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Given n samples X1,X2, . . . ,Xn from N(0,�), we are interested in es-
timating the p × p precision matrix � = �−1; we assume � is sparse in that
each row has relatively few nonzeros.

We propose Partial Correlation Screening (PCS) as a new row-by-row
approach. To estimate the ith row of �, 1 ≤ i ≤ p, PCS uses a Screen step
and a Clean step. In the Screen step, PCS recruits a (small) subset of indices
using a stage-wise algorithm, where in each stage, the algorithm updates the
set of recruited indices by adding the index j that has the largest empirical
partial correlation (in magnitude) with i, given the set of indices recruited so
far. In the Clean step, PCS reinvestigates all recruited indices, removes false
positives and uses the resultant set of indices to reconstruct the ith row.

PCS is computationally efficient and modest in memory use: to estimate a
row of �, it only needs a few rows (determined sequentially) of the empirical
covariance matrix. PCS is able to execute an estimation of a large � (e.g.,
p = 10K) in a few minutes.

Higher Criticism Thresholding (HCT) is a recent classifier that enjoys op-
timality, but to exploit its full potential, we need a good estimate of �. Note
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that given an estimate of �, we can always combine it with HCT to build a
classifier (e.g., HCT-PCS, HCT-glasso).

We have applied HCT-PCS to two microarray data sets (p = 8K and 10K)
for classification, where it not only significantly outperforms HCT-glasso,
but also is competitive to the Support Vector Machine (SVM) and Random
Forest (RF). These suggest that PCS gives more useful estimates of � than
the glasso; we study this carefully and have gained some interesting insight.

We show that in a broad context, PCS fully recovers the support of � and
HCT-PCS is optimal in classification. Our theoretical study sheds interesting
light on the behavior of stage-wise procedures.

1. Introduction. There is always the story of “four blind men and the ele-
phant” [2]. A group of blind men were asked to touch an elephant to learn what
it is like. Each one touched a different part, but only one part (e.g., the tusk, the
ear or the leg). They then compared notes and learned that they were in complete
disagreement, until the King pointed out to them: “All of you are right. The reason
that every one of you is telling it differently is because each one of you touched
the different part of the elephant. So actually the elephant has all the features you
mentioned.”

There are several similarities between the elephant tale and the problem on es-
timating large precision matrices (some are obvious, but some are not).

• Both deal with something enormous: an elephant or a large matrix.
• Both encourage parallel computing: either with a group of blind men or a cluster

of computers. Individuals only communicate with a “center” (a king, a master
computer), but do not communicate with each other.

• Both are modest in memory use. If we are only interested in a small part of the
elephant (e.g., the tail), we do not need to scan the whole elephant. If we are
only interested in a row of a sparse precision matrix, we do not need to use the
whole empirical covariance matrix.

Modesty in memory use is especially important when we only have a modest com-
puting platform, where it is easy to hit the memory ceiling.

Given a data matrix X ∈ R
n,p . We write

X = [x1, x2, . . . , xp] = [X1,X2, . . . ,Xn]′.
For simplicity, we assume each row Xi are zero mean Gaussian vectors:

Xi
i.i.d.∼ N(0,�),where � ∈ R

p,p is positive definite.(1.1)

Denote by �̂ by the empirical covariance matrix

�̂(i, j) = (xi, xj )/n.(1.2)

The precision matrix

� = �−1,(1.3)
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is unknown to us but is presumably sparse, in the sense that each row of � has
relatively few nonzeros, and the primary interest is to estimate �.

Our primary interest is in the “large n, really large p” regime [36], where it is
challenging to estimate � precisely with energy-efficient computing.

The glasso [43] is a well-known approach which estimates � by optimizing the
�1-penalized objective function of the log-likelihood associated with �̂. The glasso
is not exactly modest in memory use, and for large p (e.g., p = 10K), the glasso
can be unsatisfactorily slow, especially when the tuning parameter is small. Also,
by its design, it is unclear how to implement the glasso with extensively parallel
computing. The modified glasso2

 [40] improves the performance of glasso but only
partially solves these problems.

Alternatively, we can estimate � row by row, with Nearest Neighborhood
(NN) [12], scaled-lasso (slasso) [37] and CLIME [10] being the examples. These
methods relate the problem of estimating an individual row of � to a linear re-
gression model and apply some variable selection approaches: NN, slasso and
CLIME apply the lasso, scaled-lasso and Dantzig Selector, respectively. Unfor-
tunately, for p ≥ 10K , these methods are unsatisfactorily slow, simply because
the lasso, scaled-lasso and Dantzig Selector are not fast enough to accomplish p

different variable selections in a timely fashion. They are not exactly modest in
memory use either: to estimate a row of �, they need to use the whole matrix of
�̂ or X.

We propose Partial Correlation Screening (PCS) as a new approach to estimat-
ing the precision matrix. PCS has the following appealing features.

• Allowing for energy-efficient computing. PCS estimates � row by row using a
fast screening algorithm, and is able to estimate � for p = 10K or larger in a
timely manner on a modest computing platform.

• Modesty in memory use. To estimate each row of �, PCS does not need the
whole matrix of �̂. It only needs the diagonals and a few rows (selected sequen-
tially) of �̂, if � is sufficiently sparse. This enables us to bypass the RAM limit
and to accommodate much larger �.

However, we must note that, practically, estimating � is rarely the ultimate
goal. In many applications, the goal is usually to use the estimated � to improve
statistical inference (e.g., classification, multiple testing).

In this paper, largely motivated by interests in gene microarray, we focus on
how to use the estimated precision matrix to improve classification results with

2The modified glasso assumes the glasso solution is a block-diagonal matrix so that we can split the
original glasso problem into many smaller size problems that can be solved separately. Specifically, it
checks whether the estimated glasso solution is block diagonal for a given tuning parameter (usually
large), resulting a set of uncorrelated variables. If so, then one can simply apply the glasso to each
block separately, leading to speed improvements, provided that the number of uncorrelated variables
is large.
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TABLE 1
Two microarray data sets

Data name Source n (# of subjects) p (# of genes)

Rats Yousefi et al. (2010) 181 8491
Liver Yousefi et al. (2010) 157 10,237

microarray data. Table 1 displays two microarray data sets we study in this paper.
In each data set, we have samples from two classes (e.g., normal versus diseased),
and each sample is measured over the same set of genes. The main interest is to
use the data set to construct a trained classifier.

We propose to combine PCS with the recent classifier of Higher Criticism
Thresholding (HCT) [13, 22], and to build a new classifier HCT-PCS. In [13,
22], they investigated a two-class classification setting with a Gaussian graphi-
cal model. Assuming samples from two classes share the same sparse precision
matrix �, they showed that, given a reasonably good estimate of �, HCT enjoys
optimal classification behaviors. The challenge, however, is to find an algorithm
that estimates the precision matrix accurately with energy-efficient computation;
this is where PCS comes in.

We apply HCT-PCS to the two data sets above. In these data sets, the precision
matrix is unknown, so it is hard to check whether PCS is more accurate for esti-
mating � than existing procedures. However, the class labels are given, which can
be used as the “ground truth” to evaluate the performance of different classifiers.
We find that:

• HCT-PCS significantly outperforms other versions of HCT (say, HCT-glasso,
where � is estimated by the glasso3), suggesting that PCS yields more accurate
estimates of � than other approaches (the glasso, say).

• HCT-PCS is competitive, in both computation time (especially when n is large)
and classification errors, to the more popular classifiers of Support Vector Ma-
chine (SVM) [9] and Random Forest (RF) [7].

1.1. PCS: The idea. We present the key idea of PCS, leaving the formal in-
troduction to Section 1.2. To this end, we consider an idealized case where we are
allowed to access all “small-size” principal submatrices of � (but not any “large-
size” submatrices), and study how to use such submatrices to reconstruct �. Since
any small-size principal submatrix of � can be well-approximated by the corre-
sponding submatrix of �̂ (despite that �̂ as a whole is a bad approximation to �

due to p � n), once we understand such an idealized case, we know how to deal
with the real one.

3We remark that it is the modified glasso that is implemented throughout the paper, but we still
refer it as glasso only for convenience.
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FIG. 1. The first row of � only has nonzeros at column 1,3,5, marked with “∗.” For any subset W

such that {1,3,5} ⊂ W , the first rows of �W,W and (�W,W )−1 are the same.

Write � = (ω1,ω2, . . . ,ωp) so that ω′
i is the i-th row. Fixing 1 ≤ i ≤ p, we wish

to understand what could be a reasonable approach to reconstructing ω′
i using only

“small-size” submatrices of �. Define

S(i)(�) = {
1 ≤ j ≤ p : ωi(j) 
= 0, j 
= i

}
.(1.4)

Note that {i} ∪ S(i)(�), not S(i)(�), is the support of ωi .

DEFINITION 1.1. For any matrix A ∈ R
n,p and subsets I = {i1, i2, . . . , iM} ⊂

{1, . . . , n} and J = {j1, . . . , jK} ⊂ {1, . . . , p}, AI,J denotes the M × K sub-
matrix such that AI,J (m, k) = A(im, jk), 1 ≤ m ≤ M,1 ≤ k ≤ K (indices in either
I or J are not necessarily arranged in the ascending order).

Here is an interesting observation. For any subset W , such that({i} ∪ S(i)(�)
) ⊂ W ⊂ {1,2, . . . , p},(1.5)

we can reconstruct ω′
i by only knowing a specific row of (�W,W )−1!

LEMMA 1.1. If (1.5) holds and index i is the kth index in W , then the kth rows
of �W,W and (�W,W )−1 are equal, though generally �W,W 
= (�W,W )−1.

The proof of Lemma 1.1 is elementary so we omit it; see also Figure 1.
Lemma 1.1 motivates a two-step Screen and Clean approach (an idea for variable
selection that is applicable in many cases [21, 30–32, 39]).

• In the Screen stage, we identify a subset S
(i)∗ = S

(i)∗ (�,p), in hopes of S(i)(�) ⊂
S

(i)∗ .
• In the Clean stage, we reconstruct ω′

i from the matrix �W∗,W∗ following the idea

in Lemma 1.1, where W∗ = {i} ∪ S
(i)∗ .

Seemingly, the key is how to screen. Our proposal is to use the partial corre-
lation, a concept closely related to the precision matrix [8]. Consider an (ordered)
subset W ⊂ {1,2, . . . , p} where i and j are the first and the last indices, respec-
tively. Let S = W \ {i, j}. For any vector Z ∼ N(0,�), the partial correlation
between Z(i) and Z(j) given {Z(k) : k ∈ S} is defined as

ρij (S) = −1 · first row last column of (�W,W )−1

[product of the first and last diagonals of (�W,W )−1]1/2
.(1.6)
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By Lemmas 1.1 and 2.2 (to be introduced), S(i)(�) ⊂ ({i} ∪ S) ⇐⇒ ρij (S) =
0 for all j /∈ ({i} ∪ S). This motivates a stage-wise algorithm for choosing S

(i)∗ as
follows, where we use the partial correlation to recruit exactly one node in each
step before the algorithm terminates.

Initialize with S
(i)
0 = ∅. Suppose the algorithm has run (k−1) steps and has not

yet stopped. Let S
(i)
k−1 = {j1, j2, . . . , jk−1} be all the nodes recruited (in that order)

by far. In the kth step, if ρij (S
(i)
k−1) 
= 0 for some j /∈ ({i} ∪ S

(i)
k ), let j = jk be the

index with the largest value of |ρij (S
(i)
k−1)|, and update with S

(i)
k = S

(i)
k−1 ∪ {jk}.

Otherwise, terminate and let S
(i)∗ = S

(i)
k−1.

It is shown in Theorem 2.1 that under mild conditions, the algorithm terminates
at ≤ C|S(i)(�)|2 steps, at which point, S(i)(�) ⊂ S

(i)∗ and ρij (S
(i)∗ ) = 0 for all

j /∈ ({i} ∪ S
(i)∗ ). Letting W∗ = {i} ∪ S

(i)∗ , we can then use �W∗,W∗ to reconstruct
ω′

i , following the connection given in Lemma 1.1.
Since �̂W,W ≈ �W,W as long as |W | is small, the idea above is readily extend-

able to the “real case,” provided that � is sufficiently sparse. This idea is fleshed
out in Section 1.2, where PCS is formally introduced.

1.2. PCS: The procedure. When we invert a principle submatrix of �̂, it is fre-
quently desirable to use ridge regularization. Fixing δ > 0, for any positive definite
matrix W , define the Ridge Regularized Inverse by

Iδ(W) =
{

W−1, if all eigenvalues of W ≥ δ,

(W + δI|W |)−1, otherwise,
(1.7)

where Ik denotes the k × k identity matrix (we may drop “k” for simplicity).
For any indices i, j and subset S ⊂ {1,2, . . . , p} \ {i, j}, let W = {i} ∪ S ∪

{j} and suppose i and j are the first and last indices in the subset. Introduce the
regularized empirical partial correlation by

ρ̂
(δ)
ij (S) = −1 · first row last column of Iδ(�̂

W,W )

[product of the first and last diagonals of Iδ(�̂
W,W )]1/2

.4(1.8)

PCS is row-by-row method specifically designed for large � where it may be im-
possible to load the whole matrix �̂ to the software (e.g., Matlab on a laptop) due
to RAM limit. Fortunately, to estimate a row of �, PCS only needs a few rows of
�̂ determined sequentially. Therefore, we can first deposit �̂ in a “data center,”5

and then only load the rows of �̂ that we need (separately for estimating different
rows of �) to the software. See Figure 2.

4If δ = 0 and �̂ is replaced by �, then ρ̂
(δ)
ij (S) reduces to ρij (S) defined in (1.6).

5A “data center” can be many things: a hard disk of a laptop, or a large data depository.
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FIG. 2. Flow chart of PCS (short-hand notation are used for simplicity).

Fix 1 ≤ i ≤ p, a small number δ > 0, a properly large integer L > 0 and a tuning
parameter q > 0. Let

t∗q = t∗q (p,n) = q
√

2 log(p)/n.(1.9)

To estimate row i of �, PCS consists of four steps (also see Figure 2).

• Initial step. Let Ŝ
(i)
0 = ∅, and load the ith row and the diagonals of �̂ (from the

data center to the software; same below).
• Screen step. Suppose the algorithm has not yet terminated at the end of step

(k − 1), and let Ŝ
(i)
k−1 = {j1, j2, . . . , jk−1} be all the nodes recruited so far (in

that order). If

k < L and
∣∣ρ̂(δ)

ij

(
Ŝ

(i)
k−1

)∣∣ ≥ t∗q for some j /∈ ({i} ∪ Ŝ
(i)
k

)
,(1.10)

let j = jk be the node satisfying jk = argmax{j :j /∈({i}∪Ŝ
(i)
k−1)} |ρ̂

(δ)
ij (Ŝ

(i)
k−1)| (pick

the smallest index if there are ties). Load the jk-th row of �̂ to the software and
update Ŝ

(i)
k by Ŝ

(i)
k = Ŝ

(i)
k−1 ∪ {jk} = {j1, j2, . . . , jk}. Otherwise, the algorithm

terminates, and set Ŝ
(i)∗ = Ŝ

(i)∗ (t,X;p,n) as Ŝ
(i)
k−1 (indices are arranged in the

order they are recruited).

• Clean step. Let η̂′ be the first row of Iδ(�̂
Ŵ∗,Ŵ∗), where Ŵ∗ = {i} ∪ Ŝ

(i)∗ . Write
Ŵ∗ = {i, j1, j2, . . . , jk} (nodes arranged in that order). Denote the set of selected
nodes after cleaning by Ŝ

(i)∗∗ = Ŝ
(i)∗∗ (t,X;p,n) = {j� : |η̂(� + 1)| ≥ t∗q ,1 ≤ � ≤

k}. Let Ŵ∗∗ = {i} ∪ Ŝ
(i)∗∗ (where i is the first node) and let A = Iδ(�̂

Ŵ∗∗,Ŵ∗∗).
Estimate the ith row of � by

�̂∗(i, j) =
{

first row �th column of A, j is the �th node in Ŵ∗∗,
0, j /∈ Ŵ∗∗.

• Symmetrization. �̂pcs = [�̂∗ + (�̂∗)′]/2.6

6Alternatively, one may symmetrize �̂∗ by minimizing ‖� − �̂∗‖∗ up to that � is symmetric

and supp(�) ⊂ {(i, j) : j ∈ Ŝ∗∗(i) or i ∈ Ŝ∗∗(j)}. Here, ‖ · ‖∗ is an appropriate matrix norm; this is
similar to that in [42] where ‖ · ‖∗ is taken to be the matrix �1-norm.
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PCS has three tuning parameters (q, δ,L), but its performance is not sensitive to
different choices of (δ,L), as long as they are in a reasonable range. In this paper,
we set (δ,L) = (0.1,30), so essentially PCS only has one tuning parameter q . In
practice, how to set q is generally a difficult problem. Our primary focus on real
data analysis is classification, in which settings we select q by cross validations.
See Section 1.4 for details.

The computation cost of PCS is O(p2L3 + np2), where O(np2) is the cost
of obtaining �̂ from the data matrix X, and the L3 term comes from the step of
sequentially inverting matrices of sizes 2,3, . . . ,L + 1. Also, PCS estimates �

row by row and allows for parallel computing. Together, these make PCS a fast
algorithm that can have energy-efficient computing for large precision matrices.
For example, with (q, δ,L) = (0.2,0.1,30), it takes the PCS only about 5 and 7.5
minutes on the rats and the liver data sets, respectively.

PCS is also modest in memory use: to estimate a row of �, PCS only needs the
diagonals and no more than L rows of �̂. This enables PCS to bypass the RAM
limit even if p is large. Note that some communication costs between the software
and “data center” are expected, but these seem unavoidable when p is large. For
other methods (e.g., the glasso, CLIME), one usually needs the whole �̂ even if
we only wish to estimate a single row of �; for these methods, it is unclear how to
deal with the RAM limit.

1.3. Applications to classification. Consider a classification setting where we
have samples (X̃i, Yi), 1 ≤ i ≤ n, from two classes, where X̃i ∈R

p are the feature
vectors and Yi ∈ {−1,1} are the class labels. Given a fresh sample X̃ ∈ R

p where
the associated class label Y ∈ {−1,1} is unknown, the goal is to use (X̃i, Yi) to
construct a trained classifier and to use it to predict Y .

We model X̃i with a Gaussian graphical model, where for two distinct mean
vectors μ± ∈ R

p and a covariance matrix � ∈ R
p,p ,

X̃i ∼ N
(
μ±,�

)
if Yi = ±1, respectively.(1.11)

Similar to that of (1.3), we assume the precision matrix � = �−1 is sparse, in the
same sense. Additionally, let μ be the contrast mean vector:

μ = μ+ − μ−;(1.12)

we assume μ is sparse in that only a small fraction of its entries is nonzero.
We are primarily interested in classification for microarray data, in which con-

text, model (1.11) is frequently used; see, for example, Efron [17] and Fan et
al. [22]. Note that for simplicity, we assume the covariance matrices associated
with two classes are equal; see Section 4 for more discussions on this. The matrix
� captures the correlations among the measurement noise, and plays an important
role in classification. For the two data sets in Table 1, model (1.11) might deviate
from the ground truth, but the good thing is that PCS is not tied to model (1.1) and
our proposed classifier works quite well on these data sets; see Section 1.4.
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Higher Criticism Thresholding (HCT) is a recent classifier proposed in [13, 22],
which adapts Fisher’s Linear Discriminant Analysis (LDA) to the modern regime
of “large n, really large p.” In the idealized case where � is known or can be
estimated reasonably well, HCT is shown to have optimal classification behaviors
for model (1.11). The question is then how to estimate � accurately with energy-
efficient computing.

We consider three approaches to estimating �: PCS, the glasso [40], and FoBa
(i.e., the classical forward–backward variable selection method [35]).7 In the liter-
ature, FoBa has not yet been proposed as an approach to estimating �; here, we
propose FoBa as a variant of PCS. See Section 1.6.

To apply PCS, the glasso, or FoBa, it is more convenient to start with the em-
pirical correlation matrix R̂ (see below) than with �̂. Let n1 and n2 be the sample
sizes of Classes 1 and 2, let μ̂± ∈ R

p be the sample mean vectors for Classes 1
and 2, respectively, and let ŝ± ∈ R

p be the vectors of sample standard deviations
for Classes 1 and 2, respectively. The pooled standard deviation associated with
feature j is then

ŝ(j ) =
√[

(n1 − 1)
(
s+(j)

)2 + (n2 − 1)
(
s−(j)

)2]
/(n1 + n2 − 2).(1.13)

For i = 1,2, . . . , n, let μ̂∗
i ∈ R

p be the vectors satisfying μ̂∗
i = μ̂+ if i ∈ Class 1

and μ̂∗
i = μ̂− otherwise. The empirical correlation matrix R̂ ∈R

p,p is then

R̂(j, k) = (
nŝ(j)ŝ(k)

)−1
n∑

i=1

(
X̃i(j) − μ̂∗

i (j)
)(

X̃i(k) − μ̂∗
i (k)

)
.(1.14)

Once R̂ is obtained, we apply each of the three methods (PCS, glasso, FoBa) and
denote the estimates by �̂pcs, �̂glasso, and �̂foba.

For �̂ being either of the three estimates, the corresponding HCT-classifier (de-
noted by HCT-PCS, HCT-glasso, and HCT-FoBa) consists of the following steps
for classification.

• Let Z ∈ R
p be the vector of summarizing t-scores: Z(j) = (μ̂+(j) − μ̂−(j))/

(n0 · ŝ(j )), 1 ≤ j ≤ p, where n0 = (n−1
1 + n−1

2 )1/2.
• Normalize Z by Z∗(j) = (Z(j) − u(j))/d(j), where u(j) and d(j) are the

mean and standard deviation of different entries of Z.
• Apply the Innovated Transformation [22]: Z̃ = �̂Z∗.
• Threshold choice by Higher Criticism. For each 1 ≤ j ≤ p, obtain a P -

value by πj = P(|N(0,1)| ≥ (�̂(j, j))−1/2|Z̃(j)|). Sort the P -values ascend-
ingly by π(1) < π(2) < · · · < π(p). Let ĵ be the index among the range 1 ≤
j ≤ α0p and that maximizes the so-called HC functional HCp,j = [j/p −

7CLIME and scaled-lasso [10, 37] are not included for comparison, as they are unsatisfactorily
slow for p ≥ 8K . The thresholding approach by Bickel and Levina [6] is not included either, for it
focuses on the case where � is sparse (but � may be nonsparse).
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π(j)]/√(1 − j/p)(j/p) for all j in the range of 1 ≤ j ≤ α0p (we usually set
α0 = 0.2, as suggested by [13]). The HC threshold tHC

p = tHC
p (Z̃, �̂,p,n) is the

magnitude of the ĵ th largest entry (in magnitude) of Z̃.
• Assign weights by thresholding. Let wHC(j) = sgn(Z̃(j)) ·1{|Z̃(j)| ≥ tHC

p }, 1 ≤
j ≤ p. Denote wHC = (wHC(1),wHC(2), . . . ,wHC(p))′.

• Classification by post-selection LDA. We normalize the test feature X̃ by
X̃∗(j) = [X̃(j) − (μ̂+(j) + μ̂−(j))/2]/ŝ(j), 1 ≤ j ≤ p. Let LHC(X̃) =
(wHC)′�̂X̃∗. We classify Y = ±1 according to LHC(X̃)≷ 0.

The rationale behind step 2 is the phenomenal work by Efron [16] on empirical
null. Efron found that for microarray data, there is a substantial gap between the
(marginal) distribution of the theoretical null and that of the empirical null, and it
is desirable to bridge the gap by renormalization. This step is specifically designed
for microarray data, and may not be necessary for other types of data (say, sim-
ulated data). Also, note that when normalizing the test feature X̃, we use (μ̂±, ŝ)

which do not depend on X̃.

1.4. Comparison: Classification errors with microarray data. We consider the
two gene microarray data sets in Table 1. The original rats data set was collected in
a study on gene expressions of live rats in response to different drugs and toxicants,
and we use the cleaned version by [41]. The data set consists of 181 samples mea-
sured on the same set of 8491 genes, where 61 samples are labeled as toxicants,
and the other 120 as other drugs. The original liver data set was collected in a
study on the hepatocellular carcinoma (HCC), and we also use the cleaned version
by [41]. The data set consists of 157 samples measured on the same set of 10,237
genes, 82 of them are tumor samples and the other 75 non-tumor.

We consider a total of 6 different classifiers: naive HCT (where we pretend that
� is diagonal and apply HCT without estimating off-diagonal of �; denoted by
nHCT), HCT-PCS, HCT-glasso, HCT-FoBa and two popular classifiers: Support
Vector Machine (SVM) and Random Forest (RF).

Among them, nHCT is tuning free, three methods have one tuning parame-
ter: λ for HCT-glasso, “cost” for SVM, and “number of trees” for RF. The tun-
ing parameter for HCT-glasso (and also those of HCT-PCS and HCT-FoBa) come
from the method of estimating the precision matrix. HCT-PCS has three tuning
parameters (δ,L, q), but it is relatively insensitive to (δ,L). In this paper, we set
(δ,L) = (0.1,30), so PCS only have one tuning parameter q . For HCT-FoBa, we
use the package by [45], which has three tuning parameters: a back fitting param-
eter (set by the default value of 0.5 here), a ridge regression parameter δ > 0 and a
step size parameter L. As parameters (δ,L) have similar roles to (δ,L) in PCS, we
set them as (δ,L) = (0.1,30). The performance of either PCS or FoBa is relatively
insensitive to different choices of (δ,L), as long as they fall in a certain range.

In our study, we use two layers of 3-fold data splitting. To differentiate one
from the other, we call them the data-splitting and cv-splitting. The former is for
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comparing classification errors of different methods across different data splitting
and it is particularly relevant to evaluating the performance on real data, while the
latter is for selecting tuning parameters. The latter is not required for nHCT or
HCT-FoBa.

• Data-splitting. For each data set, we apply 3-fold random splitting to the sam-
ples in either of the two classes (25 times, independently).

• Cv-splitting. For each resultant training set from the data splitting, we apply
3-fold random splitting to the samples in either of the two classes (25 times,
independently).

Sample indices for the 25 data splittings and sample indices of the 25 cv-splittings
associated with each of the data splitting can be found at www.stat.cmu.edu/
~jiashun/Research/software.

We now discuss how to set the tuning parameters in HCT-PCS, HCT-glasso,
SVM and RF. For HCT-PCS, the tuning parameter is q . A relatively small q could
lead to over fitting and slow computation, and a relatively large q would result in
low precision. We find that the interesting range for q is 0.05 ≤ q ≤ 0.5. We dis-
cretize this interval evenly with an increment of 0.05. The increment is sufficiently
small, and a finer grid does not have much difference. For each data splitting, we
determine the best q using 25 independent cv-splitting, picking the one that has
the smallest “cv testing error.” This q value is then plugged into HCT-PCS for
classification.

For HCT-glasso, the interesting range for the parameter λ is 0.8 ≤ λ ≤ 1. Since
the algorithm starts with empirical correlation matrix, it is unnecessary to go for
λ > 1 (the resultant estimate would be a scalar times the p × p identity matrix,
a simple result of the KKT condition [23]). On the other hand, it is very time
consuming by taking λ < 0.8. For example, if we take λ = 0.65,0.7 and 0.75, then
on a 12 GB RAM machine, it takes the glasso more than a month for λ = 0.65,
about a month for λ = 0.7 and about 180 hours for λ = 0.75 to complete all 25×25
combinations of data-splitting and cv-splitting, correspondingly. Similar to that of
HCT-PCS, for each data splitting, we take λ ∈ {0.8,0.85,0.9,0.95,1} and use the
25 cv-splittings to decide the best λ, which is then plugged into HCT-glasso for
classification.

For SVM, we use the package from http://cran.r-project.org/web/packages/
e1071/index.html. We find the interesting range for the “cost” parameter is be-
tween 0.5 and 5, so we take “cost” to be {0.5,1,1.5, . . . ,5} and use cv-splitting
to pick the best one. For RF, we use the package downloaded from http://cran.
r-project.org/web/packages/randomForest/index.html. RF has one tuning parame-
ter “number of trees.” We find that the interesting range for “number of trees” is
between 50 to 500, so we take it to be {50,100, . . . ,500} and use cv-splitting to
decide the best one.

The average classification (testing) error rates of all 6 methods across 25 differ-
ent data splittings are in Table 2. The standard deviations of the errors are relatively

http://www.stat.cmu.edu/~jiashun/Research/software
http://www.stat.cmu.edu/~jiashun/Research/software
http://cran.r-project.org/web/packages/e1071/index.html
http://cran.r-project.org/web/packages/randomForest/index.html
http://cran.r-project.org/web/packages/e1071/index.html
http://cran.r-project.org/web/packages/randomForest/index.html
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TABLE 2
Comparison of classification errors (average for 25 data-splitting). The error rates and their

standard deviations (in brackets) are reported in percentage (e.g., 5.7 means 5.7%)

Data HCT-PCS HCT-FoBa HCT-glasso nHCT SVM RF

Rats 5.7 (3.05) 8.6 (3.36) 20.3 (5.10) 15.1 (6.49) 6.9 (4.02) 13.5 (3.99)
Liver 4.2 (3.60) 10.0 (4.64) 20.2 (6.38) 10.5 (4.30) 3.5 (2.72) 4.3 (3.00)

large, due to the large variability in data splitting. For more informative compari-
son, we present the number of testing errors associated with all 25 data splittings
in Figure 3 (rats data) and Figure 4 (liver data), respectively, where the 25 data
splittings are arranged in a way so that the corresponding errors of HCT-PCS are
increasing from left to right.

From the left panel of Figure 3, we see that for the rats data, HCT-glasso, nHCT
and RF are all above HCT-PCS. To better show the differences among HCT-PCS,
HCT-FoBa and SVM, we further plot the testing errors in the right panel. Fig-
ure 4 provides the similar information for liver data, with HCT-PCS, SVM and RF
being highlighted in the right panel. The results suggest: for rats data, HCT-PCS
outperforms all methods with the average errors, including SVM and RF; for liver
data, HCT-PCS is slightly inferior to SVM, but still outperforms all other methods;
for both data sets, HCT-PCS significantly outperforms all other HCT-based meth-
ods (nHCT, HCT-glasso, HCT-FoBa), which further suggests PCS gives a better
estimate for the precision matrix than the glasso and FoBa.

The computation time is hard to compare, as it depends on many factors such as
the data-splitting in use, how professional the code is written, and how capable the

FIG. 3. Comparison of testing errors for the rats data. Left: Number of errors (y-axis) of 6 methods
for 25 data splittings (x-axis; labels of different rounds of data splitting are arranged in a way so
that the errors of HCT-PCS increase from left to right). Right: The same information but only with
HCT-PCS, HCT-FoBa and SVM (for a better view).
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FIG. 4. Comparison of testing errors for the liver data. Left: Number of errors (y-axis) of 6 methods
at 25 data splittings (x-axis; labels of different rounds of data splitting are arranged in a way so
that the errors of HCT-PCS increase from left to right). Right: The same information but only with
HCT-PCS, SVM and RF (for a better view).

user handles the computation. Therefore, the complexity comparison summarized
in Table 3 can only be viewed as a qualitative one (for the complexity of the glasso,
see [33]). We run all methods using Matlab, with an exception of FoBa, SVM and
RF by R, on a workstation with 8 CPU cores and 12 GB RAM, and the real time
elapsed in computation is recorded upon one data splitting.

It is noteworthy for much larger n (e.g., n = 2000), SVM becomes much slower,
showing a disadvantage of SVM, compared to PCS, FoBa and the glasso. See
Section 3 (simulation section) for settings with much larger n.

REMARK. Both PCS and FoBa use ridge regularization, but PCS uses it on
an as-needed basis [see (1.7)] and FoBa uses it more conventionally. In Table 4,
we compare the classification errors of PCS and FoBa for the cases of with (δ =
0.1) and without ridge regularization (δ = 0). The results suggest a substantial
improvement by using ridge regularization. On the other hand, we find that the

TABLE 3
Comparison of computational complexity of all classifiers and running time for rats and liver data
at a single data splitting. Here, n is the number of samples, p is the number of variables and T is
the number of trees used in RF [assuming p ≥ n and L3 ≤ O(n); computation times are based on

25 cross validations for all but HCT-FoBa and nHCT]. For HCT-FoBa, the computation time
accounts for no cross validation

HCT-PCS HCT-FoBa HCT-glasso nHCT SVM RF

Complexity O(np2) O(np2) O(p3)–O(p4) O(np log(p)) O(n2p) O(T np log(n))

Time (rats) 166.8 min 8.7 min 380 min 0.11 min 7.7 min 21.5 min
Time (liver) 241.0 min 12.9 min 890 min 0.12 min 7.7 min 26.3 min
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TABLE 4
Comparison of classification errors for HCT-PCS and HCT-FoBa for δ = 0.1 and δ = 0 (e.g., 5.7

means 5.7%; numbers in the brackets: standard deviations)

Data HCT-PCS (δ = 0.1) HCT-PCS (δ = 0) HCT-FoBa (δ = 0.1) HCT-FoBa (δ = 0)

Rats 5.7 (3.05) 13.2 (3.57) 8.6 (3.36) 13.7 (5.10)
Liver 4.2 (3.60) 12.5 (6.08) 10.0 (4.64) 15.1 (7.48)

classification errors for both methods are relatively insensitive to the choice of δ,
as long as they fall in an appropriate range. In this paper, we choose δ = 0.1 for all
real data experiments.

1.5. Comparison with glasso over the estimated �. That fact that HCT-PCS
significantly outperforms HCT-glasso and HCT-FoBa in classifications suggests
that PCS may give a “better” estimation of � than FoBa and the glasso. We now
compare the estimated precision matrices by the glasso, PCS and FoBa with the
two data sets. Figure 5 presents the histograms of the number of nonzeros of dif-
ferent rows in �̂ for the three different methods. For all histograms, we use the
whole data set without data splitting. For PCS, we use (q, δ,L) = (0.2,0.1,30).
For the glasso, we use λ = 0.8. For FoBa, we use (δ,L) = (0.1,30) so that it is
consistent with PCS. The histograms look similar when we change the tuning pa-
rameters in the appropriate range. Figure 5 reveals very different patterns of the
estimated �.

• For most rows, glasso estimates all off-diagonals to be 0. For some of the rows,
the glasso estimate can have a few hundreds of nonzeros.

FIG. 5. Panels 1–3: Histograms of the number of nonzeros in different rows of �̂ for the rats data
by PCS, FoBa and the glasso [y-axis in Panel 3 is log(#of nonzeros)]. For PCS and FoBa, the number
of nonzeros range from 33 to 108 and from 11 to 176, respectively. For the glasso, in 7550 out of
8491 rows, all off-diagonals are estimated as 0 (maximal number of nonzeros in a row is 83). Panels
4–6: Similar but are for the liver data.
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• For either of the PCS and the FoBa estimates, the number of nonzeros in each
row can be as large as a few ten’s, but no smaller than 10.

While the ground truth is unknown, it seems that the estimates by PCS or FoBa
make more sense: it is hard to believe that the off-diagonals of � are all 0 for
most of the rows; it is more likely that in most of the rows, we have at least a
few nonzeros. Partially, this explains why the classification errors of the glasso
is the largest among the three methods. It also explains why the naive HCT
has unsatisfactory behaviors (recall that in nHCT, we pretend that � is diago-
nal).

Huge [46] and Quic [25] are two improved versions of the glasso package [23].
We find these two packages have comparable computing speed to PCS when p

is moderately small (e.g., p ≤ 4000) and the precision matrix is very sparse (e.g.,
0.1% nonzero entries). For the two microarray data sets, the dimension p is much
larger, and the precision matrix is much less sparse. For these two data sets, we
find that Huge and Quic are significantly slower than PCS. At the beginning, we
try to implement Huge and Quic with the platform in the previous section (8 CPU
cores, 12 GB RAM) to complete the task, but find that it takes rather long time to
complete the task (for all 25 data splittings and 25 cross validations). Eventually,
we decide to use a better platform (56 CPU cores, 120 GB RAM), and we esti-
mate that it takes Huge and Quic 7.964 and 42.1705 days to complete the task,
respectively. Also, in Table 2, if we replace the glasso package by the Huge pack-
age, we get very similar classification errors; this is not very surprising as they are
essentially the same method, but with different implementations.

1.6. Comparison with FoBa over the estimated �. Forward and Backward re-
gression (FoBa) is a classical approach to variable selection, which is proposed by
Draper and Smith as early as 1960s [35]. FoBa can be viewed as an extension of
the classical Forward Selection (FS) procedure [35], where the difference is that
FoBa allows for backward elimination, but FS does not. FS and FoBa have been
studied carefully recently (e.g., [15, 44, 45]).

To the best of our knowledge, FS and FoBa have not yet been proposed as an
approach to estimating the precision matrix, but we can always develop them into
such an approach as follows. Fix 1 ≤ i ≤ p. Recall that X′ = [x1, x2, . . . , xp] and
that � = [ω1,ω2, . . . ,ωp]. It is known that we can always associate each row of
� with a linear regression model as follows [8]:

xi = (
ωi(i)

)−1 ∑
j 
=i

ωi(j)xj + zi, zi ∼ N
(
0, σ 2 · In

)
,(1.15)

where σ 2 = 1/ωi(i) and zi = xi − (ωi(i))
−1 ∑

j 
=i ωi(j)xj is independent of {xj :
j 
= i}. We can then apply either FS or FoBa to (1.15) for each 1 ≤ i ≤ p, and
symmetrize the whole matrix in the same way as the last step of PCS; the resultant
procedure is an approach to estimating �. A small gap here is that, for each 1 ≤
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i ≤ p, FS and FoBa attempt to estimate the vector (ωi(i))
−1ωi , not ωi itself (as

we desire).
This is closely related to PCS, but differs in several important ways. Since FoBa

is viewed as an improvement over FS, we only compare PCS with FoBa.
The most obvious difference between PCS and FoBa is that, in their “forward

selection” steps, the objective function for recruiting new nodes are different. PCS
uses the partial correlation (1.8), and FoBa uses the correlation between xj and the
residuals. The following lemma elaborates two objective functions and is proved
in the supplemental material [26].

LEMMA 1.2. For i, j , and S ⊂ {1,2, . . . , p} such that i 
= j , i, j /∈ S, and
|S| ≤ n − 2, the objective functions in the “forward selection” steps of PCS and
FoBa associated with δ = 0 are well defined with probability 1, equaling

ρ̂ij (S) = x′
i (I − HS)xj/

√
x′
i (I − HS)xi · x′

j (I − HS)xj(1.16)

and

ρ̂∗
ij (S) = x′

i (I − HS)xj/‖xj‖,(1.17)

respectively, where HS is the projection from R
n to the subspace {xk : k ∈ S}.

PCS and FoBa are also different in philosophy. It is well known that FS tends
to select “false variables.” For remedy, FoBa proposes “immediate backward elim-
ination”: in each step, FoBa is allowed to add or remove one or more variables,
in hopes that whenever we falsely select one or more variables, we can remove
them immediately. PCS takes a very different strategy. We recognize that, from a
practical perspective, the signals are frequently “rare and weak,” meaning that � is
sparse and that nonzero entries are relatively small individually. “Rare and weak”
signal is a recent notion in high dimensional data analysis, the definition of which
may vary from occurrence to occurrence, but usually it means that signals are hard
to identify if we do not know their locations, but relatively easy to identify (if only)
when the locations are known to us. See [14, 31] for review on recent researches
for “rare and weak” signals. In such cases, “immediate backward elimination” is
impossible and we must tolerate many “false discoveries.” Motivated by this, PCS
employs a Screen and Clean methodology, which attempts to include all the true
nodes while keeping the “false discoveries” as few as possible. Our results on the
two microarray data sets support the “rare and weak” viewpoint: for example, in
Figure 5, the symmetrization step has a significant impact on the histograms of
PCS and FoBa for both data sets, which implies that the “false discoveries” are
unavoidable.

Though it can be viewed as a method for variable selection, Screen and Clean
method has a strong root in the literature of large-scale multiple testing and in
genetics and genomics, where the “rare and weak” viewpoint is especially appro-
priate. In rare and weak settings, Screen and Clean is more appropriate than other
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FIG. 6. Left: The set of nodes recruited by PCS (solid) and FoBa (dashed) in the forward steps
(PCS: 26 nodes; FoBa: 27 nodes). Right: Objective functions [PCS: (1.16); FoBa: (1.17)] corre-
sponding to the nodes on the left. PCS and FoBa only share the first 2 nodes that have the largest (in
magnitude) objective functions for PCS and FoBa, respectively.

variable selection approaches whose focus is frequently on rare and strong signals.
See [14, 31] for more discussions.

In practice, the above differences may lead to noticeable differences between
the estimates of � by PCS and FoBa. To illustrate, we consider the estimation of
row #3823 of � associated with data splitting #25 of the rats data, and compare
how the forward selection steps of PCS (δ = 0.1) and FoBa (δ = 0.1) are different
from each other. The cleaning step of PCS and the backward selection of FoBa are
omitted for comparison.

• PCS (δ = 0.1). In the Screen step, PCS stops at step 26, and the 26 recruited
nodes are: 3823, 8199, 1466, 4164, 6674, 1087, 931, 2419, 5016, 679, 6726,
1059, 5410, 8116, 6183, 1242, 4348, 6492, 147, 5174, 4561, 4096, 2763, 5894,
8140 and 6532.

• FoBa (δ = 0.1). We run FoBa for 31 steps. It turns out that 4 of the steps are
backward steps (one node deleted in each). The 27 nodes FoBa recruits in each
of the forward steps are: 3823, 8199, 4144, 1628, 5707, 931, 1532, 5410, 3620,
2700, 5188, 7933, 2729, 8048, 1212, 2197, 1087, 2337, 5665, 6556, 1962, 8417,
7567, 4164, 1312, 6726 and 4436.

Figure 6 displays the two sets of selected nodes (left panel) by PCS and FoBa and
their corresponding coefficients (right panel) given in (1.16) and (1.17), respec-
tively. We see that the first two recruited nodes by PCS and FoBa are the same,
corresponding to large coefficients, either in (1.16) and (1.17). All other nodes
recruited by PCS and FoBa are different, corresponding to comparably smaller co-
efficients [either in (1.16) or (1.17)]. This suggests a “rare and weak” setting where
PCS and FoBa differ significantly from each other. Also, this provides an interest-
ing angle of explaining why PCS outperforms FoBa in terms of classification error.
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1.7. Summary and contributions. The most prominent advantage of PCS is
that it achieves a good balance between sound theoretical properties and practical
feasibility and utility. In theory, we show that PCS yields exact support recovery
in many cases where other methods (e.g., CLIME and the glasso) may fail to do
so; see Section 2.5. In computation, PCS is faster than many existing approaches
(e.g., CLIME, NN, the glasso and its variants Huge and Quic), especially when the
precision matrix is large and relatively less sparse. In applications, in addition to a
careful comparison of classification error rates, we have also provided interesting
light on why some methods behave unsatisfactory. Note that there is no significant
gap between the method we use for theoretical analysis and that for applications.

The contribution of the paper is three-fold. First, we propose PCS as a new
row-by-row approach to estimating large sparse precision matrices �. To estimate
each row, we develop a greedy stage-wise algorithm using the empirical partial
correlations. PCS is computationally efficient and modest in memory use. These
two features enable PCS to execute accurate estimation of the precession matrices
with energy-efficient computing, and open doors to accommodating � of much
larger sizes (e.g., p ≥ 50K).

Second, we combine PCS with HCT [22] for a new classifier HCT-PCS and ap-
ply it successfully to two microarray data sets. HCT-PCS is competitive in classifi-
cation errors, compared to the more popular classifiers of SVM and RF. HCT-PCS
is tuning free (given an estimate of �), enjoys theoretical optimality [22], and fully
exploits the sparsity in both the feature vectors and the precision matrix. SVM and
RF, however, can be unstable with regard to tuning. For example, the tuning pa-
rameter in SVM largely relies on training data and structure of the kernel function
employed to transform the feature space; this instability of regularization could
end up with non-sparse support vectors [4, 11]. SVM and RF are found faster than
HCT-PCS in Section 1, but such an advantage is much less prominent for larger n.

HCT-PCS gives more satisfactory classification results than HCT-glasso, sug-
gesting that PCS gives “better” or “more useful” estimates for the precision ma-
trix. The glasso is relatively slow in computation when p is as large as 10K , espe-
cially when the tuning parameter is small. For either of two microarray data sets,
the glasso estimates are undesirable: in a majority of rows of �̂, all off-diagonals
are 0. HCT-PCS also gives more satisfactory classification results than HCT-FoBa,
and two main differences between PCS and FoBa are (a) PCS and FoBa use very
different objective functions in screening, (b) FoBa proposes to remove “falsely
selected nodes” by immediate backward deletion, while PCS adopts a “rare and
weak signal” view point, and proposes to keep all “falsely selected nodes” until
the end the Screen step and then remove them in the Clean step.

1.8. Content and notation. Section 2 presents the main theoretical results,
where we show why and when PCS and HCT-PCS work using a general frame-
work. In particular, in Section 2.5, we show that PCS yields exact support recov-
ery in many settings where other methods (e.g., CLIME and the glasso) may not.
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Section 3 presents the simulations. Section 4 contains discussions and extensions.
Section 5 contains the proofs of two key lemmas. Proofs for theorems and other
lemmas are in the supplementary material [26].

In this paper, for any vector a, ‖a‖ denotes the vector �2-norm. For any matrix
A, ‖A‖ denotes the matrix spectral norm, ‖A‖1 denotes the matrix �1-norm and
‖A‖max denotes the entry-wise max norm. λmax(A) and λmin(A) denote the max-
imum and minimum eigenvalues of A, respectively. For any matrix B ∈ R

n,p and
two subsets I,J , BI,J is the same as in Definition 1.1.

2. Main results. For simplicity, we only study the version of PCS without
ridge regularization, and drop the superscript “(0)” by writing

ρ̂ij (S) = ρ̂
(0)
ij (S) for any subset S, random or non-random.

We simply set L = p, so PCS has only one tuning parameter q . In this section,
C > 0 is a generic constant which may vary from occasion to occasion.

Theoretically, to characterize the behavior of PCS, there are two major compo-
nents: how PCS behaves in the idealized case where we have access to “small-size”
principal submatrices of � (but not any of the “large-size” submatrices), and how
to control the stochastic errors. Below, after some necessary notation, we discuss
two components in Sections 2.1–2.2. The main results are presented in the end of
Section 2.2.

For any positive definite matrix A, recall that λmin(A) and λmax(A) denote the
smallest and largest eigenvalues, respectively. For any 1 ≤ k ≤ p, define

μ
(1)
k (A) = min{|S|=k}

{
λmin

(
AS,S)}

, μ
(2)
k (A) = max{|S|=k}

{
λmax

(
AS,S)}

,(2.1)

where S is a subset of {1,2, . . . , p}. Also, for an integer 1 ≤ K ≤ p, we say that
a matrix A ∈ R

p,p is K-sparse if each row of A has no more than K nonzero off-
diagonals. Let Mp be the set of all p ×p positive definite matrices, let 0 < c0 ≤ 1
be a fixed constant, and let

N = N(p,n) = the smallest integer that exceeds n/ log(p).(2.2)

We consider the following set of � (as before, � and � are tied to each other by
� = �−1) denoted by M∗

p(s, c0) = M∗
p(s, c0;n):

M∗
p(s, c0) = {

� ∈ Mp: � is s-sparse, μ
(1)
N (�) ≥ c0, μ

(2)
N (�) ≤ c−1

0

}
.(2.3)

We use p as the driving asymptotic parameter, so n → ∞ as p → ∞. We al-
low s (and other parameters below) to depend on p. However, c0 is a constant not
depending on p. Recall that

S(i)(�) = {
1 ≤ j ≤ p : j 
= i,�(i, j) 
= 0

}
.

Introduce the minimum signal strength by

τ ∗
p = τ ∗

p(�) = min
1≤i≤p

τp(i) where τp(i) = τp(i;�) = min
j∈S(i)(�)

{∣∣�(i, j)
∣∣}.
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DEFINITION 2.1. Fix 1 ≤ i ≤ p. We call j a signal node (in row i) if j 
= i

and �(i, j) 
= 0, and a noise node (in row i) if j 
= i and �(i, j) = 0.

Here, whenever there is no confusion, we may drop the part “in row i.” The so-
called Lagging Time and Energy At Large (EAL) plays a key role in characterizing
PCS. Suppose we apply PCS to estimate the ith row of �.

Denote the kth Selecting Time for row i by m̂(i)(k) = m̂(i)(k;X,�), 1 ≤ k ≤
|S(i)(�)|; this is the index of the stage at which we select a signal node for the kth
time. By default, m̂(0) = m̂(0;X,�) = 0. The kth Lagging Time for row i is then

�̂(i)(k) = �̂(i)(k;X,�) = m̂(i)(k) − m̂(i)(k − 1) − 1, 1 ≤ k ≤ ∣∣S(i)(�)
∣∣.

This is the number of noise nodes PCS recruits between the steps we recruit the
(k − 1)-th and the kth signal nodes. Additionally, suppose we are now at the begin-
ning of stage m in the Screen step of PCS, and let Ŝ

(i)
m−1 be the set of all recruited

nodes as before. We say a signal node is “At Large” if we have not yet recruited it.
The Energy At Large at stage m (for row i) is

Ê(i)(m) = Ê(i)(m;X,�) = ∑
j∈(S(i)(�)\Ŝ(i)

m−1)

�(i, j)2, 1 ≤ m ≤ p − 1.

In the idealized case when we apply PCS to �, Selecting Time, Lagging Time and
EAL reduce to their non-stochastic counterparts, denoted correspondingly by

m(i)(k) = m(i)(k;�), �(i)(k) = �(i)(k;�) and E(i)(m) = E(i)(m;�).

Whenever there is no confusion, we may drop the superscript “(i)” for short.

2.1. Behavior of PCS in the idealized case. Consider the idealized case where
we have access to all “small-size” principal submatrices of �. We wish to investi-
gate how the Screen step of PCS behaves. Let ρij (S) be as in (1.6). In this idealized

case, recall that PCS runs as follows. Initialize with S
(i)
0 = ∅. Suppose the algo-

rithm has run (m−1) steps and has not yet stopped. Let S
(i)
m−1 = {j1, j2, . . . , jm−1}

be all the nodes recruited (in that order) by far. At stage m, if ρij (S
(i)
m−1) 
= 0

for some j /∈ ({i} ∪ S
(i)
m−1), let j = jm be the index with the largest value of

|ρij (S
(i)
m−1)|, and update with S

(i)
m = S

(i)
m−1 ∪ {jm}. Otherwise, terminate and let

S
(i)∗ = S

(i)
m−1.

The key of the analysis lies in the interesting connection between partial corre-
lations and EAL. The following two lemmas are proved in Section 5.

LEMMA 2.1. Fix p, 0 < c0 ≤ 1, 1 ≤ i, s ≤ p and � ∈ M∗
p(s, c0). For each

1 ≤ k ≤ |S(i)(�)|,∑
m(i)(k−1)<m<m(i)(k)

ρ2
ijm

(
S

(i)
m−1

) ≤ [
μ

(2)

m(i)(k)+s−k
(�)

]2 ∑
j∈(S(i)(�)\S(i)

m(i)(k)−1
)

�(i, j)2.
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LEMMA 2.2. Fix p, 0 < c0 < 1, 1 ≤ i, s ≤ p and � ∈ M∗
p(s, c0). For each

m ≥ 1,

∑
j∈(S(i)(�)\S(i)

m−1)

ρ2
ij

(
S

(i)
m−1

) ≥ [μ(1)
m+s(�)]3

μ
(2)
m+s(�)

∑
j∈(S(i)(�)\S(i)

m−1)

�(i, j)2.

Recall that � ∈ M∗
p(s, c0), so μ

(1)
m+s(�) ≥ C and μ

(2)
m+s(�) ≤ C. Fix 1 ≤ k ≤

|S(i)(�)|. Suppose we have recruited (k − 1) signals and (|S(i)(�)| − k + 1) ones
are at large. The implications of these lemmas are:

• The sum of squares of all such partial correlations associated with noise nodes
we recruit between the (k − 1)-th and the kth Selecting Times is smaller than a
constant C times the EAL associated with the signal nodes that are currently At
Large.

• PCS is a greedy algorithm. For each noise node we recruit between the
(k − 1)-th and the kth Selecting Times, the square of the associated partial cor-
relation is no smaller than that of one of the signal nodes At Large, which in
turn is greater than C(|S(i)(�)| − k + 1)−1 times the EAL associated with all
signal nodes that are currently At Large.

• As a result, the kth Lagging Time satisfies �(i)(k;�) ≤ C(|S(i)(�)| − k + 1) ≤
C(s − k + 1), and PCS must have recruited all true signal nodes in no more than
C

∑s
k=1(s −k +1) ≤ Cs2 steps, at which point, all partial correlations are 0 and

the algorithm stops immediately.

The above arguments are made precise in the following theorem, the proof of
which can be found in the supplementary material [26].

THEOREM 2.1. Suppose � ∈ M∗
p(s, c0), and s2 log(p) = o(n). In the ideal-

ized case that we can access all principal submatrices of � with size no more than
N(p,n) defined in (2.2), for each row 1 ≤ i ≤ p, the following holds:

• At each stage m before all signal nodes are recruited, there exists j ∈ (S(i)(�) \
S

(i)
m−1) such that |ρij (S

(i)
m−1)| ≥ Cτ ∗

p , and PCS keeps running.
• PCS takes no more than Cs2 steps to terminate.
• When PCS terminates, ρij (S

(i)∗ ) = 0 for all j /∈ ({i} ∪ S
(i)∗ ).

2.2. Consistency of PCS. In this section, we aim to extend Theorem 2.1 to the
real case where we have access to small principal submatrices of �̂ instead of �.
Recall that in the Screen step of PCS, we use the threshold

t∗q = t∗q (p,n) = q ·
√

2 log(p)/n.(2.4)

We hope that there is a q > 0 such that except for a negligible probability:



PARTIAL CORRELATION SCREENING 2039

• The algorithm stops at no more than Cs2 steps.
• Suppose we are at stage m of the Screen step of PCS. If the algorithm has not yet

recruited all the signal nodes by stage (m − 1), then there is a j /∈ ({i} ∪ Ŝ
(i)
m−1)

such that |ρ̂ij (Ŝ
(i)
m−1)| ≥ t∗q (p,n). If the algorithm has recruited all signal nodes

by stage (m − 1), then for all j /∈ ({i} ∪ Ŝ
(i)
m−1), |ρ̂ij (Ŝ

(i)
m−1)| < t∗q (p,n).

Such a “phase transitional” effect ensures PCS to run till all signal nodes are re-
cruited.

The key is to characterize the stochastic fluctuations. Under mild conditions, we
can show that except for a probability of o(p−3), there is a constant c1 that only
depends on c0 in (2.3) such that for each m ≥ 1,

max
j /∈({i}∪Ŝ

(i)
m−1)

∣∣ρ̂ij

(
Ŝ

(i)
m−1

) − ρij

(
Ŝ

(i)
m−1

)∣∣ ≤ c1s
√

2 log(p)/n.(2.5)

We need the minimum signal strength to be large enough to counter the effect of
stochastic fluctuations. In light of this, we assume

τ ∗
p/

[
s
√

log(p)/n
] → ∞,(2.6)

2c1s
√

2 log(p)/n ≤ t∗q (p,n) ≤ (1/2)c2
0τ

∗
p,(2.7)

where c0 is as in (2.3). The constants 2 and 1/2 are chosen for convenience and
can be replaced by any constants a > 1 and b ∈ (0,1), respectively. When (2.6)–
(2.7) hold, we are able to derive results similar to those in Lemmas 2.1–2.2, which
can then be used to derive the “phase transitional” phenomenon aforementioned.
Roughly saying, with high probability: if all signal nodes have not yet been re-
cruited by stage (m − 1), then the partial correlation associated with the next node
to be recruited is at least Cτ ∗

p − c1s
√

2 log(p)/n which is much larger than the
threshold t∗q and so PCS continues to run. On the other hand, once all signal nodes
are recruited, the partial correlation associated with all remaining nodes falls below
c1s

√
2 log(p)/n which is no larger than t∗q /2, and PCS stops immediately.

The above arguments are made precise in the following theorem, which is the
main result of this paper and proved in the supplementary material [26].

THEOREM 2.2. Fix 1 ≤ i ≤ p and apply the Screen step of PCS to row i.
Suppose � ∈ M∗

p(s, c0), s2 log(p) = o(n), the minimum signal strength τ ∗
p satis-

fies (2.6), and the threshold t∗q (p,n) satisfies (2.7) with the constant c1 properly

large. With probability at least 1 − o(p−3):

• At each stage m before all signal nodes are recruited, there exists j ∈ (S(i)(�) \
Ŝ

(i)
m−1) such that |ρ̂ij (Ŝ

(i)
m−1)|� c2

0τ
∗
p , and PCS keeps running.

• PCS takes no more than Cs2 steps to terminate.



2040 S. HUANG, J. JIN AND Z. YAO

• Once PCS recruits the last signal node, it stops immediately, at which point,
|ρ̂ij (Ŝ

(i)∗ )| ≤ c1s
√

2 log(p)/n for all j /∈ ({i} ∪ Ŝ
(i)∗ ).

An explicit formula for c1 can be worked out but is rather tedious; see the proofs
of Theorems 2.2–2.3 for details. The first two claims of the theorem are still valid
if t∗q (p,n) � s

√
2 log(p)/n but t∗q (p,n) ≤ c1s

√
2 log(p)/n. In such a case, the

difference is that, PCS may continue to run for finitely many steps (without imme-
diate termination) after all signals are recruited.

REMARK. We can slightly relax the condition (2.6) by allowing τ ∗
p ∼ r ·

s
√

log(p)/n for some constant r > 0. In this case, there exists a constant r∗ that
only depends on c0 such that whenever r > r∗, we can find constants c = c(c0, r)

and c = c(c0, r), so that Theorem 2.2 continues to hold when c ≤ q ≤ c. Further-
more, if we only want the first two claims of Theorem 2.2 to hold, we do not need
the lower bound c for q .

Theorem 2.2 discusses the Screen step of the PCS for individual rows. The fol-
lowing theorem characterizes properties of the estimator �̂pcs = �̂pcs(t∗q ,X;p,n),
and is proved in the supplementary material [26].

THEOREM 2.3. Under conditions of Theorem 2.2, with probability at least
1 − o(p−2), each row of �̂pcs has the same support as the corresponding row of
�, and ‖�̂pcs − �‖max ≤ C

√
log (p)/n.

While Theorem 2.3 is for ‖�̂pcs −�‖max, the results can be extended to accom-
modate other types of matrix norms (e.g., ‖�̂pcs − �‖1).

REMARK. In Theorems 2.1–2.2, we use the lower bound (s − k)(τ ∗
p)2 for

the EAL associated with signals that are At Large between the (k − 1)-th and kth
Selecting Time. Such a bound is not tight, especially when a few smallest nonzero
entries are much smaller than other nonzero entries (in magnitude). Here is a better
bound. Suppose row i has s off-diagonal nonzeros, denoted as η1, . . . , ηs . We sort
η2

j in the ascending order: η2
(1) ≤ η2

(2) ≤ · · · ≤ η2
(s). Then, the EAL is lower bounded

by
∑s−k

�=1 η2
(�). Such a bound can help relax the condition (2.6) for Theorem 2.2,

especially when our goal is not to show exact support recovery, but to control the
number of signal nodes not recruited in the Screen step.

REMARK. We control the stochastic fluctuations (2.5) by showing that for
each 1 ≤ i ≤ p and m � N , with probability at least 1 − o(p−3),

∥∥�̂W,W − �W,W
∥∥ ≤ C

√
m log(p)/n where W = {i} ∪ Ŝ

(i)
m−1.(2.8)
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If we replace Ŝ
(i)
m−1 by a fixed subset S with |S| = m − 1, then by basics in multi-

variate analysis, the factor
√

m on the right-hand side can be removed. In general,
if we can find an upper bound for the number of possible realizations of Ŝ

(i)
m−1, say,

K(p,m), then we can replace
√

m by
√

log(K(p,m)). In (2.8), K(p,m) = (p
m

)
which is the most conservative bound. How to find a tighter bound for K(p,m) is
a difficult problem [1]. We conjecture that in a broad situation, a better bound is
possible so (2.8) can be much improved.

At the same time, if we are willing to impose further conditions on �, then such
a tighter bound is possible; we investigate this in Section 2.3.

2.3. Consistency of PCS for much weaker signals. In the above results, in or-
der for PCS to be successful, we need τ ∗

p � s
√

log(p)/n. We wish to relax this
condition by considering

τ ∗
p ≥ r ·

√
2 log(p)/n where r > 0 is a fixed constant.(2.9)

We show PCS works in such cases if we put additional conditions on �.
Let κ∗ = κ∗(�) = max1≤i≤p κ(i,�) and γ ∗ = γ ∗(�) = min1≤i≤p γ (i,�),

where κ(i;�) = maxj /∈{i}∪S(i)(�) ‖(�S(i)(�),S(i)(�))−1�S(i)(�),{j}‖1 and γ (i;�) =
minj /∈({i}∪S(i)(�)) {[first diagonal of (�{j}∪S(i)(�),{j}∪S(i)(�))−1]1/2}; here, we al-
ways assume j as the first index listed in {j} ∪ S(i)(�). The quantity κ∗ is mo-
tivated by a similar quantity in [44] for linear regressions, and γ ∗ is a normaliz-
ing factor which comes from the definition of partial correlations. Fix a constant
δ ∈ (0,1). In this subsection, we assume

κ∗(�)/γ ∗(�) ≤ 1 − δ, �(i, i) = 1, 1 ≤ i ≤ p;(2.10)

the second assumption is only for simplicity in presentation. Introduce θ∗ =
θ∗(�) = min1≤i≤p θ(i,�), where θ(i,�) = λmin(�

S(i)(�),S(i)(�)). The following
theorem is proved in the supplemental material [26].

THEOREM 2.4. Fix 1 ≤ i ≤ p and apply the Screen step of PCS to row i.
Suppose � ∈ M∗

p(s, c0), (2.10) holds for some δ ∈ (0,1), s2 log(p) = o(n),
the minimum signal strength τ ∗

p satisfies (2.9) with r ≥ √
5�(i, i)[θ∗(�)]−1 ×

max{√θ∗(�) + 2δ−1,2
√

�(i, i)}, and the threshold t∗q (p,n) satisfies
√

5 < q ≤
θ∗(�)r/�(i, i). With probability at least 1 − o(p−3):

• Before all signal nodes are recruited, PCS keeps running and recruits a signal
node at each step.

• PCS takes exactly |S(i)(�)| steps to terminate.
• When PCS stops, |ρ̂ij (Ŝ

(i)∗ )| ≤ √
10 log(p)/n for all j /∈ ({i} ∪ Ŝ

(i)∗ ).
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By Theorem 2.4, the claim of Theorem 2.3 continues to hold, the proof
of which is straightforward so we omit it. In Theorem, 2.4, we require r ≥√

5�(i, i)[θ∗(�)]−1(
√

θ∗(�) + 2δ−1) and r ≥ 2
√

5�(i, i)[θ∗(�)]−1√�(i, i)}.
The first condition ensures that PCS always recruits signal nodes before termina-
tion. The second one ensures the existence of a threshold by which PCS terminates
immediately once all signals are recruited.

2.4. Optimal classification phase diagram by HCT-PCS. Come back to model
(1.11) where X̃i ∼ N(μ±,�), � = �−1, if Yi = ±1, respectively. In this model,
the optimality of HCT was justified carefully in [13, 22]. At the heart of the the-
oretical framework is the notion of classification phase diagram. Call the two-
dimensional space calibrating the signal sparsity [fraction of nonzeros in the con-
trast mean vector (μ+ − μ−)] and signal strength (minimum magnitudes of the
nonzero contrast mean entries) the phase space. The phase diagram is a partition
of the phase space into three subregions, where successful classification is rela-
tively easy, possible but relatively hard and impossible simply because the signals
are too rare and weak.

We say a trained classifier achieves the optimal phase diagram if it partitions the
phase space in exactly the same way as the optimal classifier does. It was shown
in [22], Theorem 1.1–1.3, that HCT achieves the optimal phase diagram (with
some additional regularity conditions) provided that:

• � is sp-sparse, where sp ≤ Lp .
• � is known, or can be estimated by �̂ such that ‖�̂ − �‖max ≤ Lp/

√
n.

Here, Lp > 0 is a generic multi-log(p) term such that for any constant c > 0,
Lpp−c → 0 and Lppc → ∞.

We now consider HCT-PCS. By results in Sections 2.2–2.3, we have shown∥∥�̂pcs − �
∥∥

max ≤ C
√

log(p)/n.(2.11)

Therefore, HCT-PCS achieves the optimal phase diagrams in classification, pro-
vided that sp ≤ Lp . See [22] for details.

Note that the condition on sp is relatively strict here. For much larger sp (e.g.,
sp = pϑ for some constant 0 < ϑ < 1), it remains unknown which procedures
achieve the optimal phase diagram, even when � is known.

2.5. Comparisons with other methods. There are some existing theoretical re-
sults on exact support recovery of the precision matrix, including but are not lim-
ited to those on the glasso [34], CLIME [10] and scaled-lasso [37].

For exact support recovery, the glasso requires the so-called “Incoherent Condi-
tions” (IC) [34]. The IC condition is relatively restrictive, which can be illustrated
by the following simple example. Suppose p is divisible by 3, and � is blockwise
diagonal where each diagonal block is a symmetric matrix D ∈ R

3,3 satisfying
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D(1,1) = D(2,2) = 1,D(1,2) = 0,D(1,3) = a,D(2,3) = b and D(3,3) = c,
where c2 > a2 + b2 so D is positive definite. In this example, the IC condition
imposes a restriction |a| + |b| + 2|ab| < 1.

The conditions required for CLIME to achieve the exact support recovery
is given in [10], which in our notation can be roughly translated into τ ∗

p ≥
C‖�‖1/

√
n, where τ ∗

p is the minimum magnitude of the nonzero off-diagonals
of �. In comparison, Theorem 2.4 says that if condition (2.10) holds, then PCS
achieves exact support recovery provided that τ ∗

p ≥ C
√

2 log(p)/
√

n. Note that
the two sets of conditions overlap with each other, and there are many cases where
the conditions for Theorem 2.4 hold but that for CLIME does not. For example, if
� is a blockwise diagonal matrix, and within each block, all entries are nonzero.
Then κ∗(�)/γ ∗(�) = 0 and (2.10) is easily satisfied. However, it is possible that
‖�‖1 � √

2 log(p), especially when some of the blocks are large. Therefore, in
such a case, CLIME requires much larger τ ∗

p to succeed than does PCS. As for
scaled-lasso, note that the primary interest in [37] is on the convergence in terms
of the matrix spectral norm, where conditions for exact support recovery are not
given.

Note that the largest advantage of PCS is that, it is fast and allows for energy-
efficient computing for very large matrices, and has nice results in real data analy-
sis.

The method in [6] and FoBa [44, 45] are also related. However, the main results
of [6] is on the case where � is sparse. Since the primary interest here is on the
case where � is sparse, their results do not directly apply. The results in [44, 45]
are on variable selection, and have not yet been adapted to precision matrix esti-
mation. Recall that in Section 1.6, we have already carefully compared PCS with
FoBa, from the perspective of real data applications: PCS is different from FoBa
in philosophy, method and implementation, and yields much better classification
results.

The results (numerical and theoretical) presented in this paper suggest that PCS
is an interesting procedure and is worthy of future exploration. In particular, we
believe that, with some technical advancements in proofs, the conditions required
for the success of PCS can be largely weakened.

3. Simulations. We conducted 4 different simulated experiments. The first
one compares PCS with FoBa and the glasso in precision matrix estimation. The
second one is similar, but the focus is on smaller p and we include CLIME for com-
parison. The third one investigates the robustness of PCS. The last one compares
the classification behavior of HCT-PCS with those of HCT-FoBa, HCT-glasso,
nHCT, SVM and RF.

3.1. Experiment 1 (precision matrix estimation). Experiment 1 consists of

three subexperiments, 1a–1c. In each subexperiment, we generate samples Xi
i.i.d.∼
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(0,�−1), i = 1,2, . . . , n, where � ∈ R
p,p , for 10 repetitions. For any �̂, an esti-

mate of �, we measure the performance by the average errors across 10 different
repetitions. We use four different error measures: spectrum norm, Frobenius norm,
the matrix �1-norm of (�̂ − �) and the matrix Hamming distance between �̂ and
�. The first three error measures are as in textbooks, the last one is defined by

Hammp(�̂,�) = 1

p

∑
1≤i,j≤p

1
{
sgn

(∣∣�̂(i, j)
∣∣) 
= sgn

(∣∣�(i, j)
∣∣)},(3.1)

where sgn(x) = 1 if x > 0 and sgn(x) = 0 if x = 0. Alternatively, we can replace
the factor p−1 by 1 or p−2, but the resultant values would be either too large or
too small; the current one is the best for presentations.

In these experiments, matrix singularity is not as extreme as in the microarray
data, so we use PCS and FoBa without the ridge regularization.

For PCS, we take the tuning parameter L to be 15 in experiments 1a–1b for
the algorithm generally stops after 10 steps due to the simple structure of �. In
experiment 1c, we use L = 30 because � is more complex. For tuning parameter
q , we test q from 0.5 to 3 with increment of 0.5 in experiment 1a and 1b. We find
that for q ≤ 0.5 or q ≥ 2.5, the errors are higher, while the errors remain similar
for 1 ≤ q ≤ 2, so we use q = 1.5. In experiment 1c, we test q from 0.25 to 2 with
increment of 0.25. We find that for q ≤ 0.25 or q ≥ 1.5, the errors are higher than
0.5 ≤ q ≤ 1.25, so we use q = 0.75. For FoBa, we set L the same as in PCS.

For the glasso, we set the tuning parameter λ as 0.5. In principle, the smaller
the λ we use, the slower the algorithm, but more accurate the estimate. For our
experiments, it takes about 10 hours for experiments 1a–1b and more than 24 hours
for experiment 1c with λ = 0.5, so we do not consider λ smaller than 0.5, for it
may take substantially longer. On the other hand, we should choose λ as small as
possible, for the sake of accuracy. For these reasons, we take λ = 0.5. Of course,
if p is relatively small (i.e., only a few hundreds), then we can use a more careful
choice of λ; see Section 3.2.

We now describe � in three subexperiments. For experiments 1a and 1c, we
set (p,n) = (5000,1000), (2000,1000), (1000,500). For experiment 1b, we set
(p,n) = (4500,1000), (3000,1000), (1500,500) so that p is divisible by 3.

Experiment 1a: �(i, j) = 1{i = j} + ρ · 1{|i − j | = 1}, ρ = 0.4, 1 ≤ i, j ≤ p.
Here, the IC condition (see Section 2.5) for the glasso holds, but no longer holds
if we increase ρ slightly.

Experiment 1b: � is a blockwise diagonal matrix, and each diagonal block is a
3×3 symmetric matrix A satisfying A(1,1) = A(2,2) = A(3,3) = 1, A(1,2) = 0,
A(1,3) = 0.5, and A(2,3) = 0.7. This matrix � is positive definite but does not
satisfy the IC condition.

Experiment 1c: We generate � as follows. First, we generate a p × p Wigner
matrix W [38] [the symmetric matrix with 0 on all the diagonals and i.i.d.
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TABLE 5
Estimation errors (with standard deviations in brackets) for experiment 1a

p n PCS glasso FoBa PCS glasso FoBa

Spectrum norm Matrix �1-norm
5000 1000 0.27 (0.021) 1.19 (0.003) 0.78 (0.014) 0.34 (0.033) 1.23 (0.003) 2.45 (0.070)
2000 1000 0.26 (0.027) 1.18 (0.003) 0.70 (0.018) 0.34 (0.035) 1.23 (0.005) 2.18 (0.107)
1000 500 0.34 (0.033) 1.19 (0.003) 1.14 (0.025) 0.4 (0.051) 1.24 (0.004) 3.24 (0.174)

Frobenius norm Matrix Hamming distance
5000 1000 4.39 (0.057) 49.00 (0.013) 23.08 (0.067) 0.00 (0.000) 0.00 (0.001) 24.93 (0.021)
2000 1000 2.79 (0.036) 30.99 (0.012) 13.03 (0.037) 0.00 (0.000) 0.00 (0.002) 24.43 (0.030)
1000 500 2.83 (0.099) 21.91 (0.019) 14.89 (0.094) 0.00 (0.000) 0.04 (0.011) 24.12 (0.038)

Bernoulli(ε) random variables for entries on the upper triangle; here, we take
ε = 0.01]. Next, we let �∗ = 0.5W + ϑIp , where Ip is the p × p identity ma-
trix and ϑ = ϑ(W) is such that the conditional number of �∗ (the ratio of the
maximal and the minimal singular values) is p. Last, we scale �∗ to have unit
diagonals and let � be the resultant matrix.

The results for three experiments are summarized in Tables 5, 6 and 7, cor-
respondingly, in terms of four error measures aforementioned. For experiments
1a–1b, it suggests that (a) PCS outperforms the glasso and FoBa in all four dif-
ferent error measures, especially in Hamming loss, where PCS has no errors in all
cases (and thus exact support recovery of �); (b) the glasso and FoBa have similar
performance in terms of the �1-norm and Hamming distance, but the glasso is sig-
nificantly inferior to FoBa in terms of the spectral norm and Frobenius norm. For
experiment 1c, Table 7 shows that the glasso is not that competitive to FoBa as in
the previous two experiments, while PCS still has a dominant advantage over the

TABLE 6
Estimation errors (with standard deviations in brackets) for experiment 1b

p n PCS glasso FoBa PCS glasso FoBa

Spectrum norm Matrix �1-norm
4500 1000 0.30 (0.022) 1.23 (0.004) 0.73 (0.017) 0.36 (0.035) 1.49 (0.005) 2.13 (0.043)
3000 1000 0.29 (0.027) 1.22 (0.004) 0.70 (0.018) 0.35 (0.039) 1.49 (0.006) 2.01 (0.047)
1500 500 0.36 (0.018) 1.23 (0.003) 1.15 (0.022) 0.43 (0.028) 1.51 (0.006) 3.22 (0.239)

Frobenius norm Matrix Hamming distance
4500 1000 3.99 (0.059) 49.83 (0.009) 19.47 (0.069) 0.00 (0.000) 0.69 (0.002) 26.90 (0.019)
3000 1000 3.25 (0.029) 40.69 (0.008) 14.96 (0.059) 0.00 (0.000) 0.68 (0.003) 26.78 (0.019)
1500 500 3.30 (0.092) 28.76 (0.013) 17.95 (0.118) 0.00 (0.000) 1.47 (0.044) 26.58 (0.035)
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TABLE 7
Estimation errors (with standard deviations in brackets) for experiment 1c

p n PCS glasso FoBa PCS glasso FoBa

Spectrum norm Matrix �1-norm
5000 1000 2.56 (0.009) 4.13 (0.002) 4.47 (0.000) 5.05 (0.149) 13.50 (0.675) 6.29 (0.056)
2000 1000 0.53 (0.009) 2.79 (0.001) 3.11 (0.000) 1.84 (0.097) 7.25 (0.221) 5.42 (0.013)
1000 500 1.00 (0.068) 2.13 (0.001) 2.41 (0.001) 3.25 (0.305) 13.27 (0.249) 4.11 (0.009)

Frobenius norm Matrix Hamming distance
5000 1000 35.46 (0.068) 55.41 (0.025) 72.18 (0.004) 35.22 (0.103) 69.68 (0.668) 55.80 (0.037)
2000 1000 10.61 (0.054) 33.88 (0.020) 43.63 (0.003) 5.89 (0.067) 34.60 (0.295) 25.94 (0.077)
1000 500 10.65 (0.074) 22.34 (0.013) 29.23 (0.003) 8.29 (0.085) 14.70 (0.093) 15.27 (0.132)

glasso and FoBa when both p and n get larger, especially in terms of the Hamming
distance.

3.2. Experiment 2 (PCS for relatively small p). In this experiment, we wish to
include CLIME for comparison. Since CLIME is computationally slow for large p,
we choose moderately large p. The experiment consists of 3 sub-experiments, 2a–
2c, where we use the same settings as in experiment 1a–1c, respectively, except
for that (p,n) = (200,100). For PCS, FoBa, the glasso and CLIME, the tuning
parameters are set as follows. For FoBa, we set L = 15. For PCS, we also set
L = 15. Additionally, we find that when the tuning parameter q range from 0.1 to
2 (with an increment of 0.1), the error rates are relatively flat for 0.8 < q < 1.6 (and
higher outside this range), so we set q = 1 for convenience. For glasso and each of
the 4 error measures we consider, we pick the λ in the set {0.05,0.1,0.15, . . . ,1}
that has the smallest error rates (i.e., the “ideal” tuning parameter). For CLIME
and each of the four error measures, we pick the “ideal” tuning parameter from the
set {0.1,0.2, . . . ,1} for experiment 2a–2b and the “ideal” tuning parameter from
the set {0.01,0.02,0.03, . . . ,0.2} for experiment 2c (the interesting range for λ in
experiment 2c is different from that in experiment 2a–2b).

The results for experiment 2a–2c are summarized in Tables 8, 9 and 10, respec-
tively. The results show that PCS is generally competitive. Also, the behavior of
CLIME is comparable to PCS in three choices of the error measures, but is much
less satisfactory in the Hamming loss.

3.3. Experiment 3 (robustness). We have 3 subexperiments, 3a–3c, where we
use the same settings as in experiment 1a–1c, respectively. However, for each ex-
periment, instead of applying PCS to all samples, we apply PCS to 90% of samples
that are randomly selected. For each of the 4 error measures we consider, we repeat
the subsampling for 10 times independently and compute the average errors. The
results are in Tables 11, 12 and 13, respectively, where the columns of �̂sample −�
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TABLE 8
Estimation errors (with standard deviations in brackets) for experiment 2a

p n PCS glasso FoBa CLIME PCS glasso FoBa CLIME

Spectrum norm Matrix �1-norm
200 100 1.19 (0.200) 0.85 (0.017) 5.46 (0.276) 1.07 (0.032) 1.79 (0.373) 1.31 (0.034) 13.12 (0.657) 1.27 (0.055)

Frobenius norm Matrix Hamming distance
200 100 4.72 (0.243) 5.51 (0.104) 30.29 (1.040) 7.77 (0.137) 0.39 (0.044) 0.46 (0.064) 22.61 (0.160) 197.01 (0.000)

TABLE 9
Estimation errors (with standard deviations in brackets) for experiment 2b

p n PCS glasso FoBa CLIME PCS glasso FoBa CLIME

Spectrum norm Matrix �1-norm
200 100 0.98 (0.320) 1.28 (0.009) 5.11 (0.484) 1.18 (0.027) 1.30 (0.454) 1.83 (0.016) 11.63 (1.205) 1.52 (0.036)

Frobenius norm Matrix Hamming distance
200 100 3.00 (0.253) 12.76 (0.024) 27.77 (0.549) 5.82 (0.246) 0.04 (0.021) 15.75 (0.471) 24.45 (0.176) 197.7 (0.000)

TABLE 10
Estimation errors (with standard deviations in brackets) for experiment 2c

p n PCS glasso FoBa CLIME PCS glasso FoBa CLIME

Spectrum norm Matrix �1-norm
200 100 1.30 (0.106) 1.34 (0.032) 1.72 (0.008) 1.30 (0.023) 2.12 (0.212) 3.02 (0.039) 2.98 (0.065) 3.18 (0.074)

Frobenius norm Matrix Hamming distance
200 100 6.07 (0.232) 7.82 (0.025) 10.90 (0.015) 7.74 (0.086) 1.26 (0.084) 3.496 (0.074) 8.93 (0.288) 196.9 (0.000)
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TABLE 11
Robustness test errors (with standard deviations in brackets) for experiment 3a

p n �̂ − � �̂sample − � �̂sample − �̂ �̂ − � �̂sample − � �̂sample − �̂

Spectrum norm Matrix �1-norm
5000 1000 0.27 0.29 (0.018) 0.09 (0.006) 0.37 0.38 (0.026) 0.12 (0.012)
2000 1000 0.27 0.28 (0.022) 0.08 (0.010) 0.37 0.38 (0.030) 0.11 (0.016)
1000 500 0.35 0.39 (0.023) 0.20 (0.010) 0.45 0.48 (0.029) 0.25 (0.014)

Frobenius norm Matrix Hamming distance
5000 1000 4.49 4.72 (0.020) 1.46 (0.017) 0.00 0.00 (0.000) 0.00 (0.000)
2000 1000 2.84 2.99 (0.019) 0.92 (0.015) 0.00 0.00 (0.000) 0.00 (0.000)
1000 500 2.91 3.09 (0.025) 0.99 (0.027) 0.00 0.00 (0.000) 0.00 (0.000)

correspond to the average error measures for 10 different subsampling. We ob-
serve that using 90% of the samples yield almost the same results as that of using
all samples, especially in terms of the Hamming loss. This suggests that PCS is
reasonably robust.

3.4. Experiment 4 (classification). In this experiment, we take � to be the
tri-diagonal matrix as in experiment 1a, calibrated by the parameter ρ. Also, fol-
lowing [22], we consider the most challenging “rare and weak” setting where the
contrast mean vector μ only has a small fraction of nonzeros and the nonzeros are
individually small. In detail, let νa be the point mass at a. For two numbers (εp, τp)

that may depend on p, we generate the scaled vector
√

nμ from the mixture of two

point masses:
√

nμ(j)
i.i.d.∼ (1 − εp)ν0 + εpντp .

In this experiment, we take (p,n,ρ, εp, τp) = (5000,1000,0.4,0.1,3.5). For
(μ,�) generated as above, the simulation contains the following main steps:

TABLE 12
Robustness test errors (with standard deviations in brackets) for experiment 3b

p n �̂ − � �̂sample − � �̂sample − �̂ �̂ − � �̂sample − � �̂sample − �̂

Spectrum norm Matrix �1-norm
5000 1000 0.31 0.31 (0.015) 0.11 (0.014) 0.35 0.38 (0.024) 0.13 (0.014)
2000 1000 0.29 0.30 (0.016) 0.10 (0.005) 0.37 0.38 (0.027) 0.12 (0.007)
1000 500 0.39 0.42 (0.018) 0.14 (0.019) 0.45 0.51 (0.038) 0.17 (0.015)

Frobenius norm Matrix Hamming distance
4500 1000 4.03 4.25 (0.023) 1.34 (0.012) 0.00 0.00 (0.000) 0.00 (0.000)
3000 1000 2.84 3.46 (0.025) 1.08 (0.024) 0.00 0.00 (0.000) 0.00 (0.000)
1500 500 3.38 3.56 (0.032) 1.11 (0.032) 0.00 0.00 (0.000) 0.00 (0.000)
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TABLE 13
Robustness test errors (with standard deviations in brackets) for experiment 3c

p n �̂ − � �̂sample − � �̂sample − �̂ �̂ − � �̂sample − � �̂sample − �̂

Spectrum norm Matrix �1-norm
5000 1000 2.56 2.63 (0.004) 0.57 (0.038) 5.39 5.38 (0.179) 2.15 (0.090)
2000 1000 0.54 0.60 (0.011) 0.41 (0.011) 1.97 2.13 (0.135) 1.47 (0.050)
1000 500 0.99 1.14 (0.064) 0.81 (0.080) 3.44 3.81 (0.292) 3.26 (0.376)

Frobenius norm Matrix Hamming distance
5000 1000 35.50 36.27 (0.031) 16.83 (0.070) 35.34 37.88 (0.043) 14.16 (0.089)
2000 1000 10.55 11.98 (0.046) 7.71 (0.041) 5.85 7.23 (0.086) 6.70 (0.088)
1000 500 10.70 12.02 (0.146) 8.69 (0.116) 8.19 9.30 (0.179) 9.05 (0.156)

1. Generate n samples (X̃i, Yi), 1 ≤ i ≤ n, by letting Yi = 1 for i ≤ n/2 and Yi =
−1 for i > n/2, and X̃i ∼ N(Yi · μ,�−1).

2. Split the n samples into training and test sets by following exactly the same
procedure in Section 1.4. The only difference is that we use 10 data splittings
and 10 cv-splittings here.

3. Use the training set to build all classifiers (HCT-PCS, HCT-FoBa, HCT-glasso,
nHCT, SVM and RF), apply them to the test set, and then record the test errors.

The results are summarized in Table 14 in terms of both the average error across
10 data splittings and the minimum error in 10 data splittings. It suggests that
HCT-PCS outperforms other HC-based classifiers; in particular, HCT-PCS signif-
icantly outperforms nHCT and HCT-glasso. In addition, both SVM and RF are
less competitive compared to HCT-PCS. This is consistent with the theoretical re-
sults in [22], where it was shown that given a sufficiently accurate estimate of �,
the HCT classifier has the optimal classification behavior in the “rare and weak”
settings associated with the sparse Gaussian graphical model (1.11).

4. Discussions and extensions. This paper is closely related to areas such
as precision matrix estimation, classification, variable selection and inference on
“rare and weak” signals, and has many possible directions for extensions. Below,
we mention some of such possibilities.

TABLE 14
Comparison of classification error rates for experiment 4 (based on 10 independent data-splitting;

11.08 means 11.08%)

HCT-PCS HCT-FoBa HCT-glasso nHCT SVM RF

Average error 11.08 12.11 43.67 32.02 20.03 35.51
“Best” error 8.73 10.54 37.95 21.99 18.98 31.93
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FIG. 7. Left: Mean error rates of 25 different data splittings for rats data using different L. Right:
Mean error rates of 25 different data splittings for liver data using different L.

The precision matrix can either be the direct quantity of interest (e.g., genetic
regulatory networks), or a quantity that can be used to improve the results of in-
ferences. Examples include classical methods of Hotelling’s χ2-test, discriminant
analysis [13, 20] and the recent work on Innovated Higher Criticism [24]. In these
examples, a good estimate of the precision matrix could largely improve the results
of the inferences.

The theoretical results in the paper can be extended in various directions. For
example, in this paper, we assume � is strictly sparse in the sense that in each
row, most of the entries are exactly 0. Such an assumption can be largely relaxed.
Also, the theoretical results presented in this paper focus on when it is possible to
obtain exact support recovery. The results are extendable to the cases where we
wish to measure the loss by matrix spectral norm or matrix �2-norm. In particular,
we mention that if the ultimate goal is for classification, it is not necessary to fully
recover the support of the precision matrix. A more interesting problem (but more
difficult) is to study how the estimation errors in the precision matrix affect the
classification results.

PCS needs a threshold tuning parameter q [it also uses the ridge parameter δ and
a maximal step size parameter L, which we usually set by (δ,L) = (0.1,30); PCS
is relatively insensitive to the choices of (δ,L)]. When we use PCS for classifica-
tion, we determine q by cross validation, which increases the computation costs by
many times. The same drawback applies to other classifiers, such as HCT-FoBa,
HCT-glasso, SVM and RF.

The choice of L = 30 is not necessarily the best. We have tested PCS with
L = 10,20,30,40,50,60 and L = 10,20,30,40,50,60,70,80,90 for the rats
data and the liver data, respectively. The average error rates of 25 different data
splittings are shown in Figure 7. The results suggest that using a larger L (at least
in the range we consider) would give better errors, but not significantly (the com-
putational time, however, is longer, by a factor). In principle, we could also use
cross validation to select the best L. However, this would increase the computa-
tion time by a few times at least, without much gain in the error rates. It is of
interest to find an approach where we can select L in a more efficient way; we
leave this to the future work.



PARTIAL CORRELATION SCREENING 2051

From both a theoretical and practical perspective, we wish to have a trained
classifier that is tuning free. In Donoho and Jin (2008) [13], we propose HCT as
a tuning free classifier that enjoys optimality, but unfortunately the method is only
applicable to the case where � is known. How to develop a tuning free optimal
classifier for the case where � is unknown is a very interesting problem. For rea-
sons of space, we leave to future work.

Intellectually, our work on HCT classification is closely related to [18, 19, 27],
but is different in important ways, especially on the part of data-driven threshold
choice and on phase diagrams. The work is also closely related to other develop-
ment on Higher Criticism. See, for example, [3, 14, 28, 29, 47].

In Section 2.4, we show that HCT achieves the optimal phase diagram given a
relatively stringent sparsity constraint (for exact support recovery, however, only
a much less stringent constraint is required). In the much less sparse cases, it is
unclear how to achieve the optimal phase diagram, even in the ideal case where �

is known [22]. Still, PCS may largely help in improving the classification results of
HCT in such a case. See Table 2 for example, where HCT-PCS yields satisfactory
classification behaviors, even when we do not believe the underlying � satisfies
the very stringent sparsity conditions we specified in Section 2.4.

Our philosophy in classification is very different from that in [5, 10], where
they suggest that bypassing the estimate of the precision matrices may give better
classification results. Their point is valid for cases where we do not have a good
estimate for the precision matrix. However, as research in this area progresses,
more and more faster algorithms and better estimates of the precision matrices
become available, and it is desirable to utilize the estimates of the precision ma-
trices for better classification results. Our results strongly support our philosophy:
in Table 2, the classification error rates of HCT-PCS is 40% lower than that of
naive HCT (nHCT); in nHCT, we pretend the precision matrix is diagonal, and
implement HCT without any estimate of the off-diagnals of the precision matrix.

In the two-class classification settings we consider [e.g., (1.11)], we assume the
two classes share a common covariance matrice, and we are mainly using the con-
trast mean to differentiate two classes. For the two data sets we consider, the error
rates of HCT-PCS are relatively low (e.g., 5.7% and 4.2%), which suggests that
the assumption of equal covariance matrices is reasonable. At the same time, we
must note that it is preferable to use a model which allows for unequal covari-
ance matrices. Take gene microarrays for example, it is usually believed that some
genes would change their functions individually or cooperatively between the two
classes. In such settings, we can use both the contrast mean and the difference be-
tween two covariances matrices to differentiate two classes. But in order to do so,
we need (a) to estimate two precision matrices separately, each using part of the
samples, (b) more tuning parameters and more computing time, (c) to develop a
more sophisticated classifier. How to deal with these issues is an interesting prob-
lem, which we leave for the future study.
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The idea in this paper can also be used to analyze the SNP data. Modern SNP
data sets may have many more features (e.g., p = 250K) than a typical microarray
data set. While the sheer large size poses great challenges for computation, we
must note that in many of such studies on SNP, the (population) covariance matrix
among different SNPs is banded. Such a nice feature can help to substantially
reduce the computational burden.

5. Proofs. We show Lemmas 2.1–2.2 which include the key idea of PCS.
Other theorems and lemmas are proved in the supplementary material [26].

5.1. Proof of Lemma 2.1. Fix i and write for short S0 = S(i)(�) and ω′ as the
ith row of �. For each m, we define Um = {i, j1, . . . , jm}. Then

ρijm

(
S

(i)
m−1

) = −1 · [first row last column of (�Um,Um)−1]
[product of the first and last diagonals of (�Um,Um)−1]1/2 .(5.1)

We need some notation to simplify the matrix (�Um,Um)−1. Fix k ≥ 1. Introduce
the set V = {i, j1, . . . , jm(k)} ∪ (S0 \ S

(i)
m(k)), where i is the first index and jm is

the (m + 1)-th index in the set, 1 ≤ m ≤ m(k). Let A = �V,V . For each m ≥ 1,
we partition A into blocks corresponding to the first (m + 1)-th indices and the
remaining ones

A =
(

A
(m)
11 A

(m)
12

A
(m)
21 A

(m)
22

)
,

so that �Um,Um = A
(m)
11 . For notation simplicity, we shall omit all the superscripts

and write A
(m)
11 as A11. Using the matrix inverse formula,

A−1 =
(

A−1
11 + B12B

−1
22 B21 −B12B

−1
22

−B−1
22 B21 B−1

22

)
,(5.2)

where B22 = A22 − A21A
−1
11 A12, B12 = A−1

11 A12 and B21 = A21A
−1
11 .

Now, we show the claim. Since V ⊃ S0, Lemma 1.1 implies that the first row of
A−1 is equal to ω′ restricted to V . Combining this with (5.2), for each m(k − 1) <

m < m(k),

first row last column of
[
A−1

11 + B12B
−1
22 B21

] = ω(jm) = 0,

−1 · first row of B12B
−1
22 = (

ωV \Um
)′
.

Also, by definition, B21 = A21A
−1
11 . Combining the above,

first row last column of A−1
11 = (

ωV \Um
)′
A21 · last column of A−1

11 .(5.3)

To simplify (5.3), we introduce a vector ηk ∈ R
|V | such that ηk(j + 1) = 0

for 0 ≤ j < m(k) and ηk(j + 1) = (ωV )(j + 1) for m(k) ≤ j ≤ |V | − 1. For each
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m(k −1) < m < m(k), let Jm = {1, . . . ,m+1} and J c
m = {m+2, . . . , |V |}. Noting

ωV \Um = (ωV )J
c
m = (ηk)

J c
m , A21 = AJc

m,Jm and (ηk)
Jm = 0, we have(

ωV \Um
)′
A21 = (

η′
kA

)Jm.(5.4)

Moreover, let A = LL′ be the Cholesky decomposition of A, where L is a lower
triangular matrix with positive diagonals. By basics of Cholesky decomposition,
for Lm = LJm,Jm , A11 = AJm,Jm = LmL′

m is the Cholesky decomposition of A11,
and Lm satisfies L−1

m = (L−1)Jm,Jm . Therefore,

A−1
11 = [(

L−1)′]Jm,Jm
(
L−1)Jm,Jm.(5.5)

The nice thing about (5.4)–(5.5) is that on the right-hand sides, (ηk,A,L) only
depend on k but not m (while on the left-hand sides, A21 and A11 depend on m).
This allows us to stack the expressions for different m.

Plugging (5.4)–(5.5) into (5.3) and noting that L−1 is lower triangular,

first row last column of A−1
11 = [

η′
kA

(
L−1)′]Jm · last column of

(
L−1)Jm,Jm

= L−1(m + 1,m + 1) · q(m + 1), q ≡ L−1A′ηk.

This gives the numerator of (5.1). For the denominator, by (5.2) and (5.5), (a) the
first diagonal of A−1

11 ≥ A−1(1,1) ≥ λ−1
max(A), and (b) the last diagonal of A−1

11 =
[L−1(m + 1,m + 1)]2. Combining the above with (5.1),

ρ2
ijm

(
S

(i)
m−1

) ≤ λmax(A) · q2(m + 1).(5.6)

Since (5.6) holds for each m(k − 1) < m < m(k), we stack the results for all
m and obtain

∑
m(k−1)<m<m(k) ρ

2
ijm

(S
(i)
m−1) ≤ λmax(A) · ‖q‖2 ≤ λ2

max(A) · ‖ηk‖2.

Here, the last inequality is due to A = L′L and q = L−1A′η = L′η. The claim then
follows by noting that ‖ηk‖2 = ∑

j∈(S0\S(i)
m(k)−1)

ω2(jm) and that A is a principal

submatrix of � with size ≤ m(k) + s − k.

5.2. Proof of Lemma 2.2. Fixing 1 ≤ i ≤ p and m ≥ 1, we adopt the notation
S0, ω′ and Um as in the proof of Lemma 2.1. Let W = S0 \ S

(i)
m−1. For each j ∈ W ,

let Vj = {i, j1, . . . , jm−1, j} and suppose i and j are the first and last indices in the
set, respectively. By definition,

ρij

(
S

(i)
m−1

) = −1 · [first row last column of (�Vj ,Vj )−1]
[product of first and last diagonals of (�Vj ,Vj )−1]1/2

.(5.7)

Write �m = �Um−1,Um−1 and ηj = �Um−1,{j} for short. By basic algebra,(
�Vj ,Vj

)−1

=
(

�−1
m + A −[

�(j, j) − η′
j�

−1
m ηj

]−1
η′

j�
−1
m

−[
�(j, j) − η′

j�
−1
m ηj

]−1
�−1

m ηj

[
�(j, j) − η′

j�
−1
m ηj

]−1

)
,
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where A is a positive-definite matrix. It follows that

first row last column of
(
�Vj ,Vj

)−1 = −1 · [
�(j, j) − η′

j�
−1
m ηj

]−1
e′
j�

−1
m ηj ,

last diagonal of
(
�Vj ,Vj

)−1 = [
�(j, j) − η′

j�
−1
m ηj

]−1
,

where e1 = (1,0, . . . ,0)′. As a result,

∑
j∈W

ρ2
ij

(
S

(i)
m−1

) = ∑
j∈W

[�(j, j) − η′
j�

−1
m ηj ]−1

(�Vj ,Vj )−1(1,1)

(
e′

1�
−1
m ηj

)2
.(5.8)

Let D = �W,W − �W,Um�−1
m �Um,W and H = �−1

m �Um,W . Then

∑
j∈W

ρ2
ij

(
S

(i)
m−1

) ≥ 1

maxj∈W(�Vj ,Vj )−1(1,1)

∥∥e′
1H

[
diag(D)

]−1/2∥∥2
.(5.9)

Below, we make a connection between ω and the right-hand side of (5.9). In-
troduce set V = {i, j1, . . . , jm−1} ∪ W such that i is the first index and jk is the
(k + 1)-th index, 1 ≤ k ≤ m − 1. Using the matrix inverse formula,

(
�V,V )−1 =

(
�m �Um−1,W

�W,Um−1 �W,W

)−1

=
(

�−1
m + HD−1H −HD−1

−D−1H ′ D−1

)
.

Since V ⊃ S0, by Lemma 1.1, the first row of (�V,V )−1 coincides with (ωV )′. In
particular,

e′
1HD−1 = −(

ωW )′
.(5.10)

Furthermore, since Vj ⊂ V ,

(
�Vj ,Vj

)−1
(1,1) ≤ (

�V,V )−1
(1,1) ≤ λ−1

min

(
�V,V )

.(5.11)

Plugging (5.10)–(5.11) into (5.9) gives that
∑

j∈W ρ2
ij (S

(i)
m−1) ≥ λmin(�

V,V ) ·
‖[diag(D)]−1/2DωW‖2. Note that ‖[diag(D)]−1/2DωW‖2 ≥ λ−1

max(D)λ2
min(D) ·

‖ωW‖2. Moreover, the eigenvalues of D are between λmin(�
V,V ) and λmax(�

V,V ).

Therefore,
∑

j∈W ρ2
ij (S

(i)
m−1) ≥ λ3

min(�
V,V )

λmax(�V,V )
· ‖ωW‖2. The claim follows by noting

that W = S0 \ S
(i)
m−1 and that the size of �V,V is |W | + m ≤ m + s.

SUPPLEMENTARY MATERIAL

Supplementary material for “Partial correlation screening for estimating
large precision matrices, with applications to classification” (DOI: 10.1214/15-
AOS1392SUPP; .pdf). Owing to space constraints, some technical proofs are rel-
egated to a supplementary document.

http://dx.doi.org/10.1214/15-AOS1392SUPP
http://dx.doi.org/10.1214/15-AOS1392SUPP
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