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We derive randomization-based models for experiments with a chain of
randomizations. Estimation theory for these models leads to formulae for
the estimators of treatment effects, their standard errors and expected mean
squares in the analysis of variance. We discuss the practicalities in fitting
these models and outline the difficulties that can occur, many of which do not
arise in two-tiered experiments.

1. Introduction. Bailey [2, 3], following Grundy and Healy [22], outlines a
method of deriving randomization-based models for experiments. These mixed
models are randomization-based in the sense that the variance matrix on which the
analysis is based is defined by the group of permutations for the randomization.
The method applies to a general class of structures: those derived from a group
of permutations which is stratifiable, in the sense defined in Section 2. This class
includes all poset block structures and many other structures besides.

This approach applies to just a single randomization, as defined in [11] to be one
that can be achieved using a single permutation of the set of observational units.
Brien and Bailey [11–13] also describe experiments with multiple randomizations,
which require multiple permutations.

EXAMPLE 1.1 (Simpler two-phase sensory experiment). Figure 1, equivalent
to one presented in [11], Section 4.1, shows a two-phase sensory experiment. The
first, or field, phase is a viticultural experiment and the second, or evaluation, phase
involves the assessment of wine made from the produce of the first-phase vine-
plots. The first phase uses a randomized complete block design, whilst the design
in the second phase consists of a pair of 8 × 8 Latin squares on each occasion. The
example involves two randomizations: one in which treatments are randomized to
vine-plots, each comprised of several vines, and a second in which vine-plots are
randomized to evaluations. This is called a chain of randomizations in [12].

The middle panel in Figure 1 shows that the proper randomization for the first
phase is to randomly permute blocks and then randomly permute vine-plots inde-
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FIG. 1. Randomization diagram for Example 1.1: treatments are randomized to vine-plots, which
are in turn randomized to evaluations; B denotes Blocks, O denotes Occasions.

pendently within each block. The right-hand panel shows the proper randomiz-
ation for the second phase: randomly permute occasions; within each occasion,
randomly permute all 16 judges and, independently, randomly permute all eight
positions.

Brien and Bailey show how to assess the properties of experiments with multi-
ple randomizations in [12, 13]. Curnow [20], in correcting the analysis of McIntyre
[26], showed how to analyse the results of two-phase experiments by analysis of
variance (anova). Wood, Williams and Speed [49] also discussed the analysis of
two-phase experiments. Brien indicated how to use tiers to obtain the anova for
multitiered experiments in [8] and derived expected mean squares under a mixed
model in [9]. Brien and Payne [16] extended the sweep algorithm of Wilkinson
[36, 47] to cover anova for multitiered experiments. Brien and Bailey [11] and
Brien and Demétrio [14] describe how to analyse the data from such experiments
by using mixed models. However, no one has so far given general formulae for
the estimators of treatment effects and their standard errors for multitiered exper-
iments, nor have formulae for the expected mean squares under randomization-
based models been derived.

Section 2 formulates the randomization-based model for a two-tiered experi-
ment and generalizes it to experiments with two randomizations in a chain. Sec-
tion 3 describes families of expectation models that lead to a treatment decompo-
sition; the assumption of structure balance is discussed. The properties of anova
for randomization-based models are outlined in Section 4. Section 5 contains a
set of examples. Sections 6–9 address the estimation of treatment effects, first for
two-tiered experiments and then for various cases of three-tiered experiments. Sec-
tion 10 generalizes this to an arbitrary number of randomizations in a chain. Sec-
tion 11 covers the use of software in estimating model parameters, including a
discussion of randomization-based models in the class of all mixed models. Sta-
tistical inference is discussed in Section 12. Section 13 briefly touches on models
other than those described in Section 2. See Section 3 of [12] for definitions of
some terms and notation specific to the approach we take.

2. Randomization-based models.

2.1. The randomization-based model for a two-tiered experiment. As in
[11–13], we randomize the set of objects � to another set of objects ϒ , so we
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have a design function h:ϒ → �. If the objects in � are treatments then h(υ)

is the treatment assigned to unit υ in ϒ . We associate a structure with each of
ϒ and �. If Vϒ is the space of all real vectors indexed by ϒ , then a structure on
ϒ is an orthogonal decomposition of Vϒ . This is specified by a set of symmetric,
idempotent, mutually orthogonal matrices projecting onto the subspaces of Vϒ in
the decomposition. Similarly, structure on � is an orthogonal decomposition of the
space V� .

The usual initial assumption for the response Yυ on unit υ in ϒ is additive:

Yυ = wυ + τh(υ).(1)

In some approaches, wυ is taken to be a constant, but here it is taken to be a
random variable, as in [3, 22]. It depends only on the unit υ which is providing
the response. On the other hand, τi , for i in �, is a constant. It depends only on
the treatment i which is applied to υ . Permitting the wυ to be random allows for
measurement error, without the assumption of any particular form for it, and any
random sampling of units that may occur.

Let G be a group of permutations of ϒ . We usually take G to be the group of
all permutations that preserve certain generalized factors on ϒ , in the sense that
if F is such a generalized factor, g ∈ G and F(υ1) = F(υ2) then we must have
F(g(υ1)) = F(g(υ2)). Generalized factors are denoted by F1 ∧ · · · ∧ Fn and are
factors whose levels are the levels combinations of F1, F2, . . . and Fn, for n ≥ 1.
In [2, 3] it is argued that if we randomize by choosing g from G at random then it
is appropriate to replace wυ by Wυ , which is the mixture of the wg(υ) over g in G.
Hence, we get the randomization-based model

Yυ = Wυ + τh(υ),(2)

where the Wυ are random variables which are exchangeable under G: in particu-
lar:

(P.a) if there is any g in G for which g(υ1) = υ2 then Wυ1 and Wυ2 have the
same distribution, in particular, the same expectation;

(P.b) if there is any g in G for which g(υ1) = υ2 and g(υ3) = υ4 then the joint
distribution of (Wυ1,Wυ3) is the same as the joint distribution of (Wυ2,Wυ4), in
particular, Cov(Wυ1,Wυ3) = Cov(Wυ2,Wυ4).

If the group G is transitive on ϒ then property (P.a) is true for all choices of υ1 and
υ2, so we may incorporate the constant value of E(Wυ) into each τi and so assume
that E(Wυ) = 0 for all υ in ϒ . We restrict attention to cases where G is transitive,
which implies that every unrandomized factor on ϒ is equi-replicate.

Let Y and W be the vectors of the random variables Yυ and Wυ , respectively,
and τ the vector of treatment coefficients τi . Represent the design function h by
the ϒ × � design matrix Xh, with (υ, i)-entry equal to 1 if h(υ) = i and to 0
otherwise. Then equation (2) can be rewritten in vector form as Y = W + Xhτ ,
and E(Y) = Xhτ .
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The pattern in the (co)variance matrix C of W is determined by property (P.b),
which implies that C is a patterned matrix with the same entries, including multi-
plicities, in every row; only their order differs. The group G defines the set B of
non-zero symmetric ϒ × ϒ adjacency matrices B with entries 0 and 1, whose
sum is the all-1 matrix J, as follows: if the (υ1, υ2)-entry of B is equal to 1 then
the (υ3, υ4)-entry is equal to 1 if and only if there is some g in G for which
either g(υ1) = υ3 and g(υ2) = υ4 or g(υ1) = υ4 and g(υ2) = υ3. Then the product
of any two adjacency matrices is a linear combination of matrices in B. Prop-
erty (P.b) implies that there are (co)variances ζB such that C = ∑

B∈B ζBB. For
simple orthogonal block structures, this form of C is the same as the variance
matrix for the null randomization distribution given by Nelder [29].

The group G is said to be stratifiable [1, 6] if the eigenvectors of the matrix C
do not depend on the values of the entries ζB but depend only on their pattern.
Then the collection V of all possible variance matrices C has common eigenspaces,
called strata, which form the structure on ϒ , and V is said to have orthogonal vari-
ance structure (OVS). OVS is called “orthogonal block structure” by Houtman and
Speed in [23]. Note that there is no linear dependence among the (co)variances ζB.
Unless otherwise stated, we assume that G is stratifiable and so C has OVS. Then
the number of strata is equal to the number of adjacency matrices.

Let Q be the collection of symmetric, mutually orthogonal, idempotent matrices
projecting onto the strata. Then

∑
Q∈Q Q is the ϒ × ϒ identity matrix Iϒ , and the

variance matrix can be re-expressed as

C = ∑
Q∈Q

ηQQ,(3)

with ηQ ≥ 0 for all Q in Q. The values ηQ are the eigenvalues of C and are
called spectral components of variance. The stratum corresponding to Q is the
subspace within which all normalized contrasts have variance ηQ under random-
ization. Given Q, any two matrices of the form (3) commute with each other. The
matrices Q are linear combinations of the matrices B, and vice versa, but in general
there is no closed-form expression for the coefficients in these combinations.

2.2. Application to poset block structures. Most experiments conducted in
practice, and all examples in this paper, have poset block structures on their units.
These straightforward generalizations of simple orthogonal block structures are
defined in [3, 42–44] and shown in [5] to have stratifiable permutation groups.

A poset block structure on ϒ is defined by a set H of generalized factors on ϒ

satisfying certain conditions. Following [45], we write F < H if F and H are in
H and F is marginal to H . There are several ways in which to write C, in terms of
matrices and coefficients that depend on H in H [42, 44]:

C = ∑
H∈H

ζH BH = ∑
H∈H

ψH SH = ∑
H∈H

ηH QH .(4)
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Here, ζH is the (co)variance under the randomization between elements of ϒ with
the same level of H but not the same level of any generalized factor F in H to
which H is marginal; BH is the ϒ ×ϒ adjacency matrix with entry 1 for such pairs
and entry 0 otherwise; ψH is a canonical component; SH is the ϒ ×ϒ relationship
matrix [24] for H , with (υ1, υ2)-entry equal to 1 if υ1 and υ2 have the same level
of H and to 0 otherwise. Thus, SH = ∑

F≥H BF . If kH is the common replication
of all levels of H , then k−1

H SH = ∑
F≤H QF . When H is the generalized factor

consisting of all factors on ϒ , the subscript H will sometimes be replaced by ϒ ,
while the subscript for the generalized factor corresponding to the overall mean is
denoted 0. Expressions in [42, 44] show how to convert one set of coefficients in
equation (4) to another. In particular, ζH = ∑

F≤H ψF and

ηH = ∑
F≥H

kF ψF .(5)

The natural interpretation of canonical components in this context is as compo-
nents of excess covariance [32]. They are linear combinations of the covariances
(ζ -parameters) [29, 32, 44]. They measure the difference between the (co)variance
of the responses on the units in ϒ that have the same level of a particular gen-
eralized factor and the combined covariances of all generalized factors marginal
to it. Thus, ψH can be negative: for example, when F < H , ψH = ζH − ζF

and ζH < ζF . However, ψϒ = ηϒ ≥ 0. Estimates of standard errors of treatment
effects require estimates of the spectral components. On the other hand, scientifi-
cally interesting hypotheses about the canonical components are often formulated
and tested [19, 32] (see also Section 11.3) and so estimates of them may also be
required.

Randomization-based models for experiments with poset block structure are
mixed models in which the only constraint on the canonical components is that the
spectral components be non-negative. This is weaker than the assumption com-
monly made in variance components models, namely, that all variance components
σ 2

H are non-negative. These mixed models are discussed further in Section 11.

2.3. The randomization-based model for an experiment with two randomiza-
tions in a chain. For a chain of two randomizations, there are three sets: ϒ is
randomized to 
, and � is randomized to ϒ . Let the corresponding design maps
be f :
 → ϒ and h:ϒ → �, as in Figure 2. The elements of � will be referred to
as treatments and ϒ and 
 as unrandomized sets.

�
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structure P
set �

structure R
set ϒ

structure Q
� �

h←− f←−

unrandomized in design 1
randomized in design 2 unrandomized in design 2

randomized in design 1

FIG. 2. Diagram of an experiment with two randomizations in a chain.
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Suppose that f is randomized by choosing a random permutation from the
group G1 of permutations of 
, and that G1 is stratifiable with stratum projec-
tors P, for P in P . Like the matrices Q in Section 2.1, the matrices P are known
orthogonal idempotents summing to the 
 × 
 identity matrix I
. In Section 2.1,
the size of the idempotents is the size of ϒ , while here it is the size of 
.

Now let Yω be the response on observational unit ω in 
. Applying the random-
ization argument from Section 2.1 to f gives Yω = Zω + Ỹf (ω), where Zω is
a random variable depending only on the unit ω and Ỹυ is a notional effect
associated with unit υ in ϒ . Because G1 is stratifiable, we can assume that
the random variables Zω are identically distributed with mean zero, and that
Cov(Z) = ∑

A∈A γAA, where A is the set of adjacency matrices arising from G1

and the γA are the associated (co)variances. Following Section 2.1, we can also
write Cov(Z) = ∑

P∈P ξPP where, like the quantities ηQ, the ξP are unknown non-
negative coefficients. Then the set of all possible matrices for Cov(Z) has OVS
because G1 is stratifiable.

Similarly, h is randomized by choosing a random permutation from the
group G2 of permutations of ϒ , and G2 is stratifiable with ϒ × ϒ stratum projec-
tors Q, for Q in Q, as in Section 2.1. Rewriting equation (2) as Ỹυ = Wυ + τh(υ)

gives

Yω = Zω + Ỹf (ω) = Zω + Wf (ω) + τh(f (ω)).(6)

In turn, this randomization-based model can be rewritten in vector form as Y =
Z + Xf W + Xf Xhτ , where Xf is the 
×ϒ design matrix for f . Hence, E(Y) =
Xf Xhτ , and the variance matrix V of Y is given by

V = Cov(Z + Xf W) = ∑
A∈A

γAA + ∑
B∈B

ζBXf BX′
f = ∑

P∈P
ξPP + ∑

Q∈Q
ηQXf QX′

f ,

because Z and W are independent. The two sets P and Q of idempotents corre-
spond to the eigenspaces of the variance matrices of Z and W, respectively, but not
necessarily to those of V. Although the coefficients ξP and ηQ may not be eigen-
values of V, we still call them spectral components of variance because they are
the eigenvalues of Cov(Z) and Cov(W), respectively.

As noted in [12], the effect of the design function f is to embed a copy V
f
ϒ

of Vϒ inside the space V
 of real vectors indexed by 
. Let Df be the ϒ × ϒ

diagonal matrix whose (ν, ν)-entry is the replication of unit ν. Then X′
f Xf = Df ,

and the matrix of orthogonal projection onto V
f
ϒ is Xf D−1

f X′
f .

To further simplify V, the design f be must be equi-replicate. If Q1 and Q2 are
in Q then (Xf Q1X′

f )(Xf Q2X′
f ) = Xf Q1Df Q2X′

f . If the common replication

is r then Df = rIϒ , so if we put Qf = r−1Xf QX′
f then the Qf are mutually

orthogonal idempotents summing to r−1Xf X′
f , which is the matrix of orthogonal
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projection onto the subspace V
f
ϒ . To simplify notation, as in [12], we shall write

Qf just as Q, {Qf : Q ∈Q} as Q, and r−1Xf X′
f as IQ. Thus, we have

V = ∑
P∈P

ξPP + r
∑

Q∈Q
ηQQ.(7)

This formula for V is similar to that in equation (2) of [49], but there are three
differences. Here, the two collections of idempotents sum to I and IQ, respectively,
whereas those in [49] both sum to I. Equation (7) is justified by the randomization;
the formula in [49] is an assumed model. Finally, [49] does not require f to be
equi-replicate, so the parameterization does not explicitly include the replication r .

2.4. Pairs of poset block structures. If the structure on ϒ is a poset block
structure with set H2 of generalized factors, then r

∑
H∈H2

ηH Qf
H =∑

H∈H2
ψH Sf

H , where Sf
H = Xf SH X′

f which is the 
 × 
 relationship matrix
for H when it is regarded as a factor on 
, in which case the common replication
of its levels is rkH . If we now write Sf

H just as SH , we have r
∑

H∈H2
ηH QH =∑

H∈H2
ψH SH .

Suppose that the structure on 
 is also a poset block structure, with set H1 of
generalized factors. For H in H1, let the 
 × 
 relationship matrix for H be TH ,
with corresponding canonical component φH and common replication kH . Then∑

H∈H1

ξH PH = ∑
H∈H1

φH TH and ξH = ∑
F∈H1,F≥H

kF φF .

Thus, when both structures are poset block structures, equation (7) becomes

V = ∑
H∈H1

φH TH + ∑
H∈H2

ψH SH .(8)

As noted in Section 2.2, even for poset block structures the randomization-based
model for variance differs from a variance-components model. In equation (7),
it is the coefficients ξP and ηQ which must be non-negative; the corresponding
canonical components, except for φ
 and ψϒ , may well be negative.

3. Treatment decomposition and structure balance.

3.1. Families of expectation models in a two-tiered experiment. Consider the
two-tiered set-up in Section 2.1. The design function h embeds a copy V h

� of V�

inside Vϒ . Let Dh be the � ×� diagonal matrix of replications of treatments. Then
X′

hXh = Dh, and the matrix of orthogonal projection onto V h
� is XhD−1

h X′
h, which

we write as IR, because we always associate a structure R with �. The elements
of R are derived from a family M of expectation models on �, as we now show.

With treatment effects fixed, data analysis usually proceeds by selecting a model
from M and then estimating its parameters; see [4]. We assume that M defines



1138 R. A. BAILEY AND C. J. BRIEN

an orthogonal decomposition of V� , in the following sense. There is a collection
R of � × � symmetric, mutually orthogonal, idempotent matrices whose sum is
the � × � identity matrix I� ; each non-zero model in M is the subspace of V�

corresponding to a sum of one or more of the idempotents in R; if M is such
a model then there is at least one idempotent R in R such that Im(R) ≤ M and
M ∩ (Im(R))⊥ is in M; each R in R occurs at least once in this way, so that it
corresponds to the extra sum of squares for fitting a larger model compared to a
smaller model.

For R in R, the subspace Im(R) of V� is translated by h into a subspace of
V h

� whose ϒ × ϒ matrix Rh of orthogonal projection is XhR(RDhR)−RX′
h. We

require that h have the property that all such matrices commute with each other.
When M is defined by a collection of orthogonal factors on �, this requirement is
equivalent to the condition that the factors remain orthogonal when considered as
factors on ϒ . In the two-tiered context, we shall write Rh and {Rh : R ∈R} simply
as R and R from now on, so that

∑
R∈R R = IR.

There is no requirement for the design h to be equi-replicate. For example, sup-
pose that � consists of the two levels of a treatment factor. If we parameterize the
expectations as μ + α and μ − α then the estimators of μ and α are not orthog-
onal unless the levels are equally replicated. A model-focussed approach has one
model M1 in which we parameterize the expectations as α1 and α2, with a sub-
model M2 in which they are both μ, and a further submodel M3 in which both
expectations are zero. Then R = {R1,R0}, where R0 = |ϒ |−1J, which is the pro-
jector for the grand mean, and R1 = IR − R0. Thus, we do have orthogonality,
whether or not the replications are equal.

3.2. Structure balance in a two-tiered experiment. Until Section 9 inclusive,
we insist that h be such that R is structure balanced in relation to Q, in the sense
defined in [12]. This means that there are scalars λQR, for Q in Q and R in R, such
that RQIR = λQRR. Thus, (i) RQR = λQRR and (ii) if R1 �= R2 then R1QR2 = 0.
The scalars λQR are called efficiency factors. It follows that each Q is the sum of
the following mutually orthogonal idempotents: (i) Q � R, for all R in R with
λQR �= 0, and (ii) if it is non-zero, Q � R. These idempotents are defined by
Q�R = λ−1

QRQRQ and Q �R = Q − ∑′
R∈R Q � R, where the summation is over

those R for which λQR �= 0. This set of idempotents is denoted Q�R in [12].
For each R in R, the efficiency factors λQR are non-negative and sum to 1. If

each R has some Q in Q such that λQR = 1 then the structure R is said to be
orthogonal in relation to the structure Q.

The matrices Q are determined by the group of permutations used for random-
izing, and hence ultimately by the relevant information about ϒ , such as blocks or
managerial constraints. On the other hand, the matrices R depend on the family of
expectation models chosen as appropriate. The former cannot be altered, but the
latter may be refined, perhaps using pseudofactors, in order to achieve structure
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balance [27, 50]. This is achieved by judicious replacement of some matrices R
in R by sub-idempotents so that there is a refinement of the decomposition given
by R into smaller subspaces; see [12], Section 4. Thus, we have a larger collection
R∗ of mutually orthogonal idempotents, such that each R in R is a sum of one or
more of the idempotents in R∗. For example, in a balanced lattice square design
for k2 treatments in (k + 1)/2 squares, where k is odd, R = {R0,RT} where R0

and RT are the idempotents for the Mean and Treatments, respectively. However,
R is not structure balanced in relation to the structure Q defined by (k + 1)/2
squares, each formed by k rows crossed with k columns. We form R∗ by replac-
ing RT by RT,R and RT,C, which are the idempotents corresponding to the treat-
ment subspaces partly confounded with rows and columns, respectively: then R∗
is structure balanced in relation to Q (see [12], Example 5).

3.3. Treatment structure and structure balance in a three-tiered experiment
with two randomizations in a chain. Now consider the three-tiered set-up in Sec-
tion 2.3. As in Section 3.1, the effects τ are taken to be fixed, and so we assume that
the family of expectation models gives a set of mutually orthogonal idempotents R
in R whose sum is the orthogonal projector onto V h

� in Vϒ . Let Mh be the ϒ × ϒ

idempotent for one of these expectation models. The corresponding 
 × 
 idem-
potent (Mh)f is given by (Mh)f = Xf Mh(MhDf Mh)−MhX′

f = r−1Xf MhX′
f

since Df = rIϒ . Therefore, putting Rf = r−1Xf RX′
f for R in R, we see that the

mutually orthogonal idempotents R in R translate to mutually orthogonal idem-
potents Rf on V
. That is, because f is equi-replicate, the same formula is used
to convert both the expectation idempotents and the variance idempotents from
ϒ ×ϒ matrices to 
×
 matrices. There is still no need for h to be equi-replicate.
As in [12], we shall write Rf as R and {Rf : R ∈ R} as R in the three-tiered con-
text. We continue to write

∑
R∈R R as IR, which is now an 
 × 
 matrix.

In addition to the condition that f be equi-replicate, we also assume until Sec-
tion 9 inclusive that Q is structure balanced in relation to P , or can be made so, as
described in Section 3.4. Then R is structure balanced in relation to P �Q, Q�R
is structure balanced in relation to P , and (P �Q) �R = P � (Q�R) [12].

Let Q1 be the set of Q in Q for which there is an idempotent P in P with
λPQ = 1. Define the function c from Q1 to P such that c(Q) = P for λPQ = 1. If
Q ∈ Q1 then Im(Q) ≤ Im(c(Q)), and QP = PQ = Q = P � Q if P = c(Q), while
QP = PQ = 0 otherwise. Thus, Q is orthogonal in relation to P when Q1 =Q.

For P ∈ P , equation (7) shows that V(P�Q) = ξP(P�Q), because (P�Q)Q =
0 for all Q in Q. Hence, Im(P �Q) is contained in an eigenspace of V with eigen-
value ξP. Moreover, if Q ∈Q and λPQ �= 0, then

V(P � Q) = V
PQP
λPQ

= ξP

λPQ
PQP + r

∑
Q∗

ηQ∗

λPQ
Q∗PQP = ξP(P � Q) + rηQQP.



1140 R. A. BAILEY AND C. J. BRIEN

If Q ∈ Q1 and P = c(Q) then Im(P � Q) is contained in an eigenspace of V with
eigenvalue ξP + rηQ. Otherwise, Im(P � Q) is not contained in any eigenspace
of V.

If Q is orthogonal in relation to P, then

V = ∑
Q∈Q

(ξc(Q) + rηQ)Q + ∑
P∈P

ξP(P �Q).(9)

The idempotents in this expression are those in P � Q, and the image of each is
contained in an eigenspace of V. Thus, the set of all positive semidefinite (p.s.d.)
matrices of the form (9) commute with each other, and have common eigenspaces:
we call this commutative variance structure (CVS). If, in addition, there is no
linear dependence among the coefficients in (9), we have OVS.

3.4. Choice of idempotents. The matrices P are defined by the group G1 of
permutations used to randomize the design f . The matrices Q are first defined as
matrices on Vϒ by the group G2 of permutations used to randomize the design h,
and then translated by f to matrices on V
. The matrices R depend initially on the
chosen family of expectation models, and are translated by h and then by f .

Strictly speaking, there is no freedom of choice over the Q matrices. However,
as already outlined for design h in Section 3.2, it is sometimes possible to turn a
design f without structure balance into one with structure balance by judicious
replacement of some matrices Q in Q by sub-idempotents, yielding Q∗. The vari-
ance matrix in equation (7) is defined by the original Q: when it is rewritten in
terms of Q* it has the constraint that if Q in Q is the sum Q∗

1 + · · · + Q∗
n with Q∗

i

in Q∗ then each of Q∗
1, . . . ,Q∗

n has the same spectral component ηQ.
There are two types of multiple randomization that form a chain; see [11, 12].

For composed randomizations, the randomizations may be done in either order,
because neither needs knowledge of the outcome of the other. In contrast,
randomized-inclusive randomizations have the complication that knowledge of the
outcome of the randomization of � to ϒ is needed before ϒ can be randomized
to 
.

As explained in [11], Section 5.1 and [12], Section 6, this knowledge is needed
in the second case partly because the structure Q on ϒ defined by the randomiz-
ation of design h is not structure balanced in relation to P . Thus, Q needs to be
refined into sub-idempotents, also called pseudosources, as described above. The
second necessary ingredient for randomized-inclusive randomizations is that at
least one source on � is confounded or partly confounded with one of the sources
on ϒ that needs to be split up. In order to work out the partial confounding of
sources on � with those on 
, it is necessary to keep track of the partial confound-
ing of the former with the pseudosources on ϒ . This may require pseudosources
on �. Most importantly, the unrandomized version of f is constrained to ensure
the correct partial confounding of (pseudo)sources on � with those on 
.
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Although this procedure is more complicated than that for composed random-
izations, the randomization-based model is virtually the same. As above, we have
to keep track of pseudosources. For those on ϒ , it is important to remember that
pseudosources of the same source have the same spectral component η. This com-
plication can occur for experiments with two composed randomizations when the
second randomization is not consonant, as defined in [11]. It always occurs for
experiments with two randomized-inclusive randomizations; see Examples 2.1
and 2.2.

4. Analysis of variance.

4.1. A two-tiered experiment. Consider the two-tiered experiment in Sec-
tions 2.1 and 3.2. In [12], decomposition tables were used to display the decompo-
sition of Vϒ appropriate for such an experiment. Such a table is a precursor to an
anova table and consists of rows and columns. There is a set of columns for each
tier: one column containing sources, one column containing degrees of freedom
and, if the design is structure balanced but not orthogonal, a further column show-
ing efficiency factors. The sources and pseudosources correspond to idempotents
in Q or R which, when they are based on generalized (pseudo)factors, are labelled
as described in Section 3 of [12]. Each row of the decomposition table corresponds
to a subspace in the decomposition specified by Q�R. In this paper, we add a col-
umn for expected mean squares to decomposition tables in order to form skeleton
anova tables.

The anova table for the analysis of a response variable when the variance matrix
has the form (3), the τi are fixed effects and R is structure balanced in relation to
Q is given in [2, 23, 30]. The data vector y is projected onto each stratum in turn
and then Qy, which is the projection into stratum Im(Q), is further decomposed
according to the elements of Q�R involving Q. The following hold:

(A.a) The projections onto different strata are uncorrelated.
(A.b) Any orthonormal basis for Im(Q) gives uncorrelated random variables

all with variance ηQ.
(A.c) If λQR �= 0, then the expected mean square for Q � R is equal to

ηQ + λQRτ ′X′
hRXhτ

rank(R)
.

(A.d) If Q �R is non-zero, then the expected mean square for Q �R is equal
to ηQ.

For poset block structures, the expected mean squares in terms of the canonical
components can obtained from those in (A.c) and (A.d) using equation (5).

The expression τ ′X′
hRXhτ/ rank(R) in (A.c) is a p.s.d. quadratic form in the

parameters τi . If R is defined by a poset block structure on � then R = RF for
a generalized factor F on �, just as Q = QH in equation (4). In anova tables,



1142 R. A. BAILEY AND C. J. BRIEN

this expression is written as q(F ). In particular, q0 = τ ′X′
hR0Xhτ , where R0 =

|ϒ |−1J.

4.2. An experiment with two randomizations in a chain. First, consider expec-
tations. If P ∈ P, then (P � Q)IQ = 0. If, further, Q ∈ Q and λPQ �= 0, then
((P � Q) � R)IQIR = 0. Since E(Y) = Xf Xhτ = IQIRXf Xhτ , it follows that
E((P �Q)Y) = E(((P � Q) �R)Y) = 0. If, moreover, R ∈ R and λQR �= 0, Sec-
tion 5 of [12] shows that (P � Q) � R = λ−1

PQλ−1
QRPQRQP. Therefore,

E
((

(P � Q) � R
)
Y

) = 1

λPQλQR
PQRQPIQIRXf Xhτ = PQRXf Xhτ .

Hence,(
E

((
(P � Q) � R

)
Y

))′E((
(P � Q) � R

)
Y

) = τ ′X′
hX′

f RQPPQRXf Xhτ

= λPQλQRτ ′X′
hX′

f RXf Xhτ .

Consider a fixed P in P . Equation (7) shows that

Cov(PY) = PVP = ξPP + r
∑

Q∈Q
ηQPQP = ξPP + r

∑′

Q∈Q
ηQλPQP � Q

(10)
= ∑′

Q∈Q
(ξP + rλPQηQ)(P � Q) + ξP(P �Q).

Here,
∑′

Q∈Q denotes summation over Q ∈ Q with λPQ �= 0. The matrices in equa-
tion (10) are mutually orthogonal idempotents which sum to P and have linearly
independent coefficients. Hence, they are the projectors onto the eigenspaces of
Cov(PY) with non-zero eigenvalues. Therefore, the results for Y in Section 4.1
carry over to PY as follows:

(A.e) The projections onto any two different subspaces of the form Im(P � Q)

or Im(P �Q) are uncorrelated.
(A.f) If λPQ �= 0, any orthonormal basis for Im(P � Q) gives uncorrelated ran-

dom variables all with variance ξP + rλPQηQ.
(A.g) Any orthonormal basis for Im(P � Q) gives uncorrelated random vari-

ables all with variance ξP.
(A.h) If λPQλQR �= 0, then the expected mean square for (P � Q) � R is

ξP + rλPQηQ + λPQλQRτ ′X′
hX′

f RXf Xhτ

rank(R)
.

(A.i) If λPQ �= 0 and (P � Q) �R is non-zero, then the expected mean square
for (P � Q) �R is ξP + rλPQηQ.

(A.j) If P �Q is non-zero, then the expected mean square for P �Q is ξP.
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For poset block structures, the spectral components ξP and ηQ can be expanded to
express the expected mean squares in terms of the canonical components.

We write the expression τ ′X′
hX′

f RXf Xhτ/ rank(R) as q(F ) if R is defined by
a poset block structure on � and R = RF for some generalized factor F on �.

Finally, consider the whole of P . If Q is orthogonal in relation to P then we
have CVS and so the projected data corresponding to any two different rows of
the anova table are uncorrelated. Otherwise, we have the situation, such as that in
[33], where some subspaces corresponding to idempotents of the form P � Q do
not consist of eigenvectors of V. Then it is still possible to do anova in the sense of
decomposing the sum of squares of the responses according to the subspaces, and
equating the observed values of the mean squares to their expectations, but this
may not have all the properties of classical anova.

In particular, let Q be an idempotent in Q for which there are distinct P1 and
P2 in P with λP1Q and λP2Q both non-zero. Then the projections of the data onto
Im (P1) and Im(P2) are not independent, because

Cov
(
(P1 � Q)Y, (P2 � Q)Y

) = (P1 � Q)′
(∑

P∈P
ξPP + r

∑
Q∗∈Q

ηQ∗Q∗
)
(P2 � Q)

= P1QP1

λP1Q

(∑
P∈P

ξPP + r
∑

Q∗∈Q
ηQ∗Q∗

)
P2QP2

λP2Q

= rηQ

λP1QλP2Q
P1QP1QP2QP2 = rηQP1QP2,

which has the same rank as Q. A similar calculation shows that (P1 � Q1)Y is not
correlated with (P2 � Q2)Y if Q1 �= Q2.

5. Examples. Our first example shows how straightforward the anova table
is when both designs are orthogonal, in the sense defined in Section 3.2, and the
randomizations are composed. The second demonstrates that, even in orthogonal
experiments with multiple randomizations, an η-component can occur with more
than one ξ -component. Moreover, the fact that the numbers of units in the mid-
dle and right-hand tiers are equal in Example 2.1 but not in Example 1.1 leads
to different difficulties, as shown in Section 8.2. Examples 1.2 and 2.2 are vari-
ants of Examples 1.1 and 2.1 that show the complications introduced by non-
orthogonality. The first uses non-orthogonal designs in both phases and the second
a non-orthogonal design only in the second phase; this leads to their V matrices
having different properties.

EXAMPLE 1.1 (continued). The two randomizations involved in the example in
Section 1 each use an orthogonal design. Table 1 gives the skeleton anova, includ-
ing the expected mean squares under randomization; it is a revised and expanded
version of Table 2 of [12] and exhibits the properties of the two-phase design.
There is no need to show efficiency factors, because both designs are orthogonal.
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TABLE 1
Skeleton analysis of variance for Example 1.1

evaluations tier vine-plots tier treatments tier

source d.f. source d.f. source d.f. E.M.S.

Mean 1 Mean 1 Mean 1 ξ0 + 16η0 + q0

Occasions 2 Blocks 2 ξO + 16ηB

Judges[O] 45 ξOJ

Positions[O] 21 ξOP

J # P[O] 315 Vine-plots[B] 21 Trellis 3 ξOJP + 16ηBV + q(T)

Methods 1 ξOJP + 16ηBV + q(M)

T # M 3 ξOJP + 16ηBV + q(TM)

Residual 14 ξOJP + 16ηBV

Residual 294 ξOJP

One consequence of this simple orthogonality, and the lack of pseudosources, is
that each η-component appears in the final column in conjunction with exactly one
ξ -component. Under randomization all of these components must be non-negative.
However, canonical components such as φOJ and φOP can be negative. For exam-
ple, φOJ = γOJ − γO, which is negative if the covariance between responses by the
same judge (on an occasion) is less than the covariance between responses on the
same occasion by different judges at different positions.

The appropriate “Residual” for each of the three treatments sources is the one
with 14 degrees of freedom, which is ((J # P[O]) � (Vine-plots[B])) � R, where
R is the structure on the treatments tier.

EXAMPLE 2.1 (Wheat with Latin square in the laboratory phase). This exper-
iment has a field phase followed by a laboratory phase. In the field phase, seven
lines of wheat are grown on 49 plots; then a sample of grain from each plot is
analysed in the laboratory. The two-phase design used is like one suggested in
Example 4 of [26] and investigated in Web Appendix Example 1 of [15]: the first
phase uses a randomized complete-block design with seven blocks; in the second
phase, the plots from the first phase are randomized to 49 analyses, that occur at
seven consecutive times in each of seven runs of the machine.

Figure 3, equivalent to Web Appendix Figure 1 of [15], shows the two random-
izations. They are in a chain, but are randomized-inclusive rather than composed,
because the allocation of lines to plots must be known before plots can be random-
ized to analyses. A pseudofactor P1 is introduced, each of whose levels identifies
the group of plots receiving a single line. In the second phase, Blocks are aliased
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FIG. 3. Randomized-inclusive randomizations in Example 2.1: lines are randomized to plots, and
lines and plots are randomized to analyses; B = Blocks; P1 is pseudofactor for Plots identifying plots
assigned the same level of Lines.

with Runs while levels of P1 are allocated to make a Latin square whose rows and
columns are Runs and Times. Runs and Times are then randomized independently.

The variance matrix under the randomizations is

V = ξ0P0 + ξRPR + ξTPT + ξRTPRT + η0Q0 + ηBQB + ηBPQBP

= φ0T0 + φRTR + φTTT + φRTTRT + ψ0S0 + ψBSB + ψBPSBP,

where TH and SH are the relationship matrices and φH and ψH are the canonical
components for a generalized factor H from the analyses or plots tiers, respec-
tively.

However, Q cannot be structure-balanced in relation to P , because no P-matrix
has rank as big as rank(QBP). As explained in Section 3.4, structure balance can be
obtained by introducing a second pseudofactor P2, each of whose levels identifies
the group of plots allocated to a single time. Then QBP can be replaced by two Q∗
matrices, one each for P2 and the rest of Plots[Blocks]; both have coefficient ηBP.

The following expressions show how the canonical components in this example
measure excess covariance:

φRT = γRT − γR − γT + γ0, φR = γR − γ0, φT = γT − γ0, φ0 = γ0,

ψBP = ζBP − ζB, ψB = ζB − ζ0, ψ0 = ζ0.

Thus, φ0, φR, φT and φRT measure, respectively, the basic covariance of “unre-
lated” analyses, the excess of the covariance of different analyses in the same run
over that of “unrelated” analyses, the excess of the covariance of different anal-
yses at the same time over that of “unrelated” analyses, and the excess of the
variance of a single analysis over the appropriate linear combination of γ0, γR and
γT. The ψ-parameters from the plots tier can be similarly interpreted using the
ζ -parameters.

The skeleton anova is in Table 2; both designs are orthogonal so efficiency fac-
tors are not shown. Now ηBP occurs with two different ξ -components because the
source Plots[Blocks] has been split into two by the pseudofactor P2. Table 2 shows
that no spectral component is estimable and φT is the only estimable canonical
component.
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TABLE 2
Skeleton analysis of variance for Example 2.1 with expected mean squares in terms of spectral

components and canonical components

E.M.S.
analyses tier plots tiera lines tier

spectral
components

canonical
componentssource d.f. source d.f. source d.f.

Mean 1 Mean 1 Mean 1 ξ0 + η0 + q0 φRT + 7φR + 7φT + 49φ0
+ ψBP + 7ψB + 49ψ0
+ q0

Runs 6 Blocks 6 ξR + ηB φRT + 7φR + ψBP + 7ψB

Times 6 P2 6 ξT + ηBP φRT + 7φT + ψBP

R # T 36 Plots[B]� 36 Lines 6 ξRT + ηBP + q(L) φRT + ψBP + q(L)

Residual 30 ξRT + ηBP φRT + ψBP

a Plots[B]� is the part of Plots[B] orthogonal to P2.

EXAMPLE 1.2 (Elaborate two-phase sensory experiment). Section 3 of [16]
gives a more elaborate version of Example 1.1. The randomization diagram for it,
given in [11], is in Figure 4 and the decomposition table for it is derived in [12],
Example 1. Here, the skeleton anova is in Table 3. Although there are pseudo-
factors for the Judges factor in the evaluations tier, they are ignored in doing the
randomization as the six judges are permuted with no distinction. These pseudo-
factors are used only to obtain the systematic layout; they do not give rise to
pseudosources.

In this example, neither design is orthogonal, and so efficiency factors are shown
in the anova table. In the half-plots tier, only Columns[Squares] is not orthogonal
to sources in the evaluations tier: thus, ηQC occurs in conjunction with two different

�
�

�
�

4 Trellis

2 Methods

8 treatments

� ���		
�

�
�

�
�

2 Squares
3 Rows
4 Columns in Q
2 Halfplots in Q, R, C

48 half-plots

���������


��������

� �⊥�����

� �






3 J2
2 J1

�����

�

�

�

�

2 Occasions

3 Intervals in O

6 Judges

4 Sittings in O, I

4 Positions in O, I, S, J

576 evaluations

FIG. 4. Randomization diagram for Example 1.2: treatments are randomized to half-plots, which
are, in turn, randomized to evaluations; Q, R, C, O, I, S, J denote Squares, Rows, Columns, Occa-
sions, Intervals, Sittings and Judges, respectively; J1 and J2 are pseudofactors for Judges.
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TABLE 3
Skeleton analysis of variance table for Example 1.2 (O = Occasions, I = Intervals, S = Sittings,
J = Judges, P = Positions, Q = Squares, C = Columns, R = Rows, H = Halfplots, T = Trellis,

M = Methods)

evaluations tier half-plots tier treatments tier

source d.f. eff. source d.f. eff. source d.f. E.M.S.

Mean 1 1 Mean 1 1 Mean 1 ξ0 + 12η0 + q0

O 1 1 Q 1 ξO + 12ηQ

I[O] 4 ξOI

S[O ∧ I] 18 1
3 C[Q] 6 1

27 T 3 ξOIS + 1
3 12ηQC + 1

27q(T)

Residual 3 ξOIS + 1
3 12ηQC

Residual 12 ξOIS

J 5 ξJ

O # J 5 ξOJ

I # J[O] 20 1 R 2 ξOIJ + 12ηR
1 R # Q 2 ξOIJ + 12ηQR

Residual 16 ξOIJ

S # J[O ∧ I] 90 2
3 C[Q] 6 2

27 T 3 ξOISJ + 2
3 12ηQC + 2

27q(T)

Residual 3 ξOISJ + 2
3 12ηQC

1 R # C[Q] 12 8
9 T 3 ξOISJ + 12ηQRC + 8

9q(T)

Residual 9 ξOISJ + 12ηQRC

Residual 72 ξOISJ

P[O ∧ I ∧ S ∧ J] 432 1 H[Q ∧ R ∧ C] 24 1 M 1 ξOISJP + 12ηQRCH + q(M)

1 T # M 3 ξOISJP + 12ηQRCH + q(TM)

Residual 20 ξOISJP + 12ηQRCH

Residual 408 ξOISJP

ξ -components. Similarly, the treatment source Trellis is non-orthogonal to three
idempotents in P �Q, and so information about Trellis differences is available in
three different subspaces, as shown by the three occurrences of q(T) in the table.

EXAMPLE 2.2 (Wheat with balanced lattice square in the laboratory phase).
Example 9 of [11] extends Example 2.1 to include more lines so that a non-
orthogonal design is needed in the second phase. Figure 5 gives the randomization
diagram. In the field phase, 49 lines of wheat are investigated using a random-
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FIG. 5. Randomized-inclusive randomizations in Example 2.2: lines are randomized to plots, then
lines and plots are randomized to analyses; B denotes Blocks and I denotes Intervals; L1, . . . ,L8
are mutually orthogonal pseudofactors for Lines; P1 and P2 are pseudofactors for Plots, determined
from different Lines pseudofactors in different blocks.

ized complete-block design with four blocks. In the laboratory phase, a 7 × 7 bal-
anced lattice square design with four replicates is used to assign the blocks, plots
and lines to four intervals of seven runs by seven times. Pseudofactors are intro-
duced for lines and plots to define the second-phase design. While expansion from
Q to Q∗ maintains orthogonality between the structures on plots and analyses, it
induces non-orthogonality between the lines and plot structures, even though these
were orthogonal in the first-phase design.

The variance matrix under the randomizations is

V = ξ0P0 + ξIPI + ξIRPIR + ξITPIT + ξIRTPIRT

+ η0Q0 + ηBQB + ηBPQBP.

Randomized-inclusive randomizations are used in this experiment, as the outcome
of the randomization of lines to plots must be known before the plots can be ran-
domized to analyses. The Plots pseudofactors P1 and P2 are used to ensure appro-
priate partial confounding of sources from the lines tier with sources in the anal-
yses tier. These pseudofactors do not give idempotents in V, because they do not
contribute to the variance matrix; they are unknown before the randomization of
lines to plots, and are not among the unrandomized factors, that give rise to covari-
ance, in the randomization of plots to analyses. However, as in Example 2.1, QBP

is rewritten as the sum of three Q∗-matrices each with coefficient ηBP, to make the
design for the second phase structure balanced. This results in ηBP occurring with
three different ξ -components in the skeleton anova in Table 4, which is an extended
version of the decomposition table given for Example 5 in [12]. The expansion of
Q to Q∗ makes the structure on plots orthogonal to that on analyses, so there is no
need to show efficiency factors for the plots tier.

6. Estimation in a two-tiered experiment. Estimation of treatment effects
and variances is straightforward in a two-tiered experiment with structure balance.
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TABLE 4
Skeleton analysis of variance for Example 2.2

analyses tier plots tiera lines tier

source d.f. source d.f. eff. source d.f. E.M.S.

Mean 1 Mean 1 Mean 1 ξ0 + η0 + q0

Intervals 3 Blocks 3 ξI + ηB

Runs[I] 24 P1[B] 24 1
4 LinesR 24 ξIR + ηBP + 1

4q(LR)

Times[I] 24 P2[B] 24 1
4 LinesT 24 ξIT + ηBP + 1

4q(LT)

R # T[I] 144 Plots[B]� 144 3
4 LinesR 24 ξIRT + ηBP + 3

4q(LR)

3
4 LinesT 24 ξIRT + ηBP + 3

4q(LT)

Residual 96 ξIRT + ηBP

a Plots[B]� is the part of Plots[B] orthogonal to P1[B] and P2[B].

6.1. Estimating treatment effects and variances in one stratum. For data satis-
fying the conditions in Section 4.1, the following are also shown in [2, 23, 30] for
Q in Q and R in R with λQR �= 0.

(E.a) The best linear unbiased estimator of the treatment effects RXhτ , using
only the projected data QY, is R(Q � R)Y/λQR, which is equal to RQY/λQR.

(E.b) The variance matrix of the above estimator is (ηQ/λQR)R.
(E.c) From (A.d) in Section 4.1, an unbiased estimator of ηQ is given by the

mean square for Q �R, if Q �R is non-zero.

6.2. Treatment structure orthogonal to variance structure. If R is orthogonal
in relation to Q then each R in R has some Q in Q such that λQR = 1. Then all the
information on RXhτ is in stratum Im(Q). Hence, result (E.a) in Section 6.1 gives
RQY as the overall best linear unbiased estimator of RXhτ . Result (E.b) shows
that the variance matrix of this estimator is ηQR, and result (E.c) that the mean
square for Q �R is an unbiased estimator for ηQ, if Q �R is non-zero.

6.3. Estimating treatment effects from multiple strata when variances are
known. Suppose that R is not orthogonal in relation to Q. As shown in [23, 31], if
the coefficients ηQ are known then we can combine information on RXhτ from all
strata for which λQR �= 0 to obtain its generalized least squares (GLS) estimator,
which is the best linear unbiased estimator. In our notation, it is given by

RXhτ̂ = θ−1
R

∑
Q∈Q

η−1
Q RQY,(11)

where θR = ∑
Q∈Q λQRη−1

Q . The variance matrix of this estimator is θ−1
R R.
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6.4. Estimating treatment effects and variances from multiple strata. Usually
the coefficients ηQ are unknown and must be estimated. One method uses the mean
square for Q �R to estimate ηQ. Nelder [31] argued that, especially for designs in
which some strata have few Residual degrees of freedom, estimates should instead
be obtained by equating the expected and observed values of the mean squares
for what Houtman and Speed [23] called “actual residuals”. These estimates are
the same as those obtained with I-MINQUE and, even though normality is not
assumed, they are the same as those obtained by REML [34], because as shown in
[23], Section 4.5, [35] and [40], the same set of equations is solved for all. As will
be discussed in Section 11.2, the assumptions on the variance parameters being
estimated here are different from those for a variance-components model.

As noted in [23, 31], the estimation of the coefficients ηQ requires an iterative
procedure, because their estimation needs the estimated value of τ and vice versa.
Given working estimates η̂∗

Q of ηQ, a working estimate τ̂ ∗ of τ can be obtained
from equation (11): thus a revised estimate of each ηQ can be computed as

y′(Q �R)y + (
∑′

R∈R{y′(Q � R)y − λQRτ̂ ∗′ X′
hRXhτ̂

∗})
d ′

Q
,(12)

where
∑′

R∈R means summation over R ∈ R for which λQR �= 0, and d ′
Q are the

effective degrees of freedom for this estimator, which are given by

d ′
Q = trace (Q �R) + ∑′

R∈R

[
1 − θ−1

R
(
η̂∗

Q
)−1

λQR
]
trace R.

Since Q �R and R are both idempotent, their traces are equal to their ranks.
The numerator of expression (12) is the sum of two parts. The first is the Resid-

ual sum of squares in this stratum from the anova; the second is the difference
between the sum of squares of the treatment estimates from just the data projected
onto Im(Q) and the sum of squares of the combined estimates, summed over all
R for which λQR �= 0. The former does not depend on ηQ, but the latter does. The
effective degrees of freedom make it clear that, even when Q � R = 0, there can
be information to estimate ηQ.

If estimates of the canonical components are required, these can be obtained
from the estimates of the spectral components.

7. Estimating treatment effects and variances in a single part of P �Q.
Suppose that λPQ �= 0, so that there is an idempotent P � Q. Consider an idem-
potent R in R for which λP�Q,R �= 0. Theorem 5.1 of [12] shows that λP�Q,R =
λPQλQR. Applying the results of Section 6.1 with Y and Q replaced by PY
and P � Q, respectively, and using equation (10) for Cov(PY), we find that
the best linear unbiased estimator of the treatment effect RXf Xhτ , using only
the projected data (P � Q)Y, is R((P � Q) � R)Y/λPQλQR, which is equal
to RQPY/λPQλQR. Moreover, the variance matrix of this estimator is equal to
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R(ξP + rλPQηQ)/λPQλQR. Result (A.i) in Section 4.2 shows that the mean square
for (P � Q) � R is an unbiased estimator for ξP + rλPQηQ, if (P � Q) � R is
non-zero.

In Example 1.2, the effects for M and T # M are estimated in just the source
P[O ∧ I ∧ S ∧ J] � H[Q ∧ R ∧ C] and the Residual mean square for this source is
an unbiased estimator of ξOISJP + 12ηQRCH.

8. Full estimation in a three-tiered experiment which is anova-applicable.

8.1. Full or partial anova. Call the triple (P,Q,R) anova-applicable if it
satisfies the following condition:

for every Q in Q, if QIR �= 0 then Q ∈ Q1.(13)

That is, if the source for an R in R is (partially) confounded with a source for
some Q, then the latter source must be confounded with the source corresponding
to a single P. Section 4.2 shows that when this condition is satisfied then the idem-
potents in P � Q whose subspaces are contained in eigenspaces of V include all
those which have any part of R partially or totally confounded with them.

Condition (13) is satisfied when Q is orthogonal in relation to P , so that
Q1 = Q. Then V is given by equation (9), possibly with OVS. Treatment effects
and their variances can be estimated as in Section 6. Examples 1.1, 2.1 and 2.2 are
like this. We call this full anova.

Under full anova, if no (P � Q) � R = 0, we estimate linear combinations of
spectral components from the anova, even if they are not needed for standard errors
of treatment effects. Otherwise, formula (12) can be used, but with P � Q replac-
ing Q. In Example 1.1, all the information about each treatment source in R \ R0
is contained in (J # P[O]) � V[B]. Also, the difference between the mean squares
for ((J # P[O]) � (V[B])) �R and (J # P[O]) �Q estimates 16ηBV.

In general, put P ∗ Q = Q1 ∪ {P � Q : P ∈ P}. Then the images of all the
idempotents in P ∗ Q are contained in eigenspaces of V. If (P,Q,R) is anova-
applicable but Q is not orthogonal in relation to P then we have partial anova,
using only the information in P ∗Q. A treatment idempotent R in R may be non-
orthogonal to more than one part of P �Q, but these are all in P ∗Q. Section 4.2
shows that estimators of variances of treatment effects which are in different parts
of P ∗Q are uncorrelated, and so information can be combined as in Section 6.4.

However, the linear combinations of spectral components in the expected mean
square for parts of P �Q outside P ∗Q are not involved in this process, and their
anova-estimators may not have good properties. A similar situation arises in two-
tiered experiments if the group is not stratifiable but all treatment subspaces are
contained in known eigenspaces of the variance matrix (see Example 16 in [3]).

In the special case that R is orthogonal in relation to P � Q, each R in R has
unique idempotents Q in Q and P in P such that λPQλQR = 1, so that λPQ =
λQR = 1. Hence, Condition (13) is satisfied. Then P � Q = Q, RQP = R and the
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effect RXf Xhτ is estimated in just the one part P � Q of P ∗ Q. The anova may
be either full or partial. Tables 1 and 2 each specify full anova. The estimator for
RXf Xhτ , and its variance matrix, obtained by simplifying the expressions given
in Section 7, are RY and (ξP + rηQ)R, respectively. If ξP and ηQ are not known,
the mean square for (P � Q) � R provides an unbiased estimate of ξP + rηQ,
unless (P � Q) �R = 0. Estimation of treatment effects and their standard errors
proceeds exactly as in Section 6.2.

8.2. Difficulties that do not arise in two-tiered experiments. Even when
(P,Q,R) is anova-applicable, some phenomena can occur that are impossible
in two-tiered experiments, even for the straightforward case where P and Q are
both poset block structures, Q is orthogonal in relation to P , and R is orthogonal
in relation to Q.

8.2.1. Inestimability of some spectral and canonical components. For a two-
tiered experiment with OVS and R orthogonal in relation to Q, the estimability of
spectral components of variance is easily determined. If Q � R is non-zero then
its mean square provides the best unbiased quadratic estimator of ηQ; otherwise,
there is no estimator for ηQ. In particular, η0 is never estimable.

In a three-tiered experiment, there are some sources for which the expected
mean square is a linear combination of a ξ -parameter and an η-parameter. It may
not be possible to estimate ξ and η separately. This affects the estimability of
canonical components, although it appears that often more canonical, than spectral,
components are estimable. The parameters ξ0, η0, φ0 and ψ0 are never estimable.

Otherwise, the simplest way in which two spectral components cannot be esti-
mated separately occurs when a generalized factor F on ϒ is randomly assigned
to a generalized factor H on 
 with the same number of levels. Then only a lin-
ear combination of ξH and ηF can be estimated, and hence only a linear combi-
nation of φH and ψF . In Example 1.1, Blocks are assigned to Occasions, both of
which have three levels. Then, only ξO +16ηB is estimable, as is shown in Table 1,
where these two components only occur together. Correspondingly, only φO + ψB
is estimable.

In the special case that |ϒ | = |
|, Lemma 4.2 of [12] shows that P�Q = Q and
so there are no idempotents of the form P �Q. Thus, every expected mean square
contains one ηQ and one ξP. If κ is any constant smaller in modulus than all the
ηQ and all the ξP, then κI
 can be added to

∑
ξPP and subtracted from

∑
ηQQ

without changing the variance matrix V in equation (7). Thus, none of the spectral
components of variance can be estimated, although sums of the form ξc(Q) + ηQ
can be. For estimates of standard errors, these sums are all that is needed, and so
there is no problem. However, for comparing sources of variation, estimates of
canonical components are required. Except for φ
 and ψϒ , each canonical com-
ponent is a multiple of a difference between spectral components. This may well
be estimable, even though the corresponding spectral component is not.
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In Example 2.1, no spectral component is estimable. If relative magnitudes of
sources of variation are to be investigated, then the canonical components may
provide the information. Here, only φT is estimable; the sums φRT +ψBP and φR +
ψB are estimable. Plans A and C for Example 4 of [11] are examples where none
of the spectral components is estimable, yet most of the canonical components are.

8.2.2. Negative estimates of spectral components. As noted in Section 2.3, all
spectral components of variance must be non-negative, and hence so must any lin-
ear combination with positive coefficients. However, if λPQ �= 0 and a mean square
whose expectation is ξP + rλPQηQ is less than one whose expectation is ξP, then
the value of ηQ obtained by equating observed and expected means squares is neg-
ative; the anova-estimate of ηQ is then set to zero. This is the usual algorithm for
constrained estimation, such as for non-negative variance components or simple
linear regression with a non-negative slope.

In Example 1.1, Table 1 shows that the appropriate Residual source for all three
treatment sources is the one with expected mean square equal to ξOJP + 16ηBV. If
this mean square turns out to be smaller than the one whose expectation is ξOJP
then we set ηBV to zero and combine the two Residual mean squares to obtain a
better estimate of ξOJP. See Section 11.3 for further discussion.

8.2.3. The effect of pseudosources. If there are pseudosources for Q then some
η-components occur with more than one ξ -component, even if Q is orthogonal in
relation to P . This can lead to what we call linearly dependent commutative vari-
ance structure (LDCVS), in which the eigenspaces of V are known but the eigen-
values satisfy some linear equations. This gives a set of sources whose expected
mean squares are linearly dependent: simply equating them all to their data mean
squares may give inconsistent results. Suppose that for i, j in {1,2} the idempotent
Q∗

ij corresponds to a pseudosource for Qj and is totally confounded with Pi . Then
the expected mean squares for the four idempotents (Pi � Q∗

ij ) �R are ξ1 + rη1,
ξ1 + rη2, ξ2 + rη1 and ξ2 + rη2. To estimate either the spectral or canonical com-
ponents by equating expected and observed mean squares requires that the sum of
the middle two observed mean squares is equal to the sum of the outer two.

Non-orthogonality between Q and P can produce a similar effect. In Table 3,
the expected mean squares for S[O∧ I]�Q, (S[O∧ I]�C[Q])�R, S#J[O∧ I]�Q
and (S # J[O ∧ I] � C[Q]) �R are linearly dependent.

9. Estimation in a three-tiered experiment which is not anova-applicable.
If V is known then we can estimate treatment effects by GLS, which gives different
results from ordinary least squares if R is not orthogonal in relation to P �Q.

Equation (7) gives

V = IVI = ∑
P∈P

ξPP + r
∑
P∈P

∑
Q∈Q

∑
P∗∈P

ηQPQP∗.
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Put αQ = ∑
P(λPQ/ξP) for Q in Q. Then direct calculation shows that

V−1 = ∑
P∈P

1

ξP
P − ∑

P∈P

∑
Q∈Q

∑
P∗∈P

(
rηQ

1 + rηQαQ

)
1

ξPξP∗
PQP∗.

Consider R in R. When the ξP and ηQ are known, the GLS estimator of the
treatment effect RXf Xhτ is (RV−1R)−RV−1Y, with variance matrix (RV−1R)−.
For a chain of randomizations, R = RIQ = ∑

Q RQ, so

RV−1 = ∑
P

∑
Q

1

ξP
RQP − ∑

P

∑
Q

∑
P∗

(
rηQ

1 + rηQαQ

)
1

ξPξP∗
RQPQP∗

= ∑
P

∑
Q

1

ξP
RQP − ∑

Q

∑
P∗

(
rηQαQ

1 + rηQαQ

)
1

ξP∗
RQP∗

= ∑
P

∑
Q

1

ξP

(
1

1 + rηQαQ

)
RQP.

Hence,

RV−1R = ∑
P

∑
Q

1

ξP

(
1

1 + rηQαQ

)
RQPQR = ∑

Q

(
αQλQR

1 + rηQαQ

)
R = θRR,

with θR = ∑
Q∈Q αQλQR(1 + rηQαQ)−1. Thus, the GLS estimator of RXf Xhτ is

1

θR

∑
P

∑
Q

1

ξP

(
1

1 + rηQαQ

)
RQPY,

with variance matrix θ−1
R R.

This estimator is a linear combination of the RQPY. There are no terms in
R(P � Q), because all projectors of this form are zero for a chain of randomiza-
tions.

In the special case that R is orthogonal in relation to Q there is a unique Q such
that RQ = R while RQ∗ = 0 if Q∗ �= Q, so the estimator is a linear combination
of the RPY, as shown in [49]. The scalar θR specializes to that given in [49].

In the anova-applicable case, we have θR = ∑
Q∈Q λQR(ξc(Q) + rηQ)−1 and

RXf Xhτ̂ = θ−1
R

∑
Q∈Q

(ξc(Q) + rηQ)−1RQY.

If V is unknown, then spectral or canonical components need to be estimated by
using a general estimation method, such as REML, and the treatment effects can be
estimated using empirical GLS (EGLS). This can be done in Examples 1.2 and 2.2
when combined estimates of treatment effects are required and V is unknown.
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10. Extension to more than two randomizations in a chain. We have seen
that, even with structure balance, there can be difficulties with anova estimation
for a three-tiered experiment. One solution can be to use software designed for
fitting mixed models. This does not need to be restricted to designs with structure
balance, or to experiments with three tiers, so we begin by generalizing Section 2.

As discussed in [11], Section 6, and [12], Section 7, more than two random-
izations are possible. For example, a multiphase experiment can consist of p

phases and involve p randomizations. Then there are p sets, 
i for i = 1, . . . , p,
and another set � for the first phase. There is a design function h:
p → �; if
the objects in � are treatments then h(ω) is the treatment assigned to unit ω in

p . A stratifiable group Gp of permutations of 
p is used to randomize h. For
i = 1, . . . , p−1, there is a design function fi :
i → 
i+1, so that fi(ω) is the unit
in 
i+1 assigned to unit ω in 
i ; there is also a stratifiable group Gi of permuta-
tions of 
i which is used to randomize fi . It is assumed that fi is equi-replicate,
with replication ri+1/ri , where r1 = 1, so that each element in 
i is assigned to ri
elements in 
1.

Let Yω be the response on unit ω in 
1. For ω in 
1, put s1(ω) = ω, si+1(ω) =
fi(si(ω)) for i = 1, . . . , p − 1 and t (ω) = h(sp(ω)). The randomization-based
model in equation (6) can be generalized to

Yω =
p∑

i=1

Zi,si (ω) + τt (ω),

where Zi,si(ω) is the random effect, under randomization by Gi , for unit si(ω)

in 
i .
For this model, E(Y) = XsXhτ , where Xs is the 
1 × 
p design matrix for sp

and Xh is the 
p × � design matrix for h. Generalize IR to be the 
1 × 
1
matrix of orthogonal projection onto Im(XsXh). Also, V = ∑p

i=1 Vi , where Vi =
ri

∑
Pij∈Pi

ξij Pij and each Pij is an idempotent of Vi with spectral component ξij .
To this point, there is no need for structure balance, nor do any of the structures

need to be defined by factors. However, if the randomization of fi is based on a
tier of factors Hi defining a poset block structure on 
i then Vi = ∑

H∈Hi
φH SH ,

where SH is the 
1 × 
1 relationship matrix for H considered as a factor on 
1.
If all of f1, . . . , fp and h are structure-balanced then the results of Sections 3, 4,

7 and 8 can be extended to more than two randomizations. In particular, generalize
Q1 be the set of idempotents Q in Pp for which there is an idempotent Pci(Q) in
Pi for i = 1, . . . , p such that Pcp(Q) = Q and Pci(Q)Pci+1(Q) = Pci+1(Q) for i =
1, . . . , p − 1. The condition for anova-applicability becomes

for every Q in Pp , if QIR �= 0 then Q ∈Q1.

11. Obtaining estimates from data for experiments with a chain of ran-
domizations. How can standard software be used to obtain, from data, estimates
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of treatment effects and their standard errors and/or estimates of canonical com-
ponents, under randomization-based models? Assume that, for i = 1, . . . , p, Pi is
given by a poset block structure defined by a set Hi of generalized factors on 
i ,
which are then expressed as factors on 
1. Two possible procedures, based on
mixed models, are anova and mixed-model fitting.

11.1. Analysis of variance. This is the method of choice for anova-applicable
cases in which the structure R on � is also orthogonal in relation to Q1, and other
cases in which it has been decided that each treatment effect is to be estimated
from a single source, as might be done in Example 1.2. Other anova-applicable
cases can be dealt with by anova followed by combination of information, as in
Section 6.4.

Anova can also be used to estimate canonical components when there is CVS
and R is orthogonal in relation to Q. If there is LDCVS, then a generalized linear
model (GLM) estimates the components. One fits a GLM to the observed mean
squares involved in the estimation. The GLM has a gamma distribution, identity
link, dispersion parameter equal to 2, weights equal to the degrees of freedom and
an X matrix that contains, in each row, the coefficients of the canonical components
for the expected mean square corresponding to the observed mean square.

The advantage of anova is that it is a non-iterative procedure in which all the
quantities are well-defined. Further, non-negativity constraints are easily imple-
mented as a manual procedure applied after the anova has been obtained, and the
inestimability of some variance parameters is often inconsequential.

However, most anova software does not produce combined estimates of fixed
effects, so that it is simpler to use mixed-model fitting. A further difficulty with
anova for multitiered experiments is that software for it is not generally available,
GenStat being the only package with specific facilities [17]. It may still be possible
to produce the correct decomposition by omitting some sources. For example, the
correct decomposition is obtained for Example 2.1 from an anova or a regression
model with the sources Runs, Times, Lines and Residual. This is akin to fitting
a mixed model of convenience [14], because it does not contain terms for all the
potential sources of variation that have been identified for the experiment.

11.2. Classes of mixed models for structures defined by factors. Most mixed-
model software uses a conditional model ([25], Appendix 1, and [40], Section 4.6):

Y = Xτ + ZU + E,

with E(Y | U) = Xτ + ZU, Cov(U) = G and Cov(Y | U) = Cov(E) = R, where τ
is the vector of fixed-effects parameters, X is an indicator-variable matrix for fixed
effects with one row for each observation and a column for each fixed effect, Z is
an indicator-variable matrix with a row for each observation and a column for each
random effect, U is the vector of random effects, E is the vector of random unit
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effects, and G and R are symmetric matrix functions of the variance parameters.
This usage of R and Z is unrelated to their usage elsewhere in the paper.

This conditional model can be re-expressed in the following marginal form:

E(Y) = Xτ and Cov(Y) = V = ZGZ′ + R,(14)

where V is p.s.d. We are concerned with models for the 
1 × 
1 variance matrix
V that are based on sets Hi of generalized factors on 
1. Put H = ⋃p

i=1 Hi . Let
E be the set of those generalized factors in H that uniquely index the units in 
1,
and let L= H\E . Partitioning Z, U and G conformably, according to the elements
of L, to form {ZL : L ∈ L}, {UL : L ∈ L} and {GL : L ∈ L} and assuming that the
different UL are independent of each other and of E, allows us to write ZGZ′ =∑

L∈L ZLGLZ′
L and R = ∑

E∈E RE .
All software allows the fitting of variance models based on variance compo-

nents, for which GL = σ 2
LIm(L), where m(L) is the number of levels of L, and

RE = σ 2
EI
1 . The variance-components model for the matrix V in equation (14)

is V = ∑
L∈L σ 2

LSL + ∑
E∈E σ 2

EI
1 , where ZLZ′
L = SL. For such models, it is

assumed that all variance components are non-negative, which implies that V is
p.s.d.

Some software allows negative estimates of the variance components: this
allows the fitting of a canonical-components model for the variance matrix, whose
general form is obtained by replacing each σ 2-parameter with a φ-parameter:

V = ∑
L∈L

φLSL + ∑
E∈E

φEI
1 .(15)

This differs from the variance-components model in that the φL, for L in L, are
not assumed to be non-negative, although V is required to be p.s.d.

Randomization-based models are inherently marginal linear mixed models. The
expectation is as given in equation (14), with X replaced by XsXh. For the variance
part of the model, equation (8) is generalized to

V =
p∑

i=1

Vi =
p∑

i=1

∑
H∈Hi

φH SH ,

which is of the form given in equation (15).
The features of randomization-based models on poset block structures are:

(R.a) For i = 1, . . . , p, all the factors initially defined on 
i are deemed ran-
dom.

(R.b) For i = 1, . . . , p, Vi is p.s.d., so that linear combinations of the canonical
components corresponding to its spectral components must be non-negative. This
implies that φ
i

≥ 0 for i = 1, . . . , p but that other canonical components can be
negative.

(R.c) The factors on �, the treatment factors, are usually regarded as fixed.
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The set V of matrices assumed for V under any given model is a subset of
the set M of 
1 × 
1 real symmetric matrices. If F is any subset of H, put
M(F) = {∑F∈F aF SF : aF ∈ R for F in F}. For the models described above, the
sets of matrices are:

Unstructured: VUS = {M ∈ M : M is p.s.d.};
Canonical-components: VCC(H) = M(H) ∩ VUS;
Variance-components: VVC(H) = {∑H∈H aH SH : aH ∈ R+

0 for H in H};
Randomization-based: VRB(H1, . . . ,Hp) = {∑p

i=1 Vi : Vi ∈ VCC(Hi ) for i =
1, . . . , p}.

Clearly, VVC(H) ⊂ VRB(H1, . . . ,Hp) ⊂ VCC(H) ⊂ VUS.

11.3. Mixed-model fitting. By mixed-model fitting, in the case where vari-
ances are unknown, we mean REML estimation of variance parameters followed
by EGLS estimation of the fixed effects. It is preferred for estimation of effects in
cases that are not anova-applicable, including all those without structure balance,
and for estimation of canonical components when there is not OVS. It might also
be deployed in anova-applicable cases because of software availability or because
it is convenient to use a method that covers virtually all cases. Mixed-model fit-
ting can also be used when V is known: the variance parameters are fixed at their
known values. It cannot be used for those anova-applicable cases in which R is
not orthogonal in relation to Q1 and separate analyses are required for different
parts of Q1. Further advantages of mixed-model fitting are that pseudofactors are
unnecessary and that combined estimates of treatment effects are available when
R is not orthogonal to the other structures. A disadvantage of mixed-model fitting
is that it is an iterative procedure that can have computational difficulties. Using
anova estimates of canonical components as initial values helps to surmount these.

In obtaining the fitted values for a randomization-based model using data from
an experiment, a problem is that mixed-model software usually fits only variance-
components models and perhaps canonical-components models. The default for
GenStat directives [46] is to fit canonical-components models, and it is an option
in both ASReml-R [18], a commercial package for R [38], and in PROC MIXED in
SAS [39]. The R packages lme4 [7] and nlme [37] fit variance-components mod-
els only. Because VRB(H1, . . . ,Hp) � VVC(H), we recommend fitting canonical-
components models. Even so, a number of difficulties arise: (i) all canonical com-
ponents in the given model must be estimable, (ii) current software does not allow
the separate specification of the factor sets Hi and so cannot impose the constraint
that each Vi is p.s.d. and (iii) current software requires the fitted canonical com-
ponents to be non-zero to avoid singularities in the matrices involved in the com-
putations.

For some variance models, it is inherently impossible to estimate all variance
parameters, as required in (i). This should be investigated when designing an
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experiment so that any problems can be identified and rectified before the experi-
ment is run. The skeleton anova is extremely useful for this, as well as in check-
ing the properties of a design more generally. Software using eigenanalyses to
obtain these tables for multitiered experiments, although without the expected
mean squares, is available in GenStat and in the R package dae [10].

Inestimability of variance parameters can arise in two ways. First, a variance
parameter is not estimable if it is completely confounded by one or more fixed
effects. For example, if there is some H in H for which SH IR = SH then nei-
ther φH nor ξH is estimable. As noted in Section 8.2.1, components corresponding
to the overall mean are never estimable and mixed-model-fitting software usually
excludes them; if not, they must be dropped. However, if other canonical compo-
nents are inestimable for this reason then this is usually a sign that the experiment
suffers from some form of pseudo-replication; dropping such components results
in incorrect estimates of standard errors and so is inadvisable. The avoidance of
such design deficiencies is one reason to use a skeleton anova to check any pro-
posed design.

Let H̃ be the set of all factors in H which do not correspond to the overall mean.
The other cause of inestimability is linear dependence among the matrices SH for
H in H̃. Then canonical components need to be dropped so that those remaining
correspond to a linearly independent set of SH for H in H∗, where H∗ ⊂ H̃ and
VCC(H∗) = VCC(H̃). The model based on H∗ is a “model of convenience”. There
is a choice about which canonical components to drop in forming H∗. When the
design function fi :
i → 
i+1 is structure balanced for i = 1, . . . , p, then a skele-
ton anova can aid in detecting a cause of inestimability of the type outlined in
Section 8.2.1 and so in determining which canonical components to drop.

Section 8.2.1 shows that in Example 1.1 the canonical components for Occa-
sions and Blocks are inestimable. The term for one or other must be omitted from
the mixed model. This should not be taken to imply that the analyser of the exper-
iment is assuming that either does not contribute to the variability. Indeed, the
estimated component should be viewed as estimating the sum of the two. Also, the
spectral components for Occasions and Blocks are confounded and so it is not pos-
sible to check that each is non-negative. All the other spectral components except
ξ0 and η0 are estimable and so their non-negativity can be verified.

For Example 2.1, the symbolic mixed model, derived using Step 1 in [14], is:

Lines | Blocks + Blocks ∧ Plots + Runs + Times + Runs ∧ Times.

As outlined in Section 8.2.1, none of the spectral components is estimable and
so their non-negativity cannot be checked. Further, the only estimable canonical
component is φR. One of Runs ∧ Times and Blocks ∧ Plots and one of Runs and
Blocks needs to be omitted. Omitting Blocks∧Plots and Blocks is, in effect, setting
ψBP = ψB = 0, and hence ηBP = ηB = 0. Again, it is not assumed that this is
the true value of the components. The constraint is imposed merely to obtain a
solution, and the supposed estimate of φRT is actually an estimate of φRT + ψBP.
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For (ii), a check that the spectral components are non-negative is the only option
to ensure that the constraints on them are met. The VSPECTRALCHECK proce-
dure in GenStat [46] does this. Equation (5) is used to obtain the estimated spectral
components from the estimated canonical components. If any spectral component
is negative, then the linear combination of canonical components on the right-
hand side of equation (5) must be constrained to zero in a refit of the model. If
there are several negative components, they are constrained one at a time. Begin
with the components based on the smallest number of factors and, if there are
several of these, constrain the one whose estimate is furthest from zero. This is
repeated until there are no negative spectral components remaining. If several
spectral components are set to zero, this may force some canonical components
to be zero also. Checking the data for Example 1.2, available from Statlib data
sets (http://lib.stat.cmu.edu/datasets/sensory), reveals three negative spectral com-
ponents, and sequentially constraining them results in just two zero estimates.

Difficulty (iii) occurs because the estimate of some canonical component hap-
pens to be zero. It must be addressed by removing this canonical component from
the model. It cannot be anticipated ahead of having the data.

12. Statistical inference. In order to perform hypothesis tests or compute
confidence intervals, one has to assume that the response follows a multivariate
normal distribution whose expectation and variance are those described in Sec-
tion 10 for the randomization-based model. Some justification for this approach is
that, over all possible randomizations, the distribution of the data has this expec-
tation and variance. The only further assumption that is required for inference is
that of multivariate normality, although the guarantee for the associated expecta-
tion and covariance strictly applies only over multiple re-runs of the experiment.
The role for randomization in an analysis based on this model is to ensure that the
sources of variation taken into account by the designer have terms in the model;
that is, it links the model to the design. Irrespective of the number of tiers, the
randomization does not itself produce distributions whose third and higher-order
moments are those of a multivariate normal distribution.

13. Other models. Steps 2 and 3 of the method in [14] suggest changes that
could be made to the expectation and variance of randomization-based models.
Here we concentrate on changing treatment factors from fixed to random and
changing unrandomized factors from random to fixed. The first of these produces
a randomization-based model, but the second does not; the latter does not preserve
the variance matrix under randomization as part of the model.

13.1. Treatment factors regarded as random. The simplest modification to the
model in equation (1) is to assume that the τi , for i in �, are random variables with
common mean μ and variance matrix C� , which may be as simple as σ 2

�I� or

http://lib.stat.cmu.edu/datasets/sensory
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may be based on a poset block structure on �. So long as h is equi-replicate, C�

translates easily to add an extra variance matrix to V.
Varieties in early generation variety trials are often regarded as random;

see [41]. If Lines are designated random in Example 2.2, then the variance matrix
becomes

V = ξ0P0 + ξIPI + ξIRPIR + ξITPIT + ξIRTPIRT

+ η0Q0 + ηBQB + ηBPQBP

+ 4σ 2
LIR.

13.2. Unrandomized factors regarded as fixed. Sometimes it is appropriate
to classify unrandomized factors such as Sites, Centres, Sex or Judges as fixed.
It requires that there is no confounding between fixed sources. It results in the
exclusion of the corresponding subspaces from the REML estimation of variance
parameters, with canonical components effectively being set to zero and effects
added to the expectation, so the variance matrix may have LDCVS. In the expected
mean squares, q(H) replaces rikHφH if generalized factor H on 
i is designated
as fixed.

Suppose that Judges in Example 1.2 is to be considered fixed. This removes φJ
from the expression for the variance matrix, and Im (P0 + PJ) is excluded from the
REML estimation of the canonical components. The effect on the expected mean
squares in Table 3 is to replace ξJ by ξOJ + q(J).

14. Discussion. This paper extends randomization-based models to multi-
tiered experiments with two or more randomizations in a chain, and discusses
the estimation of treatment effects and their standard errors, and canonical com-
ponents, under the assumption of such a model. There are novel aspects to the
estimability of spectral and canonical components in such experiments, including
that the variance matrix can exhibit LDCVS.

We have emphasised the usefulness of a skeleton anova in checking the prop-
erties of a design and of anova in analysing anova-applicable experiments and for
supplying initial estimates for mixed-model fitting. A limitation is software avail-
ability.

Otherwise, mixed-model fitting software is used to fit a randomization-based
model. In this, one has to ensure that estimates of “variance components” can be
negative and be vigilant that estimates of spectral components are non-negative.

While potentially negative canonical components are mandated for randomi-
zation-based models, they have the additional benefit of allowing for negative
correlation, which is realistic in some circumstances; see [28]. Littell et al. [25],
Section 4.7, recommend that unconstrained estimates be allowed in order to con-
trol Type I error, and show that they can achieve greater power; this agrees with
the conclusions of Wolde-Tsadik and Afifi [48]. However, caution is required in
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ascribing a negative estimate for a component to negative population correlation.
As Searle, Casella and McCulloch [40], Section 3.5, show, for a variance com-
ponent just above zero, there can be a high probability of a negative estimate if
the number of treatments is less than 5 and the number of replicates less than 25.
Gilmour and Goos [21] demonstrate that simply allowing negative variance com-
ponents is not a panacea, especially in small experiments.
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