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ADAPTIVE TESTING ON A REGRESSION FUNCTION
AT A POINT

BY TIMOTHY ARMSTRONG

Yale University

We consider the problem of inference on a regression function at a point
when the entire function satisfies a sign or shape restriction under the null.
We propose a test that achieves the optimal minimax rate adaptively over a
range of Hölder classes, up to a log logn term, which we show to be neces-
sary for adaptation. We apply the results to adaptive one-sided tests for the
regression discontinuity parameter under a monotonicity restriction, the value
of a monotone regression function at the boundary and the proportion of true
null hypotheses in a multiple testing problem.

1. Introduction. We consider a Gaussian regression model with random de-
sign. We observe {(Xi, Yi)}ni=1 where Xi and Yi are real valued random variables
with (Xi, Yi) i.i.d. and

Yi = g(Xi) + εi, εi |Xi ∼ N
(
0, σ 2(Xi)

)
, Xi ∼ FX,(1)

where FX denotes the c.d.f. of Xi . We are interested in hypothesis tests about
the regression function g at a point, which we normalize to be zero. We impose
regularity conditions on the conditional variance of Yi and the distribution of Xi

near this point: for some η > 0,

ηt ≤ ∣∣FX(t) − FX(−t)
∣∣ ≤ t/η, η ≤ σ 2(x) ≤ 1/η for |x| < η, 0 < t < η.(2)

Note that this allows (but does not impose) that our point of interest, 0, may be on
the boundary of the support of Xi .

We consider the null hypotheses

H0 : {
g|g(x) = 0 all x ∈ supp(X1)

}
,(3)

H0 : {
g|g(x) ≤ 0 all x ∈ supp(X1)

}
,(4)

where supp(X1) denotes the support of the distribution FX , and the alternative H1 :
{g|g(0) ≥ b,g ∈ F}, where F imposes smoothness conditions on g. In particular,
we consider Hölder classes of functions with exponent β ≤ 1:

F = �(β,L) ≡ {
g|∣∣g(x) − g

(
x′)∣∣ ≤ L

∣∣x − x′∣∣β all x, x′},
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where L > 0 and 0 ≤ β ≤ 1, so that the alternative is given by

H1 : g ∈ G(b,L,β) ≡ {
g|g(0) ≥ b and g ∈ �(L,β)

}
.

The focus on g(0) is a normalization in the sense that the results apply to inference
on g(x0) for any point x0 by redefining Xi to be Xi − x0, so long as the point of
interest x0 is known. We also consider cases where certain shape restrictions are
imposed under the null and alternative.

For simplicity, we treat the distribution FX of Xi and the conditional variance
function σ 2 as fixed and known under the null and alternative. Thus we index
probability statements with the function g, which determines the joint distribution
of {(Xi, Yi)}ni=1. We note, however, that the tests considered here can be extended
to achieve the same rates without knowledge of these functions, so long as an upper
bound for supx σ 2(x) is known or can be estimated.

It is known [see Lepski and Tsybakov (2000)] that the optimal rate for testing
the null hypothesis (3) or (4) against the alternative H1 when g is known to be
in the Hölder class �(L,β) is n−β/(2β+1). That is, for any ε > 0, there exists a
constant C∗ such that, for any α ∈ (0,1) and sequence of tests φn with level α

under the null hypothesis (3),

lim sup
n

inf
g∈G(C∗n−β/(2β+1),L,β)

Egφn ≤ α + ε.

Furthermore, using knowledge of β , one can construct a sequence of tests φ∗
n that

are level α for the null hypothesis (4) [and, therefore, also level α for the null
hypothesis (3)] such that, for any ε > 0, there exists a C∗ such that

lim inf
n

inf
g∈G(C∗n−β/(2β+1),L,β)

Egφ
∗
n ≥ 1 − ε.(5)

We ask whether a single test φn can achieve the rate in (5) simultaneously
for all β ≤ 1. Such a test would be called adaptive with respect to β . We find
that the answer is no, but that adaptivity can be obtained when the rate is mod-
ified by a log logn term, which we show is the necessary rate for adaptation.
In particular, we show that for C∗ small enough, any sequence φn of level
α tests of (3) must have asymptotically trivial power for some β in the class
G(C∗(n/ log logn)−β/(2β+1),L,β) in the sense that for any β < β ≤ 1,

lim sup
n

inf
β∈[β,β]

inf
G(C∗(n/ log logn)−β/(2β+1),L,β)

Egφn ≤ α.

Furthermore, we exhibit a sequence of tests φ∗
n that achieve asymptotic power

1 adaptively over the classes G(C∗(n/ log logn)−β/(2β+1)),L,β) for C∗ large
enough, while being level α for the null hypothesis (4): for any ε > 0,

lim
n→∞ inf

β∈[ε,1] inf
G(C∗(n/ log logn)−β/(2β+1),L,β)

Egφ
∗
n = 1.
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Our interest in testing at a point stems from several problems in statistics and
econometrics in which a parameter is given by the value of a regression or den-
sity function at the boundary, and where the function can plausibly be assumed
to satisfy a monotonicity restriction. This setup includes the regression discon-
tinuity model and inference on parameters that are “identified at infinity,” both
of which have received considerable attention in the econometrics literature; see,
among others, Andrews and Schafgans (1998), Chamberlain (1986), Hahn, Todd
and Van der Klaauw (2001), Heckman (1990). In the closely related problem where
g is a density rather than a regression function, our setup covers the problem of in-
ference on the proportion of null hypotheses when testing many hypotheses; see
Storey (2002). We discuss these applications in Section 3. The results in this paper
can be used to obtain adaptive one-sided confidence intervals for these parameters,
and to show that they achieve the minimax adaptive rate.

Problems closely related to those considered here have been considered in the
literature on asymptotic minimax bounds in nonparametric testing, and our results
draw heavily from this literature. Here, we name only a few, and refer to Ingster
and Suslina (2003), for a more thorough exposition of the literature. Typically, the
goal in this literature is to derive bounds in problems similar to the one considered
here, but with the alternative given by {ϕ(g) ≥ b}∩F , where ϕ(g) is some function
measuring distance from the null and F a class of functions imposing smoothness
on g. Our problem corresponds to the case where ϕ(g) = g(0) and F = �(L,β),
where we focus on adaptivity with respect to β ≤ 1. Lepski and Tsybakov (2000)
consider this problem for fixed (L,β), and also consider the case where ϕ(g) is the

∞ norm. Pouet (1999) considers ϕ(g) = g(0) with F given by a class of analytic
functions satisfying certain restrictions. Dümbgen and Spokoiny (2001) consider
the 
∞ norm and adaptivity over Hölder classes with respect to (L,β) and find, in
contrast to our case, that adaptivity can be achieved without a loss in the minimax
rate (or, for adaptivity over L, even the constant). In these papers, the optimal
constants C∗ and C∗ are also derived in some cases. Spokoiny (1996) considers
adaptivity to Besov classes under the 
2 norm and shows that, as we derive in our
case, the minimax rate can be obtained adaptively only up to an additional log logn

term. It should also be noted that the tests we use to achieve the minimax adaptive
rate bear a close resemblance to tests used in other adaptive testing problems; see,
for example, Donoho and Jin (2004), Fan (1996), as well as some of the papers
cited above.

Our results can be used to obtain one-sided confidence intervals for a monotone
function at the boundary of its support, which complements results in the liter-
ature on adaptive confidence intervals for shape restricted densities. Low (1997)
shows that adaptive confidence intervals cannot be obtained without shape restric-
tions on the function. Cai and Low (2004) develop a general theory of adaptive
confidence intervals under shape restrictions. Cai, Low and Xia (2013) consider
adaptive confidence intervals for points on the interior of the support of a shape
restricted density and show that, in contrast to our case, the adaptive rate can be
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achieved with no additional log logn term. Dümbgen (2003) considers the related
problem of adaptive confidence bands for the entire function. Our interest in points
on the boundary stems from the specific applications considered in Section 3.

2. Results. We first state the lower bound for minimax adaptation. All proofs
are in Section 4. For the purposes of some of the applications, we prove a slightly
stronger result in which g may be known to be nonincreasing in |x|. Let G|x|↓ be
the class of functions that are nondecreasing on (−∞,0] and nonincreasing on
[0,∞).

THEOREM 2.1. Let 0 < β < β ≤ 1 be given. There exists a constant C∗ de-
pending only on β,β , L and the bounds on FX and σ such that the following
holds: Let φn be any sequence of tests taking the data {(Xi, Yi)}ni=1 to a re-
jection probability in [0,1] with asymptotic level α for the null hypothesis (3),
lim supn E0φn ≤ α. Then

lim sup
n

inf
β∈[β,β]

inf
G(C∗(n/ log logn)−β/(2β+1),L,β)∩G|x|↓

Egφn ≤ α.

Note that the results of the theorem imply the same results when the requirement
that g ∈ G|x|↓ is removed from the alternative, or when the null is replaced by (4)
with the possible requirement g ∈ G|x|↓.

We now construct a test that achieves the (n/ log logn)β/(2β+1) rate. For k ∈
{1, . . . , n}, let ĝk be the k-nearest neighbor estimator of g(0), given by

ĝk = 1

k

∑
|Xj |≤|X(k)|

Yj where |X(k)| is the kth least value of |Xi |(6)

for |X(k)| < η, and ĝk = 0 otherwise, where η is given in (2). Let

Tn = max
1≤k≤n

√
kĝk,

and let cα,n be the 1 − α quantile of Tn under g(x) = 0 all x. Note that by the law
of the iterated logarithm [applied to the N(0,1) variables Yi/σ (Xi) conditional on
the Xi’s], lim supn cα,n/

√
log logn ≤ √

2 supx σ (x). Let φ∗
n be the test that rejects

when Tn > cα,n.

THEOREM 2.2. The test φ∗
n given above has level α for the null hypothesis (4).

Furthermore, there exists a constant C∗ such that, for all ε > 0,

lim
n→∞ inf

β∈[ε,1] inf
G(C∗(n/ log logn)−β/(2β+1),L,β)

Egφ
∗
n = 1.

From the proof of Theorem 2.2, it can be seen that we can take C∗ =
supβ∈(0,1](

√
2 supx σ (x)2K3/2)2/(2+1/β)22/(2β+1)L1/(2β+1) where 2/K is a lower
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bound on (FX(t) − FX(−t))/t . However, this does not answer the question of the
best possible constant for the test φ∗

n , or whether another test could achieve a bet-
ter constant. While we leave these questions for future research, we briefly discuss
some conjectures. We conjecture that, under additional regularity conditions on
the conditional variance σ(x) and distribution of the covariate Xi , a sharp constant
C(β,L) exists such that, for arbitrary δ > 0, Theorem 2.1 holds with C∗ replaced
by (1−δ)C(β,L), and Theorem 2.2 holds with C∗ replaced by (1+δ)C(β,L) and
φ∗

n replaced by a different test. A reasonable candidate for a test statistic to achieve
the optimal constant would be a supremum over β of normalized estimates based
on the optimal kernel given in Example 1 of Lepski and Tsybakov (2000), with the
bandwidth calibrated appropriately for each β . The conjectured behavior where
minimax adaptive power goes to α or one on either side of a constant, where the
constant does not depend on the size α of the test, would be an instance of asymp-
totic degeneracy related to the phenomenon observed for the 
∞ case by Lepski
and Tsybakov (2000) (in the nonadaptive setting) and Dümbgen and Spokoiny
(2001) (for adaptivity with respect to L), and our conjecture is based partly on the
fact that the tests and approximately least favorable distributions over alternatives
used in our results have a similar structure to those used in the above papers.

3. Applications and extensions.

3.1. Inference on a monotone function at the boundary. We note that in the
case where 0 is on the boundary of the support of Xi , the results in the previous
section give the optimal rate for a one-sided test concerning g(0) under a mono-
tonicity restriction on g. This can be used to obtain adaptive (up to a log logn term)
one-sided confidence intervals for a regression function at the boundary, where the
log logn term is necessary for adaptation. This can be contrasted to the construc-
tion of adaptive confidence regions for a monotone function on the interior of
its support, in which case the log logn term is not needed; cf. Cai, Low and Xia
(2013).

To form a confidence interval based on our test, we define Tn(θ0) =
max1≤k≤n

√
k(ĝk − θ0), and form our confidence interval by inverting tests of

H0 : g(0) ≤ θ0 based on Tn(θ0) with critical value cα,n given above (the 1 − α

quantile under g = 0 and θ0 = 0). The confidence interval is then given by [ĉ∗,∞)

where ĉ∗ = max1≤k≤k[ĝk − cα,n/
√

k], with k the largest value of k such that
|X(k)| < η. The following corollary to Theorems 2.1 and 2.2 shows that this CI
achieves the adaptive rate.

COROLLARY 3.1. Let 0 < β < β ≤ 1 be given. There exists a constant C∗
depending only on β,β , L and the bounds on FX and σ such that the following
holds. Let [ĉ,∞) be any sequence of one-sided CIs with asymptotic coverage 1−α

for g(0) when g ∈ G|x|↓: lim infn infg∈G|x|↓ Pg(g(0) ∈ [ĉ,∞)) ≥ 1 − α. Then

lim sup
n

inf
β∈[β,β]

inf
g∈�(β,L)∩G|x|↓

Pg

(
ĉ > g(0) − C∗(n/ log logn)−β/(2β+1)) ≤ α.
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Furthermore, the CI [ĉ∗,∞) given above has coverage of at least 1 − α for g ∈
G|x|↓, and there exists a C∗ such that, for all ε > 0,

lim
n→∞ inf

β∈[ε,1] inf
g∈�(β,L)∩G|x|↓

Pg

(
ĉ∗ > g(0) − C∗(n/ log logn)−β/(2β+1)) = 1.

The problem of inference on a regression function at the boundary has received
considerable attention in the econometrics literature, where the problem is of-
ten termed identification at infinity; see, among others, Andrews and Schafgans
(1998), Chamberlain (1986), Heckman (1990), Khan and Tamer (2010). In such
cases, it may not be plausible to assume that the density of Xi is bounded away
from zero or infinity near its boundary, and the boundary may not be finite [in
which case we are interested in, e.g., limx→−∞ g(x)]. Such cases require one to
relax the conditions on FX in (2), which can be done by placing conditions on the
behavior of u �→ g(F−1

X (u)). In the interest of space, however, we do not pursue
this extension.

3.2. Regression discontinuity. Consider the regression discontinuity model

Yi = m(Xi) + τI (Xi > 0) + εi, εi |Xi ∼ N
(
0, σ 2(Xi)

)
, Xi ∼ FX.

Here, we strengthen (2) by requiring that there exists some η > 0 such that, for
all |x| < η and 0 < t < η, the inequalities ηt ≤ FX(t) − FX(0) ≤ t/η, ηt ≤
FX(0) − F(−t) ≤ t/η and η ≤ σ 2(x) ≤ 1/η are satisfied. The regression disconti-
nuity model has been used in a large number of studies in empirical economics in
the last decade, and has received considerable attention in the econometrics litera-
ture; see Imbens and Lemieux (2008) for a review of some of this literature.

We are interested in inference on the parameter τ . Of course, τ is not identified
without constraints on m(Xi). We impose a monotonicity constraint on m and ask
whether a one-sided test for τ can be constructed that is adaptive to the Hölder
exponent β of the unknown class �(L,β) containing m. In particular, we fix τ0
and consider the null hypothesis

H0 : τ ≤ τ0 and m nonincreasing(7)

and the alternative

H1 : (m, τ) ∈ Grd(b,L,β)

≡ {
(m, τ)|τ ≥ τ0 + b and m ∈ �(L,β) nonincreasing

}
.

We extend the test of Section 2 to a test that is level α under H0 and consistent
against H1 when b = bn is given by a log logn term times the fastest possible rate
simultaneously over β ∈ [ε,1], and we show that the log logn term is necessary
for adaptation.

To describe the test, let {(Xi,1, Yi,1)}n1
i=1 be the observations with Xi ≤ 0, and

let {(Xi,2, Yi,2)}n2
i=1 be the observations with Xi > 0. Let ĝ1,k be the k-nearest
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neighbor estimator given in (6) applied to the sample with Xi ≤ 0, and let ĝ2,k be
defined analogously for the sample with Xi > 0. Let

T rd
n (τ ) = max

1≤k≤n

√
k(ĝ2,k − ĝ1,k − τ).

Let crd
n,α be the 1 − α quantile of T rd

n (0) when m(x) = 0 all x and τ = 0. The test
φrd

n,τ0
rejects when T rd

n (τ0) > crd
n,α .

The following corollary to Theorems 2.1 and 2.2 gives the optimal rate for adap-
tive testing in the regression discontinuity problem, and shows that the test φrd

n,τ0
achieves it. Let Em,τ denote expectation under (m, τ).

COROLLARY 3.2. Let 0 < β < β ≤ 1 be given. There exists a constant C∗
depending only on β,β , L and the bounds on FX and σ such that the follow-
ing holds. Let φn be any sequence of tests taking the data {(Xi, Yi)}ni=1 to a re-
jection probability in [0,1] with asymptotic level α for the null hypothesis (7):
lim supn E0φn ≤ α. Then

lim sup
n

inf
β∈[β,β]

inf
(m,τ)∈Grd(C∗(n/ log logn)−β/(2β+1),L,β)

Em,τφn ≤ α.

Furthermore, the test φrd
n,τ0

given above has level α for the null hypothesis (4), and
there exists a constant C∗ such that, for all ε > 0,

lim
n→∞ inf

β∈[ε,1] inf
(m,τ)∈Grd(C∗(n/ log logn)−β/(2β+1),L,β)

Em,τφ
rd
n,τ0

= 1.

3.3. Inference on the proportion of true null hypotheses. Motivated by an ap-
plication to large scale multiple testing, we now consider a related setting in which
we are interested in nonparametric testing about a density, rather than a regres-
sion function. We observe p-values {p̂i}ni=1 from n independent experiments. The
p-values follow the mixture distribution

p̂i ∼ fp(x) = π · I (
x ∈ [0,1]) + (1 − π) · f1(x),(8)

where f1 is an unknown density on [0,1] and π is the proportion of true null
hypotheses. We are interested in tests and confidence regions for π , following a
large literature on estimation and inference on π in this setting; see, among others,
Storey (2002), Donoho and Jin (2004), Meinshausen and Rice (2006), Cai, Jin and
Low (2007) and additional references in Efron (2010).

Given observations from the density fp(x) with f1(x) completely unspecified,
the best bounds that can be obtained for π in the population are π ∈ [0,π ], where
π = π(fp) ≡ infx∈[0,1] fp(x). If the infimum is known to be taken at a particular
location x0, we can test the null hypothesis that π ≥ π0 against the alternative
π < π0 by testing the null

H0 : fp(x) ≥ π0 all x(9)
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against the alternative fp(x0) < π0. In other words, we are interested in a version
of the problem considered in Section 2, with the regression function g replaced
by a density function fp . Inverting these tests over π0, we can obtain an upper
confidence interval for π . Note that since the null hypothesis π(fp) ≥ π0 is equiv-
alent to the statement that there exists a π ≥ π0 such that fp follows model (8) for
some f1, this can also be considered a test of the null π ≥ π0, and the CI can be
considered a CI for π .

Assuming the p-values tend to be smaller when taken from the alternative hy-
pothesis, we can expect that f1(x) is minimized at x = 1 so that fp(x) will also be
minimized at 1. Following this logic, Storey (2002) proposes a uniform kernel den-
sity estimator of fp(1), which can be considered an estimator of π or of π itself.
(In the latter case, the estimator provides an asymptotic upper bound, but is not, in
general, consistent.) We now consider the related hypothesis testing problem with
the null given in (9) and with the alternative

H1 : fp ∈ Gπ0(b,L,β) ≡ {
f |fp(1) ≤ π0 − b and fp ∈ �(L,β)

}
,

which allows for an upper confidence interval for π (and π itself). Under the main-
tained hypothesis that the infimum is taken at 1, the rate at which b = bn can ap-
proach 0 with H1 and H0 being distinguished gives the minimax rate for inference
on π when the density under the alternative is constrained to the Hölder class
�(L,β).

To extend the approach of the previous sections to this model, let π̂(λ) =
1

n(1−λ)

∑n
i=1 I (p̂i > λ) be the estimate of π used by Storey (2002) for a given

tuning parameter λ. We form our test by searching over the tuning parameter λ

after an appropriate normalization

Tn(π0) = max
0≤λ<1

√
n(1 − λ)

[
π0 − π̂(λ)

]
,

where we write max since the maximum is obtained. We define our test φn(π0) of
(9) to reject when Tn(π0) is greater than the critical value cn,α(π0), given by the
1−α quantile of Tn(π0) under the distribution π0 ·unif(0,1)+ (1−π0) · δ0, where
δ0 is a unit mass at 0 and unif(0,1) denotes the uniform distribution on (0,1).

We note that Tn(π0) is related to the test statistics used by Donoho and Jin
(2004) and Meinshausen and Rice (2006), and can be considered a version of their
approach that searches over the larger, rather than smaller, p-values. Donoho and
Jin (2004) set π0 = 1 and consider alternatives where π is close to one and the
remaining p-values come from a normal location model with the mean slightly
perturbed, achieving a certain form of adaptivity with respect to the amount of de-
viation of π and the normal location under the alternative. Meinshausen and Rice
(2006) consider estimation of π in related settings with π close to one; see also
Cai, Jin and Low (2007) for additional results in this setting. In contrast, Tn(π0)

looks at the larger ordered p-values in order to achieve adaptivity to the smooth-
ness of the distribution of p-values under the alternative in a setting where π may
not be close to 1.

We now state the result giving the adaptive rate for the test φn(π0).
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THEOREM 3.1. The test φn(π0) is level α for (9). Furthermore, there exists a
constant C∗ such that, for all ε > 0,

lim
n→∞ inf

β∈[ε,1] inf
Gπ0 (C∗(n/ log logn)−β/(2β+1),L,β)

Efpφn = 1.

Given the close relation between nonparametric inference on densities and con-
ditional means [cf. Brown and Low (1996), Nussbaum (1996)], a lower bound for
this problem analogous to the one given in Theorem 2.1 for the regression problem
seems likely. However, in the interest of space, we do not pursue such an extension.

4. Proofs.

4.1. Proof of Theorem 2.1. The following gives a bound on average power
over certain alternatives, and will be used to obtain a bound on minimax power
over certain alternatives conditional on X1, . . . ,Xn. Note that the bound goes to
zero as M → ∞ for C < 1.

LEMMA 4.1. Let W1, . . . ,WN be independent under measures P0 and
P1, . . . ,PN , with Wi ∼ N(0, s2

i ) under P0 and Wi ∼ N(mi,k, s
2
i ) under Pk . Let

M and M be integers with 1 ≤ 2M < 2M ≤ N , and let M = M − M + 1. Let φ be
a test statistic that takes the data to a rejection probability in [0,1]. Suppose that
for some C,

|mi,k/si | ≤ C
√

logM/
√

k all i, k

and that mi,k = 0 for i > k. Then

1

M

M∑
j=M

EP2j
φ − EP0φ ≤

√
1

M

(
MC2 − 1

) + 2

M(
√

2 − 1)
C2(logM)MC2/

√
2

≡ B(C,M).

PROOF. We express the average power as the following sample mean of like-
lihood ratios under the null, following arguments used in, for example, Lepski and
Tsybakov (2000):

1

M

M∑
j=M

EP2j
φ − EP0φ = 1

M

M∑
j=M

EP0

dP2j

dP0
φ − EP0φ

= EP0

{
1

M

M∑
j=M

[
exp

(
N∑

i=1

(
μi,jZi − μ2

i,j /2
)) − 1

]
φ

}
,
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where μi,j = mi,2j /si and Zi ≡ Wi/si are independent N(0,1) under P0. By
Cauchy–Schwarz, the above display is bounded by the square root of

1

M2

M∑
j=M

M∑

=M

EP0

[
exp

(
N∑

i=1

(
μi,jZi − μ2

i,j /2
)) − 1

]

×
[

exp

(
N∑

i=1

(
μi,
Zi − μ2

i,
/2
)) − 1

]

= 1

M2

M∑
j=M

M∑

=M

[
exp

(
N∑

i=1

μi,jμi,


)
− 1

]
(10)

≤ 1

M2

M∑
j=M

[
exp

(
C2 logM

) − 1
]

+ 2

M2

M∑
j=M

j−1∑

=M

[
exp

(
C2(logM)2−|j−
|/2) − 1

]
,

where the equality follows from using properties of the normal distribution to
evaluate the expectation, and the last step follows by plugging in the bound
C[√logM/

√
2k]I (i ≤ 2k) for μi,k = mi,2k /s2k . Using the fact that exp(x) − 1 ≤

x · exp(x), the inner sum of the second term can be bounded by

j−1∑

=M

C2(logM)2−|j−
|/2 exp
(
C2(logM)2−|j−
|/2)

≤ C2(logM) exp
(
C2(logM)/

√
2
) ∞∑
k=1

2−k/2

= C2(logM)MC2/
√

2 1√
2 − 1

.

Plugging this into (10) and taking the square root gives the claimed bound. �

Before proceeding, we recall a result regarding uniform convergence of empir-
ical c.d.f.s.

LEMMA 4.2. Let Z1, . . . ,Zn be i.i.d. real valued random variables with c.d.f.
FZ . Then, for any sequence an with ann → ∞,

sup
F(z)≥an

∣∣∣∣(1/n)
∑n

i=1 I (Zi ≤ z) − FZ(z)

FZ(z)

∣∣∣∣ p→ 0.
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PROOF. See Wellner (1978), Theorem 0. �

Let PX denote the product measure on the Xi’s common to all distributions in
the model, and let An be the event that

ηt/2 ≤ 1

n

n∑
i=1

I
(|Xi | ≤ t

) ≤ 2t/η for all (logn)/n < t < η.(11)

We will use the fact that PX(An) → 1, which follows by plugging condition (2)
into the conclusion of Lemma 4.2 for Zi = |Xi |.

We now construct a function in G(b,L,β) for each β ∈ [β,β] that along with
Lemma 4.1, can be used to prove the theorem.

LEMMA 4.3. For a given L, β , n and c, define

gβ,n,c(x) = max
{
c
[
(log logn)/n

]β/(2β+1) − L|x|β,0
}
.

Let 0 < β < β be given. For small enough c, we have the following. For any se-
quence of tests φn taking the data into a [0,1] rejection probability,

lim
n→∞ inf

β∈[β,β]
[Egβ,n,cφn − E0φn] = 0.

PROOF. Let N̂(β) = N̂(β,X1, . . . ,Xn) = ∑n
i=1 I (L|Xi |β ≤ c[(log logn)/

n]β/(2β+1)) = ∑n
i=1 I (|Xi | ≤ (c/L)1/β [(log logn)/n]1/(2β+1)). Let η > 0 sat-

isfy condition (2). Letting N(β) = η−1 · n · [(log logn)/n]1/(2β+1), we have,
for (c/L) ≤ 1, N̂(β) ≤ 2N(β) for all β ∈ [β,β] on the event An defined
in (11). Note that N(β)/ log logn = η−1(n/ log logn)2β/(2β+1) and gβ,n,c(x) ≤
c[(log logn)/n]β/(2β+1) for all x, so that

gβ,n,c(x) ≤ c
[
(log logn)/n

]β/(2β+1) = cη−1/2[
N(β)/ log logn

]−1/2(12)

for all x.
Let Mn = �log2[2N(β)]� and Mn = �log2[2N(β)]�, and let βk,n be such that

k = 2N(βk,n) (so that β ≤ βk,n ≤ β for 2Mn ≤ k ≤ 2Mn ). Let Mn = Mn −Mn − 1,
and note that Mn ≥ (logn)/K for a constant K that depends only on β and β .
Plugging these into the bound in (12) yields the bound

gβk,n,n,c(x)

σ (x)
≤ cη−1/2

√
2k−1/2[log(KMn)]1/2

inf|x|<η σ(x)
≤ 2cη−1k−1/2[logMn]1/2,(13)

where the last inequality holds for large enough n. [The last equality uses the fact
that inf|x|<η σ(x) ≥ η1/2 for η, satisfying condition (2).]

Since N̂(β) ≤ 2N(β) for all β ≤ β ≤ β on the event An, we have, on this event,
letting X(i) be the observation Xi corresponding to the ith least value of |Xi |,
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|gβn,k,n,c(X(i))| = 0 for i > 2N(βn,k) = k for all β ≤ βn,k ≤ β . Using this and the
bound in (13), we can apply Lemma 4.1 conditional on X1, . . . ,Xn to obtain, for
any test φ,

1

Mn

Mn∑
j=Mn

Egβ
n,2j ,n,c (φ|X1, . . . ,Xn) − E0(φ|X1, . . . ,Xn) ≤ B

(
2cη−1,Mn

)

on the event An for large enough n. Thus

lim
n→∞ inf

β∈[β,β]
Egβ,n,cφn − E0φn

≤ lim
n→∞

1

Mn

Mn∑
j=Mn

Egβ
n,2j ,n,cφn − E0φn

≤ lim
n→∞EPX

1

Mn

Mn∑
j=Mn

[
Egβ

n,2j ,n,c (φ|X1, . . . ,Xn) − E0(φ|X1, . . . ,Xn)
]
I (An)

+ [
1 − PX(An)

]
≤ lim

n→∞B
(
2cη−1,Mn

) + [
1 − PX(An)

]
.

This converges to zero for small enough c. �

Theorem 2.1 now follows from Lemma 4.3 since gβ,n,c ∈ G(c[(log logn)/

n]β/(2β+1),L,β).

4.2. Proof of Theorem 2.2. For the test φ∗
n , we have, for (b/L)1/β < η,

inf
g∈G(b,L,β)

Eg

(
φ∗

n|X1, . . . ,Xn

)

≥ inf
g∈G(b,L,β)

Pg

{ ∑
|Xi |≤(b/L)1/β Yi√∑n

i=1 I (|Xi | ≤ (b/L)1/β)
> cα,n|X1, . . . ,Xn

}
.

Under Pg , the random variable
∑

|Xi |≤(b/L)1/β Yi√∑n
i=1 I (|Xi |≤(b/L)1/β)

in the conditional probability

statement above is, conditional on X1, . . . ,Xn, distributed as a normal variable
with mean ∑

|Xi |≤(b/L)1/β g(Xi)√∑n
i=1 I (|Xi | ≤ (b/L)1/β)

≥ b

2

∑n
i=1 I (|Xi | ≤ (b/(2L))1/β)√∑n

i=1 I (|Xi | ≤ (b/L)1/β)
(14)

and variance ∑
|Xi |≤(b/L)1/β σ 2(Xi)∑n

i=1 I (|Xi | ≤ (b/L)1/β)
≤ sup

x
σ 2(x),(15)
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where the lower bound on the mean holds for g ∈ G(b,L,β) by noting that for
g ∈ G(b,L,β), g(x) ≥ b − L|x|β , so g(x) ≥ 0 for |x| ≤ (b/L)1/β , and for |x| ≤
[b/(2L)]1/β , g(x) ≥ b − L|[b/(2L)]1/β |β = b/2. Let K = 2η−1. On the event
An defined in (11) (which holds with probability approaching one), for b in the
appropriate range, the right-hand side of (14) is bounded from below by

b

2
· (1/K) · n · (b/(2L))1/β√

K · n · (b/L)1/β
= 1

2K
√

K
· 2−1/β · L−1/(2β)

√
nb1+1/(2β).

For b = c(n/ log logn)−β/(2β+1), this is

1

2K
√

K
· 2−1/β · L−1/(2β)c1+1/(2β)

√
log logn,

and for large enough n, this choice of b is in the range where the bounds in (11),
(14) and (15) can be applied for all β ∈ [ε,1]. Thus on the event An, we have for
large enough c,

inf
β∈[ε,1] inf

g∈G(c(n/ log logn)β/(2β+1),L,β)
Eg

(
φ∗

n|X1, . . . ,Xn

)
≥ inf

β∈[ε,1] 1

− �

(
cα,n − (1/(2K

√
K)) · 2−1/β · L−1/(2β)c1+1/(2β)

√
log logn

supx σ (x)

)
.

By the law of the iterated logarithm applied to the i.i.d. N(0,1) sequence
{Yi/σ (Xi)}ni=1, we have cα,n ≤ C

√
log logn for large enough n for any C >√

2 supx σ (x). For c > supβ∈(0,1](
√

2 supx σ (x)2K3/221/βL1/(2β))2β/(2β+1), it
follows that the above display converges to 0 as n → ∞. [Note that, while we
have defined K = 2η−1 where η is used to bound both σ(x) and FX(t) in (2), K

is used in this proof only in bounding FX from below and can therefore be taken
to be any constant such that 2/K is a lower bound on (FX(t) − FX(−t))/t near
zero.] Since this bound holds on an event with probability approaching one, the
result follows.

4.3. Proof of Corollary 3.1. The first display follows by Theorem 2.1 since
φn = I (ĉ > 0) is level α for H0 : g = 0, and the display is bounded by

lim sup
n

inf
β∈[β,β]

inf
g∈G(C∗(n/ log logn)−β/(2β+1),L,β)

EgI (ĉ > 0).

For the second display, note that for any constant a, the distribution of Tn(a) under
g is the same as the distribution of Tn(0) under the function g − a that takes t to
g(t) − a. Thus

Pg

(
ĉ∗ > g(0) − b

) = Pg

(
Tn

(
g(0) − b

)
> cα,n

) = Pg−g(0)+b

(
Tn(0) > cα,n

)
.

Since g − g(0) + b is in G(b,L,β) for any g ∈ �(L,β), the result follows from
Theorem 2.2.
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4.4. Proof of Corollary 3.2. The proof of the second part of the corollary (the
extension of Theorem 2.2) is similar to the original proof and is omitted. To prove
the first part of the corollary (the extension of Theorem 2.1), assume, without loss
of generality, that τ0 = 0. Define sgn(Xi) to be −1 for Xi ≤ 0 and 1 for Xi > 0.
Note that, for any function g ∈ G(b,L/2, β) ∩ G|x|↓, the function mg(x) = g(x) ·
sgn(Xi) − 2g(0)I (Xi > 0) is in �(L,β) and is nonincreasing. [To verify Hölder
continuity, note that, for x, x′ with sgn(x) = sgn(x′), |mg(x) − mg(x

′)| ≤ |g(x) −
g(x′)| and, for x, x′ with sgn(x) �= sgn(x′), |mg(x) − mg(x

′)| = |g(x) − g(0)| +
|g(x′)− g(0)| ≤ (L/2)|x|β + (L/2)|x′|β ≤ L|x − x′|β , where the last step follows
since |x − x′| ≥ x ∨ x′.]

Note that under m = mg , τ = 2g(0), the regression function is x �→ mg(x) +
2g(0)I (xi > 0) = g(x) · sgn(Xi) so that {Yi · sgn(Xi),Xi}ni=1 are distributed ac-
cording to the original regression model (1) with the given function g. Of course,
for m(x) = 0 all x and τ = 0, the regression function is 0 for all x. Thus, for any
level α test φn of (m, τ) = (0,0), we can construct a test φ∗

n of (3) in the original
model (1) that has identical power at g to the power in the regression discontinu-
ity model at (mg,2g(0)) for any g with g ∈ G(b,L/2, β) ∩ G|x|↓ for some b,L

and β . Since (mg,2g(0)) ∈ Grd(2b,L,β) whenever g ∈ G(b,L/2, β) ∩ G|x|↓ by
the argument above, it follows that

inf
β∈[β,β]

inf
(m,τ)∈Grd(2c(n/ log logn)−β/(2β+1),L,β)

E(m,τ)φn

≤ inf
β∈[β,β]

inf
g∈G(c(n/ log logn)−β/(2β+1),L/2,β)∩G|x|↓

Egφ
∗
n,

which converges to zero for c small enough by Theorem 2.1.

4.5. Proof of Theorem 3.1. We first show that the distribution used to obtain
the critical value is least favorable for this test statistic, so that the test does in fact
have level α.

LEMMA 4.4. The distribution f
π0

= π0 · unif(0,1) + (1 − π0)δ0, where δ0 is
a unit mass at 0, is least favorable for Tn(π0) under the null π ≥ π0,

Pfp

(
Tn(π0) > c

) ≤ Pf
π0

(
Tn(π0) > c

)
for fp defined by (8) with π ≥ π0.

PROOF. For p̂1, . . . , p̂n drawn from fp = π0 · unif(0,1) + (1 − π0)f1, let
q1, . . . , qn be obtained from p̂1, . . . , p̂n by setting all p̂i’s drawn from the alter-
native f1 to 0. Then Tn(π0) weakly increases when evaluated at the qi’s instead of
the p̂i’s, and the distribution under fp of Tn(π0) evaluated with the qi ’s is equal to
the distribution under f

π0
of Tn(π0) evaluated with the p̂i ’s. �

The result now follows from similar arguments to the proof of Theorem 2.2 after
noting that cn,α(π0)/

√
log logn is bounded as n → ∞; cf. Shorack and Wellner

(2009), Chapter 16.



2100 T. ARMSTRONG

Acknowledgments. The author would like to thank Alexandre Tsybakov, Ma-
tias Cattaneo, Yuichi Kitamura and Tony Cai for helpful discussions, and the As-
sociate Editor and two anonymous referees for helpful comments.

REFERENCES

ANDREWS, D. W. K. and SCHAFGANS, M. M. A. (1998). Semiparametric estimation of the inter-
cept of a sample selection model. Rev. Econ. Stud. 65 497–517. MR1637898

BROWN, L. D. and LOW, M. G. (1996). Asymptotic equivalence of nonparametric regression and
white noise. Ann. Statist. 24 2384–2398. MR1425958

CAI, T. T., JIN, J. and LOW, M. G. (2007). Estimation and confidence sets for sparse normal mix-
tures. Ann. Statist. 35 2421–2449. MR2382653

CAI, T. T. and LOW, M. G. (2004). An adaptation theory for nonparametric confidence intervals.
Ann. Statist. 32 1805–1840. MR2102494

CAI, T. T., LOW, M. G. and XIA, Y. (2013). Adaptive confidence intervals for regression functions
under shape constraints. Ann. Statist. 41 722–750. MR3099119

CHAMBERLAIN, G. (1986). Asymptotic efficiency in semiparametric models with censoring.
J. Econometrics 32 189–218. MR0864926

DONOHO, D. and JIN, J. (2004). Higher criticism for detecting sparse heterogeneous mixtures. Ann.
Statist. 32 962–994. MR2065195

DÜMBGEN, L. (2003). Optimal confidence bands for shape-restricted curves. Bernoulli 9 423–449.
MR1997491

DÜMBGEN, L. and SPOKOINY, V. G. (2001). Multiscale testing of qualitative hypotheses. Ann.
Statist. 29 124–152. MR1833961

EFRON, B. (2010). Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and
Prediction. Institute of Mathematical Statistics (IMS) Monographs 1. Cambridge Univ. Press,
Cambridge. MR2724758

FAN, J. (1996). Test of significance based on wavelet thresholding and Neyman’s truncation. J. Amer.
Statist. Assoc. 91 674–688. MR1395735

HAHN, J., TODD, P. and VAN DER KLAAUW, W. (2001). Identification and estimation of treatment
effects with a regression-discontinuity design. Econometrica 69 201–209.

HECKMAN, J. (1990). Varieties of selection Bias. The American Economic Review 80 313–318.
IMBENS, G. W. and LEMIEUX, T. (2008). Regression discontinuity designs: A guide to practice.

J. Econometrics 142 615–635. MR2416821
INGSTER, Y. I. and SUSLINA, I. A. (2003). Nonparametric Goodness-of-Fit Testing Under Gaus-

sian Models. Lecture Notes in Statistics 169. Springer, New York. MR1991446
KHAN, S. and TAMER, E. (2010). Irregular identification, support conditions, and inverse weight

estimation. Econometrica 78 2021–2042. MR2768989
LEPSKI, O. V. and TSYBAKOV, A. B. (2000). Asymptotically exact nonparametric hypothesis test-

ing in sup-norm and at a fixed point. Probab. Theory Related Fields 117 17–48. MR1759508
LOW, M. G. (1997). On nonparametric confidence intervals. Ann. Statist. 25 2547–2554.

MR1604412
MEINSHAUSEN, N. and RICE, J. (2006). Estimating the proportion of false null hypotheses among

a large number of independently tested hypotheses. Ann. Statist. 34 373–393. MR2275246
NUSSBAUM, M. (1996). Asymptotic equivalence of density estimation and Gaussian white noise.

Ann. Statist. 24 2399–2430. MR1425959
POUET, C. (1999). On testing nonparametric hypotheses for analytic regression functions in Gaus-

sian noise. Math. Methods Statist. 8 536–549. MR1755899
SHORACK, G. R. and WELLNER, J. A. (2009). Empirical Processes with Applications to Statistics.

SIAM, Philadelphia, PA.

http://www.ams.org/mathscinet-getitem?mr=1637898
http://www.ams.org/mathscinet-getitem?mr=1425958
http://www.ams.org/mathscinet-getitem?mr=2382653
http://www.ams.org/mathscinet-getitem?mr=2102494
http://www.ams.org/mathscinet-getitem?mr=3099119
http://www.ams.org/mathscinet-getitem?mr=0864926
http://www.ams.org/mathscinet-getitem?mr=2065195
http://www.ams.org/mathscinet-getitem?mr=1997491
http://www.ams.org/mathscinet-getitem?mr=1833961
http://www.ams.org/mathscinet-getitem?mr=2724758
http://www.ams.org/mathscinet-getitem?mr=1395735
http://www.ams.org/mathscinet-getitem?mr=2416821
http://www.ams.org/mathscinet-getitem?mr=1991446
http://www.ams.org/mathscinet-getitem?mr=2768989
http://www.ams.org/mathscinet-getitem?mr=1759508
http://www.ams.org/mathscinet-getitem?mr=1604412
http://www.ams.org/mathscinet-getitem?mr=2275246
http://www.ams.org/mathscinet-getitem?mr=1425959
http://www.ams.org/mathscinet-getitem?mr=1755899


ADAPTIVE TESTING AT A POINT 2101

SPOKOINY, V. G. (1996). Adaptive hypothesis testing using wavelets. Ann. Statist. 24 2477–2498.
MR1425962

STOREY, J. D. (2002). A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B. Stat.
Methodol. 64 479–498. MR1924302

WELLNER, J. A. (1978). Limit theorems for the ratio of the empirical distribution function to the
true distribution function. Z. Wahrsch. Verw. Gebiete 45 73–88. MR0651392

DEPARTMENT OF ECONOMICS

YALE UNIVERSITY

30 HILLHOUSE AVE

NEW HAVEN, CONNECTICUT 06511
USA
E-MAIL: timothy.armstrong@yale.edu

http://www.ams.org/mathscinet-getitem?mr=1425962
http://www.ams.org/mathscinet-getitem?mr=1924302
http://www.ams.org/mathscinet-getitem?mr=0651392
mailto:timothy.armstrong@yale.edu

	Introduction
	Results
	Applications and extensions
	Inference on a monotone function at the boundary
	Regression discontinuity
	Inference on the proportion of true null hypotheses

	Proofs
	Proof of Theorem 2.1
	Proof of Theorem 2.2
	Proof of Corollary 3.1
	Proof of Corollary 3.2
	Proof of Theorem 3.1

	Acknowledgments
	References
	Author's Addresses

