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BRIDGING CENTRALITY AND EXTREMITY: REFINING
EMPIRICAL DATA DEPTH USING EXTREME VALUE STATISTICS

BY JOHN H. J. EINMAHL, JUN LI AND REGINA Y. LIU1

Tilburg University, University of California, Riverside and Rutgers University

Statistical depth measures the centrality of a point with respect to a given
distribution or data cloud. It provides a natural center-outward ordering of
multivariate data points and yields a systematic nonparametric multivariate
analysis scheme. In particular, the half-space depth is shown to have many de-
sirable properties and broad applicability. However, the empirical half-space
depth is zero outside the convex hull of the data. This property has rendered
the empirical half-space depth useless outside the data cloud, and limited its
utility in applications where the extreme outlying probability mass is the fo-
cal point, such as in classification problems and control charts with very small
false alarm rates. To address this issue, we apply extreme value statistics to
refine the empirical half-space depth in “the tail.” This provides an important
linkage between data depth, which is useful for inference on centrality, and
extreme value statistics, which is useful for inference on extremity. The re-
fined empirical half-space depth can thus extend all its utilities beyond the
data cloud, and hence broaden greatly its applicability. The refined estima-
tor is shown to have substantially improved upon the empirical estimator in
theory and simulations. The benefit of this improvement is also demonstrated
through the applications in classification and statistical process control.

1. Introduction. Statistical depth generally is a measure of centrality with re-
spect to a multivariate distribution or a data cloud. It is shown to have many useful
data-driven features for developing statistical inference methods and applications.
For example, among other features, it can also yield a center-outward ordering,
and thus order statistics and ranks for multivariate data. With its rapid and broad
advances, statistical depth has emerged to be a powerful alternative approach in
multivariate analysis.

There exist many different notions of statistical depth; see, for example, Liu,
Parelius and Singh (1999) and Zuo and Serfling (2000) and the references therein.
But the so-called geometric depths such as the half-space depth Tukey (1975) and
the simplicial depth Liu (1990) are often preferred in many nonparametric infer-
ence methods and applications for their intrinsic desirable properties, as seen in
Donoho and Gasko (1992), Liu and Singh (1993, 1997), Yeh and Singh (1997),
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Rousseeuw and Hubert (1999), Liu, Parelius and Singh (1999), Zuo and Serfling
(2000), Li and Liu (2004), Hallin, Paindaveine and Šiman (2010) and many others.

In practice, the empirical versions of the half-space depth and the simplicial
depth, however, suffer from the problem of vanishing value outside the convex
hull of the data. This problem is inherent in any depth function that uses empirical
counts based on the data to compute its value. It renders the empirical version of
such a depth useless outside the data cloud, and limits its utility in applications
involving extreme outlying probability mass. A successful resolution to this prob-
lem can avert such limitations and greatly enhance the utility of depth functions. In
investigating this problem, we observe that the half-space depth involves project-
ing data points onto unit vectors, and thus naturally lends itself in the framework
of extreme value theory. Therefore, we propose to refine the empirical half-space
depth by applying extreme value statistics to “the tail.” The aim of this paper is
to present this proposal, and assess and demonstrate the improvement achieved by
the proposal, in theory and applications.

To be more precise, let X1, . . . ,Xn be i.i.d. random vectors taking values in
R

d, d ≥ 1. Denote the common probability measure with P and the empirical
measure with Pn; denote closed half-spaces with H . Then the half-space depth
at x ∈R

d is defined by

D(x) = inf
H :x∈H

P (H).

Observe that the infimum can be restricted to half-spaces H with x on their bound-
ary. We can also write

D(x) = inf‖u‖=1
P

(
uT X1 ≥ uT x

)
,

with ‖ · ‖ the radius or L2-norm of a vector. The classical nonparametric way to
estimate D(x) is with the empirical half-space depth:

Dn(x) = inf
H :x∈H

Pn(H) = 1

n
inf‖u‖=1

#
{
i ∈ {1, . . . , n} : uT Xi ≥ uT x

}
.

It follows that for any x outside the convex hull of the data Dn(x) = 0. This
might seem a minor problem. Indeed, when the data are univariate, the probability
that a new observation falls outside the convex hull is at most 2/(n + 1), but in
higher dimensions this probability can be quite sizable. For example, for the mul-
tivariate normal distribution and n = 100 this probability is 8.8% in dimension 2
and 21.7% in dimension 3. Even when n is as large as 500, these probabilities are
still 2.1% (d = 2) and 6.5% (d = 3); see, for example, Efron (1965). Outside the
data hull, Dn makes no distinction between different points and provides hardly
information about P . This inability of distinguishing points in a sizable subspace
can severely restrict the utility of half-space depth in many of its applications, such
as statistical process control and classification (see Section 3). Note that the prob-
lem is not restricted to Dn being exactly 0: if Dn(x) is positive but very small,
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FIG. 1. Depth contours at level 1/n based on D (circle), Dn (dashed) and Rn (solid) for a standard
bivariate spherical Cauchy random sample; n = 500.

it might not adequately estimate D(x) due to the scarcity of useful data points.
Somewhat related, due to the discrete nature of Dn, ties occur often. For example,
Dn(Xi) = 1/n for all the data on the boundary of the data hull, that is, all these
data form one tie and cannot be ranked effectively. (For the normal distribution in
dimension 3 and n = 500 this tie, on average, has a size of about 32.) This phe-
nomenon renders rank procedures based on depth less precise and less efficient.

The goal of this paper is to refine the definition of empirical half-space depth Dn

in the tail, that is, for values x where Dn(x) is zero or quite small. The proposed
refined estimator will be called Rn (see Section 2 for the definition) and is based
on extreme value theory. The estimator Rn is equal to Dn in the central region,
where the depth is relatively high. Outside this region Rn is positive, smooth and
it improves substantially on Dn. Therefore, the aforementioned weaknesses of Dn

are “repaired.”
As an illustration, we consider the estimation of the depth contour at level 1/n,

that is, we want to estimate the set {x ∈ R
d : D(x) = 1/n}, based on a random

sample of size n. Using Dn, it is usually estimated with the boundary of the data
hull, where indeed Dn = 1/n, almost surely. We also estimate it using our refined
estimator by {x ∈ R

d : Rn(x) = 1/n}. We consider as an example the bivariate
spherical Cauchy distribution (see Section 2.3) and simulate one random sample of
size n = 500; see Figure 1. (The computation of these depth contours is discussed
in Remark 6 of Section 2.2.) It clearly shows that Rn greatly improves Dn; Dn

fails completely here, whereas Rn performs well. This indicates that our refined
estimator can be very useful in practice.
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In the next section, we will define Rn and show, under appropriate conditions,
its uniform ratio consistency (considering Rn/D − 1) on a very large region, much
larger than the data hull. In contrast, Dn/D is not uniformly close to 1 on the
data hull. We further show through simulations that these asymptotic differences
between Rn and Dn are clearly present for finite samples, that is, that Rn sub-
stantially outperforms Dn in the tail. In Section 3, we investigate the impact of
these theoretical improvements in real applications of data depth using examples
in statistical process control (SPC) and classification. Both applications obtain sub-
stantial improvements by using Rn. Finally, we provide some concluding remarks
in Section 4. All proofs are deferred to Section 5.

2. Methodology and main results.

2.1. Dimension one. We first consider refining Dn in the one-dimensional
case, particularly since it serves as a building block for us to refine Dn in higher
dimensions. Let X1, . . . ,Xn be i.i.d. random variables with common continuous
distribution function F with 0 < F(0) < 1. Write S = 1 − F . Let Fn be the (right-
continuous) empirical distribution function and define Sn(x) = 1 − Fn(x

−). The
half-space depth and its empirical counterpart in the one-dimensional case are sim-
ply D(x) = min(F (x), S(x)) and Dn(x) = min(Fn(x), Sn(x)), respectively. It is
clear that the aforementioned shortcomings of Dn are due to the inadequacy of
the empirical distribution function as an estimator in the tails. Since extreme value
statistics is well suited for inference problems in this setting, we propose applying
it to refine Dn in the tails.

In extreme value theory, it is assumed that there exist a location function b and
a scale function a > 0 such that

lim
t→∞ t

(
1 − F

(
a(t)y + b(t)

)) = − logGγ (y) = (1 + γy)−1/γ ,

(1)
1 + γy > 0.

Here, Gγ is the limiting extreme value distribution and γ ∈ R is the extreme value
index. If (1) holds, F is said to be in the max domain of attraction of Gγ . See, for
example, de Haan and Ferreira (2006). The above assumption guarantees that F

has a “regular” tail and makes extrapolation outside the data range possible.
If F is in the max-domain of attraction of Gγ , by setting t = n/k and x =

a(t)y + b(t) in (1), we obtain for large n/k and large x

P(X > x) = 1 − F(x) ≈ k

n

(
1 + γ

x − b(n/k)

a(n/k)

)−1/γ

.(2)

Let γ̂ and â = â(n/k) be estimators for γ and a = a(n/k), respectively. Define
b̂ = b̂(n/k) = Xn−k:n, where Xi:n denotes the ith order statistic of X1, . . . ,Xn.
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Plugging these estimators into (2), we obtain the following estimator for the right-
tail probability 1 − F(x):

pr
n(x) = k

n

(
max

[
0,1 + γ̂

x − b̂

â

])−1/γ̂

.(3)

To estimate the left-tail probability, we can define pl
n(x) similarly as pr

n(x) by
using the −Xi .

The general idea of estimating D with our refined estimator is the following. For
a given k, we define the central region to be (Xk+1:n,Xn−k:n). For x in this central
region, we define Rn(x) = Dn(x), that is, we use the classical empirical half-space
depth. In the right tail, that is, when x ≥ Xn−k:n, we refine Dn by defining Rn(x) =
pr

n(x) and similarly, when x ≤ Xk+1:n (the left tail), we set Rn(x) = pl
n(x). At the

“glue-up” points Xn−k:n and Xk+1:n, we have

Rn(Xn−k:n) = pr
n(Xn−k:n) = k

n
= 1 − Fn(Xn−k:n) = Dn

(
X+

n−k:n
)
,

Rn(Xk+1:n) = pl
n(Xk+1:n) = k

n
= Fn

(
X−

k+1:n
) = Dn

(
X−

k+1:n
)
.

In the following, we study the asymptotic properties of our refined empirical
half-space depth Rn. Throughout we assume that k = kn < n/2 is an intermediate
sequence: a sequence of positive integers satisfying

k → ∞ and k/n → 0 as n → ∞.(4)

We need a second-order condition in both the left tail and the right tail; for sim-
plicity, we will only specify it for the right tail. Let V (t) = F−1(1−1/t), t > 1, be
the tail quantile function. We can and will take the location function b(t) = V (t).
We assume that the derivative V ′ exists and that for some eventually positive or
eventually negative function A with limt→∞ A(t) = 0 and for some ρ < 0 we have

lim
t→∞

V ′(tx)/V ′(t) − xγ−1

A(t)
= xγ−1 xρ − 1

ρ
, x > 0.(5)

This condition implies (for ρ < 0)

lim
t→∞ sup

y≥1/2,y 
=1

∣∣∣∣((V (ty) − V (t))/(tV ′(t)))(γ /(yγ − 1)) − 1

A(t)

∣∣∣∣ < ∞.(6)

This limit relation is somewhat similar to Lemma 4.3.5 in de Haan and Ferreira
(2006). A proof can be given along the lines of the proof of that lemma; the proof
uses in particular Theorem 2.3.9 in de Haan and Ferreira (2006), with U and γ

there replaced by V ′ and γ − 1, respectively. We can and will take the scale func-
tion a(t) = tV ′(t). We assume

√
kA(n/k) → λ for some λ ∈ R.(7)
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We will also assume that the estimators γ̂ and â are such that

�n := √
k(γ̂ − γ ) = Op(1) and

√
k

(
â

a
− 1

)
= Op(1).(8)

This condition is known to hold for various estimators of γ and a; see de Haan
and Ferreira [(2006), Chapters 3 and 4]. Define

wγ (t) = t−γ
∫ t

1
sγ−1 log s ds, t > 1.

Note that, as t → ∞,

wγ (t) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

γ
log t, γ > 0,

1

2
(log t)2, γ = 0,

1

γ 2 t−γ , γ < 0.

THEOREM 1. Let δn be a sequence of numbers in (0,1/2) such that nδn →
0 as n → ∞. Assume that (1) and its left-tail counterpart hold; also assume
wγ ( k

nδn
)/

√
k → 0 as n → ∞. Then, if (4), (5), (7) and (8) hold, we have

sup
x∈R:D(x)≥δn

∣∣∣∣Rn(x)

D(x)
− 1

∣∣∣∣ p→ 0 as n → ∞.

The condition on δn and k specializes to

log(nδn)√
k

→ 0 for γ > 0 and
log2(nδn)√

k
→ 0 for γ = 0.

REMARK 1. The main focus of this paper is on the tails where both Rn and
D are small, and as such, Rn − D (just like Dn − D) is inherently small as well.

This implies that the usual consistency statement supx |Rn(x) − D(x)| p→ 0 is not
particularly meaningful for assessing the performance of Rn as an estimator of
D. Instead, we consider the ratio consistency in terms of Rn/D − 1 as stated in

Theorem 1. Note that, in addition to the usual consistency supx |Dn(x)−D(x)| p→
0 [Donoho and Gasko (1992)], Theorem 1 also holds for Dn, when nδn → ∞, but
not when nδn tends to a nonnegative constant; cf. (19) below. This shows that the
region for which Rn/D is close to 1 (for large n and with high probability) is much
greater than that for Dn/D.

REMARK 2. It is natural to consider an asymptotic normality result instead of
the consistency result in Theorem 1, but note that the convergence rate (1/rn, say,
with, rn/

√
n → 0) for the process Rn/D − 1 in such a result will be determined
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by xn-values with D(xn) → 0; at a fixed x the weak limit of rn(Rn(x)/D(x) −
1) = (rn/

√
n)

√
n(Rn(x)/D(x)−1) will be 0. This means that a proper refinement

of Theorem 1, specifying the rate of convergence and providing a nondegenerate
limit, is not possible. On the other hand, if we consider a single x = xn in the right
tail such that nD(xn)/k → 0, then it follows from Theorem 4.4.1 in de Haan and
Ferreira (2006) (under the assumptions there) that for some μ and σ > 0

√
k

wγ (k/(nD(xn)))

(
Rn(xn)

D(xn)
− 1

)
d→ N

(
μ,σ 2)

as n → ∞,

since Rn(xn) = pr
n(xn), see (3), with probability tending to one. Indeed, the con-

vergence rate here is slower than for fixed x: rn√
n

=
√

k
wγ (k/(nD(xn)))

√
n

→ 0.

2.2. Higher dimensions. We next consider constructing the refined half-space
depth estimator in the more interesting, multivariate case, that is, d ≥ 2. Let
X1, . . . ,Xn be i.i.d. random vectors drawn from a common continuous distribution
function F . To refine Dn we need now some more structure for F . More precisely,
we assume multivariate regular variation for F , that is, there exists a measure ν

such that

lim
t→∞

P(X1 ∈ tB)

P(‖X1‖ ≥ t)
= ν(B) < ∞,(9)

for every Borel set B on R
d that is bounded away from the origin and satisfies

ν(∂B) = 0; see, for example, Jessen and Mikosch (2006). Note that the choice of
the “spherical” L2-norm is not relevant: any other norm can be used instead. This
implies that for some α > 0

lim
t→∞

P(‖X1‖ ≥ tx)

P(‖X1‖ ≥ t)
= x−α for x > 0.

The parameter α is called the tail index and γ = 1/α > 0 is the extreme value
index. Note that, for all a > 0, ν(aB) = a−αν(B). We further require

P(‖X1‖ > t)

t−α
→ c ∈ (0,∞).(10)

This simple condition in effect replaces the second-order condition of the univari-
ate case, although it is a slightly weaker condition; cf. Cai, Einmahl and de Haan
(2011), page 1807. We also assume that

uT X1 has a continuous distribution function Fu for every unit vector u,(11)

and that, with Hr,u := {x ∈R
d : uT x ≥ r}, r > 0,

inf‖u‖=1
ν(H1,u) > 0.(12)
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Note that the continuity of the Fu implies the continuity of D. Also, observe that
the multivariate regular variation condition (9) implies that for every unit vector u,
Fu is in the univariate max domain of attraction with the same γ = 1/α: as t → ∞,

1 − Fu(tr)

1 − Fu(t)
= P(X1 ∈ trH1,u)

P(X1 ∈ tH1,u)
= P(X1 ∈ trH1,u)

P(‖X1‖ ≥ t)
· P(‖X1‖ ≥ t)

P(X1 ∈ tH1,u)
→ ν(rH1,u)

ν(H1,u)

= r−α.

Recall that the half-space depth, relative to P, is defined as

D(x) = inf‖u‖=1
P

(
uT X1 ≥ uT x

)
.

To estimate D(x), we only need to estimate the one-dimensional tail probabilities
P(uT X1 ≥ uT x) along each projection direction u. Since we already know how to
construct the refined estimator for a tail probability in the one-dimensional case,
we are now ready to define our refined empirical half-space depth Rn in dimen-
sion d .

More specifically, fix a direction (a unit vector) u. Consider the univariate data
Wi = uT Xi , i = 1, . . . , n. We can refine the tail probability estimator of the Wi

similarly as in the previous subsection, but since γ > 0 we can use a = γ b. This
leads, for w ≥ Wn−k:n, to a simplified estimator of the right-tail probabilities:

pn,u(w) = k

n

(
w

Wn−k:n

)−α̂

;(13)

cf. (2) and (3). The estimator α̂ = 1/γ̂ will be based on the ‖Xi‖. We will assume
that γ̂ is such that

�n := √
k(γ̂ − γ ) = Op(1).(14)

For w < Wn−k:n an estimator of 1 − Fu(w) is simply 1 − Fn,u(w), with Fn,u the
empirical distribution function of W1, . . . ,Wn. Denote the thus obtained estimator
of 1 − Fu with 1 − F̂u. This leads to the refined estimator of D(x):

Rn(x) = inf‖u‖=1
1 − F̂u

(
uT x−)

.

Next, we present the analogue of Theorem 1 for the multivariate Rn. Note that
it is much more complicated to analyze Rn here than in dimension one, since for
every x ∈ R

d we have infinitely many directions u instead of only two.

THEOREM 2. Let δn be a sequence of numbers in (0,1/2) such that nδn → 0
as n → ∞. Also assume log(nδn)/

√
k → 0 as n → ∞. Then, if (9), (4), (10), (11),

(12) and (14) hold, we have

sup
x∈Rd :D(x)≥δn

∣∣∣∣Rn(x)

D(x)
− 1

∣∣∣∣ p→ 0 as n → ∞.(15)
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REMARK 3. It is known that the half-space depth is affine invariant. This
means that the depth value does not change under a linear transformation. Specif-
ically, D(x) = DA,b(Ax + b), where DA,b indicates the depth value based on
the sample AXi + b, i = 1, . . . , n. Here, A is a d × d nonsingular matrix and
b ∈ R

d . Although this property does not hold for Rn exactly, it holds approxi-
mately through (15).

REMARK 4. The class of multivariate regularly varying distributions [see (9)]
is quite broad. It contains, for example, all elliptical distributions with a heavy
tailed radial distribution (such as multivariate t-distributions) and all distributions
in the sum domain of attraction of a multivariate (nonnormal) stable distribution;
see, for example, Meerschaert and Scheffler (2001), part III. Some examples are
seen in Section 2.3. Note in particular that the extreme density contours of such
distributions can have more or less arbitrary shapes, not only spheres or ellipsoids.
Two such distributions, with nonconvex or asymmetric extreme density contours,
can be found in Cai, Einmahl and de Haan (2011). It is also worth noting that the
multivariate regular variation condition can be verified using the test in Einmahl
and Krajina (2015).

REMARK 5. For Dn the statement of Theorem 2 holds when nδn → ∞ [see
(28) below] but not when nδn tends to a nonnegative constant, which again shows
that Rn/D is close to 1 (for large n and with high probability) on a much larger
region than where Dn/D is.

REMARK 6. (i) Computation of Rn: Recall that when Dn or Rn is at least k/n,
then they are equal. Let x be such that Dn(x) = Rn(x) = k/n and let x∗ = cx with
c > 1. Based on (13), we obtain

Rn

(
x∗) = c−α̂Rn(x).(16)

Combination of both properties enables us to calculate Rn readily by utilizing any
available algorithm for computing Dn.

(ii) Computation of depth contour based on Rn in Figure 1: Write x∗ =
(rθ cos θ, rθ sin θ). We need to find rθ such that Rn(x∗) = 1/n for all θ ∈ [0,2π).
For any fixed θ , similar to the above procedure for computing Rn, we first
find x = (sθ cos θ, sθ sin θ) such that Dn(x) = k/n. Then based on (16), x∗ =
k1/α̂(sθ cos θ, sθ sin θ) and Rn(x∗) = 1/n. The Rn-depth contour in Figure 1 is
drawn using 500 evenly distributed θ ’s in [0,2π).

REMARK 7. Our estimator Rn involves k and its performance obviously will
be affected by the choice of k. The problem of choosing optimal k is an inherent
one in extreme value statistics. Various approaches have been proposed in the liter-
ature. One commonly used heuristic approach is to plot the relevant estimator ver-
sus k, visually identify the first (or earliest) stable (approximately constant) region
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in the plot, and then choose the midpoint of this region as k. This approach is the
one we used in our numerical studies below. We find more or less the same value
of k in the first few samples. For some specific problem settings, procedures for
determining the optimal k have been developed. It would be worthwhile develop-
ing such a procedure for Rn. Meanwhile, we note that even with the present choice
of k, which may well be only suboptimal, Rn already clearly outperforms Dn.

2.3. Simulation comparison between Rn and Dn. In this section, we present a
simulation study to compare the performance of our refined empirical half-space
depth Rn with the performance of the original empirical half-space depth Dn. We
consider the following distributions in our simulation study:

• Standard normal distribution. This is a light-tailed distribution with γ = ρ = 0.
• Cauchy distribution. This is a very heavy-tailed distribution with γ = 1 and

ρ = −2.
• t-distribution with 2 degrees of freedom. This is a heavy-tailed distribution with

γ = 1/2 and ρ = −1.
• Burr-type distribution, which is a symmetric distribution about 0 with density

f (x) = 3|x|5
2(1 + x6)3/2 , x ∈ R.

This distribution is less heavy-tailed with γ = 1/3 and ρ = −2.
• Standard bivariate normal distribution. This is a light-tailed distribution with

γ = 0.
• Bivariate spherical Cauchy distribution with density

f (x, y) = 1

2π(1 + x2 + y2)3/2 , (x, y) ∈ R
2.

This is a very heavy-tailed distribution with γ = 1.
• Bivariate elliptical distribution with density (r0 ≈ 1.2481)

f (x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3

4π
r4

0
(
1 + r6

0
)−3/2

, x2/4 + y2 < r2
0 ,

3(x2/4 + y2)2

4π(1 + (x2/4 + y2)3)3/2 , x2/4 + y2 ≥ r2
0 .

This is a less heavy-tailed distribution with γ = 1/3.
• Bivariate “clover” distribution with density (r0 ≈ 1.2481)

f (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3

10π
r4

0
(
1 + r6

0
)−3/2

(
5 + 4(x2 + y2)2 − 32x2y2

r0(x2 + y2)3/2

)
,

x2 + y2 < r2
0 ,

3(9(x2 + y2)2 − 32x2y2)

10π(1 + (x2 + y2)3)3/2 ,

x2 + y2 ≥ r2
0 .

(17)
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This is again a less heavy-tailed distribution with γ = 1/3, however, it is not an
elliptical distribution; see Cai, Einmahl and de Haan (2011).

• Trivariate spherical Cauchy distribution with density

f (x, y, z) = 1

π2(1 + x2 + y2 + z2)2 , (x, y, z) ∈ R
3.

This is a very heavy-tailed distribution with γ = 1.
• Quadrivariate spherical Cauchy distribution with density

f (x, y, z,w) = 3

4π2(1 + x2 + y2 + z2 + w2)3/2 , (x, y, z,w) ∈ R
4.

This is again a very heavy-tailed distribution with γ = 1.

The first four distributions will be used to assess the finite sample performance of
Theorem 1 (although for the standard normal distribution ρ < 0 does not hold),
and the last five distributions are used to assess the finite sample performance of
Theorem 2.

For each of the above distributions, we first generate a random sample of size
500. Based on this random sample, Rn and Dn are then calculated for a point x
where the theoretical depth D(x) is 1/100, 1/500, 1/1000 and 1/2000, respec-
tively. To calculate Rn, an estimator of γ = 1/α (and a) is needed. For the univari-
ate distributions, we use the moment estimator of Dekkers, Einmahl and de Haan
(1989) for estimating γ and for a we use a corresponding estimator; see formula
(4.2.4) in de Haan and Ferreira (2006). For the multivariate distributions (except
the bivariate normal), since we assume that γ > 0, we use the Hill (1975) esti-
mator, based on the ‖Xi‖. For the bivariate normal distribution, because it does
not satisfy the conditions of Theorem 2, we use (3) instead of (13) to estimate the
right-tail probability of the Wi . In other words,

pn,u(w) = k

n

(
max

[
0,1 + γ̂

w − b̂u

âu

])−1/γ̂

,

where γ̂ is the moment estimator based on the ‖Xi‖, b̂u = Wn−k:n, and âu is again
as in (4.2.4) in de Haan and Ferreira (2006). Since (16) does not hold for this case
any more, we follow Cuesta-Albertos and Nieto-Reyes (2008) to approximate Rn

using 500 u’s that are uniformly and independently distributed on the unit sphere.
For all 10 distributions the value of k is selected by searching visually for the first
stable part in the plots, based on 3 to 5 samples, as described in more detail in
Remark 7. This leads to values of k ranging from 50 to 100: 6 times 50, twice 75
and twice 100.

We carry out the above simulation 100 times for each of the distributions. The
boxplots of Rn(x)/D(x) and Dn(x)/D(x) for each of the four depth levels from the
100 simulations for different distributions are plotted in Figures 2 and 3. As we can
see from those boxplots, for all the four depth levels and all the distributions except
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FIG. 2. Comparison of Dn/D (left) and Rn/D (right) at 4 decreasing levels under (a) normal
distribution; (b) Burr-type distribution; (c) t-distribution with 2 degrees of freedom; (d) Cauchy dis-
tribution.

the bivariate normal distribution, the Rn(x)/D(x) are all well centered at 1. In
contrast, the original empirical halfspace depth Dn can only provide a reasonable
estimate of D when D is not too small. When D(x) is small relative to n, most
of the Dn(x) are zero. These results support the theoretical findings that Rn is a
better estimator than Dn in the tail. For the bivariate normal distribution, although
it does not satisfy the assumptions of Theorem 2, the performance of Rn is still
much better than the performance of Dn.

3. Impact of the refinement of Dn on applications.

3.1. Statistical process control. In this section, we present two applications
where Rn significantly improves the performance of the depth based procedures
over Dn. The first one is statistical process control (SPC). SPC is the application of
statistical methods to the monitoring of a process outcome in order to detect abnor-
mal variations of the process from a specified in-control distribution. It has many
applications in manufacturing processes. A typical setup for SPC is the following.
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FIG. 3. Comparison of Dn/D (left) and Rn/D (right) at 4 decreasing levels under (a) bivariate
normal distribution; (b) bivariate spherical Cauchy distribution; (c) bivariate elliptical distribution;
(d) bivariate clover distribution; (e) trivariate spherical Cauchy distribution; (f) quadrivariate spher-
ical Cauchy distribution.

There are n i.i.d. historical (reference) data for the monitored process outcome,
denoted by X1, . . . ,Xn ∈ R

d (d ≥ 1), from the in-control process. Let F0 be the
underlying distribution of the Xi , also referred to as the in-control distribution. Let
Y1,Y2, . . . be future observations of the process outcome, under the distribution
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F1. The task of SPC is to determine if F1 is the same as F0 and if not, to signal
when F1 changes from F0 as early as possible.

When the process outcome is multivariate and follows a multivariate normal
distribution, an SPC procedure with a false alarm rate α can be defined as follows:
Yi is out of control if T 2

i > d(n + 1)(n − 1)/(n(n − d))Fd,n−d(α), where T 2
i =

(Yi − X̄)′S−1(Yi − X̄), X̄ = ∑n
i=1 Xi/n, S = ∑n

i=1(Xi − X̄)(Xi − X̄)′/(n − 1),
and Fd,n−d(α) is the upper α quantile of an F distribution with d and n−d degrees
of freedom.

The above procedure requires that the process outcome follows a multivari-
ate normal distribution. Therefore, we refer to it as the parametric SPC proce-
dure hereafter. In many real world applications, the normality assumption may not
hold. Therefore, a nonparametric SPC procedure is more desirable. Following Liu
(1995), a nonparametric SPC procedure with a false alarm rate α can be defined
as follows: Yi is out of control if #{Xj : D(Yi ) > D(Xj ), j = 1, . . . , n}/n < α,
where D is the depth with respect to F0. Since the in-control distribution is usu-
ally unknown in practice, D in the above procedure is usually replaced by Dn, the
empirical depth with respect to the historical data, X1, . . . ,Xn.

Due to its completely nonparametric nature and its capability of characterizing
the geometric structure of the underlying distribution, the half-space depth is a
popular choice in the above depth based SPC procedure. Because the future pro-
cess outcomes Yi that lie in the outskirts of the historical data are more of concern
in this SPC procedure, how close the achieved false alarm rate to the nominal level
α depends on how well the empirical half-space depth Dn estimates the theoretical
half-space depth D for those points. As shown in this paper, this estimation is not
satisfactory when n is not large enough. Therefore, the achieved false alarm rate
can severely deviate from its nominal level α when Dn is used. To overcome this
drawback of using Dn, we use our refined halfspace depth Rn in the above SPC
procedure instead. Based on the results in Section 2, we expect the above depth
based SPC procedure will achieve the nominal false alarm rate if Rn is used.

To demonstrate the performance of the Rn based SPC procedure, we carry out
the following simulation. We first generate n = 500 historical data Xi from the
standard bivariate normal distribution. We then generate another 5000 future ob-
servations Yi from the same bivariate normal distribution. We apply to the 5000
Yi the following three SPC procedures: the parametric procedure, the Dn based
procedure and the Rn based procedure. We calculate Rn for the bivariate normal
distribution as described in the previous section. The nominal false alarm rate α

for each procedure is set to be at 0.0027 (the false alarm rate for the popular 3-
sigma procedure in the univariate normal setting). The achieved false alarm rate
for each procedure is then calculated as the proportion of Yi being labeled as out-
of-control by its SPC procedure. We repeat this simulation 100 times. The boxplots
of the achieved false alarm rates from these 100 simulations for different SPC pro-
cedures are shown in Figure 4(a).
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FIG. 4. The achieved false alarm rates for the parametric procedure, the Dn based procedure and
the Rn based procedure under (a) bivariate normal distribution; (b) bivariate elliptical distribution.

As we can see from the plot, the parametric procedure can achieve the nominal
false alarm rate as expected, since the normality assumption is satisfied in this case.
In contrast, the achieved false alarm rate for the Dn based procedure is far higher
than the target value 0.0027. It is not surprising since all the Yi outside the convex
hull of the Xi will have zero Dn and will be labeled as out-of-control, but some
of those Yi may have nonzero D and may have been labeled as in-control if D

was used. From the plot, we can see that our Rn based procedure can successfully
correct the inflated false alarm rate of the Dn based procedure and yields the false
alarm rate near the target value 0.0027.

We run the same simulations as above on the data generated from the bivariate
elliptical distribution of Section 2.3. Since the bivariate elliptical distribution satis-
fies the conditions of Theorem 2, here we use Rn based on (13). Figure 4(b) shows
the corresponding boxplots of the achieved false alarm rates from 100 simulations
for different SPC procedures. As seen from the plot, the parametric procedure can
no longer achieve the nominal false alarm rate since the normality assumption does
not hold in this case. The Dn based procedure still yields a far higher false alarm
rate than the nominal level, while our Rn based procedure can achieve the nominal
false alarm rate as expected.

To demonstrate the detection power of our Rn based procedure for process
changes, we also carry out the following simulations. Similar to the above false
alarm rate study, we first generate n = 500 historical data Xi from the standard bi-
variate normal distribution. We then generate 5000 future observations Yi from an-
other bivariate normal distribution mimicking the following three process changes:
(i) location change from (0,0) to (2,2); (ii) scale increase from 1 to 2; (iii) both
changes in (i) and (ii). Since the Dn based procedure fails to achieve the nominal
false alarm rate, we only compare the detection power of the parametric proce-
dure and our Rn based procedure. To benchmark the performance, we also include
the procedure based on the theoretical D (D based procedure) in the compari-
son. In SPC, a common way to measure the detection power of SPC procedures
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FIG. 5. The achieved ARLs for the D based procedure, the parametric procedure and the Rn based
procedure under bivariate normal distribution for (a) location change from (0,0) to (2,2); (b) scale
increase from 1 to 2; (c) both changes in (a) and (b).

is through the average run length (ARL). ARL is the expected number of times a
process needs to be sampled until a specified change in the process is detected as
out-of-control by the control chart in use. Figure 5 shows the boxplots of the ARLs
from 100 simulations for the three procedures under the three process changes. As
we can see from the plots, the parametric procedure and the D based procedure
perform very similarly. Our Rn based procedure yields slightly smaller ARLs than
the D based procedure. This can be explained by Rn’s slightly larger false alarm
rate than the nominal one in Figure 4(a).

We repeat the above ARL study on the data generated from the bivariate el-
liptical distribution. Similarly, we consider the following three process changes:
(i) location change from (0,0) to (4,4); (ii) scale increase from 1 to 2; (iii) both
changes in (i) and (ii). Since the parametric procedure does not achieve the nomi-
nal false alarm rate in this bivariate elliptical setting, we only compare the ARLs of
the D based procedure and our Rn based procedure. Figure 6 shows the boxplots
of ARLs of the two procedures under different process changes. As expected, our
Rn based procedure performs well compared with the impractical procedure based
on the unknown D.

3.2. Classification. Another application in which the refined half-space depth
Rn helps improve the performance is the classification problem. Classification is
one of the most practical subjects in statistics. It has many important applications
in different fields. For simplicity, we only focus on two-class classification problem
here. In this case, we observe two training samples {X1, . . . ,Xm} and {Y1, . . . ,Yn}
from distributions F and G, respectively. The goal of the classification problem is
to assign the future observation Z to either F or G based on some classification
rule built on the two training samples. Recently Li, Cuesta-Albertos and Liu (2012)
developed a nonparametric classification procedure, called DD-classifier, using the
DD-plot (depth vs. depth plot) introduced in Liu, Parelius and Singh (1999). For
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FIG. 6. The achieved ARLs for the D based procedure and the Rn based procedure under bivariate
elliptical distribution for (a) location change from (0,0) to (4,4); (b) scale increase from 1 to 2;
(c) both changes in (a) and (b).

any two samples, the DD-plot plots the depth values of those pooled sample points
with respect to one sample against their depth values with respect to the other
sample. The basic idea behind the DD-classifier is to look for a curve that best
separates the two samples in their DD-plot. Since the best separating curve in the
DD-classifier is required to pass through the origin in the DD-plot, any future
observations having zero depth values with respect to both samples will be on the
separating curve, indicating that they can be from either sample. Therefore, those
observations will be randomly assigned to either sample. When the Dn of the half-
space depth is used in constructing the DD-plot, any point which lies outside of
the convex of both samples will have zero half-space depths with respect to both
samples. Based on the DD-classifier, those points will be randomly assigned to
either of the two samples, which will yield roughly a 50% misclassification rate
for those points. This simply implies that when using Dn in the DD-classifier one
loses all the information contained in those points. Next, we present a simulation
study showing that the misclassification rate of those points can be improved by
using Rn instead of Dn in the DD-classifier.

The first simulation setting we consider is when both F and G are bivariate
normal distributions. We set F as the standard bivariate normal distribution, and
G is another bivariate normal distribution which differs from F in (i) location;
(ii) scale; (iii) both location and scale. (The location difference is 2 for both coor-
dinates; the scale difference is also 2 for both coordinates.) For each of the three
choices of G, we generate a training set consisting of m = 500 and n = 500 ob-
servations from F and G, respectively. Based on this training set, we obtain the
linear DD-classifier using Rn to construct the DD-plot. Another 5000 test observa-
tions (2500 from each group) are then generated. Among those 5000 observations,
the misclassification rate for the points which have zero Dn values with respect to
both training samples are computed. This experiment is repeated 100 times and the
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FIG. 7. The misclassification rate based on Rn under (a) bivariate normal distribution; (b) bivari-
ate elliptical distribution.

misclassification rates for those points are then summarized in a boxplot for each
choice of G in Figure 7(a).

We repeat this simulation on the data where both F and G are bivariate elliptical
distributions; F corresponds to the elliptical density of Section 2.3. Again three
kinds of differences are considered: (i) F and G differ in location; (ii) F and
G differ in scale; (iii) F and G differ in both location and scale. (The location
difference is 4 for both coordinates; the scale difference is 2 for both coordinates.)
The boxplots of the misclassification rates for the test observations which have
zero Dn values with respect to both training samples are shown in Figure 7(b).

As mentioned earlier, if Dn is used in the DD-classifier, the misclassification
rate for the points which lie outside of the convex hull of both samples is roughly
50%. Therefore, as seen from Figure 7, the DD-classifier paired with Rn substan-
tially improves the classification results for those points.

4. Concluding remarks. We have seen that both applications of the half-
space depth in SPC and classification gain substantially from the proposed re-
finement Rn. In general, we can expect similar gains from using Rn in statistical
inference methods involving depth ranks or extreme depth contours, for example,
determining p-values using depth in Liu and Singh (1997); constructing multivari-
ate spacings and tolerance regions in Li and Liu (2008).

There are many other well-known depth functions [e.g., the spatial depth
Chaudhuri (1996), the Mahalanobis depth Mahalanobis (1936), the projection
depth Zuo (2003), etc.] which are not computed from the empirical distribution
function, and hence they do not have the said problem in this paper. While these
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depths are useful for many applications, they are either parametric in nature or lack
of the needed distributional properties to ensure the desired probability masses as-
sociated with the central regions formed by the depth ranks or contours. When
these properties are essential, the applications may be better served by using the
two geometric depths. Case in point are the examples mentioned in the preceding
paragraph. This in part explains the importance in refining the empirical half-space
depth.

It is easy to see that the problem we faced in this paper stems from the use of the
empirical distribution in computing the half-space probabilities. A natural solution
then would be to consider instead a smoothed version of the empirical distribution
that does not have point masses and is supported on the entire Rd . It is worth noting
that our proposed refinement is in fact such a smoothed version of the empirical
distribution function in the tail, with the smoothing done by way of extreme value
statistics. This extreme-value-theory based smoothing not only has the advantages
of both breaking ties in the tail and yielding positive values, but, most importantly,
it also produces a statistically much better estimator of the half-space depth in the
tail, as shown in our theorems and applications.

It would be worthwhile to investigate whether the extreme-value-theory ap-
proach proposed in this paper can be modified to refine the empirical simplicial
depth or other depth functions that also use the empirical counts based on the data.
The modifications, if any, would seem quite nontrivial, since those depth functions
do not have such a clear form of univariate projections as that of the half-space
depth.

5. Proofs.

PROOF OF THEOREM 1. Write F−1 for the quantile function, the left-
continuous inverse of F . We split the region over which the supremum is taken
into three regions: [F−1(δn),Xk+1:n], (Xk+1:n,Xn−k:n), and [Xn−k:n,F−1((1 −
δn)

+)]. Because of symmetry, the first and last region can be dealt with similarly.
Therefore, we only consider the latter two regions.

For x ∈ (Xk+1:n,Xn−k:n), we easily see that

min
(

Fn(x)

F (x)
,
Sn(x)

S(x)

)
≤ min(Fn(x), Sn(x))

min(F (x), S(x))
= Rn(x)

D(x)
(18)

≤ max
(

Fn(x)

F (x)
,
Sn(x)

S(x)

)
.

We have that

sup
x:F(x)≥k/(2n)

∣∣∣∣Fn(x)

F (x)
− 1

∣∣∣∣ p→ 0 and sup
x:S(x)≥k/(2n)

∣∣∣∣Sn(x)

S(x)
− 1

∣∣∣∣ p→ 0;(19)
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see, for example, Shorack and Wellner [(1986), page 424]. Since F(Xk+1:n) > k
2n

and F(Xn−k:n) < 1 − k
2n

with probability tending to one (n → ∞), it follows from
(19) and (18) that

sup
Xk+1:n<x<Xn−k:n

∣∣∣∣Rn(x)

D(x)
− 1

∣∣∣∣ p→ 0.

Hence, it remains to consider the supremum over the region [Xn−k:n,F−1((1 −
δn)+)]. We have with probability tending to one, as n → ∞,

sup
Xn−k:n≤x≤F−1((1−δn)+)

∣∣∣∣Rn(x)

D(x)
− 1

∣∣∣∣
≤ sup

δn≤S(x)≤2k/n,S(x)
=k/n

∣∣∣∣ k

nS(x)

(
1 + γ̂

x − b̂

â

)−1/γ̂

− 1
∣∣∣∣

+
∣∣∣∣
(

1 + γ̂
b − b̂

â

)−1/γ̂

− 1
∣∣∣∣.

Write Bn = √
k(b̂ − b)/a. Then we have Bn = Op(1); see, for example, Theo-

rem 2.4.1 in de Haan and Ferreira (2006). Therefore, to complete the proof of this
theorem it suffices to show

sup
δn≤S(x)≤2k/n,S(x)
=k/n

∣∣∣∣ k

nS(x)

(
1 + γ̂

x − b̂

â

)−1/γ̂

− 1
∣∣∣∣ p→ 0.(20)

First, we consider the case γ 
= 0. Write Yn = γ̂
γ

a
â

. Also, set

s = ((x − b)/a)(γ /(d
γ
n − 1)) − 1

A

with dn = dn(x) = k

nS(x)
and A = A(n/k).

We have

k

nS(x)

(
1 + γ̂

x − b̂

â

)−1/γ̂

= dn

(
1 + Yn

[
x − b

a
γ − b̂ − b

a
γ

])−1/γ̂

= dn

(
1 + Yn

[
(1 + sA)

(
dγ
n − 1

) − b̂ − b

a
γ

])−1/γ̂

=
(
d−γ̂
n + Ynd

−γ̂
n (1 + sA)

(
dγ
n − 1

) − b̂ − b

a
γ Ynd

−γ̂
n

)−1/γ̂
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=
[
dγ−γ̂
n

(
d−γ
n

[
1 − Yn(1 + sA) − b̂ − b

a
γ Yn

]
+ Yn(1 + sA)

)]−1/γ̂

=: [
T1(T2 + T3)

]−1/γ̂
.

We will now prove that T1
p→ 1, T2

p→ 0, T3
p→ 1, all uniformly for x such that

δn ≤ S(x) ≤ 2k/n [S(x) 
= k/n]. This will yield (20) for γ 
= 0.
We have

T1 = dγ−γ̂
n = d−�n/

√
k

n = exp
(−�n√

k
log

k

nS(x)

)
.

Observe that ∣∣∣∣−�n√
k

log
k

nS(x)

∣∣∣∣ ≤ |�n|√
k

∣∣∣∣log
k

nS(x)

∣∣∣∣ p→ 0.

Hence, T1
p→ 1. Consider T3 = Yn(1 + sA). We have Yn

p→ 1 and A(n/k) → 0.

Hence, (6) yields T3
p→ 1. Finally,

T2 = d
−γ
n√
k

√
k

(
1 − Yn(1 + sA) − Bn√

k
γ Yn

)

= d
−γ
n√
k

(√
k

[
1 −

(
1 + Op

(
1√
k

))(
1 + O

(
1√
k

))]
− BnγYn

)

= (nS(x))γ

kγ+1/2 Op(1) = op(1).

Consider now the case γ = 0. By convention (d
γ
n − 1)/γ = logdn now. Write

Q := k

nS(x)

(
1 + γ̂

x − b̂

â

)−1/γ̂

= dn

(
1 + a

â

[
x − b

a
γ̂ − b̂ − b

a
γ̂

])−1/γ̂

= dn

(
1 + γ̂

a

â
(logdn)(1 + sA) − γ̂

Bn√
k

a

â

)−1/γ̂

.

Hence,

logQ = logdn − 1

γ̂
log

(
1 + γ̂

a

â
(logdn)(1 + sA) − γ̂

Bn√
k

a

â

)
.

We obtain

| logQ| = log
(

k

nδn

)
· Op

(
1√
k

)
+ log2

(
k

nδn

)
· Op

(
1√
k

)
p→ 0.
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Hence, Q
p→ 1, uniformly for x such that δn ≤ S(x) ≤ 2k/n (S(x) 
= k/n). This

proves (20) for γ = 0. �

For the proof of Theorem 2, we need two lemmas. In the sequel, we assume that
the conditions of Theorem 2 are in force. Write  = {u ∈ R

d : ‖u‖ = 1} for the
unit sphere.

LEMMA 1. For all r > 0,

lim
t→∞ sup

u∈

∣∣∣∣P(X1 ∈ tHr,u)

t−α
− cν(Hr,u)

∣∣∣∣ = 0.

PROOF. Fix r > 0. Combining (9) and (10) we have that for all u ∈ ,

lim
t→∞

P(X1 ∈ tHr,u)

t−α
= cν(Hr,u).(21)

Assume this convergence does not hold uniformly in u ∈ . Then there exist se-
quences um → v and tm → ∞ such that

P(X1 ∈ tmHr,um)/t−α
m does not converge to cν(Hr,v), as m → ∞.(22)

W.l.o.g. we assume that v = (1,0, . . . ,0).
We show that (22) cannot hold by showing, for u ∈ ,

P(uT X1 ≥ tr)

P(X1,1 ≥ tr)
→ 1 if u1 → 1, t → ∞.(23)

Because if the latter convergence holds, then if u1 → 1,m → ∞,

P(uT X1 ≥ tmr)

t−α
m

= P(uT X1 ≥ tmr)

P(X1,1 ≥ tmr)
· P(X1,1 ≥ tmr)

t−α
m

→ 1 · cν(Hr,v).(24)

Hence, it remains to show (23). Write ε = 1 − u1. Then ε → 0. We have

P
(
uT X1 ≥ tr

)
= P

(
uT X1 ≥ tr,X1,1 <

(
1 − ε1/4)

tr
) + P

(
uT X1 ≥ tr,X1,1 ≥ (

1 − ε1/4)
tr

)
≤ P

(
uT X1 − (1 − ε)X1,1 ≥ ε1/4tr

) + P
(
X1,1 ≥ (

1 − ε1/4)
tr

)
≤

d∑
j=2

P
(
ujX1,j ≥ ε1/4tr/(d − 1)

) + P
(
X1,1 ≥ (

1 − ε1/4)
tr

)

≤
d∑

j=2

P
(|X1,j | ≥ ε−1/4tr/

(√
2(d − 1)

)) + P
(
X1,1 ≥ (

1 − ε1/4)
tr

)
.
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Hence,

P(uT X1 ≥ tr)

P(X1,1 ≥ tr)

≤
∑d

j=2 P(|X1,j | ≥ ε−1/4tr/(
√

2(d − 1)))

t−α
· t−α

P(X1,1 ≥ tr)

+ P(X1,1 ≥ (1 − ε1/4)tr)

t−α
· t−α

P(X1,1 ≥ tr)

→ 0 · 1

cν(Hr,v)
+ cν(Hr,v) · 1

cν(Hr,v)
= 1.

Similarly, we have

P
(
uT X1 ≥ tr

)
≥ P

(
X1,1 ≥ (

1 + ε1/4)
tr

) − P
(
uT X1 < tr,X1,1 ≥ (

1 + ε1/4)
tr

)
≥ P

(
X1,1 ≥ (

1 + ε1/4)
tr

) − P
(
uT X1 − (1 − ε)X1,1 ≤ −ε1/4tr/2

)
and

P(uT X1 ≥ tr)

P(X1,1 ≥ tr)

≥ P(X1,1 ≥ (1 + ε1/4)tr)

P(X1,1 ≥ tr)
− P(uT X1 − (1 − ε)X1,1 ≤ −ε1/4tr/2)

P(X1,1 ≥ tr)

→ cν(Hr,v) · 1

cν(Hr,v)
− 0 · 1

cν(Hr,v)
= 1.

This completes the proof of (23). �

Define the function g by g(u) = cν(H1,u) and let Vu(t) = F−1
u (1 − 1/t), t > 1,

be the tail quantile function corresponding to Fu.

LEMMA 2. We have

lim
t→∞ sup

u∈

∣∣∣∣Vu(t)

t1/α
− (

g(u)
)1/α

∣∣∣∣ = 0.(25)

PROOF. Lemma 1, with r = 1, yields

lim
s→∞ sup

u∈

∣∣∣∣1 − Fu(s)

s−α
− g(u)

∣∣∣∣ = 0.(26)

Observe that Vu(t) = s implies Fu(s) = 1 − 1/t . Hence

Vu(t)

t1/α
= s

(
1 − Fu(s)

)1/α =
(

1 − Fu(s)

s−α

)1/α

.(27)
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Also observe that assumption (12) and ν(H1,u) ≤ 1,u ∈ , yield

0 < inf
u∈

g(u) ≤ sup
u∈

g(u) ≤ c < ∞.

Combining this with (27) and (26) easily yields (25). �

PROOF OF THEOREM 2. We will prove that, as n → ∞,

sup
D(x)≥k/(2n)

∣∣∣∣Dn(x)

D(x)
− 1

∣∣∣∣ p→ 0 and(28)

sup
Rn(x)<k/n,D(x)≥δn

∣∣∣∣Rn(x)

D(x)
− 1

∣∣∣∣ p→ 0.(29)

To show that (28) and (29) imply (15), it is sufficient to show that (28) implies

sup
Dn(x)≥k/n

∣∣∣∣Dn(x)

D(x)
− 1

∣∣∣∣ p→ 0(30)

and to recall that if Dn(x) ≥ k/n or Rn(x) ≥ k/n, then Dn(x) = Rn(x).
Assume (28) holds. It follows from Donoho and Gasko (1992), that

supx Dn(x) ≥ 1/(d + 1), with probability 1. Hence, for large n, any point x̂ with
maximum depth Dn, satisfies Dn(x̂) ≥ k/n and, with probability tending to one,
D(x̂) ≥ k/n, because of the uniform consistency of Dn. Now assume for some x,
Dn(x) ≥ k/n and D(x) < k/(2n). Then, with probability tending to one, we can
find x0 on the straight line connecting x̂ and x, such that D(x0) = k/(2n) and be-
cause of (28), Dn(x0) ≤ 3k/(4n). It is well known that Dn has the “monotonicity
relative to deepest point” property [see, e.g., Zuo and Serfling (2000)], and hence
Dn(x) ≤ Dn(x0) ≤ 3k/(4n). Contradiction. Hence (30).

It remains to prove (28) and (29). We begin with (28). First, we show that

P
(⋃{

H : P(H) ≤ s
}) = O(s) as s ↓ 0.(31)

Define r0 = (c infu∈ ν(H1,u)/2)1/α . Lemma 1 yields that, uniformly in u ∈ ,

lim
s↓0

P(X1 ∈ s−1/αHr0,u)

s
= cν(Hr0,u) = cr−α

0 ν(H1,u) ≥ 2.

Hence, for small enough s and uniformly in u ∈ , P(X1 ∈ s−1/αHr0,u) > s. For
u ∈ , let r1 be the smallest r such that P(Hr,u) = s. Then for small enough s,
Hr1,u ⊂ s−1/αHr0,u. Hence, by (9) and (10),

P(
⋃

u∈ Hr1,u)

s
≤ P(

⋃
u∈ s−1/αHr0,u)

s
= P(s−1/α ⋃

u∈ Hr0,u)

s

→ cν

( ⋃
u∈

Hr0,u

)
< ∞, s ↓ 0,
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which implies (31).
Using (31), we obtain from Theorem 5.1 in Alexander (1987), with the γn there

equal to k/(2n), that

sup
H :P(H)≥k/(2n)

∣∣∣∣Pn(H)

P (H)
− 1

∣∣∣∣ p→ 0 as n → ∞.(32)

Denote with Hx a half-space with x on its boundary. We have

Dn(x)

D(x)
= infHx Pn(Hx)

infHx P(Hx)
≥ inf

Hx

Pn(Hx)

P (Hx)

and, with ε > 0, for some Hx,

Dn(x)

D(x)
≤ (1 + ε)

Pn(Hx)

P (Hx)
.

This, in combination with (32), yields (28).
Finally, we consider (29). Write pu(w) = P(uT X1 ≥ w) = P(Hw,u). We first

show

sup
w,u∈:δn≤pu(w)≤2k/n

∣∣∣∣pn,u(w)

pu(w)
− 1

∣∣∣∣ p→ 0 as n → ∞.(33)

Write du(w) = k/(npu(w)). Then

pn,u(w)

pu(w)
= k

npu(w)

(
w

Vu(n/k)

Vu(n/k)

Wn−k:n

)−α̂

(34)

=
(
d−1/α̂

u (w)
w

Vu(n/k)

)−α̂(
Vu(n/k)

Wn−k:n

)−α̂

.

It follows from Lemmas 1 and 2 that

lim
n→∞ sup

w,u∈:δn≤pu(w)≤2k/n

∣∣∣∣d−1/α
u (w)

w

Vu(n/k)
− 1

∣∣∣∣ = 0.

Using this, (14) and log(nδn)/
√

k → 0, we obtain

sup
w,u∈:δn≤pu(w)≤2k/n

∣∣∣∣
(
d−1/α̂

u (w)
w

Vu(n/k)

)−α̂

− 1
∣∣∣∣ p→ 0, as n → ∞.(35)

Denote with Gu,n the empirical distribution function of the uniform-(0,1) ran-
dom variables Fu(uT Xi ), i = 1, . . . , n, and with G−1

u,n the corresponding quantile
function. It follows from (32) by routine arguments that

sup
u∈

∣∣∣∣1 − G−1
u,n(1 − k/n)

k/n
− 1

∣∣∣∣ p→ 0,
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and hence, by Lemma 2 and (14), that

sup
u∈

∣∣∣∣
(

Vu(n/k)

Wn−k:n

)−α̂

− 1
∣∣∣∣ p→ 0.(36)

Combination of (34), (35) and (36), yields (33).
Now we turn to (29). Let x be such that Rn(x) < k/n. Then

Rn(x)

D(x)
= infu∈:1−F̂u(uT x−)<k/n 1 − F̂u(uT x−)

infu∈ pu(uT x)
(37)

≥ infu∈:pn,u(uT x)<k/n pn,u(uT x)

infu∈:pn,u(uT x)<k/n pu(uT x)
≥ inf

u∈:pn,u(uT x)<k/n

pn,u(uT x)

pu(uT x)
.

Next, we show that with probability tending to one (n → ∞),

inf
u∈:pn,u(uT x)<k/n

pn,u(uT x)

pu(uT x)
≥ inf

u∈:pu(uT x)≤2k/n

pn,u(uT x)

pu(uT x)
.(38)

Assume for some x and u ∈ , pn,u(uT x) < k/n and pu(uT x) > 2k/n. Then there
exists an x0 of the form x+ c̃u, for some c̃ > 0, such that pu(uT x0) = 2k/n. Hence,
with probability tending to one because of (33), pn,u(uT x0) ≥ 3k/(2n) and, there-
fore, pn,u(uT x) ≥ 3k/(2n). Contradiction. Hence, we have (38). Combining (38)
with (37) and (33), yields

sup
Rn(x)<k/n,D(x)≥δn

(
1 − Rn(x)

D(x)

)
∨ 0

p→ 0.(39)

Let ε ∈ (0,1) and let x be such that Rn(x) < k/n and D(x) ≥ δn. We have for
some u0 that

Rn(x)

D(x)
≤ (1 + ε/2)

Rn(x)

pu0(u
T
0 x)

≤ (1 + ε/2)
1 − F̂u0(u

T
0 x−)

pu0(u
T
0 x)

,

with pu0(u
T
0 x) ≥ δn. If pu0(u

T
0 x) ≤ k/(2n), then with probability tending to one,

(33) yields that 1− F̂u0(u
T
0 x−) = pn,u0(u

T
0 x), and hence that Rn(x)/D(x) ≤ 1+ε.

In case pu0(u
T
0 x) > k/(2n), we have, using (39), that with probability tending

to one that k/(2n) < pu0(u
T
0 x) ≤ 3D(x)/2 ≤ 2Rn(x) < 2k/n. Hence, combining

1 − F̂u0(u
T
0 x−) ≤ (1 − Fn,u0(u

T
0 x−)) ∨ pn,u0(u

T
0 x) with (32) and (33), we obtain

that with probability tending to one, Rn(x)/D(x) ≤ 1 + ε. Hence, we have shown

sup
Rn(x)<k/n,D(x)≥δn

(
Rn(x)

D(x)
− 1

)
∨ 0

p→ 0.

This, in combination with (39), yields (29). �
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