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INFERENCE FOR SINGLE-INDEX QUANTILE REGRESSION
MODELS WITH PROFILE OPTIMIZATION

BY SHUJIE MA AND XUMING HE

University of California, Riverside and University of Michigan

Single index models offer greater flexibility in data analysis than linear
models but retain some of the desirable properties such as the interpretability
of the coefficients. We consider a pseudo-profile likelihood approach to esti-
mation and testing for single-index quantile regression models. We establish
the asymptotic normality of the index coefficient estimator as well as the op-
timal convergence rate of the nonparametric function estimation. Moreover,
we propose a score test for the index coefficient based on the gradient of
the pseudo-profile likelihood, and employ a penalized procedure to perform
consistent model selection and model estimation simultaneously. We also use
Monte Carlo studies to support our asymptotic results, and use an empirical
example to illustrate the proposed method.

1. Introduction. Quantile regression as an alternative to modeling the condi-
tional mean function has gained attention since the seminal work of [Koenker and
Bassett (1978)]. By direct modeling of the conditional quantile functions, quan-
tile regression leads to a more comprehensive regression analysis than the least
squares methods. Let Y be the response variable, and X = (X1, . . . ,Xp)T be the
p-dimensional covariates. For any given 0 < τ < 1 and x ∈Rp , a characterization
of the τ th conditional quantile of Y is

Gτ(x) = arg min
a

E
{
ρτ (Y − a)|X = x

}
,(1)

where ρτ (s) = τs − sI (s < 0) is the quantile loss function. It is often convenient
to assume that Gτ(x) has a specific parametric form such as Gτ(x) = ατ + xTβτ ,
where (ατ ,β

T
τ )T ∈ Rp+1 is an unknown coefficient vector. For better flexibility,

nonparametric quantile regression has also been studied in the literature, including
the kernel-based methods [Bhattacharya and Gangopadhyay (1990), Fan, Hu and
Truong (1994), Yu and Jones (1998)] and the spline-based methods [He and Shi
(1994), Koenker, Ng and Portnoy (1994)]. When the covariates are multivariate,
a fully nonparametric model suffers from the “curse of dimensionality,” but some
asymptotic theory is available in Chaudhuri (1991) and He, Ng and Portnoy (1998)
among others.
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To achieve dimension reduction, a variety of structural models have been con-
sidered in quantile regression. De Gooijer and Zerom (2003), Horowitz and Lee
(2005) and Koenker (2011) proposed additive quantile regression models. Kim
(2007) and Wang, Zhu and Zhou (2009) considered varying coefficient models. In
this paper, we consider a semiparametric single-index model by assuming Gτ(·) to
be a function of a linear index xTβτ . Single-index models were first proposed by
Ichimura (1993) and have been widely used in the literature. The existing methods
of estimating parameters of the conditional mean in a single-index model include
the backfitting algorithm [Carroll et al. (1997)], the penalized spline estimation
[Yu and Ruppert (2002)], the minimum average variance estimation [MAVE, Xia,
Tong and Li (1999) and Xia and Härdle (2006)], and the profile least squares es-
timation [Liang et al. (2010)]. For estimation of conditional quantiles under re-
strictive settings, asymptotic results have been obtained by Zhu, Huang and Li
(2012) assuming a linearity condition on X and by Zou and Zhu (2014) for i.i.d.
error models. Moreover, Wu, Yu and Yu (2010) proposed a modified version of the
MAVE method, and Kong and Xia (2012) refined the algorithm by introducing a
penalty term. Most authors considered estimation of the index coefficient and the
nonparametric function iteratively. To achieve estimation consistency, the iterative
algorithm requires a consistent initial estimate of the index. Wu, Yu and Yu (2010)
suggested the root-n consistent average derivative quantile estimator proposed in
Chaudhuri, Doksum and Samarov (1997) as the initial estimate.

The focus of the present paper is the method of profiling for quantile estimation
and inference. For a given βτ , the function Gτ(·) can be estimated by a spline
[de Boor (2001)] by minimizing the sample analogue of (1), and the resulting
estimator Ĝτ (·,βτ ) of Gτ(·) is a function of βτ . By replacing Gτ(·) with its esti-
mate Ĝτ (·,βτ ), we obtain the estimator of βτ minimizing the objective function
over βτ . The same idea in the profile least squares estimation via kernel smooth-
ing has been studied in Liang et al. (2010). Empirical studies in Liang et al. (2010)
show that the profile method leads to a more stable estimate than other iterative
methods, which is corroborated by our numerical studies for quantile regression.
We also demonstrate that the profile estimator is less sensitive to the starting value
than the iterative methods.

We consider the profile approach for another important reason, that is, the ap-
proach defines naturally a single objective function over βτ , making it convenient
for statistical inference on the index parameter. As we know from the work of
Murphy and van der Vaart (2000), among others, profile likelihood is an attractive
likelihood-based approach to inference in semiparametric models. The approach
we take in this paper is based on profile pseudo-likelihood, where the pseudo-
likelihood corresponds to the quantile objective function. The profile pseudo-
likelihood enables us to develop a score test based on the gradient of the quantile
objective function for the null hypothesis of zero coefficients in βτ , the perfor-
mance of which is more stable than other tests based on the asymptotic variance–
covariance matrix. The main difficulty in developing the score test statistic is the
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lack of differentiability of Ĝτ (·,βτ ) as a function of βτ , and as a result, the rank
score of the profile quantile loss function has to be approximated. We derive an
effective approximation to overcome the lack of differentiability by considering a
smooth version of the loss function. Similar to the rank score test in linear models,
the proposed test is shown to have a chi-square limiting distribution under the null
hypothesis.

The fact that we have a single objective function of βτ also enables us to con-
sider, in the presence of multiple covariates, the method of penalized estimation,
which shrinks some coefficients of the single-index components to zero. We ap-
ply the local linear approximation (LLA) method proposed in Zou and Li (2008),
and show that the resulting estimator has desired asymptotic properties. Since
the pseudo-likelihood function is not convex in βτ , the convexity lemma [Pollard
(1991)] and the quadratic approximation used for analyzing linear quantile regres-
sion estimators cannot be directly applied. In this paper, we verify that the profile
approach leads to a consistent and asymptotically normal estimator of the index
parameter, and it has the same asymptotic variance as the iterative estimator of
Wu, Yu and Yu (2010).

The rest of this paper is organized as follows. We describe the profile approach
to quantile regression estimation in a single-index model in Section 2, and its pe-
nalized version for variable selection in Section 3. In both cases, we provide the
asymptotic properties of the proposed estimators. Some implementation details are
given in Section 4. Section 5 proposes the score test based on the gradient of the
profile quantile loss function. Such tests are made possible by the availability of a
single objective function in the profile approach. In Sections 6 and S.1, we evalu-
ate the finite sample properties of the proposed procedures via simulation studies.
Section 7 illustrates the proposed method through an example. Some concluding
remarks are given in Section 8. All technical details including detailed proofs are
provided in the Appendix and on-line supplemental materials [Ma and He (2015)].

2. Profile estimation. In this paper, we consider a single-index model for the
conditional quantile such that the τ th quantile of Y given X = x is Gτ(xTβ0

τ ) for
some unknown index parameter β0

τ and unknown function Gτ , where x lies in a
compact set C . For convenience, we write

Y = Gτ

(
XTβ0

τ

) + ε,(2)

where the error term satisfies P(ε ≤ 0|X) = τ for any X ∈ C . Note that the quantile
regression is τ -specific, so is the error term ε.

Due to the nonparametric nature of Gτ , the scale of the index parameter β0
τ is

not identifiable. Throughout the paper, we assume that β0
τ belongs to the parameter

space

� = {
β = (β1, . . . , βp)T : ‖β‖2 = 1, β1 > 0,β ∈ Rp}

,
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where ‖a‖2 denotes the L2 norm for any vector a = (a1, . . . , ap)T, and p is a
fixed number, not increasing with n. The particular choice of �, however, is not
important. To identify the function Gτ , we define the support of the function as
[a, b], where a and b are the infimum and the supremum of {xT β , x ∈ C , β ∈ �},
respectively.

We consider statistical inference based on a random sample (Xi , Yi : 1 ≤ i ≤ n)

from the above model. Let U(x;β) = xTβ be the linear index. Now for any given
β ∈ � and u ∈ [a, b], we define G̃τ (u,β) to be the τ th quantile function of Y

given XTβ = u. It then holds that β0
τ ≡ arg minβ∈� L∗

τ (β), where

L∗
τ (β) = E

[
ρτ

{
Y − G̃τ

(
XTβ,β

)} − ρτ (Y )
]
,

and we assume throughout the paper that β0
τ is the unique minimizer of L∗

τ (β).
Moreover, Gτ(XTβ0

τ ) = G̃τ (XTβ0
τ ,β

0
τ ). As we will make clear later, the interval

[a, b] does not need to be pre-specified in our estimation procedure. It is the ex-
istence of such an interval on which Gτ could be defined that is required for the
theoretical results in the paper.

2.1. Estimation of index. First, we introduce the B-splines that will be used
to approximate the unknown function G̃τ . Let a = t0 < t1 < · · · < tN < b = tN+1
be a partition of [a, b] into subintervals Ij = [tj , tj+1), 0 ≤ j ≤ N − 1 and IN =
[tN , tN+1], satisfying

max
0≤j≤N

|tj+1 − tj |/ min
0≤j≤N

|tj+1 − tj | ≤ M

uniformly in n for some constant 0 < M < ∞, where N = Nn increases with the
sample size n. Consider the space of polynomial splines of order m ≥ 2 on [a, b].
We write the normalized B spline basis of this space [de Boor (2001), page 89] as
B(u) = {Bj(u) : 1 ≤ j ≤ Jn}T, where Jn = Nn +m. In the estimation problem, the
interval [a, b] is unknown. In the empirical implementations, we use the minimal
and maximal values of (XT

i β,1 ≤ i ≤ n) as the two boundary points to generate
B-spline basis functions Bj(u) for each given β . Outside this interval, G̃τ (·,β)

can be defined in any natural way without affecting the results.
By the result in de Boor (2001), the quantile function can be approximated well

by a spline function such that Gτ(xTβτ ) ≈ B(xTβτ )
Tθ τ for some θ τ ∈ RJn . Thus,

the estimators of the spline coefficients θ τ and the parameter βτ are obtained by
minimizing the following pseudo-likelihood function

Lτn(θ,β) = n−1
n∑

i=1

ρτ

{
Yi − B

(
XT

i β
)T

θ
}
.(3)

We then adopt the profile principle described in Severini and Staniswalis (1994)
and Murphy and van der Vaart (2000) for estimation of parameters in semi-
parametric models to define the profile pseudo-likelihood function of β given



1238 S. MA AND X. HE

as

L∗
τn(β) = min

θ∈RJn
Lτn(θ ,β) = Lτn

(̃
θ τ (β),β

)
(4)

= n−1
n∑

i=1

ρτ

{
Yi − B

(
XT

i β
)T

θ̃ τ (β)
}
,

where θ̃ τ (β) is the minimizer of Lτn(θ,β) over θ ∈ RJn for given β . Thus, the
proposed profile estimator of β0

τ is taken to be

β̂τ = arg min
β∈�

{
L∗

τn(β)
}
.

As discussed in Severini and Staniswalis (1994), in the objective function L∗
τn(β),

the solutions θ̃ τ (β) from minimizing Lτn(θ ,β) may or may not have a closed-
form expression in terms of β depending on the model of study. Clearly, for
our single-index quantile model, an explicit form for θ̃ τ (β) is not available. We
then adopt the idea described in Section 6 of Severini and Staniswalis (1994) for
computation. In our algorithm, the estimate of βτ is obtained by nonlinear opti-
mization of the objective function L∗

τn(β) in which θ̃ τ (β) is written as a func-
tion of β through optimization of Lτn(θ ,β). Moreover, it is apparent that for
any given β , the spline estimate of G̃τ (u,β) is G̃τn(u,β) = B(u)Tθ̃ τ (β). De-

note X = (X1, . . . ,Xn)
T. Moreover, for given β ∈ �, let ˜̃θ τ (β) be the minimizer

of E{Lτn(θ ,β)|X}, and ˜̃Gτn

(
XT

i β,β
) = B

(
XT

i β
)T˜̃θ τ (β).(5)

To study the asymptotic properties of the estimator, some regularity conditions
are needed. Let Hr be the collection of all functions on [a, b] such that the mth
order derivative satisfies the Hölder condition of order γ with r ≡ m + γ . That is,
there exists a constant C0 ∈ (0,∞) such that for each φ ∈Hr ,∣∣φ(m)(u1) − φ(m)(u2)

∣∣ ≤ C0|u1 − u2|γ(6)

for any a ≤ u1, u2 ≤ b. We make the following assumptions:

(C1) The density function f (·) of XTβ is bounded away from zero and infinity
on its support, for β in a neighborhood of β0

τ .
(C2) The conditional density of fY (y|x) of Y given X = x satisfies the Lips-

chitz condition of order 1, and fY (G̃τ (xTβ,β)|x) > 0 for β ∈ � and x ∈ C . Also,
we assume supx∈C ,y fY (y|x) < ∞.

(C3) G̃τ (·,β) ∈ Hr for some r > 3/2, and for any β ∈ �.

Let a0 and b0 be the infimum and the supremum of xTβ0
τ over x ∈ C . For

u ∈ [a0, b0], let ϕ(u) = {ϕ1(u), . . . , ϕp(u)}T be a vector of functions defined on
[a0, b0], and E∗(X|XTβ0

τ ) is the minimizer of

E
{
fε(0|X)

∥∥X − ϕ
(
XTβ0

τ

)∥∥2
2

}
,
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over ϕ(·), where fε(ε|x) is the conditional density of ε given X = x. To be explicit,
we have

E∗(
X|XTβ0

τ

) = E{fε(0|X)X|XTβ0
τ }

E{fε(0|X)|XTβ0
τ }

.(7)

Additional assumptions are now stated as follows:

(C4) Each component of E∗(X|XTβ0
τ = u), as a function of u ∈ [a0, b0] ⊆

[a, b], has a continuous and bounded first derivative.
(C5) There exists a constant c0 ∈ (0,∞) such that

sup
X

∥∥∂ ˜̃Gτn

(
XT

i β,β
)
/∂β − ∂ ˜̃Gτn

(
XT

i β0
τ ,β

0
τ

)
/∂β

∥∥
2 ≤ c0

∥∥β − β0
τ

∥∥
2,

for β in any neighborhood of β0
τ .

Conditions (C1)–(C4) are commonly used in the nonparametric smoothing
literature; see, for example, Cui, Härdle and Zhu (2011), He and Shi (1996).
Condition (C5) is a typical assumption in the regression literature, which can
be easily satisfied when p is fixed. By Condition (C2) and the fact that ε =
Y − G̃τ (XTβ0

τ ,β
0
τ ), we have that fε(ε|X = x) satisfies the Lipschitz condition of

order 1 and fε(0|X) > 0. Because ˜̃θ τ (β) is a solution to ∂E{Lτn(θ ,β)|X}/∂θ = 0,
by the implicit function theorem, Condition (C6) can follow from some smooth-
ness condition on fε(ε|x). We first state the consistency result. For any positive
numbers an and bn, we use an � bn to mean anb

−1
n = o(1).

THEOREM 1 (Consistency). Under Conditions (C1)–(C3), and Jn → ∞ and
Jn � n, we have ‖β̂τ − β0

τ‖2 = op(1).

Recall that Jn is the dimension of the spline space. To prepare for the asymptotic
normality result, we use A⊗2 = AAT for any matrix A, and let A+ be the Moore–
Penrose inverse of A. We define

� = E
[
fε(0|X)

{
G(1)

τ

(
XTβ0

τ

)
X̃

}⊗2]
, 
 = E

[{
G(1)

τ

(
XTβ0

τ

)
X̃

}⊗2]
,(8)

where G
(1)
τ (·) denotes the first-order derivative of Gτ(·), and

X̃ = X − E∗(
X|XTβ0

τ

)
.

THEOREM 2 (Asymptotic normality). Under Conditions (C1)–(C5), and if
max{(n log(n))1/(3r−1/2), n1/(2r+2)} � Jn � n1/4/(logn)5/4, we have

√
n(β̂τ −

β0
τ ) → N(0, τ (1 − τ)�+
�+), as n → ∞.

REMARK 1. Note that by the definition of � given in (8), we have �β0
τ = 0,

so � is a singular matrix. Hence, we need to use the Moore–Penrose inverse of
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� in Theorem 2. In model (2), if we assume Y − Gτ(XTβ0
τ ) is independent of X,

the asymptotic variance of
√

n(β̂τ − β0
τ ) reduces to τ(1 − τ){fε(0)}−2
+, where

fε(ε) is the density function of ε. This special case also provides a correction of
Theorem 2 of Zou and Zhu (2014).

REMARK 2. To conduct inference for β0
τ by using the asymptotic normality

given in Theorem 2, we need to estimate the asymptotic covariance matrix. For
estimating 
, we can use its sample analogue. For the estimation of �, we refer
to Section 3.4 of Koenker (2005) for possible approaches, but careful selection of
smoothing parameters is needed.

2.2. Estimation of the nonparametric function Gτ . The spline estimator of
Gτ(u) is simply G̃τn(u, β̂τ ) = B(u)Tθ̂ τ (β̂τ ), where θ̂ τ (β̂τ ) minimizes

Lτn(θ , β̂τ ) = n−1
n∑

i=1

[
ρτ

{
Yi − B

(
XT

i β̂τ

)T
θ
}]

,

over θ . The following theorem presents the global convergence rate of the estima-
tor for the nonparametric function.

THEOREM 3. Under the conditions of Theorem 2, we have

n−1
n∑

i=1

{
G̃τn

(
XT

i β̂τ , β̂τ

) − Gτ

(
XT

i β0
τ

)}2 = Op

(
J−2r

n + Jnn
−1)

.

REMARK 3. If the number of spline basis functions Jn is of the order
n1/(2r+1), which satisfies the order requirements given in Theorem 3 for r > 3/2,
the optimal global convergence rate of n−r/(2r+1) is attained for Gτ . Also note
that Gτ(u) can be consistently estimated only for u ∈ [a0, b0] as specified in Con-
dition (C4), even though the estimate of Gτ is used on a broader interval [a, b].

3. Penalized estimation. One advantage of profiling is the availability of a
single objective function as a function of β , with which a common penalty to-
ward sparsity can be introduced to regularize the coefficient when several to many
covariates are present. More specifically, we consider minimization of

L∗
τn(β) +

p∑
j=1

ωjpλn

(|βj |)
with respect to β = (β1, . . . , βp)T, where pλn(·) is a penalty function with a reg-
ularization parameter λn, ω = (ω1, . . . ,ωp)T is a weighting vector, and L∗

τn(β) is
defined in (4).

Many forms of the penalty functions are available, including convex penalties
like LASSO [Tibshirani (1996)] and the nonconvex penalties like SCAD [Fan and
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Li (2001)]. In our setting, the objective function is nonconvex even if a convex
penalty is used. To have a computationally tractable and stable solution, we pro-
pose a modification of the local linear approximation (LLA) method used in Zou
and Li (2008) and Kai, Li and Zou (2011) with the SCAD penalty. The details are
given as follows.

Let the profile estimator of βτ obtained from Section 2.1 be the initial estimate,

denoted by β̂
0
τ = (β̂0

τ1, . . . , β̂
0
τp)T. Also let

G̃(1)
τn (u,β) = ∂G̃τn(u,β)/∂u = {

∂B(u)/∂u
}T

θ̃ τ (β).

We consider a linear approximation

G̃∗
τn

(
xTβ, β̂

0
τ

) = G̃τn

(
xTβ̂

0
τ , β̂

0
τ

) + G̃(1)
τn

(
xTβ̂

0
τ , β̂

0
τ

)
xT(

β − β̂
0
τ

)
,

and define a new objective function

Qτn(β) = L∗∗
τn(β) +

p∑
j=1

ωjp
′
λn

(∣∣β̂0
τj

∣∣)|βj |,(9)

where

L∗∗
τn(β) = n−1

n∑
i=1

[
ρτ

{
Yi − G̃∗

τn

(
XT

i β, β̂
0
τ

)}]
,

and

p′
λ(β) = λ

{
I (β ≤ λ) + (aλ − β)+

(a − 1)λ
I (β > λ)

}
,

for some a > 2. In our empirical work, we take a = 3.7, which is used in Fan

and Li (2001). Given the initial estimate β̂
0
τ , the new objective function Qτn(β)

is similar to the penalized linear quantile regression problem [Wu and Liu (2009)]

with linear predictors G̃
(1)
τn (XT

i β̂
0
τ , β̂

0
τ )Xij , 1 ≤ j ≤ p, and adjusted response

Y ∗
i = Yi − G̃τn

(
XT

i β̂
0
τ , β̂

0
τ

) + G̃(1)
τn

(
XT

i β̂
0
τ , β̂

0
τ

)
XT

i β̂
0
τ ,

for each i = 1, . . . , n, and thus it can be solved via linear programming. The
penalty term in (9) is a weighted �1 penalty with the weight ωjp

′
λn

(|β̂0
τj |) for each

j = 1, . . . , p. To achieve the right scaling, we choose ωj = √
τ(1 − τ)σ̂j , where

σ̂ 2
j = n−1 ∑n

i=1 G̃
(1)
τn (XT

i β̂
0
τ , β̂

0
τ )

2X2
ij . A similar scale factor is given in Belloni and

Chernozhukov (2011). Based on the above discussion, we propose to use

β̂
OSE
τ = arg min

β∈�

Qτn(β)

as the one-step penalized profile estimator, whose asymptotic property is given
below.
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Without loss of generality, we assume that the true model has the index pa-
rameter β0

τ = {(β0
τ1)

T, (β0
τ2)

T}T, where β0
τ1 is the p1 × 1 dimensional vector

with nonzero components, and β0
τ2 is the (p − p1) × 1 vector of zeros. Accord-

ingly, let X1 be the vector which consists of the first p1 elements of X, and
�̃1 = E[fε(0|X1){G(1)

τ (XT
1β0

τ1)X1}⊗2], and 
̃1 = E[{G(1)
τ (XT

1β0
τ1)X1}⊗2]. We

also partition the estimator β̂
OSE
τ into two corresponding parts, β̂

OSE
τ1 ∈ Rp1 and

β̂
OSE
τ2 ∈ Rp−p1 .

THEOREM 4. Under the conditions of Theorem 2, and n−1/2 � λn � 1, we

have as n → ∞, (i) (sparsity) β̂
OSE
τ2 = 0 with probability approaching 1; and

(ii) (asymptotic normality)
√

n
(
β̂

OSE
τ1 − β0

τ1
) → N

(
0, τ (1 − τ)�̃+

1 
̃1�̃
+
1

)
.

Note that the one-step estimator β̂
OSE
τ1 of β0

τ1 may not achieve the same effi-
ciency obtained under the reduced model with only p1 covariates. However, due
to the selection consistency, we can always fit the model again to estimate the pa-
rameters with full asymptotic efficiency after the inactive covariates are removed
through the penalty.

4. Implementation. There are tuning parameters to be chosen in the proposed
profile estimation method. We take the following steps to balance computational
complexity with good accuracy.

For the unpenalized profile estimate, we use the Nelder–Mead algorithm in
the R package “optim” to obtain the minimizer of L∗

τn(βτ ) given in (4), and
then normalize the solution to obtain the estimate. We use a finite-difference ap-
proximation to calculate the gradient. In the estimation of β̂τ , we simply use
Nn = �Cn1/(2m+1)� + 1 equally space knots for the order m B-splines to facili-
tate computation, where C > 0 is a constant and �a� denotes the integer part of
a number, so that the estimator of the nonparametric Gτ(·) achieves the optimal
convergence rate. In our empirical work, we use C = 1, but the estimates of βτ are
not very sensitive to this choice of C within a reasonable range. In the estimation
of Gτ of Section 2.2, we allow the number of internal knots Nn to be chosen to
correspond to the first local minimum of

BIC1(Nn) = log
{
Lτn(̂θ τ )

} + logn

2n
(Nn + m).

In the penalized profile estimation, we choose the tuning parameter λn to corre-
spond to the first local minimum of

BIC(λn) = log
[
L∗∗

τn

{
β̂

OSE
τ (λn)

}] + logn

2n
p̂1,
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where p̂1 is the number of estimated nonzero parameters in the selected model.
A similar strategy is used in Wang, Li and Tsai (2007).

To find the minimizer of (9), we introduce some slack variables, and the problem
is then equivalent to minimizing

n∑
i=1

[
τξi + (1 − τ)ζi

] + n

p∑
j=1

ωjp
′
λn

(∣∣β̂0
τj

∣∣)(β+
j + β−

j

)
subject to

ξi ≥ 0, ζi ≥ 0,

ξi − ζi = Yi − G̃∗
τn

(
XT

i

(
β+ − β−)

, β̂
0
τ

)
, i = 1, . . . , n,

β+
j ≥ 0, β−

j ≥ 0, j = 1, . . . , p,

where β+ = (β+
1 , . . . , β+

p )T and β− = (β−
1 , . . . , β−

p )T are the positive and negative
parts of the vector β componentwise. This is a standard linear program, and our
parameter estimate is the normalized value of β from the optimization problem.

5. Hypothesis testing. In the quantile regression literature, it is well known
that the rank score (RS) test, which is a score test based on the gradient of the
quantile objective function, is a powerful test on the parameter βτ . It was demon-
strated in Kocherginsky, He and Mu (2005), for example, the RS test is simple to
use and has a robust performance. Thanks to the availability of a single objective
function in the profile approach, we develop a profile RS test in this section. The
main difficulty in this development is the lack of differentiability of θ̃ τ (β) as a
function of β , and as a result, the rank score of the profile quantile loss function
has to be approximated. In this section, we derive an effective approximation to
overcome the lack of differentiability.

Without loss of generality, we consider the parameter vector as βτ =
(βT

τ1,β
T
τ2)

T, where βτ1 and βτ2 are p1 × 1 and (p −p1)× 1 dimensional vectors,
respectively. Accordingly, Xi is partitioned into X1i and X2i .

We consider testing the null hypothesis H0 : βτ2 = 0(p−p1) versus the alterna-

tive hypothesis that βτ2 is nonzero. Let β̂
N
τ be the estimator that minimizes L∗

τn(β)

under H0, that is,

β̂
N
τ = {(

β̂
N
τ1

)T
p1×1,

(
β̂

N
τ2

)T
(p−p1)×1

}T
,

where β̂
N
τ2 = 0(p−p1)×1. We now consider a smooth version of the profile quantile

loss function

L̃∗
τn(β) = n−1

n∑
i=1

[
ρτ

{
Yi − ˜̃Gτn

(
XT

i β,β
)}]

= n−1
n∑

i=1

[
ρτ

{
Yi − B

(
XT

i β
)T˜̃θ τ (β)

}]
,
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where ˜̃Gτn(XT
i β,β) is defined in (5) and its score

s2
(
β̂

N
τ

) = {−∂L̃∗
τn

(
β̂

N
τ

)
/∂β2

}
(p−p1)×1

= n−1
n∑

i=1

ρ(1)
τ

{
Yi − ˜̃Gτn

(
XT

i β̂
N
τ , β̂

N
τ

)}{
∂ ˜̃Gτn

(
XT

i β̂
N
τ , β̂

N
τ

)
/∂β2

}
,

where ρ
(1)
τ (u) = τI (u ≥ 0) + (τ − 1)I (u < 0) and

∂ ˜̃Gτn

(
XT

i β̂
N
τ , β̂

N
τ

)
/∂β2

= {
∂B

(
XT

i β̂
N
τ

)T
/∂β2

}˜̃θ τ

(
β̂

N
τ

) + {
∂
˜̃θ τ

(
β̂

N
τ

)T
/∂β2

}
B

(
XT

i β̂
N
τ

)
,

which is the partial derivative of ˜̃Gτn(XT
i β,β) taken with respect to β2 with the

value evaluated at β̂
N
τ , and β = ((β1)

T
p1×1, (β2)

T
(p−p1)×1)

T. Clearly, ˜̃θ τ (β̂
N
τ ) is not

a function of the sample, but it is proven in the Appendix that{
∂ ˜̃Gτn

(
XT

i β̂
N
τ , β̂

N
τ

)
/∂β2

} = G(1)
τ

(
XT

i β̂
N
τ

)
X̃2i + op(1)

= G̃(1)
τn

(
XT

i β̂
N
τ , β̂

N
τ

)
X̂2i + op(1),

where

X̃ki = Xki − E∗(
Xki |XT

i β0
τ

) = Xki − E{fε(0)Xki |XT
i β0

τ }
E{fε(0)|XT

i β0
τ }

= Xki − E
(
Xki |XT

i β0
τ

)
,

under the assumption that fε(0|X) = fε(0), and X̂ki = Xki − Ê(Xki |XT
i β̂

N
τ )

for k = 1,2, where G̃
(1)
τn (XT

i β̂
N
τ , β̂

N
τ ) and Ê(Xki |XT

i β̂
N
τ ) are spline estimators of

G
(1)
τ (XT

i β̂
N
τ ) and E(Xki |XT

i β̂
N
τ ), respectively, given as

Ê
(
Xki |XT

i β̂
N
τ

) = B
(
XT

i β̂
N
τ

)T
{

n∑
i=1

B
(
XT

i β̂
N
τ

)
B

(
XT

i β̂
N
τ

)T
}−1

(10)

×
{

n∑
i=1

B
(
XT

i β̂
N
τ

)
Xki

}
.

Recall that

G̃(1)
τn (u,β) = ∂G̃τn(u,β)/∂u = {

∂B(u)/∂u
}T

θ̃ τ (β),

then

G̃(1)
τ

(
XT

i β̂
N
τ , β̂

N
τ

) = B(1)(XT
i β̂

N
τ

)T
θ̃ τ

(
β̂

N
τ

)
.
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To approximate the variance–covariance matrix of the score, let ĝτk,i =
G̃

(1)
τ (XT

i β̂
N
τ , β̂

N
τ )X̂2i , ĝτ,i = G̃

(1)
τ (XT

i β̂
N
τ , β̂

N
τ )X̂i , and 
̂nkl = n−1 ∑n

i=1 ĝτk,i ĝ
T
τ l,i

for k, l = 1,2, and putting them together, let


̂n = n−1
n∑

i=1

ĝτ,i ĝ
T
τ,i =

(

̂n11 
̂n12

̂n21 
̂n22

)
.

Finally, we propose an empirical score

ŝ2
(
β̂

N
τ

) = n−1
n∑

i=1

ρ(1)
τ

{
Yi − G̃τn

(
XT

i β̂
N
τ , β̂

N
τ

)}{
G̃(1)

τ

(
XT

i β̂
N
τ , β̂

N
τ

)
X̂2i

}
,

and the test statistic

Tn = n
{
τ(1 − τ)

}−1{̂
s2

(
β̂

N
τ

)}T

̂22

n

{̂
s2

(
β̂

N
τ

)}
,(11)

where 
̂22
n = (
̂n22 − 
̂T

n21
̂
+
n11
̂n12)

+.

THEOREM 5. Under the conditions of Theorem 2, if (Yi,X1i) and Xi2 are
independent given X1iβ

0
τ1, and fε(0|x) = fε(0), we have Tn → χ2

p−p1
.

REMARK 4. The asymptotic result of Theorem 5 is established under a
stronger condition than the null hypothesis of βτ2 = 0. In more general settings,
the limiting distribution is expected to be a mixture of χ2

1 distributions. Similar to
the rank score test in linear models [Kocherginsky, He and Mu (2005)], we find
the rank-based test under the χ2

p−p1
limiting distribution is quite robust against

deviations from the assumptions we have made. Other forms of the tests, such as
the Wald tests, rely on the asymptotic variance of β̂τ , which is more difficult to
estimate with a lower level of reliability in finite-sample problems; see Case 2 of
Section S.1 in the supplemental materials [Ma and He (2015)] for a demonstration.

6. Simulation. In this section, we conduct simulation studies to assess the
finite-sample performance of the proposed estimation and testing methods. A com-
parison between the proposed profile optimization method and the backfitting al-
gorithm is also made to show that the backfitting algorithm tends to depend more
seriously on the starting values. We also demonstrate that the proposed score
test produces reliable results without having to estimate the conditional densities
needed in the asymptotic variance–covariance of the quantile estimators. Three
test cases are presented below.

6.1. Case 1.

EXAMPLE 1. We consider a sine-bump model, which is similar to a setting
considered by Carroll et al. (1997) for mean regression. More specifically, the data
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are generated from the model:

Yi = G
(
XT

i β0) + σεi = sin{π(XT
i β0 − A)}

C − A
+ σεi, i = 1,2, . . . , n,(12)

where A = √
3/2 − 1.645/

√
12, C = √

3/2 + 1.645/
√

12, β0 = 1√
14

(3,2,1)T,

and σ = 0.1. The components of Xi = (Xi1,Xi2,Xi3)
T ∈ R3 are independently

generated from Uniform (0,1), with one of the two distributions for εi : the Laplace
distribution and the t-distribution with 3 degrees of freedoms (t-distr). Under this
model, the τ th quantile of Yi given Xi is:

Gτ

(
XT

i β0) = G
(
XT

i β0) + σQ(τ),

where Q(τ) is the τ th quantile of εi .
We compare our proposed profiling algorithm with a backfitting iterative

method as commonly used in the estimation of single index models. The back-

fitting algorithm can be described as follows. Let β̂
(k)

τ and θ̂
(k)

τ be the estimated
values of βτ and θ τ at the kth step, then the (k + 1)th estimate of θ τ , denoted by

θ̂
(k+1)

τ , is obtained by minimizing

Lτn

(
β̂

(k)

τ , θ
) = n−1

n∑
i=1

[
ρτ

{
Yi − B

(
XT

i β̂
(k)

τ

)T
θ
}]

,

over θ , and the (k + 1)th estimate of βτ , denoted by β̂
(k+1)

τ , is obtained by mini-
mizing

Lτn

(
β, θ̂

(k+1)

τ

) = n−1
n∑

i=1

[
ρτ

{
Yi − B

(
XT

i β
)T

θ̂
(k+1)

τ

}]
,

over β , and then replacing β̂
(k+1)

τ by its normalized vector β̂
(k+1)

τ /‖β̂(k+1)

τ ‖2. The

iteration stops at the (k + 1)th step when ‖β̂(k+1)

τ − β̂
(k)

τ ‖2 < ε and ‖θ̂ (k+1)

τ −
θ̂

(k)

τ ‖2 < ε for some small value ε (chosen to be ε = 10−6 in our study). The
number of knots N for the B-spline basis functions is selected in the same way as
in the profile estimation.

The backfitting algorithm and the profile optimization are just two routes to
minimizing the same objective function. The backfitting approach has been com-
monly used in the literature, because it involves alternating optimization problems
in an easy-to-understand format. The main challenge in our setting comes from the
optimization of L∗

τn(β), which is a nonconvex function. While the profile estima-
tor needs optimization of a single nonconvex function, the backfitting has to handle
nonconvex optimization in each of its iterations. Consequently, as we confirm in
our empirical studies, the backfitting algorithm is more sensitive to the choice of
starting values and is more likely to reach a local minimum than the profile opti-
mization method proposed in this paper.



INFERENCE FOR SINGLE-INDEX QUANTILE REGRESSION 1247

We compare the performance of the proposed profile estimator (PR) and the
backfitting estimator (BA) by using different initial values and by generating the
error term from different distributions at τ = 0.75 and n = 200 from 100 sim-
ulated data sets. In Figure 1, we give the boxplots of the index coefficient es-
timates for (a) the Laplace distribution and (b) the t-distribution with the initial
value (1,1,1)/

√
3, and (c) the Laplace distribution and (d) the t-distribution with

the initial value (1,3,6)/
√

46. We see that by using the initial value (1,1,1)/
√

3
which is closer to the true value, the two estimators lead to similar performance.
However, for the initial value (1,3,6)/

√
46 which is not close to the true value,

the backfitting algorithm generates many outlying points. The results indicate that

FIG. 1. Boxplot of the index coefficient estimates (β̂1, β̂2, β̂3) for (a) the Laplace distribution and
(b) the t-distribution with the initial value (1,1,1)/

√
3, and (c) the Laplace distribution and (d) the

t-distribution with the initial value (1,3,6)/
√

46 in Example 1.
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the performance of the backfitting method is more sensitive to the choice of initial
values.

We conclude this example by reporting the computation time in seconds by
using Dell, 3.4 GHz Intel Core with the error generated from the Laplace dis-
tribution at τ = 0.75. For estimation at one data set, the computing time for the
profile method is 0.342 and 0.384 seconds, respectively, by using initial values
(1,1,1)/

√
3 and (1,3,6)/

√
46, and the computing time for the backfitting method

is 0.555 and 0.839 seconds, respectively, by using initial values (1,1,1)/
√

3 and
(1,3,6)/

√
46. We see that given a starting value the profile method needs less

computation time in our empirical comparisons.

6.2. Case 2. In this example, we study the finite-sample performance of the
proposed RS test statistic T̂n given in (11). The data are generated from (12) just as
in Case 1, except that the components of Xi = (Xi1, . . . ,Xi7)

T ∈ R7 are indepen-
dently generated from Uniform [0,1], and the regression parameter vector takes
the form β0 = (β0

1 , . . . , β0
7 )T = 1√

14+4c2
(3,2, c, c,1, c, c)T, where c ranges from

0 to 0.2 with increment 0.02. We consider the null and alternative hypotheses:

H0 : β3 = β4 = β6 = β7 = 0
(13)

versus H1 : βj �= 0, for some j ∈ {3,4,6,7}.
In addition, 500 realizations were generated with sample size n = 200 and τ =
0.5 to estimate the power = ∑500

i=1 I (T̂n,i > χ2
4,α)/500 at the significance level

α = 0.05, where T̂n,i is the value of the ith replication of T̂n, and χ2
4,α is the

100(1 − α)th quantile of χ2
4 . Figure 2(a) displays the power function versus the

c value for the three distributions of εi : the standard normal (thick line), Laplace
distribution (dashed line) and the t-distribution (thin line). The Type I error rates
for the three distributions (the power at c = 0) are 0.05, 0.06 and 0.05, respec-
tively, which are close to the nominal significance level 0.05. Moreover, we can
also observe that the empirical size of power increases rapidly to 1 as c increases.
The results demonstrate that the proposed RS test is a useful test. Next we simu-
late the data from the model: Yi = G(XT

i β0) + {1 + G(XT
i β0)/3}σεi , where G(·),

β0, σ , Xi and εi are generated in the same way as described above. In this model,
the error terms are dependent of the predictors. We use this model to evaluate the
robustness of the RS test when the assumption given in Theorem 5 does not hold.
Figure 2(b) displays the power function versus the c value for the three distribu-
tions of εi . We observe from Figure 2(b) that the RS test is quite robust against
heterogeneous errors in the model.

6.3. Case 3. In this example, we compare the performance of the proposed
one-step LLA estimation procedure with stepwise regression through backward
elimination by a simulation study. In the stepwise regression, the RS test proposed
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FIG. 2. Plots of power function of the RS test statistic T̂n defined in (11) at significance level
0.05 for the three distributions for εi : standard normal (thick line), Laplace distribution (dashed
line) and the t-distribution (thin line). Panel (a) is for the i.i.d. error model and Panel (b) is for the
heteroscedastic error model.

in Section 5 is used as the criterion for the deletion of each variable at each step
with the significance level 0.05. We generate Yi from a model where the set of
nonzero coefficients changes with τ . In this case, we consider

Gτ

(
XT

i β(τ )
) = G

(
XT

i β(τ )
) + σQ(τ),(14)

where β(τ ) = {β1(τ ), . . . , β7(τ )}T with βj (τ ) = 0.5(1 + τ) for j = 1,2,3 and
βj (τ ) = 0 for j = 4,5,6,7, G(u) = u2, and σ = 0.1. Note that Q(·) is the quantile
function of the error term εi , which is taken to be the same as given in Case 1, but
in model (14), the set of nonzero index coefficients βj (τ ), j = 1,2,3, changes
with τ .

We use the same distribution of Xi as in Case 2. To generate Yi from this model,
we simply let

Yi = G
(
XT

i β(Ui)
) + σQ(Ui),

where i = 1, . . . , n, and Ui
i.i.d.∼ Uniform[0,1]. We consider the quartiles τ =

0.25,0.75, and simulate 500 data sets with n = 200 or 500 in the study. We use

equal weights β̂
ini
τ = (1, . . . ,1)/

√
7 as the starting values. To compare the one-step

LLA penalized variable selection procedure (LLA) with the backward elimination
procedure (BW), Table 1 shows the proportions of the models correctly fitted (C)
(exactly the relevant covariates are selected), overfitted (O) (both the relevant co-
variates and some irrelevant covariates are selected) and underfitted (U) (some
relevant covariates are not selected). The table also reports the average true pos-
itives (TP), that is, the average number of selected covariates among the relevant
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TABLE 1
Variable selection and estimation results for β(τ ) by the one-step LLA procedure and the backward

elimination (BW) procedure in Case 3. The columns of C, O and U present the percentage of
correct-fitting, over-fitting and under-fitting, respectively. The columns TP and FP report the

average number of true and false positives (nonzero coefficients). The columns LLA,
PROFILE and ORACLE show the MSEs ×100 of one-step LLA estimator,

the profile estimator in the selected model and the oracle estimator

τ n C O U TP FP LLA PROFILE ORACLE

0.5 200 Normal LLA 0.850 0.150 0.000 3.000 0.164 2.86 2.35 1.63
BW 0.594 0.320 0.086 2.910 0.450 – 6.10 1.63

Laplace LLA 0.816 0.184 0.000 3.000 0.194 2.85 2.39 1.61
BW 0.574 0.306 0.120 2.850 0.440 – 8.21 1.61

t-distr LLA 0.826 0.174 0.000 3.000 0.184 2.98 2.38 1.69
BW 0.540 0.320 0.140 2.850 0.450 – 6.10 1.69

500 Normal LLA 1.000 0.000 0.000 3.000 0.000 0.69 0.58 0.58
BW 0.800 0.200 0.000 3.000 0.245 – 0.91 0.58

Laplace LLA 1.000 0.000 0.000 3.000 0.000 0.68 0.55 0.55
BW 0.774 0.226 0.000 3.000 0.265 – 0.90 0.55

t-distr LLA 1.000 0.000 0.000 3.000 0.000 0.72 0.59 0.59
BW 0.740 0.260 0.000 3.000 0.305 – 0.98 0.59

0.75 200 Normal LLA 0.944 0.056 0.000 3.000 0.066 1.18 1.06 0.89
BW 0.700 0.210 0.090 2.900 0.290 – 4.80 0.89

Laplace LLA 0.920 0.080 0.000 3.000 0.100 1.38 1.26 0.98
BW 0.684 0.206 0.110 2.876 0.280 – 6.21 0.98

t-distr LLA 0.916 0.084 0.000 3.000 0.104 1.38 1.26 0.98
BW 0.614 0.226 0.160 2.820 0.334 – 8.53 0.98

500 Normal LLA 1.000 0.000 0.000 3.000 0.000 0.43 0.40 0.38
BW 0.790 0.210 0.000 3.000 0.240 – 0.54 0.38

Laplace LLA 1.000 0.000 0.000 3.000 0.000 0.47 0.43 0.42
BW 0.804 0.196 0.000 3.000 0.210 – 0.56 0.42

t-distr LLA 1.000 0.000 0.000 3.000 0.000 0.45 0.42 0.42
BW 0.764 0.236 0.000 3.000 0.265 – 0.59 0.42

covariates, and the average false positives (FP), that is, the average number of se-
lected covariates among the irrelevant covariates. The last three columns of Table 1
reports the estimated MSE for the LLA estimator, the profile estimator in the re-
fitted model after variable selection and the oracle estimator by assuming the true
model is known, denoted by LLA, PROFILE and ORACLE, respectively, by both
procedures.

By the LLA penalized method, we observe that the percentages of correct-
fitting get close to 1 as n increases. The same is true with the backward elimi-
nation approach but the increase is clearly slower. The MSEs of the LLA estimates
are slightly higher than the PROFILE estimates under the selected model, and of
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course, they are not as good as the ORACLE measures unless the correct models
are identified with very high probability.

The proposed estimation procedure is computationally faster than backward
elimination. We ran the above simulation experiments on Macbook Pro with 2 GHz
Intel Core. At τ = 0.75 and when the data are generated under Gaussian errors, we
obtained that the average operation time per simulated data set in R by the one-step
LLA procedure is 4.54 and 12.19 seconds for n = 200 and 500, respectively, but
the average time by the backward elimination procedure is 30.74 and 75.15 for
n = 200 and 500, respectively.

7. A data analysis example. In this section, we illustrate the proposed
method by analyzing the CD4 cell count change in the ACTG320 study. The data
come from a double-blind, placebo-controlled trial that compared the three-drug
regimen (treatment) with the two-drug regimen (control) in HIV-infected patients
[Hammer et al. (1997)]. In our analysis, we take the response variable Y = as the
CD4 count change at week 24 (CD4.24), and the covariates are X1 = log(CD4.0)

(logarithm of the baseline CD4 cell counts CD4.0 at week 0); X2 = log(RNA.0)

(logarithm of baseline RNA concentration at week 0); X3 = trt (binary treat-
ment indicator, trt = 1 for the treatment group and trt = 0 for control group);
X4 = age; and X5 = gender (binary variable, gender = 0 for male and gender = 1
for female). We also consider the interaction effect of log(CD4.0) and trt, with
X6 = trt× log(CD4.0). By removing the observations with missing values in these
variables and dropping one outlier with CD4.0 = 0, we have 855 observations in
our study. We use centered and standardized values of all predictors for model
fitting. We fit linear quantile regression and let the normalized estimates of the pa-
rameters be the initial estimates in our unpenalized profile estimation procedure.

Table 2 shows the estimated coefficients (Estimate) and the corresponding
p-value (Pvalue) from the score test at two quantile levels τ = 0.5,0.75. We
observe that the estimated coefficients of log(CD4.0), log(RNA.0), trt and trt ×
log(CD4.0) are significantly different from zero at significance level 0.05 at
τ = 0.5, while log(RNA.0) becomes insignificant at τ = 0.75. The significance
of the interaction term indicates that with the treatment the baseline CD4 count
has differential impact on the CD4 change over the 24-week period. Next, we

TABLE 2
The estimated coefficients at quantiles τ = 0.5,0.75 for the real data application

τ log(CD4.0) log(RNA.0) trt age Gender trt × log(CD4.0)

0.50 Estimate 0.171 0.154 1.855 −0.001 0.049 −0.134
Pvalue <0.001 0.002 <0.001 0.382 0.071 <0.001

0.75 Estimate 0.434 0.016 1.678 0.011 0.161 0.066
Pvalue <0.001 0.357 <0.001 0.389 0.056 0.034
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TABLE 3
Variable selection results and the estimated coefficients for the selected variables at quantiles

τ = 0.5,0.75 by the LLA method for the real data application

τ log(CD4.0) log(RNA.0) trt Age Gender trt× log(CD4.0)

0.50 0.164 0.092 1.857 – – −0.142
0.75 0.429 – 1.726 – – –

perform the one-step LLA penalized variable selection procedure (LLA) with the
tuning parameter selected by the BIC given in Section 4. Table 3 shows the vari-
able selection results and the estimated coefficients for the selected variables at
τ = 0.5,0.75. We see that the variable selection results are quite consistent with
the score test results given in Table 2.

To better understand the impact of baseline CD4 on the response, in Figure 3
we plot the estimated quantile function Ĝτn(·) and the response value (dots) versus
log(CD4.0) at the sample means of log(RNA.0) and age for trt = 0 (thin line), trt =
1 (thick line) and gender = 0 (left panel), gender = 1 (right panel). We see that at
τ = 0.5, for both genders the estimated response value increases steadily with
log(CD4.0) linearly for the treatment group, which indicates that the treatment
takes similar effects on those patients with either a small or large number of CD4
cell counts at week 0. However, for the control group, the estimated response value
stays around zero for small values of log(CD4.0), but it shows an increasing trend
for large values of log(CD4.0). This indicates that when patient’s CD4 cell counts
at week 0 are below certain level, they show no change over time. When CD4 cell
counts at week 0 are large, they still increase over time even without treatment, and
the increasing rate is larger for patients with a larger number of CD4 cell counts at
week 0. At τ = 0.75, the estimated quantile function Ĝτn(·) has a similar pattern
as at τ = 0.5 for the control group. However, for the treatment group, instead of
showing a linear pattern, the response value seems to remain at a certain level for
either large value of log(CD4.0) (greater than 4) or small value of log(CD4.0)

(less than 1), but it shows an increasing trend when the value of log(CD4.0) is
between 1 and 4. These findings on the treatment effects would be missed by a
linear quantile model.

8. Discussion. In this paper, we establish the consistency and asymptotic nor-
mality of the profile estimation procedure in single-index quantile regression mod-
els. The asymptotic distributions of such estimates are the same as those obtained
from other iterative methods of estimation, but the profile approach has better sta-
bility and is less sensitive to initial values of the index parameters. Moreover, the
availability of a single objective function of the index parameter allows the devel-
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FIG. 3. Plots of the estimated quantile function Ĝτn(·) and the response value (dots) versus
log(CD4.0) at the sample means of log(RNA.0) and age for trt = 0 (thin line, red color), trt = 1
(thick line, black color) and gender = 0 (left panel), gender = 1 (right panel).

opment of a robust score test for inference on those parameters, and enables the use
of penalized optimization for model selection. Both the theoretical and empirical
works in the paper show that the profile pseudo-likelihood approach is valuable to
estimation and inference for single-index quantile regression models.

The asymptotic theory established for the penalized estimation in this paper
assumes that X has a fixed dimension as n increases. The problem of handling
both nonparametric estimation of Gτ and a linear index with a growing number of
variables poses some challenges, and additional work is needed to investigate how
the profile method works when the number of variables increases with n.
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APPENDIX

For any positive numbers an and bn, let an � bn denote limn→∞ an/bn = c,
for a positive constant c, and an ∼ bn denote limn→∞ an/bn = 1. For any vec-
tor ζ = (ζ1, . . . , ζs)

T ∈ Rs , denote |ζ | = max1≤l≤s |ζl| and ‖ζ‖r = (
∑s

l=1 |ζl|r )1/r .
For any matrix A = (Aij )

s,t
i=1,j=1, denote |A| = max1≤i≤s,1≤j≤t |Aij | and ‖A‖∞ =

max1≤i≤s

∑t
j=1 |Aij |. For any symmetric matrix As×s , denote its Lr norm as

‖A‖r = maxζ∈s,ζ �=0 ‖Aζ‖r‖ζ‖−1
r .

A.1. Proof of Theorem 1. By the definition of β̂τ , one has P {L∗
τn(β̂τ ) ≤

L∗
τn(β

0
τ )} = 1. For any open set S(β0

τ ) that includes β0
τ , one has

P
{
L∗

τn(β̂τ ) ≤ L∗
τn

(
β0

τ

)}
= P

{
L∗

τn(β̂τ ) ≤ L∗
τn

(
β0

τ

)
and β̂τ ∈ S

(
β0

τ

)}
+ P

{
L∗

τn(β̂τ ) ≤ L∗
τn

(
β0

τ

)
and β̂τ ∈ � \ S(

β0
τ

)}
≤ P

{
β̂τ ∈ S

(
β0

τ

)} + P
{

inf
β∈�\S(β0

τ )

L∗
τn(β) ≤ L∗

τn

(
β0

τ

)}
.

Next, we will show that P {infβ∈�\S(β0
τ ) L

∗
τn(β) ≤ L∗

τn(β
0
τ )} → 0, which implies

that β̂τ must be in any open set S(β0
τ ) so that β̂τ is a consistent estimator of β0

τ

with probability approaching 1. Define

L̃∗
τ (β) = n−1

n∑
i=1

[
ρτ

{
Yi − G̃τ

(
XT

i β,β
)}]

.

Note that

P
{

inf
β∈�\S(β0

τ )

L∗
τn(β) ≤ L∗

τn

(
β0

τ

)}
= P

{
inf

β∈�\S(β0
τ )

{
L∗

τn(β) − L̃∗
τ (β)

+ L̃∗
τ (β) − L∗

τ (β) + L∗
τ (β)

} ≤ L∗
τn

(
β0

τ

)}
≤ P

[
inf

β∈�\S(β0
τ )

{
L∗

τn(β) − L̃∗
τ (β)

} + inf
β∈�\S(β0

τ )

{
L̃∗

τ (β) − L∗
τ (β)

}
+ L∗

τ

(
β0

τ

) − L∗
τn

(
β0

τ

) ≤ L∗
τ

(
β0

τ

) − inf
β∈�\S(β0

τ )

L∗
τ (β)

]
≤ P

[
sup

β∈�\S(β0
τ )

∣∣L∗
τn(β) − L̃∗

τ (β)
∣∣ + sup

β∈�\S(β0
τ )

∣∣L̃∗
τ (β) − L∗

τ (β)
∣∣

+ ∣∣L∗
τ

(
β0

τ

) − L∗
τn

(
β0

τ

)∣∣ ≥ inf
β∈�\S(β0

τ )

L∗
τ (β) − L∗

τ

(
β0

τ

)]
,
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where L∗
τ (β) = E[ρτ {Y − G̃τ (XTβ,β)}]. Since β0

τ is the unique minimizer of
L∗

τ (β), for every open set S(β0
τ ), there exists ε > 0, such that infβ∈�\S(β0

τ )L
∗
τ (β)−

L∗
τ (β

0
τ ) > ε. Thus, it is sufficient to show that for every ε > 0,

P
{

sup
β∈�\S(β0

τ )

∣∣L∗
τn(β) − L̃∗

τ (β)
∣∣ > ε

}
→ 0,(A.1)

P
{

sup
β∈�\S(β0

τ )

∣∣L̃∗
τ (β) − L∗

τ (β)
∣∣ > ε

}
→ 0,(A.2)

P
{∣∣L∗

τ

(
β0

τ

) − L∗
τn

(
β0

τ

)∣∣ > ε
} → 0.(A.3)

To verify (A.1), note

sup
β∈�\S(β0

τ )

∣∣L∗
τn(β) − L̃∗

τ (β)
∣∣

= sup
β∈�\S(β0

τ )

∣∣∣∣∣n−1
n∑

i=1

[[
ρτ

{
Yi − G̃τn

(
XT

i β,β
)}]

− [
ρτ

{
Yi − G̃τ

(
XT

i β,β
)}]]∣∣∣∣∣

≤ sup
β∈�\S(β0

τ )

n−1
n∑

i=1

∣∣G̃τn

(
XT

i β,β
) − G̃τ

(
XT

i β,β
)∣∣ = op(1),

which follows from Lemma S.3. Thus, (A.1) is proved. (A.2) can be proved by the
uniform consistency theorem given in Andrews (1987). Moreover, by Lemma S.3,
we have |L∗

τn(β
0
τ ) − L̃∗

τ (β
0
τ )| = op(1) and by the weak law of large numbers, we

have |L̃∗
τ (β

0
τ ) − L∗

τ (β
0
τ )| = op(1). Hence, (A.3) follows from the fact that∣∣L∗

τ

(
β0

τ

) − L∗
τn

(
β0

τ

)∣∣ ≤ ∣∣L∗
τn

(
β0

τ

) − L̃∗
τ

(
β0

τ

)∣∣ + ∣∣L̃∗
τ

(
β0

τ

) − L∗
τ

(
β0

τ

)∣∣ = op(1).

A.2. Proof of Theorem 2. Let

L̃∗
τn(β) = n−1

n∑
i=1

[
ρτ

{
Yi − B

(
XT

i β
)T˜̃θ τ (β)

}]
,

where ˜̃θ τ (β) is the minimizer of E{Lτn(θ,β)|X}. For any b ∈ Rp , define

D̃τn,i(b) = ρτ

{
Yi − B

(
XT

i

(
β0

τ + b
))T˜̃θ τ

(
β0

τ + b
)}

− ρτ

{
Yi − B

(
XT

i β0
τ

)T˜̃θ τ

(
β0

τ

)}
,

Dτn,i(b) = ρτ

{
Yi − B

(
XT

i

(
β0

τ + b
))T

θ̃ τ

(
β0

τ + b
)}

(A.4)

− ρτ

{
Yi − B

(
XT

i β0
τ

)T
θ̃ τ

(
β0

τ

)}
,

D̃τn(b) = n−1
n∑

i=1

D̃τn,i(b), Dτn(b) = n−1
n∑

i=1

Dτn,i(b).
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Let ̂̂βτ be a minimizer of L∗
τn(β) over β ∈ Rp for L∗

τn(β) given in (4). It is
helpful to note that for any β in Rp , we can define the B-splines on the scaled
interval [a‖β‖2, b‖β‖2], but the value of the spline at x remains invariant over
the norm of β used. Hence, we have L∗

τn(β) = L∗
τn(β/‖β‖2). Therefore, ̂̂βτ is

determined only in its direction, and by taking β̂τ = ̂̂βτ /‖̂̂βτ‖2, we have β̂τ as the
minimizer of L∗

τn(β) over β ∈ �. Moreover, L∗
τn(β̂τ ) = L∗

τn(
̂̂βτ ) which implies

L∗
τn(β̂τ ) ≤ L∗

τn(β) for all β ∈ Rp . We will show that
√

n‖β̂τ −β0
τ‖2 = Op(1) and√

n(β̂τ − β0
τ ) is asymptotically normal in the following two steps.

Step 1. We can decompose β̂τ as β̂τ = aτnβ
0
τ + s∗

τnη, where η is a unit vector
and orthogonal to β0

τ , so that ‖β̂τ‖2 = a2
τn + s∗2

τn = 1. Note that because β̂τ is a
consistent estimator of β0

τ , we have |aτn − 1| = op(1), s∗
τn = op(1) and aτn =√

1 − s∗2
τn. We can further write a−1

τn β̂τ = β0
τ + sτnη, where sτn = a−1

τn s∗
τn. We will

show that sτn = Op(n−1/2) which implies that s∗
τn = Op(n−1/2) and

1 − aτn = 1 −
√

1 − s∗2
τn

= {
1 − (

1 − s∗2
τn

)}/{
1 +

√
1 − s∗2

τn

}
(A.5)

= O
(
s∗2
τn

) = Op

(
n−1)

,

and then ‖β̂τ −β0
τ‖2 = Op(n−1/2). In what follows, we take ̂̂βτ = a−1

τn β̂τ . Clearly,̂̂βτ is a minimizer of L∗
τn(β) over β ∈ Rp . Let ̂̂bτn = sτnη = ̂̂βτ − β0

τ . Then ̂̂bτn

minimizes the function Dτn(b) = L∗
τn(β

0
τ + b) − L∗

τn(β
0
τ ).

Denote

�n = −n−1
n∑

i=1

{
τ − I (εi < 0)

}
G(1)

τ

(
XT

i β0
τ

)
X̃i ,

�n = n−1
n∑

i=1

fε(0|Xi )
{
G(1)

τ

(
XT

i β0
τ

)}2X̃iX̃T
i ,

and cn(b) = (1 + √
n‖b‖2)

−1√nb. Applying the weak law of large numbers to
cT
n (̂̂bτn)

√
n�n,

cT
n (̂̂bτn)

√
n�n = Op

{{
cT
n (̂̂bτn)E

(
X̃X̃T)

cn(̂̂bτn)
}1/2}

(A.6)
= Op

{∥∥cn(̂̂bτn)
∥∥

2

}
,

where the last equality follows from that the eigenvalues of E(X̃X̃T) are bounded
from infinity by the fact that X is distributed on a compact set. By (S.17) in
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Lemma S.6 and (S.32) in Lemma S.7, we have

Dτn(̂̂bτn) = −n−1
n∑

i=1

{
τ − I (εi < 0)

}
G(1)

τ

(
XT

i β0
τ

)
X̃T

i
̂̂bτn

+ n−1
n∑

i=1

2−1fε(0|Xi )
{
G(1)

τ

(
XT

i β0
τ

)}2̂̂bT
τnX̃iX̃T

i
̂̂bτn

+ op

(
n−1/2‖̂̂bτn‖2

) + Op

(
(logn)Jnn

−1‖̂̂bτn‖1/2
2

) + op

(
n−1)

.

By the fact that 2ab ≤ a2 + b2, we have 2n−1/2‖̂̂bτn‖2 ≤ n−1 + ‖̂̂bτn‖2
2 and

2Jnn
−1(logn)‖̂̂bτn‖1/2

2

≤ ‖̂̂bτn‖2J
2
n n−1(logn)2+2/10 + n−1(logn)−2/10

≤ 0.5‖̂̂bτn‖2
2J

4
n n−1(logn)4+6/10 + 0.5n−1(logn)−2/10 + n−1(logn)−2/10

= o(1)‖̂̂bτn‖2
2 + o

(
n−1)

,

by the assumption Jn � n1/4/(logn)5/4. Then

Dτn(̂̂bτn) = −n−1
n∑

i=1

{
τ − I (εi < 0)

}
G(1)

τ

(
XT

i β0
τ

)
X̃T

i
̂̂bτn

+ n−1
n∑

i=1

2−1fε(0|Xi )
{
G(1)

τ

(
XT

i β0
τ

)}2̂̂bT
τnX̃iX̃T

i
̂̂bτn(A.7)

+ op(1)‖̂̂bτn‖2
2 + op

(
n−1)

.

By the definition of ̂̂bτn, we have Dτn(̂̂bτn) ≤ 0. Multiplying both sides of (A.7)
by n(1 + √

n‖̂̂bτn‖2)
−2, we have

cT
n (̂̂bτn)

√
n�n

(
1 + √

n‖̂̂bτn‖2
)−1 + 2−1cT

n (̂̂bτn)�ncn(̂̂bτn)
(A.8)

+ op(1) + op(1)
(
1 + √

n‖̂̂bτn‖2
)−2 ≤ 0.

Let nk be a subsequence such that
√

nksτ,nk
→ ∞, then we have ‖cnk

(̂̂bτ,nk
)‖2 �

1 so that

cT
nk

(̂̂bτ,nk
)
√

nk�nk

(
1 + √

nk‖̂̂bτ,nk
‖2

)−1 = op(1)

by (A.6). This result and (A.8) imply that cT
nk

(̂̂bτ,nk
)�nk

cnk
(̂̂bτ,nk

) = op(1), and
thus

cT
nk

(̂̂bτ,nk
)�cnk

(̂̂bτ,nk
) = op(1)
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by Conditions (C2) and (C3). Recall that ̂̂bτn = sτnη. On the other hand,

cT
nk

(̂̂bτ,nk
)�cnk

(̂̂bτ,nk
)

= (
1 + √

nk|sτ,nk
|)−2

(
√

nksτ,nk
)2ηT�η > 0

for any unit vector η ∈ Rp orthogonal to β0
τ . Then we have a contradiction. Thus,√

n|sτn| = Op(1).

Step 2. By (A.7) and ‖̂̂bτn‖2 = Op(n−1/2), we can write Dτn(̂̂bτn) as

Dτn(̂̂bτn) = ̂̂bT
τn�n + 2−1̂̂bT

τn(�n + �nI)̂̂bτn − 2−1�n‖̂̂bτn‖2
2

+ op(1)‖̂̂bτn‖2
2 + op

(
n−1)

= ̂̂bT
τn�n + 2−1̂̂bT

τn(�n + �nI)̂̂bτn + op

(
n−1)

for any �n = o(1) and �n /∈ σ(�n), where σ(�n) is the spectrum of a square matrix
�n, so that (�n + �nI)−1 exists. Define

D∗
τn(b) = bT�n + 2−1bT(�n + �nI)b.

Then b̃τn = −(�n + �nI)−1�n minimizes D∗
τn(b). Moreover, ‖b̃τn‖2 =

Op(n−1/2). Let α1n, . . . , αrn be distinct eigenvalues of �n, which are self-
adjoint. Then we can write �n = ∑r

i=1 αinSin, where Sin are the spectral pro-
jectors of �n. Therefore, we have �nk

+ �nI = ∑r
i=1(αin + �n)Sin, and thus

(�n + �nI)−1 = ∑r
i=1(αin + �n)

−1Sin. Hence,

lim
n→∞(�n + �nI)−1 = lim

n→∞
r∑

i=1

α−1
in Sin = lim

n→∞�+
n = �+.

Therefore, by the central limit theorem, as n → ∞,
√

nb̃τn → N
(
0, τ (1 − τ)�+
�+)

.(A.9)

Recall that a−1
τn β̂τ = β0

τ+̂̂bτn and 1 − aτn = Op(n−1) given in (A.5). Next, we
will show that

‖̂̂bτn − b̃τn‖2 = op

(
n−1/2)

.(A.10)

Hence, by (A.10), (A.9) and Slutsky’s theorem, we have
√

n(β̂τ − β0
τ ) →

N(0, τ (1 − τ)�+
�+).
If there exists a subsequence nk such that ̂̂bτnk

− b̃τnk
= ϑkn

−1/2
k unk

, where
ϑk � 1 and unk

is a unit vector. Convexity of D∗
τnk

(b) implies that for 0 < l < ϑk

and l � ϑk ,

(1 − l/ϑk)D
∗
τnk

(̃bτ,nk
) + l/ϑkD

∗
τnk

(̂̂bτ,nk
) ≥ D∗

τnk

(̃
bτ,nk

+ ln
−1/2
k unk

)
,
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so that

(l/ϑk)
{
D∗

τnk
(̂̂bτ,nk

) − D∗
τnk

(̃bτ,nk
)
} ≥ D∗

τnk

(̃
bτ,nk

+ ln
−1/2
k unk

) − D∗
τnk

(̃bτ,nk
).

Since D∗
τnk

(̂̂bτ,nk
) − D∗

τnk
(̃bτ,nk

) = Dτnk
(̂̂bτ,nk

) − Dτnk
(̃bτ,nk

) + op(n−1
k ), then

nk

{
Dτnk

(̂̂bτ,nk
) − Dτnk

(̃bτ,nk
)
}

≥ (ϑk/ l)nk

{
D∗

τnk

(̃
bτ,nk

+ ln
−1/2
k unk

) − D∗
τnk

(̃bτ,nk
)
} + o(1)

= (ϑk/ l)nk

(
ln

−1/2
k unk

)T
(�nk

+ �nk
I)

(
ln

−1/2
k unk

) + o(1)

≥ CϑkluT
nk

�nk
unk

with probability approaching 1, for some constant 0 < C < ∞. We decompose
unk

= h1,nk
β0

τ + h2,nk
η, where η is a unit vector and orthogonal to β0

τ . Then
β0T

τ unk
= β0T

τ (h1,nk
β0 + h2,nk

η) = h1,nk
, since β0T

τ β0
τ = 1 and β0T

τ η = 0. Recall

that ̂̂bτnk
= sτnη. Therefore,

β0T
τ unk

= ϑ−1
k n

1/2
k β0T

τ (̂̂bτnk
− b̃τnk

) = −ϑ−1
k n

1/2
k β0T

τ b̃τnk
= h1,nk

.

By (A.9), we have with probability approaching 1, var(n1/2
k β0T

τ b̃τnk
) → τ(1 −

τ)β0T
τ �+
�+β0

τ as n → ∞. Since �β0
τ = 0, β0

τ is an eigenvector of � and
orthogonal to other eigenvectors of �. Then we have �+β0

τ = 0. Therefore,

n
1/2
k β0T

τ b̃τnk
= op(1) which implies h1,nk

= op(1), and thus h2
2,nk

= 1 − h2
1,nk

=
1 − op(1). Hence, we have with probability approaching 1,

nk

{
Dτnk

(̂̂bτ,nk
) − Dτnk

(̃bτ,nk
)
} ≥ CϑkluT

nk
�nk

unk
= Cϑklh

2
2,nk

ηT�nk
η > 0.

This contradicts with the fact that ̂̂bτ,nk
minimizes Dτnk

(b). Therefore, ‖̂̂bτn −
b̃τn‖2 = op(n−1/2).

A.3. Proof of Theorem 3. Theorem 3 follows from Lemma S.3 and root-n
consistency of β̂τ directly.

A.4. Proof of Theorem 4. Since minimizing the objective function nQτn(β)

is equivalent to minimizing

nL∗∗
τn(β) − nL∗∗

τn

(
β0

τ

) + n

p∑
j=1

ωjp
′
λn

(∣∣β̂0
τj

∣∣)(|βτj | −
∣∣β0

τj

∣∣).
For β0

τ + v/
√

n in the neighborhood of β0
τ , define

Gn(v) = n
{
L∗∗

τn

(
β0

τ + v/
√

n
) − L∗∗

τn

(
β0

τ

)}
(A.11)

+ n

p∑
j=1

ωjp
′
λn

(∣∣β̂0
τj

∣∣)(∣∣β0
τj + vj/

√
n
∣∣ − ∣∣β0

τj

∣∣).
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It is derived in Theorem 5 of Zou and Li (2008) that the second term of (A.11) can
be expressed as

n

p∑
j=1

ωjp
′
λn

(∣∣β̂0
τj

∣∣)(∣∣β0
τj + vj/

√
n
∣∣ − ∣∣β0

τj

∣∣) →
{

0, if β2 = β0
τ2,

∞, otherwise,

with probability approaching 1. Therefore, by the epiconvergence results [Geyer

(1994), Knight and Fu (2000)], we have β̂
OSE
τ2 → 0 with probability approaching 1.

Let D∗∗
τn(v) = L∗∗

τn(β
0
τ + v/

√
n) − L∗∗

τn(β
0
τ ). Following similar reasoning as the

proof for (A.7), it can be proved that

D∗∗
τn(v) = −n−1

n∑
i=1

{
τ − I (εi < 0)

}
G(1)

τ

(
XT

i β0
τ

)
XT

i v/
√

n

+ n−1
n∑

i=1

2−1fε(0|Xi )
{
G(1)

τ

(
XT

i β0
τ

)}2vTXiXT
i v/n

+ op

(‖v‖2
2/n

) + op

(
n−1)

.

Moreover, the consistency result that ‖β̂OSE
τ − β0

τ‖2 = op(1) can be proved by
the same procedure in the proofs of Lemma 1. Then the asymptotic normality for

β̂
OSE
τ1 holds by the same arguments in the proofs of Theorem 2. The sparsity such

that P(β̂
OSE
τ2 = 0) → 1 can be proved by the same reasoning as given in Kai, Li

and Zou (2011), and thus omitted. �

A.5. Proof of Theorem 5. Let gτk,i = G
(1)
τ (XT

i β0
τ )X̃ki , 
kl = E(gτk,ig

T
τ l,i)

for k, l = 1,2, gτ,i = G
(1)
τ (XT

i β0
τ )X̃i , and 
 = E(gτ,ig

T
τ,i) = (
11 
12


21 
22

)
. Let 
nkl =

n−1 ∑n
i=1(gτk,ig

T
τ l,i) for k, l = 1,2. First consider

s̃∗
2
(
β0

τ

) = n−1
n∑

i=1

(
gτ2,i − 
21


+
11gτ1,i

)
ρ(1)

τ

{
Yi − Gτ

(
XT

i β0
τ

)}
.

Because E{√ñs∗
2(β

0
τ )} = 0 and

Var
{√

ñs∗
2
(
β0

τ

)} = τ(1 − τ)E
{(

gτ2,i − 
21

+
11gτ1,i

)(
gτ2,i − 
21


+
11gτ1,i

)T}
= τ(1 − τ)E

(
gτ2,ig

T
τ2,i − gτ2,ig

T
τ1,i


+
11
12 − 
21


+
11gτ1,ig

T
τ2,i

+ 
21

+
11gτ1,ig

T
τ1,i


+
11
12

)
= τ(1 − τ)

(

22 − 
21


+
11
12

)
.

By the central limit theorem, we have
√

ñs∗
2
(
β0

τ

) → N
(
0(p−p1), τ (1 − τ)

(

22 − 
21


+
11
12

))
.
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Next, define

s̃2
(
β0

τ

) = n−1
n∑

i=1

(
gτ2,i − 
n21


+
n11gτ1,i

)
ρ(1)

τ

{
Yi − Gτ

(
XT

i β0
τ

)}
.

Since with probability approaching 1,

E
[{̃

s2
(
β0

τ

) − s̃∗
2
(
β0

τ

)}T{̃
s2

(
β0

τ

) − s̃∗
2
(
β0

τ

)}]
= n−1τ(1 − τ)E

[
gT

τ1,i

{

21


+
11 − 
n21


+
n11

}T{

21


+
11 − 
n21


+
n11

}
gτ1,i

]
= o

(
n−1)

,

where the last equation holds due to the fact that 
n21

+
n11 = 
21


+
11 +op(1), we

have ‖̃s2(β
0
τ ) − s̃∗

2(β
0
τ )‖2 = op(n−1/2). In the following, it suffices to show∥∥̂s2

(
β̂

N
τ

) − s̃2
(
β0

τ

)∥∥
2 = op

(
n−1/2)

,(A.12)


̂22
n = 
22 + op(1),(A.13)

where 
̂22
n is given in (11).

By the smoothness conditions of Gτ given in Condition (C3), we have the non-
parametric uniform convergence rates of the quantile spline estimators [Portnoy
(1997)] given as

sup
1≤i≤n

∣∣G̃(1)
τn

(
XT

i β0
τ ,β

0
τ

) − G(1)
τ

(
XT

i β0
τ

)∣∣ = Op

{(
J 3

n n−1 logn
)1/2 + J−r+1

n

}
,

and by the smoothness condition of E(X|XTβ0
τ = u) given in Condition (C4),

we have the nonparametric uniform convergence rates of the least squares
spline estimator [Wang and Yang (2009)] given as sup1≤i≤n |X̂2i (β

0
τ ) − X̃2i | =

Op{(Jnn
−1 logn)1/2 + J−1

n }. Hence,

sup
1≤i≤n

∣∣G̃(1)
τn

(
XT

i β0
τ ,β

0
τ

)
X̂2i

(
β0

τ

) − gτ2,i

∣∣ ≤ ωn,(A.14)

and ωn = Op{(J 3
n n−1 logn)1/2 + J−r+1

n + J−1
n }. By (A.14) and Theorem 2, we

have |G̃(1)
τ (XT

i β̂
N
τ , β̂

N
τ )X̂i −G

(1)
τ (XT

i β0
τ )X̃i | = op(1), so that result (A.13) follows.

To show (A.12), we just need to verify

�n1
(
β̂

N
τ

) = n−1
n∑

i=1

[
ρ(1)

τ

{
Yi − G̃τn

(
XT

i β̂
N
τ , β̂

N
τ

)}
− ρ(1)

τ

{
Yi − Gτ

(
XT

i β0
τ

)}]
gτ2,i(A.15)

= −n−1
n∑

i=1


n21

+
n11gτ1,iρ

(1)
τ

{
Yi − Gτ

(
XT

i β0
τ

)} + op

(
n−1/2)

,
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�n2
(
β̂

N
τ

) = n−1
n∑

i=1

ρ(1)
τ

{
Yi − G̃τn

(
XT

i β̂
N
τ , β̂

N
τ

)}{
gτ2,i − G̃(1)

τn

(
XT

i β̂
N
τ , β̂

N
τ

)
X̂2i

}
(A.16)

= op

(
n−1/2)

.

By the definition of �n1, it can be further written as

�n1
(
β̂

N
τ

) = �n11
(
β̂

N
τ , θ̃ τ

(
β̂

N
τ

)) + �n12
(
β̂

N
τ

)
,(A.17)

where

�n11(β, θ) = n−1
n∑

i=1

�n11,i(β, θ),

�n12(β) = n−1
n∑

i=1

�n12,i(β),

and

�n11,i(β, θ) = [
ρ(1)

τ

{
Yi − B

(
XT

i β
)T

θ
} − ρ(1)

τ

{
Yi − G̃τ

(
XT

i β,β
)}]

gτ2,i ,

�n12,i(β) = [
ρ(1)

τ

{
Yi − G̃τ

(
XT

i β,β
)} − ρ(1)

τ

{
Yi − G̃τ

(
XT

i β0
τ ,β

0
τ

)}]
gτ2,i .

Moreover, let �n11,ik(β, θ) and �n12,ik(β) be the kth component in �n11,i(β, θ)

and �n12,i(β), respectively, for k = 1, . . . , (p − p1).
Since β0

τ2 = 0 under H0, we have XT
i β0

τ = XT
1iβ

0
τ1. For any β = (βT

1 ,βT
2 )T

with β2 = 0(p−p1)×1 and β1 in a neighborhood of β0
τ1, we have XT

i β = XT
i1β1.

Since (Yi,Xi1) and Xi2 are independent given Xi1β
0
τ1, ρ

(1)
τ {Yi − B(XT

i β)Tθ} −
ρ

(1)
τ {Yi − G̃τ (XT

i β,β)} which is a function of Yi and XT
i1β1 is independent of Xi2

given Xi1β
0
τ1. Moreover, E(gτ2,i |XT

i1β
0
τ1) = 0. Then we have E{�n11,i (β, θ)} =

E[E{�n11,i (β, θ)|XT
i1β

0
τ1}] = 0. Similarly, we have E{�n12,i (β)|XT

i1β
0
τ1} = 0. In

page S.26–S.27 of the supplemental materials [Ma and He (2015)], we have shown
that

�n11
(
β̂

N
τ , θ̃ τ

(
β̂

N
τ

)) = op

(
n−1/2)

.(A.18)

Since E{�n12,i(β)|XT
i1β

0
τ1} = 0, then E{�n12,i(β)|Xi} = 0. By following the

same procedure as the proofs for (S.54), it can be proved by Bernstein’s inequality
given in Bosq (1998) for δn � n−1/2,

sup
‖β−β0

τ ‖≤δn,β2=0

∥∥∥∥∥�n12(β) − n−1
n∑

i=1

E
{
�n12,i(β)|Xi

}∥∥∥∥∥
2

= op

(
n−1/2)

.(A.19)

By the fact that for sufficiently small |t |,
E

{
ρ(1)

τ (ε + t) − ρ(1)
τ (ε)|X} = fε(0)t + o

(|t |),
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we have ‖β − β0
τ‖2 ≤ δn,

n−1
n∑

i=1

E
{
�n12,i(β)|Xi

}

= n−1
n∑

i=1

fε(0)
{
G̃τ

(
XT

i β,β
) − G̃τ

(
XT

i β0
τ ,β

0
τ

)}
gτ2,i(A.20)

+ o
(
n−1/2)

.

Following the same reasoning as the proof for Theorem 2, by the assumption that
fε(0|X) = fε(0) we have

β̂
N
τ1 − β0

τ1 = fε(0)−1
+
n11n

−1
n∑

i=1

gτ1,iρ
(1)
τ

{
Yi − Gτ

(
XT

i β0
τ

)}
(A.21)

+ op

(
n−1/2)

,

and ‖β̂N
τ − β0

τ‖2 = Op(n−1/2). Hence, by (A.20), (A.21) and Taylor’s expansion,
we have

n−1
n∑

i=1

E
{
�n12,i

(
β̂

N
τ

)|Xi

}

= −n−1
n∑

i=1

gτ2,ifε(0)G(1)
τ

(
XT

i β0
τ

)
XT

1i

(
β̂

N
τ1 − β0

τ1
) + op

(
n−1/2)

.

For any β1 satisfying ‖β1 − β0
τ1‖2 ≤ δn with δn � n−1/2, define

�n(β1) = n−1
n∑

i=1

gτ2,ifε(0)G(1)
τ

(
XT

i β0
τ

)
E

(
X1i |XT

i β0
τ

)T(
β1 − β0

τ1
)
.(A.22)

Then E{�n(β1)} = 0 and

E
{

sup
‖β1−β0

τ1‖≤δn

�n(β1)
T�n(β1)

}
≤ δ2

nn
−1E

[
gT

τ2,igτ2,i

{
G(1)

τ

(
XT

i β0
τ

)}2
E

(
X1i

∣∣XT
i β0

τ

)T(
X1i

∣∣XT
i β0

τ

)]
= O

(
δ2
nn

−1)
.

Thus, we have for δn � n−1/2

sup
‖β1−β0

τ1‖≤δn

∥∥�n(β1)
∥∥

2 = op

(
n−1/2)

.(A.23)
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By (S.50), (A.22), and (A.23), we have

n−1
n∑

i=1

E
{
�n12,i

(
β̂

N
τ

)|Xi

}

= −n−1
n∑

i=1

gτ2,ifε(0)G(1)
τ

(
XT

i β0
τ

)
X̃T

1i

(
β̂

N
τ1 − β0

τ1
) + op

(
n−1/2)

= −n−1
n∑

i=1

gτ2,iG
(1)
τ

(
XT

i β0
τ

)
X̃T

1i

×
[

+

n11n
−1

n∑
i=1

gτ1,iρ
(1)
τ

{
Yi − Gτ

(
XT

i β0
τ

)}]
(A.24)

+ op

(
n−1/2)

= −n−1
n∑

i=1

gτ2,ig
T
τ1,i

[

+

n11n
−1

n∑
i=1

gτ1,iρ
(1)
τ

{
Yi − Gτ

(
XT

i β0
τ

)}]

+ op

(
n−1/2)

= −n−1
n21

+
n11

n∑
i=1

gτ1,iρ
(1)
τ

{
Yi − Gτ

(
XT

i β0
τ

)} + op

(
n−1/2)

.

Therefore, the result (A.15) follows from (A.17), (A.18), (A.19) and (A.24).
Denote X̂2i (β) = X2i − Ê(X2i |XT

i β), where β = (βT
1 ,0T)T and Ê(X2i |XT

i β) is

defined in (10). �n2(β̂
N
τ ) given in (A.16) can be written as

�n2
(
β̂

N
τ

) = �n2
(
β̂

N
τ , θ̃τ

(
β̂

N
τ

)) = �n21
(
β̂

N
τ , θ̃ τ

(
β̂

N
τ

)) + �n22
(
β̂

N
τ , θ̃ τ

(
β̂

N
τ

))
,

where

�n21(β, θ) = n−1
n∑

i=1

�n21,i(β, θ), �n22(β, θ) = n−1
n∑

i=1

�n22,i(β, θ),

�n21,i(β, θ) = [
ρ(1)

τ

{
Yi − {

B
(
XT

i β
)T

θ
}} − ρ(1)

τ

{
Yi − Gτ

(
XT

i β0
τ

)}]
× {

gτ2,i − {
B(1)(XT

i β
)T

θ
}
X̂2i (β)

}
,

�n22,i(β, θ) = ρ(1)
τ

{
Yi − Gτ

(
XT

i β0
τ

)}{
gτ2,i − {

B(1)(XT
i β

)T
θ
}
X̂2i (β)

}
.

Denote �n = {(β, θ) : ‖β − β0
τ‖2 ≤ δn,‖θ − θ0

τ (β
0
τ )‖ ≤ Ln} for δn � n−1/2 and

Ln � Jnn
−1/2. Then, by (A.14) and

sup
1≤i≤n,‖β−β0

τ ‖2≤δn

∣∣{B(1)(XT
i β

)T
θ
}
X̂2i (β) − {

B(1)(XT
i β0

τ

)T
θ
}
X̂2i

(
β0

τ

)∣∣ = O(δn),
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there is a constant 0 < C < ∞,

E
{

sup
(β,θ)∈�n

�n21(β, θ)T�n21(β, θ)
}

≤ Cn−2
∑
i,i′

E sup
(β,θ)∈�n

[∣∣ρ(1)
τ

{
Yi − {

B
(
XT

i β
)T

θ
}}

− ρ(1)
τ

{
Yi − G̃τ

(
XT

i β0
τ ,β

0
τ

)}∣∣ × ∣∣ρ(1)
τ

{
Yi′ − {

B(1)(XT
i β

)T
θ
}}

− ρ(1)
τ

{
Yi′ − G̃τ

(
XT

i′β
0
τ ,β

0
τ

)}∣∣](ω2
n + δ2

n

)
≤ C

(
ω2

n + δ2
n

)
n−2

[
n∑

i=1

E sup
(β,θ)∈�n

∣∣B(
XT

i β
)T

θ − G̃τ

(
XT

i β0
τ ,β

0
τ

)∣∣
+ ∑

i �=i′
E

[
sup

(β,θ)∈�n

∣∣B(
XT

i β
)T

θ − G̃τ

(
XT

i β0
τ ,β

0
τ

)∣∣
× ∣∣B(

XT
i′β

)T
θ − G̃τ

(
XT

i′β
0
τ ,β

0
τ

)∣∣]]

= (
ω2

n + δ2
n

)[
n−1Op

{
J−r

n + (
Jnn

−1)1/2} + Op

{
J−2r

n + Jnn
−1}]

= op

(
n−1)

,

due to the fact that ωn = Op{(J 3
n n−1 logn)1/2 + J−r+1

n + J−1
n }. Hence,

sup(β,θ)∈�n
‖�n21(β, θ)‖2 = op(n−1/2) which implies∥∥�n21

(
β̂

N
τ , θ̃ τ

(
β̂

N
τ

))∥∥
2 = op

(
n−1/2)

.

Since E{�n22,i(β, θ)|X} = 0, then E{�n2,i (β, θ)} = 0. Moreover,

E
{

sup
(β,θ)∈�n

�n22,i(β, θ)T�n21,i(β, θ)
}

= τ(1 − τ)E sup
(β,θ)∈�n

[{
gτ2,i − {

B(1)(XT
i β

)T
θ
}
X̂2i (β)

}T

× {
gτ2,i − {

B(1)(XT
i β

)T
θ
}
X̂2i (β)

}]
= op(1).

Then by following the same procedure as the proofs for (S.54), we have
sup(β,θ)∈�n

‖�n22(β, θ)‖2 = op(n−1/2), so that ‖�n22(β̂
N
τ , θ̃ τ (β̂

N
τ ))‖2 =

op(n−1/2). Therefore,∥∥�n2
(
β̂

N
τ

)∥∥
2 ≤ ∥∥�n21

(
β̂

N
τ , θ̃τ

(
β̂

N
τ

))∥∥
2 + ∥∥�n22

(
β̂

N
τ , θ̃τ

(
β̂

N
τ

))∥∥
2 = op

(
n−1/2)

.

Thus, the result in (A.16) is proved.
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SUPPLEMENTARY MATERIAL

Supplement to “Inference for single-index quantile regression models with
profile optimization” (DOI: 10.1214/15-AOS1404SUPP; .pdf). We present sev-
eral lemmas that will be used in the proof of the main theorems, and the proof of
equation (A.18). Then we present Example 2 for Case 1 and additional simulation
results for Case 2 in the simulation studies.
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