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INFERENCE USING NOISY DEGREES: DIFFERENTIALLY
PRIVATE β-MODEL AND SYNTHETIC GRAPHS

BY VISHESH KARWA1,2 AND ALEKSANDRA SLAVKOVIĆ1

Carnegie Mellon University and Pennsylvania State University

The β-model of random graphs is an exponential family model with the
degree sequence as a sufficient statistic. In this paper, we contribute three key
results. First, we characterize conditions that lead to a quadratic time algo-
rithm to check for the existence of MLE of the β-model, and show that the
MLE never exists for the degree partition β-model. Second, motivated by pri-
vacy problems with network data, we derive a differentially private estimator
of the parameters of β-model, and show it is consistent and asymptotically
normally distributed—it achieves the same rate of convergence as the non-
private estimator. We present an efficient algorithm for the private estimator
that can be used to release synthetic graphs. Our techniques can also be used
to release degree distributions and degree partitions accurately and privately,
and to perform inference from noisy degrees arising from contexts other than
privacy. We evaluate the proposed estimator on real graphs and compare it
with a current algorithm for releasing degree distributions and find that it
does significantly better. Finally, our paper addresses shortcomings of cur-
rent approaches to a fundamental problem of how to perform valid statistical
inference from data released by privacy mechanisms, and lays a foundational
groundwork on how to achieve optimal and private statistical inference in
a principled manner by modeling the privacy mechanism; these principles
should be applicable to a class of models beyond the β-model.

1. Introduction and motivation. Random graph models whose sufficient
statistics are degree sequences, d , such as the p1 model for directed graphs or
its special case, the β-model for undirected graphs [Chatterjee, Diaconis and Sly
(2011), Holland and Leinhardt (1981), Olhede and Wolfe (2012), Rinaldo, Petro-
vić and Fienberg (2013)] are commonly used in modeling of real world networks.
Although there is evidence that d alone does not capture all the structural infor-
mation in a graph [e.g., Snijders (2003)], in many cases it is the only information
available and every other structural property of a graph is estimated from random
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graph models based on d . In more general cases, random graph models based on
d serve as a natural starting point for modeling networks; they may also serve
as null models for hypothesis testing [Perry and Wolfe (2012), Zhang and Chen
(2013)]. However, the degrees may carry confidential and sensitive information,
and thus limit our ability to share such data more widely for the purpose of sta-
tistical inference. For example, in epidemiological studies of sexually transmitted
disease [e.g., see Helleringer and Kohler (2007)], a survey collects information on
the number of sexual partners of an individual, which provides an estimate of the
degree of each node that is then used for modeling and reconstruction of a sexual
network. The benefits of analyzing such networks are clear [e.g., Goodreau, Kitts
and Morris (2009)], but releasing such sensitive information raises significant pri-
vacy concerns [e.g., (Narayanan and Shmatikov (2009)].

Data privacy is a growing problem due to the large amount of data being col-
lected, stored, analyzed and shared across multiple domains. Statistical Disclosure
Control (SDC) aims at designing data sharing mechanisms that address the trade-
off between minimizing the risk of disclosing sensitive information and maxi-
mizing of data utility; for more details on SDC methodology, see, for example,
Ramanayake and Zayatz (2010), Willenborg and de Waal (1996), Fienberg and
Slavković (2010) and Hundepool et al. (2012). More recently, data privacy research
has evolved with a focus on designing mechanisms that satisfy some rigorous no-
tions of privacy but at the same time provide meaningful utility.

Differential Privacy (DP) [Dwork et al. (2006a)] has emerged as a key rigorous
definition of privacy and as a way to inform the design of privacy mechanisms
with pre-specified worst case disclosure risk. However, existing DP mechanisms
are designed with a focus on estimating accurate summary statistics of the data,
as opposed to estimating parameters of a model that are consistent and have cor-
rect confidence intervals; see Smith (2008) and Vu and Slavković (2009) for ex-
ceptions. As recently shown by Duchi, Jordan and Wainwright (2013), estimating
parameters of models (that correspond to population quantities) and estimating
summary statistics are fundamentally different problems, especially in the privacy
context. However, the privacy mechanism is typically ignored and the perturbed
statistics are used for subsequent analyses. Among many potential problems, ig-
noring the privacy mechanism can lead to invalid even nonexistent parameter esti-
mates, as initially demonstrated in Fienberg, Rinaldo and Yang (2010), Karwa and
Slavković (2012) and in this paper.

This paper addresses the above mentioned fundamental problem of performing
valid statistical inference using data released by a differentially private mecha-
nism. Our work demonstrates that to obtain optimal parameter estimates by using
data shared by privacy preserving mechanisms, new estimation procedures must be
derived for specific classes of inference problems by modeling the privacy mech-
anism as a nonlinear measurement error process. The nonlinearity arises from the
fact that noise is usually added to the sufficient statistics, as opposed to the data
[see also Carroll et al. (2006)]. We illustrate the proposed principles in the context
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of special but important case of sharing network data using differential privacy;
however, these principles are applicable beyond the specific privacy mechanism
and the models considered here.

For network data, DP comes in two variants: Edge Differential Privacy [e.g.,
see Nissim, Raskhodnikova and Smith (2007)] and Node Differential Privacy [e.g.,
see Kasiviswanathan et al. (2013)], designed to limit disclosure of edge and node
(along with its edges) information, respectively, in a graph G. We focus on the edge
differential privacy with a goal of estimating the parameters of the β-model of ran-
dom graphs whose sufficient statistics are network’s degrees d . One of the popular
ways of releasing d (and in general any summary statistic) to protect privacy is to
release z = d + e, where e is some noise. In some cases, z is post-processed to
reduce error [e.g., see Hay et al. (2009) for release of degree partitions] with the
end goal to obtain an approximate estimate of the summary statistic of the data.
However, the end goal of a statistical inference is not the estimation of statistics,
in fact, the sufficient statistics are the starting point. Without any additional tools,
the analyst is forced to directly use the noisy summary statistic z for inference.
We present techniques to take into account the noise addition process and thereby
consistently compute the maximum likelihood estimates (MLE) of the β-model
from a noisy degree sequence. The following are the more specific contributions
of this paper:

1. In Theorem 1, we derive necessary and sufficient conditions for the existence
of MLE of the β-model, a result applicable beyond the privacy context. These
conditions are computationally more efficient than those of Rinaldo, Petrović and
Fienberg (2013), which are more general, but computationally intractable. This re-
sult gives insights into the conditions when the parameter estimates do not exist
due to noisy statistics arising from privacy or possibly from sampling and censor-
ing [Handcock and Gile (2010)].

2. Using the result on existence of MLE, we illustrate that ignoring the privacy
mechanism and directly using the noisy statistic z for inference may lead to issues
such as nonexistence of MLE of the β-model. We also illustrate that the customary
practice of simply minimizing the L1 and/or L2 distance between original and
noisy statistics are not sufficient measures to guarantee statistical utility, and thus
a valid inference. In particular, to obtain optimal and valid parameter estimates,
the privacy mechanism must be explicitly taken into account when estimating the
sufficient statistics from their noisy versions.

3. By modeling the privacy mechanism as a (known) measurement error pro-
cess, we obtain a private maximum likelihood estimate d̂ of the degree sequence d ,
from its noisy counterpart z. In Theorem 2 and Algorithm 2, we show that this es-
timation problem can be solved efficiently, using a well-known characterization of
degree sequences due to Havel (1955) and Hakimi (1962). This is a nonstandard
maximum likelihood estimation problem where the parameter set is discrete and
its dimensionality increases with the sample size. Using simulation studies, we



90 V. KARWA AND A. SLAVKOVIĆ

show that d̂ has smaller error and greater statistical utility when compared to using
z directly for parameter estimation.

4. In Theorems 3 and 4, we derive a differentially private consistent and asymp-
totically normal estimator β̂ε of the parameters of the β-model of random graphs,
by using the proposed estimated d̂ (instead of z). β̂ε then can be used to generate
valid synthetic graphs. Consistency of the usual MLE of β , without any privacy
constraints, was shown by Chatterjee, Diaconis and Sly (2011) and its asymptotic
normality was established in Yan and Xu (2013). Critically, since the proposed β̂ε

achieves the same rate as the nonprivate estimator, we show that asymptotically
privacy comes at no additional cost in this setting.

The rest of the paper is organized as follows. In Section 2, we introduce the
notation and the key results on the existence of MLE of the β-model and inference
from noisy statistics. In Section 3, we describe our privacy model. Section 4 forms
the core of the paper where we present our main results on estimating differentially
private parameters of the β-model and on generating synthetic graphs. In Section 5,
we extend our algorithm to release degree partitions and compare it to that of Hay
et al. (2009). In Section 6, we evaluate our proposed estimators on real graphs. In
Section 7, we briefly discuss avenues for future work, including the challenges in
extending our work to larger class of β-models. Proofs are presented in Section 8
and the supplementary material [Karwa and Slavković (2015)].

2. Statistical inference with degree sequences. Let Gn denote a simple, la-
beled undirected graph on n nodes and let m be the number of edges in the graph.
Let V be the vertex set and E be the edge set of the graph. A simple graph is a
graph with no self-loops and multiple edges, that is, for any i ∈ [n], (i, i) /∈ E, and
|{(i, j) : (i, j) ∈ E}| = 1. A labeled graph is a graph with a fixed ordering on its
nodes, that is, there is a fixed mapping from V to {1, . . . , n}. All the graphs con-
sidered in this paper are simple and undirected. Let G denote the set of all such
graphs. The distance between two graphs G and G′ is defined as the number of
edges on which the graphs differ and is denoted by δ(G,G′). G and G′ are said to
be neighbors of each other if the distance between them is at most 1. The degree
di of a node i is the number of nodes connected to it.

DEFINITION 1 (Degree sequence and degree partition). Consider a labeled
graph with label {1, . . . , n}. The degree sequence of a graph d is defined as the
sequence of degrees of each node, that is, d = {d1, . . . , dn}. The degree sequence
ordered in nonincreasing order is called the degree partition and is denoted by d̄ ,
that is, d̄ = {d(1), . . . , d(n)} where d(i) is the ith largest degree.

Given a degree sequence d , there can be more than one graph with different
edge-sets E, but the same degree sequence d . Each such graph is called a real-
ization of d . Let G(d) be the set of simple graphs on n vertices with degree se-
quence d . Not every integer sequence of length n is a degree sequence. Sequences
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that can be realized by a simple graph are called graphical degree sequences.
Graphical degree sequences have been studied in depth and admit many charac-
terizations. One of the characterizations called the Havel–Hakimi criteria, due to
Havel (1955) and Hakimi (1962), is central to the proof of Algorithm 2 that es-
timates a graphical degree sequence from the noisy sequence z; see the proof of
Theorem 2 in the supplementary material [Karwa and Slavković (2015)] for the
statement of the characterization. We denote the set of all graphical degree se-
quences of size n by DSn and the set of all graphical degree partitions of size n by
DPn.

2.1. Statistical inference with the β-model. One of the simplest random graph
models involving the degree sequence is called the β-model, a term coined by
Chatterjee, Diaconis and Sly (2011). We can describe this model in terms of inde-
pendent Bernoulli random variables. Let β = {β1, . . . , βn} be a fixed point in R

n.
For a random graph on n vertices, let each edge between nodes i and j occur
independently of other edges with probability

pij = eβi+βj

1 + eβi+βj
,

where {β1, . . . , βn} is the vector of parameters.
This model admits many different characterizations. For example, it arises as a

special case of p1 models [Holland and Leinhardt (1981)] and a log-linear model
[Rinaldo, Petrović and Fienberg (2013)]. It is also a special case of the discrete ex-
ponential family of distributions on the space of graphs when the degree sequence
is a sufficient statistic. Thus, if G is a graph with degree sequence {d1, . . . , dn},
then the β-model is described by

P(G = g) ∝ exp
n∑

i=1

diβi.

We can also consider a version of the β-model where the degree partition d̄ is
a sufficient statistic. Such a model may be used if the ordering of the nodes is
irrelevant.

In modeling real world networks, there are two very common inference tasks
associated with the β-model:

1. Sample graphs from U(d)—the uniform distribution over the set of all graphs
with degree sequence d .

2. Estimate parameters of the β-model using d and generate synthetic graphs
from the β-model.

These tasks are useful, for example, in modeling network when the degree se-
quence is the only available information [Helleringer and Kohler (2007)], and
in performing goodness-of-fit testing of more general network models [Hunter,
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Goodreau and Handcock (2008)]. A natural question to ask is under what condi-
tions on d and d̄ are these two tasks possible: (a) Under what conditions does the
MLE of the β-model exist? and (b) When is it possible to sample from U(d)? In
the next section, we study the conditions on d and d̄ that allow us to perform these
inference tasks.

2.2. Existence of MLE of the β-model. Let β̂(d) denote the maximum likeli-
hood estimate of β obtained using d . If we consider the degree partition version
of the β-model, the MLE is denoted by β̂(d̄). From the properties of exponential
families, it follows that β̂(d) must satisfy the following moment equations:

di = ∑
j �=i

eβ̂i+β̂j

1 + eβ̂i+β̂j

.(2.1)

A solution to these equations can be obtained in many ways. Most of them require
iterative procedures [Chatterjee, Diaconis and Sly (2011), Hunter (2004)]. These
procedures do not converge, or may converge to a meaningless value, when the
MLE does not exist.

In Theorem 1, we describe necessary and sufficient conditions for existence of
the MLE of the β-model. These conditions lead to an O(n2) algorithm to check for
the existence of the MLE for the degree sequence β-model and show that the MLE
never exists for the degree partition β-model. To the best of our knowledge, this
is the first efficient algorithm for checking the existence of MLE of the β-model.
The proof of Theorem 1 is in Section 8.1.

From the theory of exponential families [Barndorff-Nielsen (1978)], it follows
that β̂(d) exists if and only if d lies in the relative interior of convex hull of DSn.
Although the facets of Conv(DSn) are completely characterized in Mahadev and
Peled (1995), one cannot use the linear inequality description of Conv(DSn) to
check if d lies in the relative interior. This is because Conv(DSn) is a complex
combinatorial object and the number of facet defining inequalities [given in equa-
tion (8.1)] are at least exponential in n. Rinaldo, Petrović and Fienberg (2013) use
results from the existence of MLE of discrete exponential families [Rinaldo, Fien-
berg and Zhou (2009)] to devise an algorithm to check for the existence of MLE
in what they refer to as a generalized β-model. Their algorithm is based on the
so-called “Cayley embedding” which is a reparametrization of the β-model as a
log-linear model. Although general, their algorithm works only for graphs up to a
few hundreds of nodes, and its computational complexity is unknown.

The key technique that we use for proving Theorem 1 is to study an “asymmet-
ric” part of Conv(DSn). Specifically, we work with Conv(DPn), the convex hull of
degree partitions, instead of Conv(DSn). Intuitively, Conv(DPn) can be considered
as a “asymmetrized” version of Conv(DSn)—every permutation equivalent degree
sequence is mapped to a single degree partition [see also Bhattacharya, Sivasub-
ramanian and Srinivasan (2006)]. This asymmerization, remarkably, allows us to
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characterize the boundary of Conv(DSn), and at the same time, greatly reduce the
computational complexity. We conjecture that this technique of asymmerizing a
polytope can be extended to other discrete exponential families to derive efficient
algorithms that characterize their boundary.

THEOREM 1. Let G be a graph. Let d be its degree sequence and d̄ be the cor-
responding degree partition obtained by ordering the terms of d in a nonincreasing
order. Consider the following set of inequalities:

d̄i > 0 and d̄i < n − 1 ∀i and
(2.2)

k∑
i=1

d̄i −
n∑

i=n−l+1

d̄i < k(n − 1 − l) for 1 ≤ k + l ≤ n,

d̄i+1 − d̄i < 0 for i = 1 to n.(2.3)

The following statements are true:

1. The MLE of the degree partition β-model β̂(d̄) exists iff d̄ satisfies the system
of inequalities in (2.2) and (2.3). In particular, the MLE for the degree partition
β-model never exists.

2. If the MLE of the degree sequence β-model β̂(d) exists, then d̄ satisfies the
system (2.2).

3. If d̄ satisfies the system (2.2), then β̂(d) exists for any d = πd̄ where π is a
permutation on {1, . . . , n}.

REMARKS.

1. The system of inequalities in equation (2.2) are central to the results of The-
orem 1. There are only O(n2) inequalities to check, as opposed to exponentially
many inequalities that describe Conv(DSn). Thus, an important practical conse-
quence of this result is the first quadratic time algorithm to detect the boundary
points of Conv(DSn) and check for the existence of MLE of the degree sequence
β-model.

2. Statement 3, the converse condition in Theorem 1 is stronger than statement
2. It implies that if d̄ satisfies the system (2.2), then the MLE of β computed using
any permutation of d̄ exists.

3. Theorem 1 does not imply that d is in ri(Conv(DSn)) if and only if d̄ is in
ri(Conv(DPn)). In fact, this is not true—no (graphical) degree partitions exists in
the relative interior of Conv(DPn); all degree partitions lie on at least one of the
boundaries defined by equation (2.3).

4. When we observe a single graph, the MLE for the degree partition β-model
never exists. From this point onward, we will use the term “MLE of β” to mean the
MLE of the degree sequence β-model, even when using a degree partition, since
every degree partition is also a degree sequence.
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5. The degree distribution is the histogram of degree partition, and furthermore
the degree distribution and the degree partition are one to one transformations of
each other, one can be obtained from the other via a nonlinear transformation. Most
recently, Sadeghi and Rinaldo (2014) show that the MLE of the degree distribution
model also never exists which complements our results on the degree partition.

2.3. Sampling from U(d). Sampling graphs from the set U(d) is possible only
if the set G(d) is nondegenerate. Moreover, for there to exist a nontrivial probabil-
ity distribution on this set, its cardinality should be greater than 1. Proposition 1
presents sufficient conditions on d under which this is true; the proof appears in
Section II of the supplementary material [Karwa and Slavković (2015)].

PROPOSITION 1. Let d be a sequence of real numbers. Consider the set G(d),
the set of all simple graphs with degree sequence equal to d . If d is a point in DSn,
and if d lies in the relative interior of Conv(DSn), then |G(d)| > 1.

2.4. Inference using noisy statistics. Theorem 1 and Proposition 1 give suffi-
cient conditions for estimating parameters of the β-model and for sampling from
the space of related graphs. However, in many real world applications, the exact
degree sequence d of a graph is not available. Instead, we observe a “noisy” se-
quence z either due to sampling issues or due to privacy constraints. Corollary 1
gives sufficient conditions for obtaining valid inference in the β-model when using
such “noisy” sequences.

COROLLARY 1. Let z be any sequence of integers of length n. Consider the
following two inference task: (1) Estimating the MLE of β-model using z. (2) Sam-
pling from the set U(z). A sufficient condition to ensure that the MLE exists and
U(z) is nonempty is that z is a point in DSn and lies in the relative interior of
convex hull of DSn.

In Section 4, we consider the case where z is a noisy degree sequence obtained
by applying a differentially private mechanism to d . We discuss in more detail
why directly using z instead of d typically leads to invalid inference and apply the
results of this section to obtain valid statistical inference by finding an estimate of
d that satisfies conditions of Corollary 1.

3. Edge differential privacy. Differential privacy has become one of the
most popular models of reasoning formally about privacy. In a typical interac-
tive setting, data users can ask queries about the data, which can be in the form
of sufficient statistics, and they would receive back differentially private answers.
This type of a privacy mechanism can be formalized as a family of conditional
probability distributions, which define a distribution on the answers, conditional
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on the data; for a statistical overview of differential privacy; see Wasserman and
Zhou (2010).

In this paper, we focus on edge differential privacy (EDP) where the goal is to
protect the topological information of the graph. EDP is defined to limit disclosure
related to presence or absence of edges in a graph (or relationships between nodes)
as the following definition illustrates.

DEFINITION 2 (Edge differential privacy). Let ε > 0. A randomized mecha-
nism (or a family of conditional probability distributions) Q(·|G) is ε-edge differ-
entially private if

sup
G,G′∈G,δ(G,G′)=1

sup
S∈S

log
Q(S|G)

Q(S|G′)
≤ ε,

where S is the set of all possible outputs (or the range of Q).

ε is the privacy parameter that, as we see below, controls the amount of noise
added to a statistic; small value of ε means more privacy protection, but leads to
larger noise in the statistic being released. Roughly, EDP requires that any output
of the mechanism Q on two neighboring graphs should be close to each other.
Along the lines of Theorem 2.4 in Wasserman and Zhou (2010), one can show that
EDP makes it nearly impossible to test the presence or absence of an edge in the
graph, thus providing protection.

The most common mechanism to release the output of any statistic f under dif-
ferential privacy is the Laplace mechanism [e.g., see Dwork et al. (2006a)] which
adds continuous Laplace noise proportional to the global sensitivity of f .

DEFINITION 3 (Global sensitivity). Let f : G → Z
k . The global sensitivity of

f is defined as

GS(f ) = max
δ(G,G′)=1

∥∥f (G) − f
(
G′)∥∥

1,

where ‖ · ‖1 is the L1 norm.

Here, we propose to use a variant of this mechanism to achieve EDP by adding
discrete Laplace noise, as described in Lemma 1, to the degree sequence of a graph
(see Algorithm 1 in Section 4.1). Ghosh, Roughgarden and Sundararajan (2009)
analyzed the discrete Laplace mechanism for one- dimensional counting queries
and showed that it is universally optimal for a large class of utility metrics. The
proof of Lemma 1 is given in Section I of the supplementary material [Karwa and
Slavković (2015)].
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LEMMA 1 (Discrete Laplace mechanism). Let f : G → Z
k . Let Z1, . . . ,Zk be

independent and identically distributed discrete Laplace random variables with
p.m.f. defined as follows:

P(Z = z) = 1 − α

1 + α
α|z|, z ∈ Z, α ∈ (0,1).

Then the algorithm which on input G outputs f (G) + (Z1, . . . ,Zk) is ε-edge dif-
ferentially private, where ε = −GS(f ) logα.

One nice property of differential privacy is that any function of a differentially
private mechanism is also differentially private.

LEMMA 2 [Dwork et al. (2006b), Wasserman and Zhou (2010)]. Let f be
an output of an ε-differentially private mechanism and g be any function. Then
g(f (G)) is also ε-differentially private.

By using Lemma 2, we can ensure that any post-processing done on the noisy
degree sequences obtained as an output of a differentially private mechanism is
also differentially private. In particular, this means that applying the proposed Al-
gorithm 2 to the output of a differentially private mechanism also preserves differ-
ential privacy.

4. Estimating parameters of the β-model using noisy degree sequences and
releasing synthetic graphs. In this section, we present our main results on ob-
taining consistent and asymptotically normal differentially-private MLEs for the
β-model. These results support two main objectives: (1) To achieve statistical in-
ference that is both optimal and private for the β-model, and (2) to release synthetic
graphs from the β-model in a differentially private manner.

Our approach is based on three steps. In the first step, we release the degree
sequence, which is a sufficient statistic of the β-model, using the discrete Laplace
mechanism described in Lemma 1. In the second step, we model the Laplace mech-
anism as a measurement error on the sufficient statistics and “de-noise” the noisy
sufficient statistic by using maximum likelihood estimation. In the third step, the
de-noised sufficient statistic is used to estimate the parameters of the β-model from
which synthetic graphs can be generated. Since each of these steps uses only the
output of a differentially private algorithm, by Lemma 2, the generated synthetic
graphs are also differentially private. Step 2 of modeling the privacy mechanism as
a measurement error process and re-estimating the degree sequence is critical, as
we show in the proofs of Theorems 3 and 4, since it allows the third step to produce
consistent and asymptotically normal parameter estimates. In the next subsections,
we look at each of these steps in detail and describe the associated algorithms and
theoretical results.
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Algorithm 1 Input: A graph G and privacy parameter ε. Output: Differentially
private answer to the degree sequence of G

1: Let d = {d1, . . . , dn} be the degree sequence of G

2: for i = 1 → n do
3: Simulate ei from discrete Laplace with α = exp(−ε/2)

4: Let zi = di + ei

5: end for
6: return z = {z1, . . . , zn}

4.1. Releasing the degree sequence privately. Since the degree sequence d (or
degree partition d̄) is a sufficient statistic of the β-model, the first step releases
these statistics under differential privacy via Algorithm 1. We use the discrete
Laplace mechanism (Lemma 1). The global sensitivity of both d and d̄ is 2 since
adding or removing an edge can change the degree of at most two nodes, by 1
each.

Can we use z, a differentially private output of the degree sequence d released
by Algorithm 1, directly for inference and generate synthetic graphs? Most work
on differential privacy advocates using z or some post-processed form of z as a
“proxy” of d for inference. This, however, ignores the noise addition process. Fur-
thermore, a more serious issue is that z may not satisfy the conditions of Corol-
lary 1.

To understand how z fails the conditions of Corollary 1, consider task (1) from
Section 2 where the goal is to simulate random graphs from the U(d) by using the
output z instead of d . Recall that U(d) is nonempty if and only if d is a point in
DSn, that is, d is a graphical sequence. What are the chances that z is graphical?
If z is a sequence of positive integers, the chances are asymptotically at best 50%;
see Arratia and Liggett (2005). In the present case, z is supported on the set of
integers, Zn as it is obtained by adding discrete Laplace noise to d . Hence, it is
quite unlikely for z to even be in Conv(DSn). Thus, in many cases z cannot be
used directly to perform task (1).

How about task (2) of estimating β? Let β̂(d) denote the MLE of β obtained
using d . A basic requirement is the following: If β̂(d) exists, then β̂(z), should
also exist. As we mentioned, the existence of MLE is guaranteed only if z lies in
the interior of convex hull of DSn. As discussed earlier, even if d lies in the interior
of convex hull of DSn, z need not. Thus, directly inputting z into a procedure that
estimates the MLE may lead to meaningless results as the MLE may not exist. See
also, Figure 1 in Section 5 for an empirical demonstration of nonexistence of MLE
when using z to estimate the parameters.

In the next section, we will see that these issues can be resolved by modeling the
privacy mechanism as a measurement error process, and computing an estimate d̂

of d , from the noisy sequence z, that satisfies the conditions in Corollary 1 with
very high probability. Thus, one of the advantages of using d̂ (instead of z) for
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Algorithm 2 Input: A sequence of integers z of length n. Output: A graph G on n

vertices with degree sequence d̂

1: Let G be the empty graph on n vertices
2: Let S = {1, . . . , n}
3: while |S| > 0 do
4: S = S \ T where T = {i : zi ≤ 0}
5: Let pos = |S|
6: Let zi∗ = maxi∈S zi . Let i∗ = min{i ∈ S : zi = zi∗} and let hi∗ =

min(zi∗,pos−1)

7: Let I = indices of hi∗ highest values in z(S \ {i∗}) where z(S) is the se-
quence z restricted to the index set S

8: Add edge (i∗, k) to G for all k ∈ I
9: Let zi = zi − 1 for all i ∈ I and S = S \ {i∗}

10: end while
11: return G

estimation ensures that the MLE of β exists; see Theorem 3 for a precise statement.
In fact, when using d̂ for estimation, not only does the MLE exist, but the MLE is
consistent and asymptotically normally distributed, as proved in Section 4.3.

4.2. Maximum likelihood estimation of degree sequence. We model the pri-
vacy mechanism from Algorithm 1 as a measurement error on the degree sequence,
and use maximum likelihood estimation to “de-noise” the noisy sequence z. The
noise addition process here is regarded as special type of measurement error since
we know the exact distribution of the error. Hence, despite of the fact that we ob-
serve a single sample from the measurement error process (the degree sequence is
released only once), we can recover an estimate of the original sequence. This takes
the privacy mechanism into account in a principled manner and leads to an estimate
of d that can then be used for inference. More formally, the output of Algorithm 1
generates n random variables zi , such that zi = di + ei where ei ∼ DLap(α), for
i = 1 to n and d = {d1, . . . , dn} ∈ DSn. Note that α is known and we treat d as
the fixed unknown parameter in DSn. We propose Algorithm 2 that produces the
maximum likelihood estimator d̂ of d from the vector of noisy degrees z, and The-
orem 2 asserts its correctness. The proof of Theorem 2 is deferred until Section IV
of the supplementary material [Karwa and Slavković (2015)].

THEOREM 2 (MLE of degree sequence). Let z = {zi} be a sequence of in-
tegers of length n obtained from Algorithm 1. The degree sequence of graph G

produced by Algorithm 2 is a maximum likelihood estimator of d .

Here, we make some remarks on the complexity of this key result. Note that the
measurement error model and the corresponding maximum likelihood estimation
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of the degree sequence is nonstandard—the number of parameters to be estimated
(di, i = 1, . . . , n) is equal to the number of observations (zi, i = 1, . . . , n), and the
parameter space is discrete and very large—the convex hull of the parameter set
is full dimensional for n ≥ 4. Computing an MLE of d in the measurement error
model is equivalent to finding a L1 “projection” of z on DSn, that is, finding a
graphical degree sequence in DSn closest to z in terms of the L1 distance:

d̂ = argmin
h∈DSn

‖h − z‖1.(4.1)

Here, the parameter set DSn is a collection of points, and it admits several charac-
terizations. We found the Havel–Hakimi characterization to be the most useful in
producing an efficient procedure for estimating the MLE, as evident in the proof of
Theorem 2; see Section IV of Karwa and Slavković (2015). In fact, a careful anal-
ysis of Algorithm 2 shows that it is a modified Havel–Hakimi procedure applied
to the noisy sequence z.

The Havel–Hakimi algorithm is a “certifying” algorithm in that it produces a
certificate that a degree sequence is graphical, that is, if the input to the algorithm
is a (graphical) degree sequence, it outputs a graph that realizes it. Remarkably,
our proof of Theorem 2 shows that we can convert such a certifying algorithm into
an algorithm (e.g., Algorithm 2) that performs L1 “projection” on the set DSn. We
conjecture that our proof techniques apply to more general polytopes such as the
polytope of degree sequences of bipartite graphs or directed graphs. In cases where
a certifying algorithm like the Havel–Hakimi is available for these polytopes, our
proof techniques can be used to devise algorithms for L1 optimization over the
corresponding set of graphical degree sequences.

Even though the maximum likelihood estimation is equivalent to an L1 projec-
tion, there are many differences from the traditional projection. The set DSn has
“holes” in it and is not a convex set. As an example, every point whose L1 norm is
not divisible by 2 is not included in the set. Due to this, the L1 projection need not
be on the boundary of the convex hull of DSn. Moreover, there can be more than
one degree sequence that attains the optimal L1 distance. Thus, the MLE of d is
actually a set and Algorithm 2 finds a point in this set. Specifically, the following
is true.

LEMMA 3. Let d∗ be the output of Algorithm 2. Let Z = {i : d∗
i = 0 and zi <

0} and P = {i : di < zi and di > 0}, and let |P | �= 0. Let k ∈ Z. Then there exists a
degree sequence d such that dk > 0 and ‖d∗ − z‖1 = ‖d − z‖1.

Lemma 3 [proof of which is in Section III of Karwa and Slavković (2015)]
shows that the de-noised degree sequence is not unique. Hence, the noise addition
process provides privacy as the original degree cannot be recovered exactly. An-
other way to interpret this result is that the Laplace noise adds more noise than
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what is needed to ensure differential privacy, and Algorithm 2 “removes” this ad-
ditional noise, since applying Algorithm 2 does not degrade privacy, but crucially
improves utility.

Note that Algorithm 2 is efficient and it runs in time O(n logn + m) where n is
the number of nodes and m is the number of edges. Algorithm 2 returns a graph
G whose degree sequence is d̂ , thus, by definition, d̂ is graphical. By randomiz-
ing G, for example, by using the techniques in Blitzstein and Diaconis (2010) or
Ogawa, Hara and Takemura (2011), the output from Algorithm 2 can also be used
to generate synthetic graphs from the uniform distribution of graphs with a fixed
degree sequence, U(d).

In some cases, especially when some of the zi ’s are negative, G may be a dis-
connected graph. In such cases, whenever the conditions of Lemma 3 are satisfied,
we use it to modify the optimal degree sequence so that it corresponds to a con-
nected graph. (Note that being the degree sequence of a connected graph does not
ensure that the MLE exists, but the opposite is true—the MLE of β does not exist
if the degree sequence is realized by a disconnected graph.) The proof of Lemma 3
in Section III of the supplementary material gives the steps for the construction
of the modified sequence. It is easy to see that verification of the conditions of
Lemma 3 and the construction of the modified sequence takes O(n logn) time.
Hence, asymptotically, this step does not increase the computational complexity
of Algorithm 2. We now proceed to the task of estimating β using d̂ .

4.3. Asymptotic properties of the private estimate of β . Let d̂ denote the ε-
differentially private estimate of d obtained by using Algorithms 1 and 2. A pri-
vate MLE of β can be obtained by plugging d̂ in the maximum likelihood equa-
tions (2.1) and solving for β; let us denote this estimate by β̂(d̂). Since d̂ is ε-
differentially private, by Lemma 2, β̂(d̂) is also ε-differentially private. But how
does β̂(d̂) compares to the estimate β̂(d) obtained from the original degree se-
quence d? We demonstrate the utility of the proposed private estimate of β by
proving two key results in Theorems 3 and 4, that is, β̂(d̂) is consistent and asymp-
totically normal.

Consistency—Consistency of the maximum likelihood estimator of β in the
nonprivate case was shown by Chatterjee, Diaconis and Sly (2011). Here, we show
that our proposed private estimator of β is also consistent, that is one can consis-
tently estimate the parameters of the β-model using d̂ (as opposed to using d).

Theorem 3 shows that using d̂ to estimate the MLE guarantees both the exis-
tence of MLE and the uniform consistency (in contrast to naively using the dif-
ferentially private output z that does not even guarantee that the MLE exists as
discussed in Sections 4.1 and 4.2).

THEOREM 3 (Asymptotic consistency). Let G be a random graph from the
β-model and let d = (d1, . . . , dn) be its degree sequence. Let L = maxi |βi |. Let
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d̂ = (d̂1, . . . , d̂n) be the differentially private maximum likelihood estimate of d

obtained from output of the Algorithm 2, and let

d̂i = ∑
j �=i

eβ̂i+β̂j

1 + eβ̂i+β̂j

be the maximum likelihood equations. Let C(L) be a constant that depends only
on L. Then for εn = �( 1√

logn
), there exists a unique solution β̂(d̂) to the maximum

likelihood equation such that

P

(
max

i

∣∣β̂i(d̂) − βi

∣∣ ≤ C(L)

√
logn

n

)
≥ 1 − C(L)n−2.

The proof of Theorem 3 is given in Section V of the supplementary material
[Karwa and Slavković (2015)]. This key result implies that asymptotically there is
no cost to privacy in this setting in relation to obtaining valid inference. In partic-
ular, the result shows that for large n and ε = �( 1√

logn
), the MLE of β obtained

from d̂ exists and is unique and can be estimated with uniform accuracy in all
coordinates. In practice, the dependence of ε on n can be improved by numeri-
cally computing and checking if the tail bound in Lemma C in the supplementary
material [Karwa and Slavković (2015)], needed for the proof of Theorem 3, is sat-
isfied. Thus, this theorem gives practical guidelines on whether for a given ε and
n combination, the consistency result holds.

Finally, we want to point that if one is allowed to release d many times using
Algorithm 1, one can average out the noise due to the Laplace mechanism and
get consistency trivially by using the law of large numbers. This is not allowed,
as the privacy loss of each release is additive in terms of ε and would defeat the
purpose of privacy. Hence, to provide meaningful privacy, the sample size of the
private degree sequence is 1, that is, d is released only once using the Laplace
mechanism. Theorem 3 shows that consistency can still be obtained using a single
private sample of the degree sequence.

Asymptotic normality—A central limit theorem for β̂(d) was derived in Yan and
Xu (2013); see also Yan, Zhao and Qin (2015). In Theorem 4, we derive a similar
central limit result for β̂(d̂). This distribution can be used to derive differentially
private approximate confidence intervals and perform hypothesis tests on the pa-
rameter estimates. The proof is given in Section VI of the supplementary material
[Karwa and Slavković (2015)].

Let the covariance matrix of d = {d1, . . . , dn} be Vn = {vij } where

vij = expβi + βj

(1 + expβi + βj )2

and

vii =
n∑

j �=i,j=1

vij .
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THEOREM 4 (Asymptotic normality). Let L = maxi |βi | be a fixed constant
and ε = �( 1√

logn
). Let d̂ be a differentially private maximum likelihood estimate

of d obtained from Algorithm 2. Let β̂(d̂) be the MLE of the β-model obtained
using d̂ . For any fixed r ≥ 1, the random vector

(√
v11

(
β̂(d̂)1 − β1

)
, . . . ,

√
vrr

(
β̂(d̂)r − βr

))
converges to a standard multivariate normal distribution.

5. Releasing graphical degree partitions. In this section, we extend Algo-
rithm 2 to release degree partitions and compare it with previous work due to Hay
et al. (2009).

One can release the degree partition d̄ instead of the degree sequence d in cases
where the ordering of the nodes is not important, or one is interested in the degree
distribution (histogram of degrees). The latter was the motivation of Hay et al.
(2009) who instead of releasing the degree distribution, release the degree partition
d̄ which has the same global sensitivity as d; thus, Algorithm 1 can be used to
release a noisy degree partition. Let z be the noisy answer, that is, z = d̄ + e.
Hay et al. (2009) project z onto the set of integer partitions (nonincreasing integer
sequences), which is a special case of isotonic regression (henceforth referred to
as “Isotone”). They show that this reduces the L2 error. Note, however, that the
output need not be a graphical degree partition, that is, there may not exist any
simple graph corresponding to the output.

To solve this issue, we propose using the following two step algorithm (referred
to as “Isotone–Havel–Hakimi” or “Isotone–HH”) to release a graphical degree par-
tition.

1. Let z̄ be the closest integer partition to z in terms of L1 distance.

2. Let ˆ̄d be the output of Algorithm 2 on input z̄.

Unlike the case of degree sequence, this procedure does not estimate an MLE
of d̄ . However, Corollary 2 shows that the estimate is still optimal in sense of the
L1 error, and more importantly, it is a point in DPn that is closest to z̄. The proof
of Corollary 2 appears in Section VII of the supplementary material [Karwa and
Slavković (2015)].

COROLLARY 2. Let z̄ = {z̄i} be a sequence of nonincreasing integers of
length n. The degree partition of graph G output by Algorithm 2 on input z̄ is
a solution to the optimization problem argminh∈DPn

‖h − z̄‖1.

Release of synthetic graphs here follows as discussed in Section 4.2.
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6. Simulation results. In this section, we evaluate the finite sample properties
of the differentially private estimator of β . We perform two sets of experiments.
In the first set, we compare the utility of Hay et al. (2009) with our algorithm
when releasing degree partitions d̄ . In the second set of experiments, we estimate
β using the private estimate d̂ of Algorithm 2 and compare it with the estimates
obtained by using the nonprivate degree d . We use three networks, two real and
one simulated, described below.

1. Sampson Monastery Data [Sampson (1968)]—This is a real network of re-
lationship between monks in a monastery. It consists of social relations among
a set of 18 monks. The original dataset was asymmetric and collected for three
time periods. In this study, we symmetrize the network by using the upper trian-
gular adjacency matrix of time period 1. There are 18 nodes and 35 edges in this
network.

2. Karate Dataset [Zachary (1977)]—This is a real network of friendships be-
tween 34 members of a karate club at a US university in the 1970. It has 78 edges
and 34 nodes.

3. Likoma Island [Helleringer and Kohler (2007)]—This is a simulated network
of number of sexual partners of people living in the Likoma island. Helleringer
et al. (2009) describes the study and data collection procedures based on a survey.
Using the estimated degree sequence [obtained from the survey data and given in
Helleringer et al. (2009)], we simulated a random network with the fixed degree
sequence. The simulated network consists of 250 nodes and 248 edges.

Releasing d̄ to estimate β: The goal of these experiments is to compare isotone
and isotone–hh algorithms for releasing differentially private verstions of degree
partitions d̄ . We evaluate these algorithms on two metrics. The first metric is the
probability of the event R where R = {β̂(y) exists}, where y is output of the mech-
anism. The second metric is the median L1 error between d̄ and y for fixed d̄ ,
that is, err(d̄) = median[|d̄ − y|]. For each network and a fixed value of privacy
parameter ε, d̄ is released B = 500 times using isotone and our isotone–hh proce-
dure. Note that even though each release of d̄ is ε-edge differentially private, the
entire simulation study is 500ε-edge differentially private. In practice, d̄ will be
released only once. However, in the experiments, we are interested in evaluating
the frequentist properties of the procedure, and hence we release the degree parti-
tion multiple times. Using these released degree partitions, we compute P(R) and
err(d̄). This procedure is repeated for different levels of ε varying from 0 to 4, for
all three datasets. Note that a larger ε means lower noise and less privacy. Figure 1
shows a plot of P(E) and err(d̄) normalized by the number of nodes for varying
levels of ε.

As expected, for both algorithms, as ε increases, P(R) increases and the median
L1 error decreases. In many cases, the MLE of the output of isotone fails to exist as
it lies outside the convex hull of DPn. P(R) is significantly higher for isotone–hh
for all three datasets. For instance for the Karate dataset, P(R) quickly approaches
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FIG. 1. Comparison of “Isotone” and “Isotone–HH” to release d̄ . The plots show the L1 error and
the probability that the MLE exists for varying levels of ε for three different networks. (a) Karate;
(b) Sampson; (c) Likoma.

1 as ε increases, when using the isotone–hh algorithm, where as it never reaches 1
when using the isotone algorithm. The other two datasets exhibit similar behavior.
We can also see that for the Likoma dataset, the gap between the two algorithms
in terms of P(R) is much higher when compared to the other two datasets. More
specifically, when using the isotone algorithm, P(R) increases slowly with ε for
the Likoma dataset when compared to the other two datasets. On the other hand,
when using the isotone–hh algorithm, P(R) increases quickly with ε for all three
datasets. A possible explanation for the behavior of the isotone algorithm is that
the Likoma data are sparse. Recall that P(R) is 0 if the noisy sequence lies outside
Conv(DPn) (see Theorem 1). Due to the sparsity of Likoma data, the degree parti-
tion is close to the boundary of Conv(DPn). In this case, adding Laplace noise puts
the degree partition outside Conv(DPn), and the post-processing step of isotone is
not sufficient to get a sequence inside Conv(DPn), and hence P(R) = 0 for such
instances.

When considering the median L1 error, the isotone–hh algorithm not only pro-
vides an increased probability that the MLE exists, but also provides more accurate
estimates of d̄ , especially for smaller levels of ε. For instance, for ε = 0.1, for the
Karate dataset, the median L1 error per node in estimating the degree is 4 for the
isotone–hh whereas it is greater than 10 for the isotone algorithm. Thus, we can
see that isotone–hh offers more “utility” in terms of both estimating the MLE, and
also in terms of the L1 error.

Estimation of β using d: In the second set of experiments, we evaluate how
close β̂(d̂) is to β̂(d). Here, β̂(d) is the estimate of β obtained by using the original
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FIG. 2. Comparison of differentially private estimate of β with the MLE for three different datasets.
The plots show the median and the upper (95th) and the lower (2.5th) quantiles. (a) Karate data;
(b) Sampson data; (c) Likoma island data.

degree sequence and β̂(d̂) is the estimate of β obtained by using the private degree
sequence d̂ obtained from the output of Algorithm 2. Figure 2 shows a plot of the
estimates of β on the y axis and degree on the x axis. The red line indicates β̂(d)

and the green line indicates the median estimate of β̂(d̂). Also plotted are the
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upper (95th) and the lower (2.5th) quantiles of the estimates. The results show that
the median estimate of β(d̂) is very close to β(d) and lies within the 95 percent
quantiles of the estimates. Moreover, as expected, as ε increases, the variance in
the estimates get smaller. The median private estimates of β for the Karate and
the Sampson dataset are very close to the nonprivate MLE. However, the private
estimates of β for the Likoma dataset have higher variance and are farther from
MLE of β(d) due to the fact that the Likoma graph is sparse and the β-model does
not fit the original data very well. This suggests that the β-model may not be a
robust model for sparse networks in the following sense. If the network is very
sparse, the degree sequence of the original data may lie close to the boundary of
Conv(DSn). Due to this, adding or removing a small number of edges may cause
the degree sequence to end up being on the boundary.

7. Conclusions and future work. In this paper, we characterize the condi-
tions for the existence of MLE of the degree partition and the degree sequence β-
model that lead to an efficient quadratic time algorithm. Motivated by the privacy
problem of sharing confidential data under rigorous privacy guarantees, that often
falls short of satisfying data utility, we present techniques to perform valid and dif-
ferentially private statistical inference with the β-model of random graphs and to
release differentially private synthetic graphs from the β-model. We present an ef-
ficient maximum likelihood algorithm to re-estimate the original degree sequence
from a noisy sequence released by a differentially private mechanism. We showed
that this estimated degree sequence can be used to obtain a consistent and asymp-
totically normally distributed estimates of the parameters of the β-model, and thus
incur no cost due to privacy from utility perspective. Using the example of the β-
model, we showed that the noisy sufficient statistics z must be post-processed (or
projected) in an appropriate manner by taking the noise mechanism into account in
order to obtain optimal inference. In particular, by treating the privacy mechanism
as a nonlinear measurement error model, one can estimate the sufficient statistics
from their noisy counterparts and obtain optimal inference. This also ensures that
existing methods for maximum likelihood estimation do not break.

We would like to note again, in light of Corollary 1, that in general, using noisy
sufficient statistics z of any model instead of the true sufficient statistics may lead
to inconsistent estimates, in particular, nonexistence of MLE. A key issue is that
the noisy statistic z usually lies in R

n whereas the validity of many inference pro-
cedures (such as existence of MLE and consistency) is guaranteed only when z

lies in some set S ⊂ R
n, typically the convex hull of sufficient statistics of the as-

sociated model, for example, S = Conv(DSn). In some cases, z is post-processed
and projected onto a set S′; the choice of S′ is motivated with a goal of imposing
some reasonable constraint on the noisy statistic, and to reduce the L2 error be-
tween the noisy and the original statistics. But usually, S �= S′. We showed with
the degree partition example that such approach does not even guarantee the exis-
tence of MLE, let alone consistency. Thus more carefully designed and provable
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methods are needed to guarantee utility, keeping in mind the end goals of statistical
inference (e.g., estimation of parameters, and not just statistics).

We demonstrated that significant gains in utility can be made by using a two
step technique of (a) “de-noising” the noisy statistic using maximum likelihood
estimation on the measurement error model and (b) estimating the MLE of the
parameter of interest using the de-noised version of the statistic. Note that the
first step is equivalent to “projecting” the noisy statistic onto the lattice points of
the corresponding marginal polytope. While this two step procedure guarantees
that the MLE of the parameter exists, a priori, these is no reason to believe that the
estimates are also consistent and asymptotically normal. But we prove, remarkably,
in the case of β-model, that they are. We believe that this principled two step
approach could be applicable in other settings, and would lead to not only existence
of MLE but also consistency and asymptotic normality. An interesting class of
models to extend these techniques to are the general class of discrete exponential
families and in particular, various families of β-models such as the Rasch models
of bipartite graphs [e.g., Rinaldo, Petrović and Fienberg (2013)], models based on
weighted degree sequences such as those studied in Hillar and Wibisono (2013)
and degree sequences of directed graphs, and finally the class of log-linear models
where Fienberg, Rinaldo and Yang (2010) have already demonstrated some of the
above mentioned issues with estimations done in a privacy-preserving manner.

There are several challenges in extending our principles to the above mentioned
class of models. One of the key challenges is, for each of these families, finding
a description of the marginal polytope S that would allow the “de-noising” step;
the marginal polytope is a complex combinatorial object associated with the exis-
tence of MLE and is a focus of many studies; see, for example, Rinaldo, Fienberg
and Zhou (2009), but its characterization is often nontrivial. One avenue for fur-
ther work is to use the technique of asymmetrization of a polytope, as done in
this paper, to derive efficient conditions for the existence of MLE for generalized
β-models. Once such a description is found, the next challenge is to devise an ef-
ficient algorithm for “projecting” the noisy statistic onto the set of lattice points of
the marginal polytope. The projection can be informed by the measurement error
model. In our case, the significant contribution is achieved, by combing these two
steps—finding the “right” description of S and a projection algorithm—into one
step. We do this by using an efficient algorithmic description of the lattice points of
the marginal polytopes (e.g., the Havel–Hakimi algorithm [Hakimi (1962), Havel
(1955)] provides such a description for degree sequences) and somewhat surpris-
ingly, converting such a description into an efficient projection algorithm. Such
efficient descriptions do no exist for the more general class of discrete exponential
families [e.g., see Hillar and Wibisono (2013) and Engström and Norén (2010)]
and is an interesting direction of future work that goes beyond private estimation
and warrants an independent inquiry.

In cases where de-noising is not possible, for example with more general graph
statistics, how can we capture the noise infusion due to privacy or some other
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mechanism? An alternative is to develop new statistical procedures that integrate
the noise addition process into the likelihood by using missing data techniques,
for example, see Karwa, Slavković and Krivitsky (2014) for differentially private
estimation of exponential random graph models. But such solutions may be com-
putationally expensive and currently lack theoretical properties.

8. Proofs.

8.1. Proof of Theorem 1. The key technique to prove this result is to use the
polytope of degree partitions to characterize the boundary of the polytope of degree
sequence, Conv(DSn). We will need the following result from Mahadev and Peled
(1995) that characterizes the boundary of Conv(DSn).

LEMMA 4 [Lemma 3.3.13 in Mahadev and Peled (1995)]. Let d be a degree
sequence of a graph G that lies on the boundary of Conv(DSn). Then there exist
nonempty and disjoint subsets S and T of {1, . . . , n} such that:

1. S is clique of G;
2. T is a stable set of G;
3. Every vertex in S is adjacent to every vertex in (S ∪ T )c in G;
4. No vertex of T is adjacent to any vertex of (S ∪ T )c in G.

Part (i)—MLE of the degree partition β-model: By Theorem 9.13 in Barndorff-
Nielsen (1978), the MLE β̂(d̄) exists iff d̄ ∈ ri(Conv(DPn)). Here, ri(Conv(A))

denotes the relative interior of the convex hull of A. To prove the first part of the
theorem, note that the following system of inequalities along with the constraint
d1 ≤ d2 ≤ · · · ≤ dn describe the faces the convex hull of degree partitions [see
Theorem 1.3 in Bhattacharya, Sivasubramanian and Srinivasan (2006)]:

1.

d̄i > 0 and d̄i < n − 1 ∀i and,

2.

k∑
i=1

d̄i −
n∑

i=n−l+1

d̄i < k(n − 1 − l) for 1 ≤ k + 1 ≤ n.

Thus, the ordering constraints also define n − 1 faces of the polytope given by
di+1 − di ≤ 0. For a degree partition to be in the interior of Conv(DPn), it must
hold that d̄1 > d̄2 > · · · > d̄n. This is possible only if each d̄i = n − i. However,
such a sequence is not realizable (and hence not a degree sequence) as d̄n = 0
and d̄1 = n − 1. Hence, there is no degree partition that lies in the interior of
Conv(DPn), and the MLE for the degree partition β-model never exists when we
observe only one graph.
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Part (ii): We have to show that if the MLE β̂(d) exists, then d̄ satisfies the
system (2.2). Recall that the MLE β̂(d) exists iff d ∈ ri(Conv(DSn)). Also, note
that d ∈ ri(Conv(DSn)) iff∑

i∈S

di −
∑
i∈T

di < |S|(n− 1 −|T |) ∀S,T ⊂ [n], S ∪T �= ∅, S ∩T = ∅.(8.1)

For example, see Theorem 3.3.17 in Mahadev and Peled (1995).
We show that the system of inequalities in (8.1) are permutation invariant, that

is, if d satisfies (8.1), then πd also satisfies (8.1), where π is any permutation on
[n] = {1, . . . , n}. To see this, let (S,T ) = {(S, T )} be the set of all possible sets S

and T such that S,T ⊂ [n] = {1, . . . , n}, S ∪ T �= ∅, S ∩ T = ∅. First, note that
if (S, T ) ∈ (S,T ), then (T , S) ∈ (S,T ). Also, note that (S,T ) is closed under
permutations, that is, if (S, T ) ∈ (S,T ), and if π is any permutation on [n], then
(πS,πT ) ∈ (S,T ).

Now assume that d ∈ ri(Conv(DSn)), we need to show that d̄ satisfies the sys-
tem of inequalities (2.2). Note that d satisfies (8.1). By the fact that these inequal-
ities are permutation invariant, any permutation of d also satisfies (8.1). Hence, as
d̄ = πd for some permutation π , (8.1) is true for d̄ .

Taking S = {1, . . . , k} and T = {n− l+1, . . . , n} gives the second set of inequal-
ities in (2.2). Taking S = {i}, T = ∅ gives d̄i < n − 1 and taking S = ∅, T = {i}
gives d̄i > 0.

Part (iii): Assume that d̄ satisfies the system (2.2). We will show that d̄ does not
lie on the boundary of Conv(DSn). This will imply that d̄ ∈ ri(Conv(DSn)), which
implies that d̄ satisfies the inequalities (8.1). By the permutation invariance of the
system (8.1), πd̄ = d also satisfies (8.1), from which the result follows.

All that is remaining to be shown is that d̄ does not lie on the boundary of
Conv(DSn). The boundary of Conv(DSn) is characterized by Lemma 4. Let G be
a graph that realizes d̄ , hence G is such that there exist disjoint subsets of {1, . . . , n}
S and T satisfying conditions of Lemma 4.

Let i ∈ S, then d̄i ≥ (|S| − 1) + |(S ∪ T )c| = n − |T | − 1 (by conditions 1 and
3 of Lemma 4). Let i ∈ T then d̄i ≤ |S|. Finally if i ∈ (S ∪ T )c, then d̄i ≥ |S| (by
condition 3 in Lemma 4) and d̄i ≤ |S|+ |(S ∪T )c|−1 = n−|T |−1 (by condition
4 in Lemma 4). Putting these together, we get the following:

0 ≤ d̄i ≤ |S|, i ∈ T ,

|S| ≤ d̄i ≤ n − |T | − 1, i ∈ (S ∪ T )c,(8.2)

n − |T | − 1 ≤ d̄i ≤ n − 1, i ∈ S.

Now note that d̄1 ≤ d̄2 ≤ · · · ≤ d̄n. Hence, the only possible choice for S and
T are S = {1, . . . , k} and T = {n − l + 1, . . . , n} where k = |S|, l = |T |, 1 ≤ k +
l ≤ n. No other combinations of S and T exist, due to the characterization of d̄

given in equation (8.2). Next, since d̄ is on the boundary of Conv(DSn), it holds
that

∑
i∈S di − ∑

i∈T di = |S|(n − 1 − |T |) for all such S and T described above.
However, we are given that this is not true. Hence d̄ must lie in the interior of
Conv(DSn).
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SUPPLEMENTARY MATERIAL

Supplement to “Inference using noisy degrees: Differentially Private β-
model and synthetic graphs” (DOI: 10.1214/15-AOS1358SUPP; .pdf). This sup-
plementary material contains the proof of the key Theorems 2, 3 and 4 from the
paper.
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