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RATE-OPTIMAL GRAPHON ESTIMATION

BY CHAO GAO, YU LU AND HARRISON H. ZHOU

Yale University

Network analysis is becoming one of the most active research areas in
statistics. Significant advances have been made recently on developing theo-
ries, methodologies and algorithms for analyzing networks. However, there
has been little fundamental study on optimal estimation. In this paper, we es-
tablish optimal rate of convergence for graphon estimation. For the stochastic
block model with k clusters, we show that the optimal rate under the mean
squared error is n−1 log k + k2/n2. The minimax upper bound improves the
existing results in literature through a technique of solving a quadratic equa-
tion. When k ≤ √

n logn, as the number of the cluster k grows, the minimax
rate grows slowly with only a logarithmic order n−1 logk. A key step to estab-
lish the lower bound is to construct a novel subset of the parameter space and
then apply Fano’s lemma, from which we see a clear distinction of the non-
parametric graphon estimation problem from classical nonparametric regres-
sion, due to the lack of identifiability of the order of nodes in exchangeable
random graph models. As an immediate application, we consider nonpara-
metric graphon estimation in a Hölder class with smoothness α. When the
smoothness α ≥ 1, the optimal rate of convergence is n−1 logn, independent
of α, while for α ∈ (0,1), the rate is n−2α/(α+1), which is, to our surprise,
identical to the classical nonparametric rate.

1. Introduction. Network analysis [20] has gained considerable research in-
terests in both theories [7] and applications [19, 49]. A lot of recent work has been
focusing on studying networks from a nonparametric perspective [7], following the
deep advancement in exchangeable arrays [3, 14, 29, 31]. In this paper, we study
the fundamental limits in estimating the underlying generating mechanism of net-
work models, called graphon. Though various algorithms have been proposed and
analyzed [2, 9, 10, 44, 50], it is not clear whether the convergence rates obtained
in these works can be improved, and not clear what the differences and connec-
tions are between nonparametric graphon estimation and classical nonparametric
regression. The results obtained in this paper provide answers to those questions.
We found many existing results in literature are not sharp. Nonparametric graphon
estimation can be seen as nonparametric regression without knowing design. When
the smoothness of the graphon is small, the minimax rate of graphon estimation
is identical to that of nonparametric regression. This is surprising, since graphon

Received October 2014; revised June 2015.
MSC2010 subject classifications. 60G05.
Key words and phrases. Network, graphon, stochastic block model, nonparametric regression,

minimax rate.

2624

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/15-AOS1354
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


RATE-OPTIMAL GRAPHON ESTIMATION 2625

estimation seems to be a more difficult problem, for which the design is not ob-
served. When the smoothness is high, we show that the minimax rate does not
depend on the smoothness anymore, which provides a clear distinction between
nonparametric graphon estimation and nonparametric regression.

We consider an undirected graph of n nodes. The connectivity can be encoded
by an adjacency matrix {Aij } taking values in {0,1}n×n. The value of Aij stands
for the presence or the absence of an edge between the ith and the j th nodes. The
model in this paper is Aij = Aji ∼ Bernoulli(θij ) for 1 ≤ j < i ≤ n, where

θij = f (ξi, ξj ), i �= j ∈ [n].(1.1)

The sequence {ξi} are random variables sampled from a distribution Pξ supported
on [0,1]n. A common choice for the probability Pξ is i.i.d. uniform distribution
on [0,1]. In this paper, we allow Pξ to be any distribution, so that the model (1.1)
is studied to its full generality. Given {ξi}, we assume {Aij } are independent for
1 ≤ j < i ≤ n, and adopt the convention that Aii = 0 for each i ∈ [n]. The nonpara-
metric model (1.1) is inspired by the advancement of graph limit theory [14, 35,
36]. The function f (x, y), which is assumed to be symmetric, is called graphon.
This concept plays a significant role in network analysis. Since graphon is an ob-
ject independent of the network size n, it gives a natural criterion to compare net-
works of different sizes. Moreover, model based prediction and testing can be done
through graphon [34]. Besides nonparametric models, various parametric models
have been proposed on the matrix {θij } to capture different aspects of the network
[1, 24, 26–28, 32, 42, 43].

The model (1.1) has a close relation to the classical nonparametric regression
problem. We may view the setting (1.1) as modeling the mean of Aij by a re-
gression function f (ξi, ξj ) with design {(ξi, ξj )}. In a regression problem, the
design points {(ξi, ξj )} are observed, and the function f is estimated from the
pair {(ξi, ξj ),Aij }. In contrast, in the graphon estimation setting, {(ξi, ξj )} are la-
tent random variables, and f can only be estimated from the response {Aij }. This
causes an identifiability problem, because without observing the design, there is
no way to associate the value of f (x, y) with (x, y). In this paper, we consider the
following loss function:

1

n2

∑
i,j∈[n]

(θ̂ij − θij )
2

to overcome the identifiability issue. This is identical to the loss function widely
used in the classical nonparametric regression problem with the form

1

n2

∑
i,j∈[n]

(
f̂ (ξi, ξj ) − f (ξi, ξj )

)2
.

Even without observing the design {(ξi, ξj )}, it is still possible to estimate the
matrix {θij } by exploiting its underlying structure modeled by (1.1).
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We first consider {θij } of a block structure. This stochastic block model, pro-
posed by [27], is serving as a standard data generating process in network commu-
nity detection problem [4, 7, 8, 30, 33, 45]. We denote the parameter space for {θij }
by �k , where k is the number of clusters in the stochastic block model. In total,
there are an order of k2 number of blocks in {θij }. The value of θij only depends
on the clusters that the ith and the j th nodes belong to. The exact definition of �k

is given in Section 2.2. For this setting, the minimax rate for estimating the matrix
{θij } is as follows.

THEOREM 1.1. Under the stochastic block model, we have

inf
θ̂

sup
θ∈�k

E

{
1

n2

∑
i,j∈[n]

(θ̂ij − θij )
2
}

� k2

n2 + logk

n
,

for any 1 ≤ k ≤ n.

The convergence rate has two terms. The first term k2/n2 is due to the fact
that we need to estimate an order of k2 number of unknown parameters with an
order of n2 number of observations. The second term n−1 log k, which we coin as
the clustering rate, is the error induced by the lack of identifiability of the order
of nodes in exchangeable random graph models. Namely, it is resulted from the
unknown clustering structure of the n nodes. This term grows logarithmically as
the number of clusters k increases, which is different from what is obtained in
literature [10] based on lower rank matrix estimation.

We also study the minimax rate of estimating {θij } modeled by the relation (1.1)
with f belonging to a Hölder class Fα(M) with smoothness α. The class Fα(M)

is rigorously defined in Section 2.3. The result is stated in the following theorem.

THEOREM 1.2. Consider the Hölder class Fα(M), defined in Section 2.3. We
have

inf
θ̂

sup
f ∈Fα(M)

sup
ξ∼Pξ

E

{
1

n2

∑
i,j∈[n]

(θ̂ij − θij )
2
}

�
⎧⎪⎨
⎪⎩

n−2α/(α+1), 0 < α < 1,
logn

n
, α ≥ 1,

where the expectation is jointly over {Aij } and {ξi}.
The approximation of piecewise block function to an α-smooth graphon f

yields an additional error at the order of k−2α (see Lemma 2.1). In view of the
minimax rate in Theorem 1.1, picking the best k to trade off the sum of the three
terms k−2α , k2/n2, and n−1 log k gives the minimax rate in Theorem 1.2.

The minimax rate reveals a new phenomenon in nonparametric estimation.
When the smoothness parameter α is smaller than 1, the optimal rate of con-
vergence is the typical nonparametric rate. Note that the typical nonparamet-
ric rate is N−2α/(2α+d) [47], where N is the number of observations and d is
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the function dimension. Here, we are in a two-dimensional setting with number
of observations N � n2 and dimension d = 2. Then the corresponding rate is
N−2α/(2α+d) � n−2α/(α+1). Surprisingly, in Theorem 1.2 for the regime α ∈ (0,1),
we get the exact same nonparametric minimax rate, though we are not given the
knowledge of the design {(ξi, ξj )}. The cost of not observing the design is reflected
in the case with α ≥ 1. In this regime, the smoothness of the function does not help
improve the rate anymore. The minimax rate is dominated by n−1 logn, which is
essentially contributed by the logarithmic cardinality of the set of all possible as-
signments of n nodes to k clusters. A distinguished feature of Theorem 1.2 to note
is that we do not impose any assumption on the distribution Pξ .

To prove Theorems 1.1 and 1.2, we develop a novel lower bound argument (see
Sections 3.3 and 4.2), which allows us to correctly obtain the packing number of
all possible assignments. The packing number characterizes the difficulty brought
by the ignorance of the design {(ξi, ξj )} in the graphon model or the ignorance
of clustering structure in the stochastic block model. Such argument may be of
independent interest, and we expect its future applications in deriving minimax
rates of other network estimation problems.

Our work on optimal graphon estimation is closely connected to a growing
literature on nonparametric network analysis. For estimating the matrix {θij } of
stochastic block model, [10] viewed {θij } as a rank-k matrix and applied singu-
lar value thresholding on the adjacency matrix. The convergence rate obtained is√

k/n, which is not optimal compared with the rate n−1 logk + k2/n2 in The-
orem 1.1. For nonparametric graphon estimation, [50] considered estimating f

in a Hölder class with smoothness α and obtained the rate
√

n−α/2 logn under

a closely related loss function. The work by [9] obtained the rate n−1 logn for
estimating a Lipschitz f , but they imposed strong assumptions on f . Namely,
they assumed L2|x − y| ≤ |g(x) − g(y)| ≤ L1|x − y| for some constants L1,L2,
with g(x) = ∫ 1

0 f (x, y) dy. Note that this condition excludes the stochastic block
model, for which g(x) − g(y) = 0 when different x and y are in the same clus-
ter. Local asymptotic normality for stochastic block model was established in [6].
A method of moment via tensor decomposition was proposed by [5].

Organization. The paper is organized as follows. In Section 2, we state the
main results of the paper, including both upper and lower bounds for stochas-
tic block model and nonparametric graphon estimation. Section 3 is a discussion
section, where we discuss possible generalization of the model, relation to non-
parametric regression without knowing design and lower bound techniques used
in network analysis. The main body of the technical proofs are presented in Sec-
tion 4, and the remaining proofs are stated in the supplementary material [15].

Notation. For any positive integer d , we use [d] to denote the set {1,2, . . . , d}.
For any a, b ∈ R, let a ∨ b = max(a, b) and a ∧ b = min(a, b). The floor function
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�a� is the largest integer no greater than a, and the ceiling function 
a� is the
smallest integer no less than a. For any two positive sequences {an} and {bn},
an � bn means there exists a constant C > 0 independent of n, such that C−1bn ≤
an ≤ Cbn for all n. For any {aij }, {bij } ∈ Rn×n, we denote the �2 norm by ‖a‖ =√∑

i,j∈[n] a2
ij and the inner product by 〈a, b〉 = ∑

i,j∈[n] aij bij . Given any set S,
|S| denotes its cardinality, and I{x ∈ S} stands for the indicator function which
takes value 1 when x ∈ S and takes value 0 when x /∈ S. For a metric space (T ,ρ),
the covering number N (ε, T ,ρ) is the smallest number of balls with radius ε and
centers in T to cover T , and the packing number M(ε, T ,ρ) is the largest number
of points in T that are at least ε away from each other. The symbols P and E stand
for generic probability and expectation, whenever the distribution is clear from the
context.

2. Main results. In this section, we present the main results of the paper.
We first introduce the estimation procedure in Section 2.1. The minimax rates
of stochastic block and nonparametric graphon estimation are stated in Sec-
tions 2.2 and 2.3, respectively.

2.1. Methodology. We are going to propose an estimator for both stochastic
block model and nonparametric graphon estimation under Hölder smoothness. To
introduce the estimator, let us define the set Zn,k = {z : [n] → [k]} to be the col-
lection of all possible mappings from [n] to [k] with some integers n and k. Given
a z ∈ Zn,k , the sets {z−1(a) : a ∈ [k]} form a partition of [n], in the sense that⋃

a∈[k] z−1(a) = [n] and z−1(a) ∩ z−1(b) = ∅ for any a �= b ∈ [k]. In other words,
z defines a clustering structure on the n nodes. It is easy to see that the cardinality
of Zn,k is kn. Given a matrix {ηij } ∈ Rn×n, and a partition function z ∈ Zn,k , we
use the following notation to denote the block average on the set z−1(a) × z−1(b).
That is,

η̄ab(z) = 1

|z−1(a)||z−1(b)|
∑

i∈z−1(a)

∑
j∈z−1(b)

ηij for a �= b ∈ [k],(2.1)

and when |z−1(a)| > 1,

η̄aa(z) = 1

|z−1(a)|(|z−1(a)| − 1)

∑
i �=j∈z−1(a)

ηij for a ∈ [k].(2.2)

For any Q = {Qab} ∈ Rk×k and z ∈ Zn,k , define the objective function

L(Q,z) = ∑
a,b∈[k]

∑
(i,j)∈z−1(a)×z−1(b)

i �=j

(Aij − Qab)
2.
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For any optimizer of the objective function,

(Q̂, ẑ) ∈ argmin
Q∈Rk×k,z∈Zn,k

L(Q, z),(2.3)

the estimator of θij is defined as

θ̂ij = Q̂ẑ(i)ẑ(j), i > j,(2.4)

and θ̂ij = θ̂j i for i < j . Set the diagonal element by θ̂ii = 0. The procedure (2.4)
can be understood as first clustering the data by an estimated ẑ and then estimating
the model parameters via block averages. By the least squares formulation, it is
easy to observe the following property.

PROPOSITION 2.1. For any minimizer (Q̂, ẑ), the entries of Q̂ has represen-
tation

Q̂ab = Āab(ẑ),(2.5)

for all a, b ∈ [k].

The representation of the solution (2.5) shows that the estimator (2.4) is essen-
tially doing a histogram approximation after finding the optimal cluster assignment
ẑ ∈ Zn,k according to the least squares criterion (2.3). In the classical nonpara-
metric regression problem, it is known that a simple histogram estimator cannot
achieve optimal convergence rate for α > 1 [47]. However, we are going to show
that this simple histogram estimator achieves optimal rates of convergence under
both stochastic block model and nonparametric graphon estimation settings.

Similar estimators using the Bernoulli likelihood function have been proposed
and analyzed in the literature [7, 44, 50, 55]. Instead of using the likelihood func-
tion of Bernoulli distribution, the least squares estimator (2.3) can be viewed as
maximizing Gaussian likelihood. This allows us to obtain optimal convergence
rates with cleaner analysis.

2.2. Stochastic block model. In the stochastic block model setting, each node
i ∈ [n] is associated with a label a ∈ [k], indicating its cluster. The edge Aij is a
Bernoulli random variable with mean θij . The value of θij only depends on the
clusters of the ith and the j th nodes. We assume {θij } is from the following pa-
rameter space:

�k = {{θij } ∈ [0,1]n×n : θii = 0, θij = Qab = Qba

for (i, j) ∈ z−1(a) × z−1(b) for some Qab ∈ [0,1] and z ∈ Zn,k

}
.

Namely, the partition function z assigns cluster to each node, and the value of
Qab measures the intensity of link between the ath and the bth clusters. The least
squares estimator (2.3) attains the following convergence rate for estimating {θij }.
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THEOREM 2.1. For any constant C′ > 0, there is a constant C > 0 only de-
pending on C′, such that

1

n2

∑
i,j∈[n]

(θ̂ij − θij )
2 ≤ C

(
k2

n2 + logk

n

)
,

with probability at least 1−exp(−C′n log k), uniformly over θ ∈ �k . Furthermore,
we have

sup
θ∈�k

E

{
1

n2

∑
i,j∈[n]

(θ̂ij − θij )
2
}

≤ C1

(
k2

n2 + logk

n

)
,

for all k ∈ [n] with some universal constant C1 > 0.

Theorem 2.1 characterizes different convergence rates for k in different regimes.
Suppose k � nδ for some δ ∈ [0,1]. Then the convergence rate in Theorem 2.1 is

k2

n2 + log k

n
�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n−2, k = 1,

n−1, δ = 0, k ≥ 2,

n−1 logn, δ ∈ (0,1/2],
n−2(1−δ), δ ∈ (1/2,1].

(2.6)

The result completely characterizes the convergence rates for stochastic block
model with any possible number of clusters k. Depending on whether k is small,
moderate or large, the convergence rates behave differently.

The convergence rate, in terms of k, has two parts. The first part k2/n2 is called
the nonparametric rate. It is determined by the number of parameters and the num-
ber of observations of the model. For the stochastic block model with k clusters,
the number of parameters is k(k + 1)/2 � k2 and the number of observations is
n(n + 1)/2 � n2. The second part n−1 log k is called the clustering rate. Its pres-
ence is due to the unknown labels of the n nodes. Our result shows the clustering
rate is logarithmically depending on the number of clusters k. From (2.6), we ob-
serve that when k is small, the clustering rate dominates. When k is large, the
nonparametric rate dominates.

To show that the rate in Theorem 2.1 cannot be improved, we obtain the follow-
ing minimax lower bound.

THEOREM 2.2. There exists a universal constant C > 0, such that

inf
θ̂

sup
θ∈�k

P

{
1

n2

∑
i,j∈[n]

(θ̂ij − θij )
2 ≥ C

(
k2

n2 + log k

n

)}
≥ 0.8,

and

inf
θ̂

sup
θ∈�k

E

{
1

n2

∑
i,j∈[n]

(θ̂ij − θij )
2
}

≥ C

(
k2

n2 + log k

n

)
,

for any k ∈ [n].
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The upper bound of Theorem 2.1 and the lower bound of Theorem 2.2 immedi-
ately imply the minimax rate in Theorem 1.1.

2.3. Nonparametric graphon estimation. Let us proceed to nonparametric
graphon estimation. For any i �= j , Aij is sampled from the following process:

(ξ1, . . . , ξn) ∼ Pξ , Aij |(ξi, ξj ) ∼ Bernoulli(θij ) where θij = f (ξi, ξj ).

For i ∈ [n], Aii = θii = 0. Conditioning on (ξ1, . . . , ξn), Aij is independent across
i, j ∈ [n]. To completely specify the model, we need to define the function class
of f on [0,1]2. Since f is symmetric, we only need to specify its value on D =
{(x, y) ∈ [0,1]2 : x ≥ y}. Define the derivative operator by

∇jkf (x, y) = ∂j+k

(∂x)j (∂y)k
f (x, y),

and we adopt the convention ∇00f (x, y) = f (x, y). The Hölder norm is defined
as

‖f ‖Hα = max
j+k≤�α� sup

x,y∈D
∣∣∇jkf (x, y)

∣∣

+ max
j+k=�α� sup

(x,y) �=(x′,y′)∈D
|∇jkf (x, y) − ∇jkf (x′, y′)|
(|x − x′| + |y − y′|)α−�α� .

The Hölder class is defined by

Hα(M) = {‖f ‖Hα ≤ M : f (x, y) = f (y, x) for x ≥ y
}
,

where α > 0 is the smoothness parameter and M > 0 is the size of the class, which
is assumed to be a constant. When α ∈ (0,1], a function f ∈ Hα(M) satisfies the
Lipschitz condition∣∣f (x, y) − f

(
x′, y′)∣∣ ≤ M

(∣∣x − x′∣∣+ ∣∣y − y′∣∣)α,(2.7)

for any (x, y), (x′, y′) ∈ D. In the network model, the graphon f is assumed to
live in the following class:

Fα(M) = {
0 ≤ f ≤ 1 : f ∈ Hα(M)

}
.

We have mentioned that the convergence rate of graphon estimation is essentially
due to the stochastic block model approximation of f in a Hölder class. This in-
tuition is established by the following lemma, whose proof is given in the supple-
mentary material [15].

LEMMA 2.1. There exists z∗ ∈Zn,k , satisfying

1

n2

∑
a,b∈[k]

∑
{i �=j :z∗(i)=a,z∗(j)=b}

(
θij − θ̄ab

(
z∗))2 ≤ CM2

(
1

k2

)α∧1

,

for some universal constant C > 0.
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The graph limit theory [36] suggests Pξ to be an i.i.d. uniform distribution on
the interval [0,1]. For the estimating procedure (2.3) to work, we allow Pξ to be
any distribution. The upper bound is attained over all distributions Pξ uniformly.
Combining Lemma 2.1 and Theorem 2.1 in an appropriate manner, we obtain the
convergence rate for graphon estimation by the least squares estimator (2.3).

THEOREM 2.3. Choose k = 
n1/(α∧1+1)�. Then for any C′ > 0, there exists a
constant C > 0 only depending on C′ and M , such that

1

n2

∑
i,j∈[n]

(θ̂ij − θij )
2 ≤ C

(
n−2α/(α+1) + logn

n

)
,

with probability at least 1 − exp(−C′n), uniformly over f ∈ Fα(M) and Pξ . Fur-
thermore,

sup
f ∈Fα(M)

sup
Pξ

E

{
1

n2

∑
i,j∈[n]

(θ̂ij − θij )
2
}

≤ C1

(
n−2α/(α+1) + logn

n

)
,

for some other constant C1 > 0 only depending on M . Both the probability and
the expectation are jointly over {Aij } and {ξi}.

Similar to Theorem 2.1, the convergence rate of Theorem 2.3 has two parts.
The nonparametric rate n−2α/(α+1), and the clustering rate n−1 logn. Note that
the clustering rates in both theorems are identical because n−1 logn � n−1 logk

under the choice k = 
n1/(α∧1+1)�. An interesting phenomenon to note is that the
smoothness index α only plays a role in the regime α ∈ (0,1). The convergence
rate is always dominated by n−1 logn when α ≥ 1.

In order to show the rate of Theorem 2.3 is optimal, we need a lower bound over
the class Fα(M) and over all Pξ . To be specific, we need to show

inf
θ̂

sup
f ∈Fα(M)

sup
Pξ

E

{
1

n2

∑
i,j∈[n]

(θ̂ij − θij )
2
}

≥ C

(
n−2α/(α+1) + logn

n

)
,(2.8)

for some constant C > 0. In fact, the lower bound we obtained is stronger than
(2.8) in the sense that it holds for a subset of the space of probabilities on {ξi}.
The subset P requires the sampling points {ξi} to well cover the interval [0,1]
for {f (ξi, ξj )}i,j∈[n] to be good representatives of the whole function f . For each
a ∈ [k], define the interval

Ua =
[
a − 1

k
,
a

k

)
.(2.9)

We define the distribution class by

P =
{
Pξ : Pξ

(
λ1n

k
≤

n∑
i=1

I{ξi ∈ Ua} ≤ λ2n

k
for any a ∈ [k]

)
> 1 − exp

(−nδ)},
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for some positive constants λ1, λ2 and some arbitrary small constant δ ∈ (0,1).
Namely, for each interval Ua , it contains roughly n/k observations. By applying
standard concentration inequality, it can be shown that the i.i.d. uniform distribu-
tion on {ξi} belongs to the class P .

THEOREM 2.4. There exists a constant C > 0 only depending on M,α, such
that

inf
θ̂

sup
f ∈Fα(M)

sup
Pξ∈P

P

{
1

n2

∑
i,j∈[n]

(θ̂ij − θij )
2 ≥ C

(
n−2α/(α+1) + logn

n

)}
≥ 0.8,

and

inf
θ̂

sup
f ∈Fα(M)

sup
Pξ∈P

E

{
1

n2

∑
i,j∈[n]

(θ̂ij − θij )
2
}

≥ C

(
n−2α/(α+1) + logn

n

)
,

where the probability and expectation are jointly over {Aij } and {ξi}.

The proof of Theorem 2.4 is given in the supplementary material [15]. The min-
imax rate in Theorem 1.2 is an immediate consequence of Theorems 2.3 and 2.4.

3. Discussion.

3.1. More general models. The results in this paper assume symmetry on the
graphon f and the matrix {θij }. Such assumption is naturally made in the context
of network analysis. However, these results also hold under more general models.
We may consider a slightly more general version of (1.1) as

θij = f (ξi, ηj ), 1 ≤ i, j ≤ n,

with {ξi} and {ηj } sampled from Pξ and Pη, respectively, and the function f is not
necessarily symmetric. To be specific, let us redefine the Hölder norm ‖ · ‖Hα by
replacing D with [0,1]2 in its original definition in Section 2.3. Then we consider
the function class

F ′
α(M) = {

0 ≤ f ≤ 1 : ‖f ‖Hα ≤ M
}
.

The minimax rate for this class is stated in the following theorem without proof.

THEOREM 3.1. Consider the function class F ′
α(M) with α > 0 and M > 0.

We have

inf
θ̂

sup
f ∈F ′

α(M)

sup
ξ∼Pξ

η∼Pη

E

{
1

n2

∑
i,j∈[n]

(θ̂ij − θij )
2
}

�
⎧⎪⎨
⎪⎩

n−2α/(α+1), 0 < α < 1,
logn

n
, α ≥ 1,

where the expectation is jointly over {Aij }, {ξi} and {ηj }.
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Similarly, we may generalize the stochastic block model by the parameter space

�
asym
kl = {{θij } ∈ [0,1]n×m : θij = Qab for (i, j) ∈ z−1

1 (a) × z−1
2 (b)

with some Qab ∈ [0,1], z1 ∈ Zn,k and z2 ∈ Zm,l

}
.

Such model naturally arises in the contexts of biclustering [11, 25, 38, 40] and
matrix organization [13, 17, 18], where symmetry of the model is not assumed.
Under such extension, we can show that a similar minimax rate as in Theorem 1.1
as follows.

THEOREM 3.2. Consider the parameter space �
asym
kl and assume log k �

log l. We have

inf
θ̂

sup
θ∈�

asym
kl

E

{
1

nm

∑
i∈[n]
j∈[m]

(θ̂ij − θij )
2
}

� kl

nm
+ logk

m
+ log l

n
,

for any 1 ≤ k ≤ n and 1 ≤ l ≤ m.

The lower bounds of Theorems 3.1 and 3.2 are directly implied by viewing
the symmetric parameter spaces as subsets of the asymmetric ones. For the upper
bound, we propose a modification of the least squares estimator in Section 2.1.
Consider the criterion function

Lasym(Q, z1, z2) = ∑
(a,b)∈[k]×[l]

∑
(i,j)∈z−1

1 (a)×z−1
2 (b)

(Aij − Qab)
2.

For any (Q̂, ẑ1, ẑ2) ∈ argminQ∈Rk×l ,z1∈Zn,k,z2∈Zm,l
L(Q, z1, z2), define the estima-

tor of θij by

θ̂ij = Q̂ẑ1(i)ẑ2(j) for all (i, j) ∈ [n] × [m].
Using the same proofs of Theorems 2.1 and 2.3, we can obtain the upper bounds.

3.2. Nonparametric regression without knowing design. The graphon estima-
tion problem is closely related to the classical nonparametric regression problem.
This section explores their connections and differences to bring better understand-
ings of both problems. Namely, we study the problem of nonparametric regression
without observing the design. First, let us consider the one-dimensional regression
problem

yi = f (ξi) + zi, i ∈ [n],
where {ξi} are sampled from some Pξ , and zi are i.i.d. N(0,1) variables.
A nonparametric function estimator f̂ estimates the function f from the pairs
{(ξi, yi)}. For Hölder class with smoothness α, the minimax rate under the loss
1
n

∑
i∈[n](f̂ (ξi) − f (ξi))

2 is at the order of n−2α/(2α+1) [47]. However, when the
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design {ξi} is not observed, the minimax rate is at a constant order. To see this fact,
let us consider a closely related problem

yi = θi + zi, i ∈ [n],
where we assume θ ∈ �2. The parameter space �2 is defined as a subset of [0,1]n
with {θi} that can only take two possible values q1 and q2. It can be viewed as a
one-dimensional version of stochastic block model. We can show that

inf
θ̂

sup
θ∈�2

E

{
1

n

∑
i∈[n]

(θ̂i − θi)
2
}

� 1.

The upper bound is achieved by letting θ̂i = yi for each i ∈ [n]. To see the lower
bound, we may fix q1 = 1/4 and q2 = 1/2. Then the problem is reduced to n in-
dependent two-point testing problems between N(1/4,1) and N(1/2,1) for each
i ∈ [n]. It is easy to see that each testing problem contributes to an error at the or-
der of a constant, which gives the lower bound of a constant order. This leads to a
constant lower bound for the original regression problem by using the embedding
technique in the proof of Theorem 2.4, which shows that �2 is a smaller space than
a Hölder class on a subset of [n]. Thus, 1 is also a lower bound for the regression
problem without knowing design.

In contrast to the one-dimensional problem, we can show that a two-dimensional
nonparametric regression without knowing design is more informative. Consider

yij = f (ξi, ξj ) + zij , i, j ∈ [n],
where {ξi} are sampled from some Pξ , and zij are i.i.d. N(0,1) variables. Let us
consider the Hölder class H′

α(M) = {f : ‖f ‖Hα ≤ M} with Hölder norm ‖ · ‖Hα

defined in Section 3.1. When the design {ξi} is known, the minimax rate under
the loss 1

n2

∑
i,j∈[n](f̂ (ξi, ξj )− f (ξi, ξj ))

2 is at the order of n−2α/(α+1). When the
design is unknown, the minimax rate is stated in the following theorem.

THEOREM 3.3. Consider the Hölder class H′
α(M) for α > 0 and M > 0. We

have

inf
f̂

sup
f ∈H′

α(M)

sup
Pξ

E

{
1

n2

∑
i,j∈[n]

(
f̂ (ξi, ξj ) − f (ξi, ξj )

)2
}

�
⎧⎪⎨
⎪⎩

n−2α/(α+1), 0 < α < 1,
logn

n
, α ≥ 1,

where the expectation is jointly over {Aij } and {ξi}.
The minimax rate is identical to that of Theorem 1.2, which demonstrates the

close relation between nonparametric graphon estimation and nonparametric re-
gression without knowing design. The proof of this result is similar to the proofs
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of Theorems 2.3 and 2.4, and is omitted in the paper. One simply needs to replace
the Bernoulli analysis by the corresponding Gaussian analysis in the proof. Com-
pared with the rate for one-dimensional regression without knowing design, the
two-dimensional minimax rate is more interesting. It shows that the ignorance of
design only matters when α ≥ 1. For α ∈ (0,1), the rate is exactly the same as the
case when the design is known.

The main reason for the difference between the one-dimensional and the two-
dimensional problems is that the form of {(ξi, ξj )} implicitly imposes more struc-
ture. To illustrate this point, let us consider the following two-dimensional problem

yij = f (ξij ) + zij , i, j ∈ [n],
where ξij ∈ [0,1]2 and {ξij } are sampled from some distribution. It is easy to see
that this is equivalent to the one-dimensional problem with n2 observations and
the minimax rate is at the order of a constant. The form {(ξi, ξj )} implies that
the lack of identifiability caused by the ignorance of design is only resulted from
row permutation and column permutation, and thus it is more informative than the
design {ξij }.

3.3. Lower bound for finite k. A key contribution of the paper lies in the proof
of Theorem 2.2, where we establish the lower bound k2/n2 +n−1 logk (especially
the n−1 logk part) via a novel construction. To better understand the main idea
behind the construction, we present the analysis for a finite k in this section. When
2 ≤ k ≤ O(1), the minimax rate becomes n−1. To prove this lower bound, it is
sufficient to consider the parameter space �k with k = 2. Let us define

Q =

⎡
⎢⎢⎣

1

2

1

2
+ c√

n

1

2
+ c√

n

1

2

⎤
⎥⎥⎦ ,

for some c > 0 to be determined later. Define the subspace

T = {{θij } ∈ [0,1]n×n : θij = Qz(i)z(j) for some z ∈ Zn,2
}
.

It is easy to see that T ⊂ �2. With a fixed Q, the set T has a one-to-one correspon-
dence with Zn,2. Let us define the collection of subsets S = {S : S ⊂ [n]}. For any
z ∈Zn,2, it induces a partition {z−1(1), z−1(2)} on the set [n]. This corresponds to
{S,Sc} for some S ∈ S . With this observation, we may rewrite T as

T =
{
{θij } ∈ [0,1]n×n : θij = 1

2
for (i, j) ∈ (S × S) ∪ (

Sc × Sc),
θij = 1

2
+ c√

n
for (i, j) ∈ (

S × Sc)∪ (
Sc × S

)
, with some S ∈ S

}
.

The subspace T characterizes the difficulty of the problem due to the ignorance
of the clustering structure {S,Sc} of the n nodes. Such difficulty is central in the
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estimation problem of network analysis. We are going to use Fano’s lemma (Propo-
sition 4.1) to lower bound the risk. Then it is sufficient to upper bound the KL di-
ameter supθ,θ ′∈T D(Pθ‖Pθ ′) and lower bound the packing number M(ε, T ,ρ) for
some appropriate ε and the metric ρ(θ, θ ′) = n−1‖θ − θ ′‖. Using Proposition 4.2,
we have

sup
θ,θ ′∈T

D(Pθ‖Pθ ′) ≤ sup
θ,θ ′∈T

8‖θ − θ ′‖2 ≤ 8c2n.

To obtain a lower bound for M(ε, T ,ρ), note that for θ, θ ′ ∈ T associated with
S,S′ ∈ S , we have

n2ρ2(θ, θ ′) = 2c2

n

∣∣S
S′∣∣(n − ∣∣S
S′∣∣),
where A
B is the symmetric difference defined as (A ∩ Bc) ∪ (Ac ∩ B). By
viewing |S
S′| as the Hamming distance of the corresponding indicator func-
tions of the sets, we can use the Varshamov–Gilbert bound (Lemma 4.5) to pick
S1, . . . , SN ⊂ S satisfying

1
4n ≤ |Si
Sj | ≤ 3

4n for i �= j ∈ [N ],
with N ≥ exp(c1n), for some c1 > 0. Hence, we have

M(ε, T ,ρ) ≥ N ≥ exp(c1n) with ε2 = c2

8n
.

Applying (4.9) of Proposition 4.1, we have

inf
θ̂

sup
θ∈�2

P

{
1

n2

∑
i,j∈[n]

(θ̂ij − θij )
2 ≥ c2

32n

}
≥ 1 − 8c2n + log 2

c1n
≥ 0.8,

where the last inequality holds by choosing a sufficiently small c. Note that the
above derivation ignores the fact that θii = 0 for i ∈ [n] for the sake of clear presen-
tation. The argument can be easily made rigorous with slight modification. Thus,
we prove the lower bound for a finite k. For k growing with n, a more delicate
construction is stated in Section 4.2.

3.4. Application to link prediction. An important application of Theorems 2.1
and 2.3 is link prediction. The link prediction or the network completion problem
[21, 37, 54] has practical significances. Instead of observing the whole adjacency
matrix, we observe {Aij : (i, j) ∈ �} for some � ⊂ [n] × [n]. The goal is to infer
the unobserved edges. One example is the biological network. Scientific study
showed that only 80% of the molecular interactions in cells of Yeast are known
[52]. Accurate prediction of those unseen interactions can greatly reduce the costs
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of biological experiments. To tackle the problem of link prediction, we consider a
modification of the constrained least square program, which is defined as

min‖θ‖2 − 2n2

|�|
∑

(i,j)∈�

Aij θij s.t. θ ∈ �k.(3.1)

The estimator θ̂ obtained from solving (3.1) takes advantage of the underlying
block structure of the network, and is an extension to (2.3). The number θ̂ij can
be interpreted as how likely there is an edge between i and j . To analyze the
theoretical performance of (3.1), let us assume the set � is obtained by uniformly
sampling with replacement from all edges. In other words, � may contain some
repeated elements.

THEOREM 3.4. Assume |�|/n2 ≥ c for a constant c ∈ (0,1]. For any constant
C ′ > 0, there exists some constant C > 0 only depending on C′ and c such that

1

n2

∑
i,j∈[n]

(θ̂ij − θij )
2 ≤ C

(
k2

n2 + logk

n

)
,

with probability at least 1−exp(−C′n logk) uniformly over θ ∈ �k for all k ∈ [n].

The result of Theorem 3.4 assumes |�|/n2 ≥ c. For example, when |�|/n2 =
1/2, we only observe at most half of the edges. Theorem 3.4 gives rate-optimal
link prediction of the rest of the edges. In contrast, the low-rank matrix completion
approach, though extensively studied and applied in literature, only gives a rate
k/n, which is inferior to that of Theorem 3.4.

In the case where the assumption of stochastic block model is not natural [46],
we may consider a more general class of networks generated by a smooth graphon.
This is also a useful assumption to do link prediction. Using the same estimator
(3.1) with k = 
n1/(α∧1+1)�, we can obtain the error

1

n2

∑
i,j∈[n]

(θ̂ij − θij )
2 ≤ C

(
n−2α/(2α+1) + logn

n

)
,

with probability at least 1− exp(−C′n) uniformly over f ∈ Fα(M) and Pξ , which
extends Theorem 2.3. The proof of Theorem 3.4 is nearly identical to that of The-
orem 2.1 and is omitted in the paper.

3.5. Minimax rate for operator norm. The minimax rates in the paper are all
studied under the �2 norm, which is the Frobenius norm for a matrix. It is also
interesting to investigate the minimax rate under the matrix operator norm. Recall
that for a matrix U , its operator norm ‖U‖op is the largest singular value.
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THEOREM 3.5. For the stochastic block model �k with k ≥ 2, we have

inf
θ̂

sup
θ∈�k

E‖θ̂ − θ‖2
op � n.

Interestingly, the result of Theorem 3.5 does not depend on k as long as k ≥ 2.
The optimal estimator is the adjacency matrix itself θ̂ = A, whose bound under the
operator norm can be derived from standard random matrix theory [48]. The lower
bound is directly implied from Theorem 2.2 by the following argument:

inf
θ̂

sup
θ∈�k

E‖θ̂ − θ‖2
op � inf

θ̂

sup
θ∈�2

E‖θ̂ − θ‖2
op

(3.2)
� inf

θ̂∈�2

sup
θ∈�2

E‖θ̂ − θ‖2
op � inf

θ̂

sup
θ∈�2

E‖θ̂ − θ‖2.

The first inequality is because �2 is a smaller model than �k for k ≥ 2. The second
inequality is because of the fact that we can always project the estimator into the
parameter space without compromising the convergence rate. Then, for θ̂ , θ ∈ �2,
θ̂ − θ is a matrix with rank at most 4, and we have the inequality ‖θ̂ − θ‖2 ≤
4‖θ̂ − θ‖2

op, which gives the last inequality. Finally, inf
θ̂

supθ∈�2
E‖θ̂ − θ‖2 � n

by Theorem 2.2 implies the desired conclusion.
Theorem 3.5 suggests that estimating θ under the operator norm is not a very

interesting problem, because the estimator does not need to take advantage of the
structure of the space �k . Due to recent advances in community detection, a more
suitable parameter space for the problem is �(β) ∩ �k , where

�(β) =
{
θ = θT = {θij } ∈ [0,1]n×n : θii = 0,max

ij
θij ≤ β

}
.

The parameter β is understood to be the sparsity of the network because a smaller
β leads to less edges of the graph.

THEOREM 3.6. For n−1 ≤ β ≤ 1 and k ≥ 2, we have

inf
θ̂

sup
θ∈�(β)∩�k

E‖θ̂ − θ‖2
op � inf

θ̂

sup
θ∈�(β)

E‖θ̂ − θ‖2
op � βn.

The lower bound of Theorem 3.6 can be obtained in a similar way by combining
the argument in (3.2) and a modified version of Theorem 2.2 (see the supplemen-
tary material [15]). When β ≥ n−1 logn, the upper bound is still achieved by the
adjacency matrix, as is proved in Theorem 5.2 of [33]. For n−1 ≤ β < n−1 logn,
one needs to replace the rows and columns that have high degrees by zeros in A,
and the upper bound is achieved by this trimmed adjacency matrix. This was re-
cently established in [12].
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3.6. Relation to community detection. Community detection is another im-
portant problem in network analysis. The parameter estimation result established
in this paper has some consequences in community detection, especially for the
results under the operator norm in Theorems 3.5 and 3.6. Recent works in com-
munity detection [12, 33] show that the bound for ‖θ̂ − θ‖2

op can be used to derive

the misclassification error of spectral clustering algorithm applied on the matrix θ̂ .
Recall that the spectral clustering algorithm applies k-means to the leading singu-
lar vectors of the matrix θ̂ . Theorem 3.5 justifies the use of adjacency matrix as θ̂

in spectral clustering because of its minimax optimality under the operator norm.
Moreover, when the network is in a sparse regime with n−1 ≤ β < n−1 logn, [12]
suggests to use the trimmed adjacency matrix as θ̂ for spectral clustering. Accord-
ing to Theorem 3.6, the trimmed adjacency matrix is an optimal estimator of θ

under the operator norm.
On the other hand, the connection between the minimax rates under the �2 norm

and community detection is not that close. We illustrate this point by the case when
k = 2. Let us consider θ ∈ �2, then θij = Qz(i)z(j) for some 2 × 2 symmetric
matrix Q and z is the label function. Suppose the within community connection
probability is greater than the between community connection probability by a
margin of s. Namely, assume Q11 ∧ Q22 − Q12 ≥ s > 0. Then, for the estimator
θ̂ij = Q̂ẑ(i)ẑ(j) with error 1

n2

∑
i,j∈[n](θ̂ij − θij )

2 ≤ ε2, the number of mis-clustered

nodes under ẑ is roughly bounded by O((nε/s)2). This is because when two nodes
that have the same labels under z are clustered into different communities or when
two nodes belong to different communities are clustered into the same one, an
estimation error of O(s2) must occur. Conversely, bounds on community detec-
tion can lead to an improved bound for parameter estimation. Specifically, when
(
√

Q11 ∧ Q22 − √
Q12)

2 > 2n−1 logn and |z−1(1)| = |z−1(2)| = n/2, [23, 41]
show that there exists a strongly consistent estimator of z in the sense that the mis-
classification error is 0 with high probability. In this case, the estimation error of θ

under the loss 1
n2

∑
i,j∈[n](θ̂ij − θij )

2 can be improved to n−2 from n−1.
Generally, parameter estimation and community detection are different prob-

lems of network analysis. When {Qab}a,b∈[k] all take the same value, it is impos-
sible to do community detection, but parameter estimation would be easy. Thus,
good parameter estimation result does not necessarily imply consistent community
detection. General minimax rates of the community detection problem are recently
established in [16, 53].

4. Proofs. We present the proofs of the main results in this section. The upper
bounds Theorems 2.1 and 2.3 are proved in Section 4.1. The lower bound Theo-
rem 2.2 is proved in Section 4.2.

4.1. Proofs of Theorems 2.1 and 2.3. This section is devoted to proving the
upper bounds. We first prove Theorem 2.1 and then prove Theorem 2.3.
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Let us first give an outline of the proof of Theorem 2.1. In the definition of
the class �k , we denote the true value on each block by {Q∗

ab} ∈ [0,1]k×k and
the oracle assignment by z∗ ∈ Zn,k such that θij = Q∗

z∗(i)z∗(j) for any i �= j . To
facilitate the proof, we introduce the following notation. For the estimated ẑ, define
{Q̃ab} ∈ [0,1]k×k by Q̃ab = θ̄ab(ẑ), and also define θ̃ij = Q̃ẑ(i)ẑ(j) for any i �= j .
The diagonal elements {θ̃ii} are defined as zero for all i ∈ [n]. By the definition of
the estimator (2.3), we have

L(Q̂, ẑ) ≤ L
(
Q∗, z∗),

which can be rewritten as

‖θ̂ − A‖2 ≤ ‖θ − A‖2.(4.1)

The left-hand side of (4.1) can be decomposed as

‖θ̂ − θ‖2 + 2〈θ̂ − θ, θ − A〉 + ‖θ − A‖2.(4.2)

Combining (4.1) and (4.2), we have

‖θ̂ − θ‖2 ≤ 2〈θ̂ − θ,A − θ〉.(4.3)

The right-hand side of (4.3) can be bounded as

〈θ̂ − θ,A − θ〉 = 〈θ̂ − θ̃ ,A − θ〉 + 〈θ̃ − θ,A − θ〉

≤ ‖θ̂ − θ̃‖
∣∣∣∣
〈

θ̂ − θ̃

‖θ̂ − θ̃‖ ,A − θ

〉∣∣∣∣(4.4)

+ (‖θ̃ − θ̂‖ + ‖θ̂ − θ‖)∣∣∣∣
〈

θ̃ − θ

‖θ̃ − θ‖ ,A − θ

〉∣∣∣∣.(4.5)

Using Lemmas 4.1–4.3, the following three terms:

‖θ̂ − θ̃‖,
∣∣∣∣
〈

θ̂ − θ̃

‖θ̂ − θ̃‖ ,A − θ

〉∣∣∣∣,
∣∣∣∣
〈

θ̃ − θ

‖θ̃ − θ‖ ,A − θ

〉∣∣∣∣(4.6)

can all be bounded by C
√

k2 + n log k with probability at least

1 − 3 exp
(−C′n logk

)
.

Combining these bounds with (4.4), (4.5) and (4.3), we get

‖θ̂ − θ‖2 ≤ C1
(
k2 + k logn

)
,

with probability at least 1 − 3 exp(−C′n log k). This gives the conclusion of The-
orem 2.1. The details of the proof is stated in the later part of the section. To prove
Theorem 2.3, we use Lemma 2.1 to approximate the nonparametric graphon by
the stochastic block model. With similar arguments above, we get

‖θ̂ − θ‖2 ≤ C2
(
k2 + k logn + n2k−2(α∧1)),
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with high probability. Choosing the best k gives the conclusion of Theorem 2.3.
Before stating the complete proofs, let us first present the following lemmas,

which bound the three terms in (4.6), respectively. The proofs of the lemmas will
be given in the supplementary material [15].

LEMMA 4.1. For any constant C′ > 0, there exists a constant C > 0 only
depending on C′, such that

‖θ̂ − θ̃‖ ≤ C

√
k2 + n logk,

with probability at least 1 − exp(−C′n logk).

LEMMA 4.2. For any constant C′ > 0, there exists a constant C > 0 only
depending on C′, such that∣∣∣∣

〈
θ̃ − θ

‖θ̃ − θ‖ ,A − θ

〉∣∣∣∣ ≤ C
√

n logk,

with probability at least 1 − exp(−C′n logk).

LEMMA 4.3. For any constant C′ > 0, there exists a constant C > 0 only
depending on C′, such that∣∣∣∣

〈
θ̂ − θ̃

‖θ̂ − θ̃‖ ,A − θ

〉∣∣∣∣ ≤ C

√
k2 + n logk,

with probability at least 1 − exp(−C′n logk).

PROOF OF THEOREM 2.1. Combining the bounds for (4.6) with (4.4), (4.5)
and (4.3), we have

‖θ̂ − θ‖2 ≤ 2C‖θ̂ − θ‖
√

k2 + n logk + 4C2(k2 + n logk
)
,

with probability at least 1−3 exp(−C′n logk). Solving the above equation, we get

‖θ̂ − θ‖2 ≤ C1
(
k2 + n logk

)
,

with probability at least 1 − 3 exp(−C′n logk). This proves the high probability
bound. To get the bound in expectation, we use the following inequality:

En−2‖θ̂ − θ‖2

≤ E
(
n−2‖θ̂ − θ‖2I

{
n−2‖θ̂ − θ‖2 ≤ ε2})

+E
(
n−2‖θ̂ − θ‖2I

{
n−2‖θ̂ − θ‖2 > ε2})

≤ ε2 + P
(
n−2‖θ̂ − θ‖2 > ε2) ≤ ε2 + 3 exp

(−C′n logk
)
,
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where ε2 = C1(
k2

n2 + logk
n

). Since ε2 is the dominating term, the proof is complete.
�

To prove Theorem 2.3, we need to redefine z∗ and Q∗. We choose z∗ to be
the one used in Lemma 2.1, which implies a good approximation of {θij } by the
stochastic block model. With this z∗, define Q∗ by letting Q∗

ab = θ̄ab(z
∗) for any

a, b ∈ [k]. Finally, we define θ∗
ij = Q∗

z∗(i)z∗(j) for all i �= j . The diagonal elements
θ∗
ii are set as zero for all i ∈ [n]. Note that for the stochastic block model, we have

θ = θ∗. The proof of Theorem 2.3 requires another lemma.

LEMMA 4.4. For any constant C′ > 0, there exists a constant C > 0 only
depending on C′, such that∣∣∣∣

〈
θ̃ − θ∗

‖θ̃ − θ∗‖ ,A − θ

〉∣∣∣∣ ≤ C
√

n logk,

with probability at least 1 − exp(−C′n log k).

The proof of Lemma 4.4 is identical to the proof of Lemma 4.2, and will be
omitted in the paper.

PROOF OF THEOREM 2.3. Using the similar argument as outlined in the be-
ginning of this section, we get∥∥θ̂ − θ∗∥∥2 ≤ 2

〈
θ̂ − θ∗,A − θ∗〉,

whose right-hand side can be bounded as〈
θ̂ − θ∗,A − θ∗〉

= 〈θ̂ − θ̃ ,A − θ〉 + 〈
θ̃ − θ∗,A − θ

〉+ 〈
θ̂ − θ∗, θ − θ∗〉

≤ ‖θ̂ − θ̃‖
∣∣∣∣
〈

θ̂ − θ̃

‖θ̂ − θ̃‖ ,A − θ

〉∣∣∣∣+ (‖θ̃ − θ̂‖ + ∥∥θ̂ − θ∗∥∥)∣∣∣∣
〈

θ̃ − θ∗

‖θ̃ − θ∗‖ ,A − θ

〉∣∣∣∣
+ ∥∥θ̂ − θ∗∥∥∥∥θ − θ∗∥∥.

To better organize what we have obtained, let us introduce the notation

L = ∥∥θ̂ − θ∗∥∥, R = ‖θ̃ − θ̂‖, B = ∥∥θ − θ∗∥∥,
E =

∣∣∣∣
〈

θ̂ − θ̃

‖θ̂ − θ̃‖ ,A − θ

〉∣∣∣∣, F =
∣∣∣∣
〈

θ̃ − θ∗

‖θ̃ − θ∗‖ ,A − θ

〉∣∣∣∣.
Then, by the derived inequalities, we have

L2 ≤ 2RE + 2(L + R)F + 2LB.
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It can be rearranged as

L2 ≤ 2(F + B)L + 2(E + F)R.

By solving this quadratic inequality of L, we can get

L2 ≤ max
{
16(F + B)2,4R(E + F)

}
.(4.7)

By Lemma 2.1, Lemma 4.1, Lemma 4.3 and Lemma 4.4, for any constant C ′ > 0,
there exist constants C only depending on C′,M , such that

B2 ≤ Cn2
(

1

k2

)α∧1

, F 2 ≤ Cn logk,

R2 ≤ C
(
k2 + n log k

)
, E2 ≤ C

(
k2 + n logk

)
,

with probability at least 1 − exp(−C′n). By (4.7), we have

L2 ≤ C1

(
n2
(

1

k2

)α∧1

+ k2 + n logk

)
(4.8)

with probability at least 1−exp(−C′n) for some constant C1. Hence, there is some
constant C2 such that

1

n2

∑
ij

(θ̂ij − θij )
2 ≤ 2

n2

(
L2 + B2)

≤ C2

((
1

k2

)α∧1

+ k2

n2 + log k

n

)
,

with probability at least 1 − exp(−C′n). When α ≥ 1, we choose k = 
√n�, and
the bound is C3n

−1 logn for some constant C3 only depending on C′ and M .
When α < 1, we choose k = 
n1/(α+1)�. Then the bound is C4n

−2α/(α+1) for some
constant C4 only depending on C′ and M . This completes the proof. �

4.2. Proof of Theorem 2.2. This section is devoted to proving the lower
bounds. For any probability measures P,Q, define the Kullback–Leibler diver-
gence by D(P‖Q) = ∫

(log dP
dQ

) dP. The chi-squared divergence is defined by

χ2(P‖Q) = ∫
( dP
dQ

) dP−1. To prove minimax lower bounds, we need the following
proposition.

PROPOSITION 4.1. Let (�,ρ) be a metric space and {Pθ : θ ∈ �} be a collec-
tion of probability measures. For any totally bounded T ⊂ �, define the Kullback–
Leibler diameter and the chi-squared diameter of T by

dKL(T ) = sup
θ,θ ′∈T

D
(
Pθ‖Pθ ′

)
, dχ2(T ) = sup

θ,θ ′∈T

χ2(Pθ‖Pθ ′
)
.
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Then

inf
θ̂

sup
θ∈�

Pθ

{
ρ2(θ̂ (X), θ

)≥ ε2

4

}
≥ 1 − dKL(T ) + log 2

logM(ε, T ,ρ)
,(4.9)

inf
θ̂

sup
θ∈�

Pθ

{
ρ2(θ̂ (X), θ

)≥ ε2

4

}
≥ 1 − 1

M(ε, T ,ρ)
−
√

dχ2(T )

M(ε, T ,ρ)
,(4.10)

for any ε > 0.

Inequality (4.9) is the classical Fano’s inequality. The version we present here is
by [51]. Inequality (4.10) is a generalization of the classical Fano’s inequality by
using chi-squared divergence instead of KL divergence. It is due to [22]. We use it
here as an alternative of Assouad’s lemma to get the corresponding in-probability
lower bound. In this section, the parameter is a matrix {θij } ∈ [0,1]n×n. The metric
we consider is

ρ2(θ, θ ′) = 1

n2

∑
ij

(
θij − θ ′

ij

)2
.

Let us give bounds for KL divergence and chi-squared divergence under random
graph model. Let Pθij

denote the probability of Bernoulli(θij ). Given θ = {θij } ∈
[0,1]n×n, the probability Pθ stands for the product measure

⊗
i,j∈[n] Pθij

through-
out this section.

PROPOSITION 4.2. For any θ, θ ′ ∈ [1/2,3/4]n×n, we have

D
(
Pθ‖Pθ ′

) ≤ 8
∑
ij

(
θij − θ ′

ij

)2
,

(4.11)

χ2(Pθ‖P′
θ

) ≤ exp
(

8
∑
ij

(
θij − θ ′

ij

)2
)
.

The proposition will be proved in the supplementary material [15]. We also
need the following Varshamov–Gilbert bound. The version we present here is due
to [39], Lemma 4.7.

LEMMA 4.5. There exists a subset {ω1, . . . ,ωN } ⊂ {0,1}d such that

ρH (ωi,ωj ) � ‖ωi − ωj‖2 ≥ d

4
for any i �= j ∈ [N ],(4.12)

for some N ≥ exp(d/8).
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PROOF OF THEOREM 2.2. By the definition of the parameter space �k , we
rewrite the minimax rate as

inf
θ̂

sup
θ∈�k

P

{
1

n2

∑
ij

(θ̂ij − θij )
2 ≥ ε2

}

= inf
θ̂

sup
Q=QT ∈[0,1]k×k

sup
z∈Zn,k

P

{
1

n2

∑
i �=j

(θ̂ij − Qz(i)z(j))
2 ≥ ε2

}
.

If we fix a z ∈ Zn,k , it will be direct to derive the lower bound k2/n2 for estimat-
ing Q. On the other hand, if we fix Q and let z vary, it will become a new type of
convergence rate due to the unknown label and we name it as the clustering rate,
which is at the order of n−1 log k. In the following arguments, we will prove the
two different rates separately and then combine them together to get the desired
in-probability lower bound.

Without loss of generality, we consider the case where both n/k and k/2 are
integers. If they are not, let k′ = 2�k/2� and n′ = �n/k′�k′. By restricting the
unknown parameters to the smaller class Q′ = (Q′)T ∈ [0,1]k′×k′

and z′ ∈ Zn′,k′ ,
the following lower bound argument works for this smaller class. Then it also
provides a lower bound for the original larger class.

Nonparametric rate. First we fix a z ∈ Zn,k . For each a ∈ [k], we define
z−1(a) = {(a − 1)n/k + 1, . . . , an/k}. Let � = {0,1}d be the set of all binary
sequences of length d = k(k − 1)/2. For any ω = {ωab}1≤b<a≤k ∈ �, define a
k × k matrix Qω = (Qω

ab)k×k by

Qω
ab = Qω

ba = 1

2
+ c1k

n
ωab for a > b ∈ [k] and

(4.13)
Qω

aa = 1
2 for a ∈ [k],

where c1 is a constant that we are going to specify later. Define θω = (θω
ij )n×n

with θω
ij = Qω

z(i)z(j) for i �= j and θω
ii = 0. The subspace we consider is T1 = {θω :

ω ∈ �} ⊂ �k . To apply (4.10), we need to upper bound supθ,θ ′∈T1
χ2(Pθ‖Pθ ′) and

lower bound M(ε, T1, ρ). For any θω, θω′ ∈ T1, from (4.11) and (4.13), we get

χ2(Pθω‖P
θω′ ) = exp

(
8

∑
i,j∈[n]

(
θω
ij − θω′

ij

)2
)

(4.14)

≤ exp
(

8n2

k2

∑
a,b∈[k]

(
Qω

ab − Qω′
ab

)2
)

≤ exp
(
8c2

1k
2),

where we choose sufficiently small c1 so that θω
ij , θ

ω′
ij ∈ [1/2,3/4] is satisfied. To

lower bound the packing number, we reduce the metric ρ(θω, θω′
) to ρH (ω,ω′)
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defined in (4.12). In view of (4.13), we get

ρ2(θω, θω′) ≥ 1

k2

∑
1≤b<a≤k

(
Qω

ab − Qω′
ab

)2 = c2
1

n2 ρH

(
ω,ω′).(4.15)

By Lemma 4.5, we can find a subset S ⊂ � that satisfies the following properties:
(a) |S| ≥ exp(d/8) and (b) ρH (ω,ω′) ≥ d/4 for any ω,ω′ ∈ S. From (4.15), we
have

M(ε, T1, ρ) ≥ |S| ≥ exp(d/8) = exp
(
k(k − 1)/16

)
,

with ε2 = c1k(k−1)

8n2 . By choosing sufficiently small c1, together with (4.14), we get

inf
θ̂

sup
θ∈T1

P

{
1

n2

∑
ij

(θ̂ij − θij )
2 ≥ C1k

2

n2

}
≥ 0.9,(4.16)

by (4.10) for sufficiently large k with some constant C1 > 0. When k is not suffi-
ciently large, that is, k ≤ O(1), then it is easy to see that n−2 is always the correct
order of lower bound. Since n−2 � k2/n2 when k ≤ O(1), k2/n2 is also a valid
lower bound for small k.

Clustering rate. We are going to fix a Q that has the following form:

Q =
[

0 B

BT 0

]
,(4.17)

where B is a (k/2) × (k/2) matrix. By Lemma 4.5, when k is sufficiently large,
we can find {ω1, . . . ,ωk/2} ⊂ {0,1}k/2 such that ρH (ωa,ωb) ≥ k/8 for all a �=
b ∈ [k/2]. Fixing such {ω1, . . . ,ωk/2}, define B = (B1,B2, . . . ,Bk/2) by letting

Ba = 1
2 +

√
c2 log k

n
ωa for a ∈ [k/2]. With such construction, it is easy to see that

for any a �= b ∈ [k/2],
‖Ba − Bb‖2 ≥ c2k logk

8n
.(4.18)

Define a subset of Zn,k by

Z =
{
z ∈ Zn,k : ∣∣z−1(a)

∣∣ = n

k
for a ∈ [k],

z−1(a) =
{
(a − 1)n

k
+ 1, . . . ,

an

k

}
for a ∈ [k/2]

}
.

For each z ∈ Z , define θz by θz
ij = Qz(i)z(j) for i �= j and θz

ii = 0. The sub-
space we consider is T2 = {θz : z ∈ Z} ⊂ �n,k . To apply (4.9), we need to upper
bound supθ,θ∈T2

D(Pθ‖Pθ ′) and lower bound logM(ε, T2, ρ). By (4.11), for any
θ, θ ′ ∈ T2,

D(Pθ‖Pθ ′) ≤ 8
∑
ij

(
θij − θ ′

ij

)2 ≤ 8n2c2
log k

n
= 8c2n logk.(4.19)
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Now we are going to give a lower bound of the packing number logM(ε, T2, ρ)

with ε2 = (c2 log k)/(48n) for the c2 in (4.18). Due to the construction of B ,
there is a one-to-one correspondence between T2 and Z . Thus, logM(ε, T2, ρ) =
logM(ε,Z, ρ1) for some metric ρ1 on Z defined by ρ1(z,w) = ρ(θz, θw). Given
any z ∈ Z , define its ε-neighborhood by B(z, ε) = {w ∈ Z : ρ1(z,w) ≤ ε}. Let
S be the packing set in Z with cardinality M(ε,Z, ρ1). We claim that S is also
the covering set of Z with radius ε, because otherwise there is some point in Z
which is at least ε away from every point in S, contradicting the definition of
M(ε,Z, ρ1). This implies the fact

⋃
z∈S B(z, ε) = Z , which leads to

|Z| ≤ ∑
z∈S

∣∣B(z, ε)
∣∣ ≤ |S|max

z∈S

∣∣B(z, ε)
∣∣.

Thus, we have

M(ε,Z, ρ1) = |S| ≥ |Z|
maxz∈S |B(z, ε)| .(4.20)

Let us upper bound maxz∈S |B(z, ε)| first. For any z,w ∈ Z , by the construction
of Z , z(i) = w(i) when i ∈ [n/2] and |z−1(a)| = n/k for each a ∈ [k]. Hence,

ρ2
1(z,w) ≥ 1

n2

∑
1≤i≤n/2<j≤n

(Qz(i)z(j) − Qw(i)w(j))
2

= 1

n2

∑
n/2<j≤n

∑
1≤a≤k/2

∑
i∈z−1(a)

(Qaz(j) − Qaw(j))
2

= 1

n2

∑
n/2<j≤n

n

k
‖Bz(j) − Bw(j)‖2

≥ c2 log k

8n2

∣∣{j : w(j) �= z(j)
}∣∣,

where the last inequality is due to (4.18). Then for any w ∈ B(z, ε), |{j : w(j) �=
z(j)}| ≤ n/6 under the choice ε2 = (c2 log k)/(48n). This implies

∣∣B(z, ε)
∣∣ ≤

(
n

n/6

)
kn/6 ≤ (6e)n/6kn/6 ≤ exp

(
1

4
n logk

)
.

Now we lower bound |Z|. Note that by Stirling’s formula

|Z| = (n/2)!
[(n/k)!]k/2 = exp

(
1

2
n log k + o(n logk)

)
≥ exp

(
1

3
n logk

)
.

By (4.20), we get logM(ε, T ,ρ) = logM(ε,Z, ρ1) ≥ (1/12)n log k. Together
with (4.19) and using (4.9), we have

inf
θ̂

sup
θ∈T2

P

{
1

n2

∑
ij

(θ̂ij − θij )
2 ≥ C2 logk

n

}
≥ 0.9,(4.21)



RATE-OPTIMAL GRAPHON ESTIMATION 2649

with some constant C2 > 0 for sufficiently small c2 and sufficiently large k. When
k is not sufficiently large but 2 ≤ k ≤ O(1), the argument in Section 3.3 gives the
desired lower bound at the order of n−1 � n−1 log k. When k = 1, n−1 log k = 0 is
still a valid lower bound.

Combining the bounds. Finally, let us combine (4.16) and (4.21) to get the
desired in-probability lower bound in Theorem 2.2 with C = (C1 ∧C2)/2. For any
θ ∈ �k , by union bound, we have

P

{
1

n2

∑
ij

(θ̂ij − θij )
2 ≥ C

(
k2

n2 + log k

n

)}

≥ 1 − P

{
1

n2

∑
ij

(θ̂ij − θij )
2 ≤ C1k

2

n2

}
− P

{
1

n2

∑
ij

(θ̂ij − θij )
2 ≤ C2 log k

n

}

= P

{
1

n2

∑
ij

(θ̂ij − θij )
2 ≥ C1k

2

n2

}
+ P

{
1

n2

∑
ij

(θ̂ij − θij )
2 ≥ C2 log k

n

}
− 1.

Taking sup on both sides, and using the fact supz,Q(f (z) + g(Q)) = supz f (z) +
supQ g(Q), we have

sup
θ∈�k

P

{
1

n2

∑
ij

(θ̂ij − θij )
2 ≥ C

(
k2

n2 + log k

n

)}

≥ sup
θ∈T1

P

{
1

n2

∑
ij

(θ̂ij − θij )
2 ≥ C1k

2

n2

}

+ sup
θ∈T2

P

{
1

n2

∑
ij

(θ̂ij − θij )
2 ≥ C2 logk

n

}
− 1,

for any estimator θ̂ . Plugging the lower bounds (4.16) and (4.21), we obtain the
desired result. A Markov’s inequality argument leads to the lower bound in expec-
tation. �
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SUPPLEMENTARY MATERIAL

Supplement to “Rate-optimal graphon estimation”. (DOI: 10.1214/15-
AOS1354SUPP; .pdf). In the supplement, we prove Theorem 2.4, Lemmas 2.1, 4.1,
4.2, 4.3, Proposition 4.2 and Theorem 3.6.

http://dx.doi.org/10.1214/15-AOS1354SUPP
http://dx.doi.org/10.1214/15-AOS1354SUPP
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