ≥ 0 is a regular-
ization parameter associated with the weighted L1-penalty, and ‖v‖q denotes the

Lq -norm of a given vector v for q ≥ 1. Here, the minimizer θ̂
1/2
j , which is over σ ,

provides an estimator of the error standard deviation θ
1/2
j = var1/2(ηj ), where ηj is

a component of ηA corresponding to node j . The tuning-free feature of the scaled
Lasso is entailed by the fact that the theoretical choice of the regularization pa-
rameter λ = C{(2 logp)/n}1/2 with C > 1 some constant which can be made free
of the noise level in the linear regression model; see [40] for more details. Here-
after, we fix such a universal choice of λ for scaled Lasso in (12), and discuss an
automatic empirical choice for λ, which is indeed tuning free, in Section 5.1. The
use of the scale vector (n−1/2‖Xk‖2)k∈Ac amounts to rescaling each column of the
design matrix XAc to have L2-norm n1/2, matching that of the constant covariate 1
for the intercept, which is standard in the studies for regularization methods.

Based on the regression step, for each node j in the index set A we define

Êj = Xj − XAc β̂j and ÊA = (Êj )j∈A,(13)
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where β̂j is defined in (12) and ÊA is an n × |A| matrix consisting of columns Êj

with nodes j in the index set A. Clearly, the residual vector Êj is a natural estimate
of the error vector Ej , and thus ÊA is a natural estimate of the error matrix EA.
In view of (9) and (7), the |A| × |A| matrix n−1ÊT

AÊA is a natural estimator of the
error covariance matrix �−1

A,A. This observation motivates us to construct a natural
estimator

�̂A = (
n−1ÊT

AÊA

)−1(14)

for the principal submatrix �A,A of the precision matrix � given by the index
set A. These observations suggest a simple plug-in estimator ÊA�̂A for the unob-
servable submatrix X̃A in (10).

When A ranges over a partition (Al)
L
l=1 of the index set {1, . . . , p}, the ISEE

estimates the oracle empirical matrix X̃ as the n × p matrix

X̂ = (X̂Al
)1≤l≤L,(15)

where the submatrix of X̂ with columns in the index set Al is given by X̂Al
=

ÊAl
�̂Al

as constructed before. Then the ISEE proceeds as follows:

(a) (Recovery of graph). First, calculate the initial ISEE estimator as the sample
covariance matrix

�̂ISEE,ini = n−1X̂T X̂.(16)

Then for a given threshold τ ≥ 0, define

�̂ISEE,g = Tτ (�̂ISEE,ini),(17)

where Tτ (B) = (bjk1{|bjk |≥τ }) denotes the matrix B = (bjk) thresholded at τ . Es-
timate the graphical structure E, the set of links, as ÊISEE = supp(�̂ISEE,g).

(b) (Estimation of link strength). For each link (j, k) in the recovered graph
ÊISEE with nodes j and k from different index sets Al’s, update the corresponding
entry of �̂ISEE,g as the off-diagonal entry of the 2 × 2 matrix �̂Al

given in (14)
with Al replaced by {j, k}. This yields a refined sparse precision matrix estimator
�̂ISEE for the link strength.

We refer to the former �̂ISEE,g as the ISEE estimator for the graph, and the latter
�̂ISEE as the ISEE estimator with refinement throughout the paper. In particular,
it is easy to see that the principal submatrix of the initial ISEE estimator �̂ISEE,ini
given by each index set Al is simply the matrix �̂Al

given in (14).
The choice of the threshold τ in (17) is important for practical implementa-

tion. We adapt the cross-validation method proposed in [2, 3] for large covariance
matrix estimation. Specifically, we randomly split the sample of n rows of the es-
timated oracle empirical matrix X̂ into two subsamples of sizes n1 and n2, and
repeat this N1 times. Denote by �̂

1,ν
ISEE,ini and �̂

2,ν
ISEE,ini the corresponding sample
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covariance matrices as defined in (16) based on these two subsamples, respectively,
for the νth split. The threshold τ can be chosen to minimize

R(τ) = N−1
1

N1∑
ν=1

∥∥Tτ

(
�̂

1,ν
ISEE,ini

) − �̂
2,ν
ISEE,ini

∥∥2
,(18)

where ‖ · ‖ denotes the Frobenius norm of a given matrix.

2.4. Comparisons with existing methods. The ISEE is closely related to the
methods of precision matrix estimation proposed in [38] and [44] in that all three
methods are rooted in the regression formulation (7). For each 1 ≤ j �= k ≤ p,
the ANT method in [38] estimates the (j, k)-entry of � using the off-diagonal en-
try of �̂A defined in (14) with A = {j, k}. Thus, ANT needs to conduct O(p2)

scaled Lasso regressions and can become more computationally expensive for
large p. Based on the observation that the j th column of � can be written as
(�A,A,−�A,ACT

A)T with A = {j} and CA defined in (7), [44] proposed to exploit
the Danzig selector [8] to estimate CA and used a similar method as in ISEE to
estimate �A,A. So it is seen that both ISEE and ANT rely on the residual vector in
the regression model (7), while the method in [44] relies on both the residual vec-
tor and the regression coefficient vector CA whose estimation can suffer from the
bias issue related to the Dantzig selector. In addition, the method in [44] requires
to select a tuning parameter for each node and is thus more demanding in tuning.

The ISEE is also related to the neighborhood selection method in [35] and joint
estimation method in [36] in the sense that all methods estimate the graph via
Lasso-type regressions. The main difference between the methods in [35] and [36]
is that the former conducts p nodewise Lasso regressions for graph recovery and
needs tuning parameter selection for each node, while the latter exploits a sin-
gle joint Lasso regression for precision matrix estimation with only one tuning
parameter. Both methods in [35] and [36] require the irrepresentable-type condi-
tion for consistent graph recovery which can become stringent in large precision
matrix estimation. The Lasso regularization for precision matrix estimation has
also been exploited in [47], who proposed a Lasso penalized D-trace procedure
in which the Lasso penalty is applied to a new quadratic loss with a positive-
definiteness constraint. As a result, the obtained estimator enjoys the nice property
of positive definiteness. The sparse recovery property was also established under
the irrepresentable-type condition.

The CLIME [5] is another popularly used method for precision matrix estima-
tion. It estimates the graphical structure node by node using a Dantzig selector type
procedure. For each node, a tuning parameter needs to be selected. As pointed out
in [38], in order to ensure consistency in graph recovery CLIME needs an addi-
tional threshold that depends on the L1-norm of the true precision matrix �, which
is unknown and can be large.
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As mentioned in the Introduction, the penalized likelihood (e.g., [13, 22, 37,
45]) is a group of widely used methods for precision matrix estimation. In general,
these methods are not scalable due to the complexity of the likelihood function.
Thus they can be computationally expensive when the scale of the problem be-
comes large.

In summary, compared to those existing methods, the ISEE enjoys easy tuning
and is scalable. As shown later in Section 3, it also has nice asymptotic properties
under mild regularity conditions. We will also provide numerical comparisons of
ISEE with some popularly used methods in Section 5.

2.5. Computation. In the new era of big data, designing procedures with scala-
bility is key to powering contemporary applications. The ISEE method is naturally
scalable since the main computational cost comes from the construction of the es-
timate X̂ for the oracle empirical matrix X̃. Such an n × p matrix is constructed
by running p penalized linear regression fittings. These univariate response prob-
lems and the use of different permutations of the set of nodes {1, . . . , p}, which
can help boost the power of detecting important links, are perfect for parallel and
distributed computing. The nodes j in the same index set A can be allocated to
a common processor. These computational advantages of ISEE make it ideal for
cloud computing which becomes more prevalent nowadays, and thus appealing for
uncovering ultra-large sparse graphs with big data.

3. Asymptotic efficiency of innovated scalable efficient estimation.

3.1. Technical conditions. For the technical analysis, we focus on the class of
K-sparse Gaussian graphs with spectrum constraint

G(M,K) = {
� : each row has at most K nonzero off-diagonal

(19)
entries and M−1 ≤ λmin(�) ≤ λmax(�) ≤ M

}
,

where K is some positive integer that can grow with dimensionality p, M ≥ 1 is
some constant, and λmin(·) and λmax(·) denote the smallest and largest eigenvalues
of a given symmetric matrix, respectively. For each graph in class (19), the number
of links for each node is bounded by K from above and the precision matrix � has
bounded spectrum. A generalized concept of sparsity is considered in [38] to allow
for the case when a portion of the links can be weak, that is, close to zero but not
exactly zero. To simplify the technical presentation, we content ourselves with the
class of K-sparse Gaussian graphs. For notational simplicity, all rates of conver-
gence involving logp and probability bounds involving p are understood implic-
itly with p regarded as max(p,n). For each index set S ⊂ {1, . . . , p}, denote by uS

and uSc the subvectors of u ∈ R
p with components in S and its complement Sc,

respectively.
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CONDITION 1. The Gaussian graph (1) belongs to class G(M,K) with K ≤
c0n/(logp) for some sufficiently small constant c0 > 0, the partition (Al)

L
l=1 sat-

isfies 1 ≤ minl |Al| ≤ maxl |Al| = O(1), and λ = (1 + ε){2δ(logp)/n}1/2 = o(1)

for any constants δ ≥ 2 and ε > 0.

CONDITION 2. There exist some constants 0 ≤ α ≤ 1/2 and ξ > 1 such that
the L∞-norm cone invertibility factor

F∞ = inf
{‖�u‖∞

‖u‖∞
: ‖uSc‖1 ≤ ξ‖uS‖1 �= 0

(20)

for some S ⊂ {1, . . . , p} with |S| ≤ O(K)

}

of the covariance matrix � = �−1 satisfies F−1∞ = O(Kα).

PROPOSITION 1. For any � ∈ G(M,K), it holds that inf{‖�u‖∞/‖u‖∞ : u �=
0} ≥ (K + 1)−1/2M−1 with � = �−1.

Condition 1 assumes the sparsity of the precision matrix and imposes an upper
bound on the sparsity level K . The assumption of maxl |Al| = O(1) is made to
simplify the technical presentation and can be relaxed. Condition 2 puts a con-
straint on the cone invertibility factor F∞. Proposition 1 above shows that the
constant α in Condition 2 is indeed bounded from above by 1/2. See, for example,
[43] and [40] for more discussions on the cone invertibility factors under various
norms. We remark that only Conditions 1 and 2 are needed for the theoretical de-
velopment of ISEE approach alone.

3.2. Main results. Our first theorem establishes the entrywise infinity norm
estimation bound for the initial ISEE estimator.

THEOREM 1. Assume that Conditions 1–2 hold and K1+αλ = o(1). Then with
probability 1 − o{p−(δ−2)} tending to one the initial ISEE estimator �̂ISEE,ini in
(16) satisfies that

‖�̂ISEE,ini − �‖∞ = O
(
Kαλ

)
,(21)

where ‖ · ‖∞ denotes the entrywise L∞-norm of a given matrix.

From the proof of Theorem 1, we see that the rate of convergence for the ini-
tial ISEE estimator is the maximum of two components O{max(Kλ2, λ)} and
O(Kαλ), corresponding to the block-diagonal and off-block-diagonal entries of
�̂ISEE,ini, respectively. Note that the block-diagonal entries are estimated directly
from (14), while most of the off-block-diagonal ones are estimated from the cross
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product terms n−1X̂T
Ak

X̂Al
with k �= l. The difference in the two estimation pro-

cedures results in the difference in two rates of convergence. Since it is assumed
in Theorem 1 that K1+αλ = o(1) with α ≥ 0, the rate of convergence O(Kαλ)

dominates that of O{max(Kλ2, λ)}, meaning that the block-diagonal entries are
generally estimated more accurately than the off-block-diagonal ones.

As introduced in Section 2.3, we apply thresholding to obtain the ISEE estima-
tor for the graph �̂ISEE,g defined in (17). For each identified link (j, k) in the re-
covered graph ÊISEE = supp(�̂ISEE,g), the ISEE estimator with refinement �̂ISEE

updates its corresponding entry as the off-diagonal entry of the 2 × 2 matrix �̂Al

given in (14) with Al = {j, k}. The following theorem shows that both sparse pre-
cision matrix estimators �̂ISEE,g and �̂ISEE enjoy nice asymptotic properties.

THEOREM 2. Assume that the conditions of Theorem 1 hold and ω0 =
min{|ωjk| : (j, k) ∈ supp(�)} ≥ ω∗

0 = CKαλ with C > 0 some sufficiently large
constant. Then with probability 1 − o{p−(δ−2)} tending to one, it holds simultane-
ously that:

(a) (Graph recovery). supp(�̂ISEE,g) = supp(�) for any τ ∈ [cω∗
0,ω0 − cω∗

0]
with 0 < c < 1/2 some constant;

(b) (Graph screening). supp(�) ⊂ supp(�̂ISEE,g) for threshold τ chosen by
cross-validation (18) with n1/n2 bounded away from 0 and ∞;

(c) (Efficient estimation)

‖�̂ISEE − �‖∞ = O(λ).(22)

The first part of results in Theorem 2 is more of theoretical interest since the
quantities ω0 and ω∗

0 are generally unknown in practice. The second part provides
a theoretical backup for a fast practical approach to choosing threshold in large
graph screening. Comparing (22) to (21), it is seen that ISEE with refinement has
an improved rate of convergence for precision matrix estimation when α > 0. Such
an improvement occurs because the off-block-diagonal entries are estimated more
accurately in the refinement step. We remark that the bound in (22) is obtained as
O{max(Kλ2, λ)} which becomes O(λ) since K1+αλ = o(1) and α ≥ 0.

3.3. A bias corrected initial ISEE estimator. A comparison of the rates of con-
vergence in Theorems 1 and 2 shows that the initial ISEE estimator is generally
biased when α > 0. As mentioned in the discussion after Theorem 1, such a bias
stems from the estimation of the off-block-diagonal entries of the precision matrix
� using the cross product terms n−1X̂T

Ak
X̂Al

with k �= l. Motivated by the techni-
cal analysis of the initial ISEE estimator �̂ISEE,ini, we now define a bias corrected
initial ISEE estimator �̂ISEE,cini as

(�̂ISEE,cini)Al,Al
= (�̂ISEE,ini)Al,Al

(23)
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and

(�̂ISEE,cini)Al,Am = −[
(�̂ISEE,ini)Al,Am + ĈAm

Al
�̂Al

+ ĈAl

Am
�̂Am

]
(24)

for each 1 ≤ l �= m ≤ L, where ĈAl
= (β̂j,l)j∈Al

represents a (p − |Al|) × |Al|
matrix of estimated regression coefficients with β̂j,l as defined in (12), ĈAm

Al
de-

notes a submatrix of ĈAl
consisting of rows with indices in Am, and �̂Al

is given
in (14). The following theorem shows that such a bias corrected precision matrix
estimator indeed admits improved rate of convergence.

THEOREM 3. Under the conditions of Theorem 1, the bias corrected initial
ISEE estimator �̂ISEE,cini in (23)–(24) satisfies with probability 1 − o{p−(δ−2)}
tending to one that

‖�̂ISEE,cini − �‖∞ = O(λ),(25)

and graph recovery consistency in part (a) of Theorem 2, with �̂ISEE,g =
Tτ (�̂ISEE,cini) and ω∗

0 = Cλ for some sufficiently large constant C > 0.

In light of Theorems 1–3, we see that both the ISEE estimator with refinement
�̂ISEE and the bias corrected initial ISEE estimator �̂ISEE,cini enjoy the same rate
of convergence which is generally faster than that for the initial ISEE estimator
�̂ISEE,ini when α > 0. We remark that our bias corrected initial ISEE estimator for
the case of |Al| = 1 for each 1 ≤ l ≤ L shares similar flavor to the bias corrected
test statistics introduced in [31] for false discovery rate control in Gaussian graph-
ical model estimation. In addition to the consistency result in Theorem 3, we can
further show that the estimates for zero entries of the precision matrix � can enjoy
the asymptotic normality as in [31]. Due to space limitation, we do not pursue that
direction in our current paper.

4. Applications of innovated scalable efficient estimation. As a byproduct,
the ISEE procedure also provides a fast approach to estimating the innovated trans-
formation (3), which is key to methods such as the ideas of multiple testing using
the innovated higher criticism in [23], the optimal classification in sparse Gaussian
graphic models in [18] and the interaction screening in high-dimensional quadratic
discriminant analysis in [19]. With the aid of ISEE, these methods can be more ef-
fectively and efficiently applied for the analysis of big data. We next discuss some
additional applications of ISEE.

4.1. Dimension reduction. Dimension reduction facilitates greatly large-scale
data analysis by effectively reducing the intrinsic dimensions of the feature space.
Among all dimension reduction approaches, the sliced inverse regression (SIR)
[30] has been widely used. The SIR is based on the model

Y = m(βT
1 x, . . . ,βT

K0
x, ε),(26)
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where Y is the response variable, x is a p-dimensional covariate vector, β1,

. . . ,βK0
are unknown projection vectors with 1 ≤ K0 < p an unknown integer,

m : RK0+1 → R is an unknown function, and ε is the noise random variable with
E(ε|x) = 0. SIR aims at estimating the effective dimension reduction (EDR) space
spanned by the EDR directions βk’s [24, 30]. The SIR algorithm begins with stan-
dardizing the covariate vectors by centering and rescaling using the square-root
precision matrix �1/2 of covariates, and produces an estimate of the EDR direc-
tions by multiplying the constructed eigenvectors by the same matrix.

The square-root precision matrix of covariates used in the SIR algorithm can be
difficult and computationally expensive to estimate when p is much larger than n.
This problem can be resolved using the innovated transformation x̃ = �x. Ob-
serve that by Theorem 3.1 in [30], the covariance matrix of E(̃x|Y) is degener-
ate in any direction orthogonal to the linear subspace spanned by the K0 vectors
cov(̃x)�βk = ��βk = βk , by noting that �βk are the EDR directions for the
transformed data x̃1, . . . , x̃n. This suggests that the original EDR directions βk’s
can be obtained by calculating the eigenvectors of cov{E(̃x|Y)}. Since the oracle
empirical matrix X̃ = (̃x1, . . . , x̃n)

T can be estimated effectively and efficiently
using the idea of ISEE, cov{E(̃x|Y)} can be estimated easily, and thus this alter-
native approach greatly reduces the computational cost of large-scale dimension
reduction using SIR.

4.2. Portfolio management. The precision matrix also plays an pivotal role in
optimal portfolio allocation. Let yi = μ + xi be the return vector of p assets at
time i, where μ ∈ R

p is the vector of mean returns of the p assets. Then � = �−1

is the covariance matrix of these p assets. Markowitz’s mean-variance optimal
portfolio [34] is defined as the solution to the following minimization problem:

min
ξ∈Rp

ξT �−1ξ subject to ξT 1 = 1 and ξT μ = γ,(27)

where 1 is a p-vector of ones and γ > 0 is the targeted return imposed on the
portfolio ξ . It is well known that Markowitz’s optimal portfolio admits an explicit
solution

ξopt = d1 − γ d2

d3d1 − d2
2

�1 + γ d3 − d2

d3d1 − d2
2

�μ,

where d1 = μT �μ, d2 = 1T �μ, and d3 = 1T �1. With the ISEE estimate of the
precision matrix �, the optimal portfolio from a large number of assets can be
easily constructed.

4.3. Multiple testing, feature screening and simultaneous confidence intervals.
Testing the significance of coefficients in a regression model is of particular im-
portance in high dimensions, where feature selection is of interest in many appli-
cations. For simplicity, consider the linear regression model

y = Xβ + ε,(28)
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where y is an n-vector of response, β = (β1, . . . , βp)T is a p-vector of regression
coefficients and ε is an n-vector of i.i.d. random error with variance σ 2. There is a
large literature on multiple testing with the false discovery rate (FDR) control [1].
It has been a convention to consider p marginal regression models and test each of
the p marginal regression coefficients is equal to zero simultaneously. For exam-
ple, [14] proposed the PFA method for high-dimensional multiple testing where
the test statistics can have an arbitrary dependence structure. In contrast to testing
the marginal effects of covariates, it is also interesting to test their joint effects

H0j : βj = 0 versus H1j : βj �= 0, j = 1, . . . , p.(29)

With the aid of the innovated transformation (3), the multiple testing prob-
lem (29) can be reduced to the scenario of marginal regression models linking
the response and each of the p innovated covariates. To see this, note that

n−1X̃T y = n−1�XT y = β + ε̃,(30)

where X̃ = X� is the oracle empirical matrix and ε̃ = −(Ip − n−1�XT X)β +
n−1�XT ε. Observe that n−1XT X is the sample estimate of the covariance ma-
trix � = �−1. Thus, intuitively Ip − n−1�XT X can be of a small order and
thus the first term of ε̃ can also be of a small order. Similarly, the second term
n−1�XT ε has mean 0 and conditional covariance matrix cov(n−1�XT ε|X) =
n−2σ 2�XXT � which can be in the order of n−1σ 2�. Therefore, ε̃ can be treated
similarly as a random error vector. The empirical version of (30) can be obtained
by substituting X̃ with the estimate X̂ in (15). The use of the innovated transforma-
tion has also been discussed in [27] to improve the performance of multiple testing
using the correlation structure.

Feature screening with independence learning has been popularly used in both
regression and classification problems. See, for example, [11, 16, 25], among many
others. Intuitively, it is natural and appealing to exploit the joint information among
the covariates. The innovated features given by the ISEE estimator pool such joint
information and provide new features that can be used for ranking the importance
of original features, as elucidated in (30). With the representation (30), one can
also construct simultaneous confidence intervals for the p regression coefficients
βj ’s using asymptotic distributions or the bootstrap [10].

5. Numerical studies.

5.1. Implementation of ISEE. When implementing ISEE, we choose the reg-
ularization parameter λ in scaled Lasso following the suggestion of [38]; that is,
we fix λ to be B/(n − 1 + B2)1/2, where B = tq(1 − n1/2/(2p logp),n − 1)

with tq(α,m) the αth quantile of a t-distribution with m degrees of freedom. The
threshold τ is chosen adaptively using the random split method described in Sec-
tion 2.3. In both our simulation study and real data analysis, we use 90% of the
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sample to calculate �̂
1,ν
ISEE,ini and remaining 10% to calculate �̂

2,ν
ISEE,ini, and then

select τ from a grid of 20 values by minimizing the criterion (18) with the number
of random splits set to N1 = 5. Although the change in the computational cost of
ISEE is negligible for a larger value of N1 as discussed before, our choice of N1
works well in empirical studies.

In our numerical studies, we observe that the ISEE estimator for the graph
�̂ISEE,g calculated using the above way of tuning tends to have the number of
false positives very close to zero, while the number of false negatives, which can
also be close to zero, tends to be slightly larger than the number of false positives.
Since the first step of ISEE focuses on recovering the underlying graph, the sure
screening property, that is, zero false negative and low false positives with signifi-
cant probability, is desirable for this step. To reduce the number of false negatives,
we borrow idea from the Bonferroni method. Specifically, we first randomly per-
mute the columns of the n × p data matrix X, then apply ISEE to the permuted
data matrix to construct a sparse precision matrix estimator, and finally permute
this sparse estimator back to obtain an estimate �̂

π
ISEE,g of the original precision

matrix, where π denotes the corresponding permutation of {1, . . . , p} used in the
estimate. We repeat this procedure N2 times and construct the final estimate for the
set of links of the graph as the union of supp(�̂

π
ISEE,g) over all N2 permutations.

For each identified link (j, k), we average all the nonzero estimates of ωjk over
the N2 repetitions to construct its final estimate. Although this permutation method
adds to the computational cost of ISEE, it reduces the number of false negatives
in all our settings. Moreover, thanks to the efficiency of ISEE for each fixed per-
mutation the computational cost of our procedure is still much lower than those of
other comparison methods even after we include this additional step.

We finally remark that in the simulation study, for a fair comparison with other
methods ISEE is implemented without the refinement step. Thus, the ISEE esti-
mator in our simulation examples refers to �̂ISEE,g with the aforementioned way
of tuning.

5.2. Simulation examples.

5.2.1. Simulation example 1. We start with a simulation example designed to
compare the computational cost and accuracy of ISEE with some popularly used
methods. We generate the precision matrix � in two steps. First, we produce a band
matrix �0 with diagonal entries being one, �0(i, i + 1) = �0(i + 1, i) = 0.5 for
i = 1, . . . , p − 1, and all other entries being zero. Second, we randomly permute
the rows and columns of �0 to obtain the precision matrix �. Thus, in general,
the final precision matrix � no longer has the band structure. We then sample
the rows of the n × p data matrix X as i.i.d. copies from the multivariate Gaussian
distribution N(0,�−1). Throughout the simulation, we fix the sample size n = 200
and consider a range of dimensionality p.
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The methods for comparison include the Glasso [22], CLIME [5] and ANT [38].
To implement Glasso and CLIME, we use the R packages glasso and scio,
respectively. Both Glasso and CLIME have one tuning parameter, which is selected
using fivefold cross-validation from a grid of 10 values. The ANT is implemented
using the R package ConditionalGGM with the tuning parameters set to the
default values, and is thus tuning free. Our ISEE approach is implemented in the
way described in Section 5.1.

We generate 50 data sets. For each data set, we run the four comparison methods
on a PC with 8 GB RAM and Intel(R) Core(TM) i5-2500 CPU (3.30 GHz). For
each method in each repetition, the CPU time (in seconds) of obtaining a sparse
precision matrix estimator is recorded. Three additional performance measures:
the true positive rate (TPR), false positive rate (FPR) and estimation error under
the Frobenius norm are also calculated. Here, the TPR and FPR are defined as

TPR = # of correctly identified edges

# of identified edges in total
,

FPR = # of falsely identified edges

# of identified nonedges in total
,

respectively.
The comparison results are summarized in Figure 1, with the x-axis indicating

dimensionality p and y-axis showing the mean values of different performance
measures over 50 repetitions. To make it easier to view, CPU time (top left) and
estimation error under the Frobenius norm (bottom right) are both plotted under the
common logarithmic scale. Due to high computational cost, the largest values of p

in our simulation for Glasso, CLIME, and ANT are 250, 500 and 100, respectively.
It is seen that ISEE is computationally much more efficient than all other methods.
CLIME is the second best in terms of CPU time. When p = 500, ISEE is about 70
times faster than CLIME on average. Moreover, the accuracy of ISEE in support
recovery and estimation is also among the best.

5.2.2. Simulation example 2. We now test the performance of ISEE in larger
scales. We generate the precision matrix in two steps. First, we create a block-
diagonal matrix �0 whose diagonal blocks are matrices of size 20. The diagonal
entries of �0 are all equal to one. For each of the block matrix, the off-diagonal
entries take value 0.5 with probability 0.3 and value 0 with probability 0.7. Since
the matrix generated in this way may not be symmetric or positive definite, we
first symmetrize it by forcing the lower triangular matrix to equal the upper tri-
angular matrix, and then add a diagonal matrix cI20 for some quantity c to make
the smallest eigenvalue of each block matrix equal to 0.1, where I20 denotes an
identity matrix of size 20. It is worth mentioning that in our example, the diagonal
block matrices are generated independently of each other and are thus generally
different. Second, we randomly permute the rows and columns of �0 to construct
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FIG. 1. Comparisons of ISEE (marked as “1”), Glasso (marked as “2”), CLIME (marked as “3”)
and ANT (marked as “4”) in simulation example 1. Top left: the common logarithm of CPU time as
a function of dimensionality p; Top right: TPR as a function of dimensionality p; Bottom left: FPR
as a function of dimensionality p; Bottom right: the common logarithm of estimation error under the
Frobenius norm as a function of dimensionality p.

the final precision matrix �. Thus, our true precision matrix � no longer has the
block-diagonal structure. We consider two settings of dimensionality p = 1000
and 2000, with the same sample size n as in simulation example 1.

The same performance measures as in simulation example 1 are employed to
evaluate the performance of ISEE. The means and standard errors over 100 repe-
titions are presented in Table 1, with Frob representing estimation error under the
Frobenius norm. It is seen that even for these very large precision matrices, ISEE
is still computationally efficient and performs well in graph recovery.

5.3. Real data analysis. We finally evaluate the performance of ISEE on a
breast cancer data set analyzed in [26]. This data set consists of 22,283 gene ex-
pression levels of 130 breast cancer patients, among whom 33 patients had patho-
logical complete response (pCR) and the remaining did not achieve pCR. Here,
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TABLE 1
Performance of ISEE in simulation example 2

p Frob TPR FPR CPU time

1000 Mean 3206.09 0.96799 0.05005 649.588
SE 2.24128 0.00030 0.00006 0.70461

2000 Mean 7272.65 0.95867 0.03344 2287.34
SE 3.42452 0.00023 0.00003 1.47541

pCR is defined as no evidence of viable, invasive tumor cells left in the surgical
specimen, and thus has been regarded as a strong indicator of survival.

This breast cancer data set has been used in [5] and [13] to evaluate the accuracy
of precision matrix estimation methods. We follow the steps therein to demonstrate
the performance of ISEE. For completeness, we briefly list the data analysis pro-
cedure here. We first randomly split the data into training and test sets of sizes 109
and 21, respectively. Since the two classes have unbalanced sample size, a strat-
ified sampling is used with 16 subjects randomly selected from pCR class and 5
subjects randomly selected from the other class to form the test set; the remain-
ing subjects are used as the training set. Based on the training set, we conduct a
two sample t-test and select the most significant p = 400 genes with the small-
est p-values. We remark that both [5] and [13] kept only the most significant 110
genes. Thanks to the scalability of ISEE, we are able to deal with much larger pre-
cision matrix. We next conduct a gene-wise standardization by dividing the data
matrix by the corresponding standard deviations. Then we estimate the p × p pre-
cision matrix � using the ISEE approach based on the training set, and construct
the linear discriminant analysis (LDA) rule on the test set. The LDA assumes that
both classes have Gaussian distributions N(μk,�

−1) with different mean vectors
μ1,μ2 and a common covariance matrix � = �−1. With the ISEE estimator �̂ISEE
of the precision matrix, the discriminant function takes the form

L(x) = (xT − μ̄)�̂ISEEμ̂ + log(n1/n2),(31)

where μ̄ = (μ̂1 + μ̂2)/2 and μ̂ = μ̂1 − μ̂2 with μ̂k , k = 1,2, the sample mean
vectors, and n1 and n2 are the training sample sizes from classes 1 (pCR) and 2,
respectively. For a new observation vector x, LDA assigns it to class 1 if L(x) > 0
and to class 2 otherwise. Such a procedure is repeated 100 times.

As pointed out and done in [5], an additional refit step may improve the ac-
curacy of precision matrix estimation. We follow their suggestion and exploit a
refitted ISEE estimator in calculating (31). There are different ways to refit the
ISEE estimator. One option is the ISEE estimator with refinement described in
Section 2.3. This approach of refitting can potentially suffer from growing com-
putational cost for less sparse precision matrices. In our application, we adopt the
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refitting procedure described in [18]. The main idea is to refit the ISEE estima-
tor for the graph column by column after obtaining the support. Taking the first
column as an example, ideally we would like to have

�̂�̂(·,1) = e1,(32)

where �̂ is the sample covariance matrix, �̂(·,1) denotes the first column of a
precision matrix estimator �̂, and e1 is a p-vector with one in the first component
and zero otherwise. Denote by S = supp{�̂(·,1)} the recovered support of the first
column. Then it follows from (32) that

�̂S,S�̂S,S(·,1) = e1,S .(33)

Thus, we can refit on the support S by inverting the principal submatrix �̂S,S and
taking out the first column, that is, (�̂S,S)−1e1,S . Recall that in this paper, we
consider the class of sparse precision matrices G(M,K) with K = O{n/(logp)}.
As guaranteed by Theorem 2, ISEE enjoys nice graph recovery property, and thus
the size of the support S can be much smaller than the sample size n with sig-
nificant probability. So generally the inverse of the matrix �̂S,S can be obtained
efficiently. Nevertheless, to enhance stability in real applications we suggest the
use of the generalized inverse of matrix �̂S,S if |S| is close to or exceeds n.

To evaluate the performance of classification rule (31), we consider three
measures: the specificity, sensitivity and Matthews correlation coefficient (MCC)
which are defined as

Specificity = TN

TN + FP
, Sensitivity = TP

TP + FN
,

(34)

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

with the TP, TN, FP and FN representing the true positives (pCR), true negatives,
false positives and false negatives, respectively. For each of these three measures,
the larger the value the better the classification performance.

As demonstrated in [11], feature selection can be crucial in high-dimensional
classification since otherwise the noise accumulation caused by estimating a large
number of parameters can dominate the signal, and thus deteriorate the classifica-
tion power. The same phenomenon is observed in our study here. When estimating
the two class mean difference vector μ1 − μ2, we incorporate the feature selec-
tion component using the thresholded estimator Tτ (μ̂) defined similarly as in (17).
As the value of the threshold τ decreases, the number of nonzero components in
Tτ (μ̂) varies from 1 to p. Figure 2 reports the three measures defined in (34) as
functions of threshold τ . To ease the presentation, we relabel the x-axis as the
number of nonzero components in Tτ (μ̂). The solid curves are the mean values
across 100 repetitions and the dotted curves around them are one standard error
away from the mean curves pointwise.
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FIG. 2. The classification results on breast cancer data with the x-axis representing the number of
nonzero components in two-class mean difference estimate Tτ (μ̂).

The maximum value of MCC, which is 0.540, is achieved when 253 genes are
used in LDA, and the corresponding standard error is 0.020. The values of MCC
reported in [5] and [13] are 0.506 and 0.402, respectively, with standard error both
equal to 0.020, when using only the 110 most significant genes. Our results show
that using a larger number of genes and taking into account their correlation struc-
ture have potential to improve the classification results. The specificity and sen-
sitivity reported in [13] are 0.794 (0.098) and 0.634 (0.220), respectively, with
standard errors in parentheses, while the corresponding ones reported in [5] are
0.749 (0.005) and 0.806 (0.017), respectively. Comparing these results to Figure 2,
it is seen that we have much improved specificity and comparable sensitivity over
a large region of the threshold level τ .

6. Discussions. In this paper, we have introduced a new method ISEE for
efficient estimation of ultra-large Gaussian graphs. Thanks to its scalability, ISEE
provides an effective way of uncovering large sparse graphs with big data. The sug-
gested method is ideal for parallel and distributed computing and cloud computing
and has been shown to enjoy appealing theoretical properties. Both computational
and theoretical advantages of ISEE have been demonstrated with empirical stud-
ies. The ISEE can further scale up along with the use of the SIS or ISIS in [16];
see Section B of the Supplementary Material [21] for detailed descriptions of such
an extension as well as its theoretical properties.

It would be of interest to study several extensions of ISEE to different settings
in future studies. For example, the idea of ISEE can be extended to the setting of
large-scale multiple graphs comparison and estimation. Aided by ISEE, one can
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estimate each graph individually and then conduct multiple testing to detect the
difference and similarity of these graphs. Another possible extension of ISEE is the
estimation of large latent variable Gaussian graphical models, where only a subset
of the nodes are observable in practice. It is also interesting to extend ISEE to the
estimation of large nonparanormal graphical models, where the original graph for
the p-variate random vector x is nonnormal, but under some unknown nonlinear
transformation f :Rp →R

p , f(x) becomes a normal random vector.
As discussed in Section 4, ISEE can be applied to such applications as dimen-

sion reduction, portfolio management and multiple testing, feature screening and
simultaneous confidence intervals. It is interesting to investigate the performance
of ISEE in these applications which demands future studies.

APPENDIX: PROOFS OF SOME MAIN RESULTS

We provide the proofs of Theorems 1–2 in this Appendix. The proofs of Theo-
rem 3 and Proposition 1 and additional technical details are included in the Sup-
plementary Material [21].

A.1. Proof of Theorem 1. Throughout the proof, we condition on the event E
defined in (A.40) in the Supplementary Material with probability 1 − o{p−(δ−2)}
tending to one, on which the bounds (A.23)–(A.25) in the Supplementary Mate-
rial hold simultaneously and uniformly over all nodes j in the index sets Al with
1 ≤ l ≤ L, and the entrywise L∞-norm bounds in (A.38) in the Supplementary
Material hold uniformly as well. Observe that in view of (13)–(14) and (15)–(16),
it is easy to see that the principal submatrix of the initial ISEE estimator �̂ISEE,ini,
which is the sample covariance matrix n−1X̂T X̂, given by each index set Al is
simply the matrix �̂Al

given in (14). Thus, the uniform entrywise L∞-norm bound
(A.29) in Lemma 2 in the Supplementary Material yields the bound∥∥n−1X̂T

Al
X̂Al

− �Al

∥∥∞ ≤ O
{
max

(
Kλ2, λ

)}
(35)

uniformly over the L blocks of principal submatrices of �̂ISEE,ini corresponding to
the index sets Al .

It remains to show that for each pair of index sets (Al,Am) with l �= m, we have∥∥n−1X̂T
Al

X̂Am

∥∥∞ = O
{
max

(
Kλ2,Kαλ

)}
.(36)

In light of (10)–(15) and (A.30) in the Supplementary Material, we have the fol-
lowing decomposition of the matrix:

X̂Al
= EAl

�Al
+ EAl

(�̂Al
− �Al

) − XAc
l
(ĈAl

− CAl
)�̂Al

(37)
= X̃Al

+ EAl
(�̂Al

− �Al
) − XAc

l
(ĈAl

− CAl
)�̂Al

,

where ĈAl
= (β̂j,l)j∈Al

denotes a (p −|Al|)×|Al | matrix of estimated regression
coefficients. It follows from (37) that

n−1X̂T
Al

X̂Am = η1 + η2 + η3 + η4,(38)
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where the first term is η1 = n−1X̃T
Al

X̃Am , the second and third terms are η2 =
n−1X̃T

Al
[EAm(�̂Am − �Am) − XAc

m
(ĈAm − CAm)�̂Am] and η3 = n−1[EAl

(�̂Al
−

�Al
) − XAc

l
(ĈAl

− CAl
)�̂Al

]T X̃Am , and the last term is η4 = n−1[EAl
(�̂Al

−
�Al

) − XAc
l
(ĈAl

− CAl
)�̂Al

]T [EAm(�̂Am − �Am) − XAc
m
(ĈAm − CAm)�̂Am]. We

will analyze these four terms separately.

Part 1. We start with the second and third terms η2 and η3. Since X̃Al
=

EAl
�Al

, we can rewrite η2 as

η2 = n−1�T
Al

ET
Al

[
EAm(�̂Am − �Am) − XAc

m
(ĈAm − CAm)�̂Am

]
(39)

= D1 − D2,

where D1 = �T
Al

(n−1ET
Al

EAm)(�̂Am − �Am) and D2 = �T
Al

(n−1XT
Ac

m
EAl

)T ·
(ĈAm − CAm)�̂Am . Note that the error matrices EAl

and EAm with l �= m are
independent of each other, and thus the mean of the random matrix n−1ET

Al
EAm

is 0. So the same concentration bound as in (A.34) in the Supplementary Material
applies with ξ1 replaced by n−1ET

Al
EAm . Taking t = [(δ + 1)(logp)/(cn)]1/2 in

(A.34) and applying Bonferroni’s inequality over 1 ≤ l �= m ≤ L lead to

P(E3) ≥ 1 − p2 · O(
e−cnt2) = 1 − O

{
p−(δ−1)} = 1 − o

{
p−(δ−2)},(40)

where the event E3 is defined as

E3 =
{

max
1≤l �=m≤L

∥∥n−1ET
Al

EAm

∥∥∞ ≤ t = O(λ)
}
.(41)

From now on, we condition on the event E ∩ E3, which has the same asymptotic
probability bound as E in view of (A.39) in the Supplementary Material and (40).
As shown in the proof of Lemma 2 in the Supplementary Material, it holds that
‖�Al

‖∞ = O(1) and ‖�̂Al
‖∞ = O(1). Thus, in the event E ∩ E3, we have

‖D1‖∞ = O
{
λmax

(
Kλ2, λ

)}
(42)

in view of (41) and (A.29) in the Supplementary Material.
For the second term D2 in (39), consider the |Al| × |Am| matrix

F = (
n−1XT

Ac
m

EAl

)T
(ĈAm − CAm) = F1 + F2,(43)

where F1 and F2 are defined through matrix multiplication by taking the rows of
n−1XT

Ac
m

EAl
and ĈAm − CAm from nodes in index sets Ac

m ∩ Ac
l and Al , respec-

tively. In view of (A.25) and (A.23) in the Supplementary Material, we have

‖F1‖∞ ≤ O(λ) · O(Kλ) = O
(
Kλ2)

.(44)

Denote by F3 the |Al|× |Am| submatrix of ĈAm − CAm given by rows correspond-
ing to nodes in Al . By Lemma 3 in the Supplementary Material, Theorem 3 of [43]
applies to show that

P(E4) = 1 − o
{
p−(δ−2)},(45)
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where E4 = {maxj∈Al,1≤l≤L ‖β̂j,l −βj,l‖∞ = O(Kαλ)}. In view of (7)–(9), using
similar arguments to those for proving (A.35) in the Supplementary Material with
t chosen to be [δ(logp)/(cn)]1/2 leads to

P(E5) = 1 − o
{
p−(δ−2)},(46)

where E5 = {max1≤l≤L ‖n−1XT
Al

EAl
− �−1

Al
‖∞ ≤ O(λ)}.

Hereafter, we condition on the event E ∩ (
⋂

3≤i≤5 Ei ), which has the same
asymptotic probability bound as E in view of (A.39) in the Supplementary Ma-
terial, (40), and (45)–(46). On this new event, it follows from (45)–(46) and the
fact of ‖�−1

Al
‖∞ = O(1) that

‖F2‖∞ = ∥∥(
n−1XT

Al
EAl

)T F3
∥∥∞ ≤ O(1) · O(

Kαλ
) = O

(
Kαλ

)
.(47)

Combining (43)–(44) and (47) together with the facts of ‖�Al
‖∞ = O(1) and

‖�̂Am‖∞ = O(1) gives

‖D2‖∞ = O
{
max

(
Kλ2,Kαλ

)}
.(48)

Since ηT
3 shares the same form as η2, putting (39), (42) and (48) together yields

P
{

max
1≤l �=m≤L

max
(‖η2‖∞,‖η3‖∞

) ≤ O
{
max

(
Kλ2,Kαλ

)}}
(49)

= 1 − o
{
p−(δ−2)}.

Part 2. We next consider the fourth term η4. Let us decompose it into four terms
as

η4 = G1 − G2 − G3 + G4,(50)

where the first term is G1 = n−1(�̂Al
− �Al

)ET
Al

EAm(�̂Am − �Am), the sec-

ond and third terms are G2 = n−1(�̂Al
− �Al

)ET
Al

XAc
m
(ĈAm − CAm)�̂Am and

G3 = n−1�̂Al
(ĈAl

− CAl
)T XT

Ac
l
EAm(�̂Am − �Am), and the last term is G4 =

n−1�̂Al
(ĈAl

− CAl
)T XT

Ac
l
XAc

m
(ĈAm − CAm)�̂Am . In view of (A.40) in the Sup-

plementary Material and (41), we see that on the event E ∩ E3, it holds that

‖G1‖∞ ≤ O
{
max

(
Kλ2, λ

)} · O(λ) · O{
max

(
Kλ2, λ

)}
(51)

= O
{
λ
[
max

(
Kλ2, λ

)]2}
.

Note that G2 = (�̂Al
− �Al

)F�̂Am in light of (43), and GT
3 shares the same form

as G2. Thus on the event E ∩ (
⋂

3≤i≤5 Ei ), combining (A.29) in the Supplementary
Material, (43)–(44), and (47) along with the fact of ‖�̂Am‖∞ = O(1) leads to

max
(‖G2‖∞,‖G3‖∞

) ≤ O
{
max

(
Kλ2, λ

) · max
(
Kλ2,Kαλ

)}
.(52)
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For the last term G4, observe that an application of the Cauchy–Schwarz in-
equality together with bound (A.24) in the Supplementary Material entails∥∥n−1(ĈAl

− CAl
)T XT

Ac
l
XAc

m
(ĈAm − CAm)

∥∥∞ ≤ O
(
Kλ2)

.

Since ‖�̂Al
‖∞ = O(1), it follows from the above bound that

‖G4‖∞ ≤ O
(
Kλ2)

.(53)

Thus, combining (50)–(53) results in

P
{

max
1≤l �=m≤L

‖η4‖∞ ≤ O
{
max

(
Kλ2, λ

)}} = 1 − o
{
p−(δ−2)}.(54)

Part 3. We finally consider the first term η1. In view of (4)–(8), n−1X̃T X̃ is
the oracle sample covariance matrix estimator for the precision matrix �. Since x̃
defined in (3) is a p-variate Gaussian random vector, applying similar arguments
to those for proving (A.35) in the Supplementary Material with t chosen to be
[(δ + 1)(logp)/(cn)]1/2 leads to

P
{∥∥n−1X̃T X̃ − �

∥∥∞ ≤ O(λ)
} = 1 − o

{
p−(δ−2)},(55)

which provides a uniform bound on η1 = n−1X̃T
Al

X̃Am .
Therefore, combining (38), (49) and (54)–(55) gives bound (36) uniformly over

all pairs of index sets (Al,Am) with l �= m. Observe that the order in (36) is in
fact O(Kαλ) since the rate of convergence O(Kαλ) dominates that of O(Kλ2)

in light of the assumptions of K1+αλ = o(1) and α ≥ 0. Then in view of (35),
the proof of Theorem 1 concludes by noticing that all these uniform bounds hold
simultaneously with significant probability 1 − o{p−(δ−2)}.

A.2. Proof of Theorem 2. Since C in ω∗
0 = CKαλ is some sufficiently large

positive constant, Theorem 1 entails that with probability 1 − o{p−(δ−2)}, it holds
that

‖�̂ISEE,ini − �‖∞ < cω∗
0,(56)

where c < 1/2 is some positive constant. Thus in view of the assumption that ω0 =
min{|ωjk| : (j, k) ∈ supp(�)} ≥ ω∗

0, by (56) we have supp(�̂ISEE,g) ⊂ supp(�)

when τ ≥ cω∗
0, and supp(�) ⊂ supp(�̂ISEE,g) when τ ≤ ω0 − cω∗

0. This shows
that supp(�̂ISEE,g) = supp(�) for any τ ∈ [cω∗

0,ω0 − cω∗
0], which proves part (a)

of Theorem 2.
For part (b), we first make an important claim that the results of Theorem 1 hold

for the initial ISEE estimator �̂ISEE,ini as defined in (16) but based on a subsample
of n0 rows of the estimated oracle empirical matrix X̃, where n0/n is bounded
away from 0. This claim follows from the same arguments as in the proof of The-
orem 1, by noting that bounds (A.24)–(A.25) in the Supplementary Material hold
when the subsample is used since n0 is of the same order as n. Observe that both
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n1 and n2 are of the same order as n by the assumption that n1/n2 is bounded
away from 0 and ∞. Thus, with probability 1 − o{p−(δ−2)}, the bound (56) also

applies to both estimators �̂
1,ν
ISEE,ini and �̂

2,ν
ISEE,ini, that is,∥∥�̂i,ν

ISEE,ini − �
∥∥∞ < cω∗

0(57)

for i = 1,2.
As in [3], without loss of generality we work with the case of N = 1 in

(18). In view of the proof for part (a), to prove the sure screening property
supp(�) ⊂ supp(�̂ISEE,g) it suffices to show that with probability 1 − o{p−(δ−2)},
the threshold τ chosen by the cross-validation is bounded above by τ0 = ω0 −cω∗

0.
Here, we use the convention that the smallest τ is preferred when the minimizer of
R(τ) is not unique. To this end, we need only to show that R(τ) ≥ R(τ0) whenever
τ ≥ τ0.

Note that when τ = τ0, we have supp{Tτ (�̂ISEE,ini)} = supp(�) by part (a),

and supp{Tτ (�̂
i,ν
ISEE,ini)} = supp(�) for i = 1,2 in light of (57). Thus, when τ

increases from τ0, the two matrices Tτ (�̂
1,ν
ISEE,ini) and Tτ0(�̂

1,ν
ISEE,ini) can differ only

over entries in supp(�). Assume that M nonzero entries of Tτ0(�̂
1,ν
ISEE,ini) become

zero in Tτ (�̂
1,ν
ISEE,ini). Then by some simple algebra, it follows from (57) and the

assumption of ω0 = min{|ωjk| : (j, k) ∈ supp(�)} ≥ ω∗
0 that

R(τ) − R(τ0) ≥ M
[(

ω0 − cω∗
0
)2 − (

2cω∗
0
)2]

(58)
≥ M(1 − 3c)(1 + c)

(
ω∗)2

0 ≥ 0,

as long as we choose c ≤ 1/3 in part (a). This completes the proof of part (b) of
Theorem 2.

Finally for part (c), note that �̂ISEE,g from either of parts (a) and (b) satisfies that
supp(�) ⊂ supp(�̂ISEE,g). Using the same arguments as in the proof of Lemma 2
in the Supplementary Material with t chosen as [(δ +1)(logp)/(cn)]1/2 in (A.34),
we can show that with probability 1 − o{p−(δ−2)}, it holds uniformly over all pairs
of nodes A = {j, k} that ‖�̂A − �A,A‖∞ = O{max(Kλ2, λ)}. This result along
with supp(�) ⊂ supp(�̂ISEE,g) yields the desired bound (22) in part (c), by noting
that the order O(λ) dominates O(Kλ2) in view of the assumptions of K1+αλ =
o(1) and α ≥ 0. We conclude the proof of part (c) of Theorem 2 by showing the
sure screening property which can be exploited to reduce the computational cost
of the refinement step for estimating the link strength. When the ISEE estimator
with refinement �̂ISEE updates the (j, k)-entry of �̂ISEE,g , two univariate linear
regression models as defined in (11) with A = {j, k} are considered for nodes j

and k, respectively. In light of CA = −�Ac,A�−1
A,A in model (9), it is easy to see

that

supp(βj ), supp(βk) ⊂ {
m ∈ Ac : |ωjm| or |ωkm| �= 0

}
.(59)
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Denote by M̂jk = {m ∈ Ac : |ω̂jm| or |ω̂km| �= 0}, where �̂ISEE,g = (ω̂jk). Thus,
by (59) and supp(�) ⊂ supp(�̂ISEE,g), with probability 1 − o{p−(δ−2)} it holds
uniformly over all pairs of nodes (j, k) that

supp(βj ), supp(βk) ⊂ M̂jk,(60)

which gives the desired sure screening property for fitting model (11).
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SUPPLEMENTARY MATERIAL

Supplement to “Innovated scalable efficient estimation in ultra-large Gaus-
sian graphical models” (DOI: 10.1214/15-AOS1416SUPP; .pdf). Due to space
constraints, the proofs of Theorem 3 and Proposition 1 and additional technical
details are provided in the Supplementary Material [21].
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