
The Annals of Statistics
2015, Vol. 43, No. 5, 2198–2224
DOI: 10.1214/15-AOS1339
© Institute of Mathematical Statistics, 2015

COMPUTING EXACT D-OPTIMAL DESIGNS BY MIXED
INTEGER SECOND-ORDER CONE PROGRAMMING

BY GUILLAUME SAGNOL AND RADOSLAV HARMAN1

Zuse Institut Berlin and Comenius University, Bratislava

Let the design of an experiment be represented by an s-dimensional vec-
tor w of weights with nonnegative components. Let the quality of w for the
estimation of the parameters of the statistical model be measured by the cri-
terion of D-optimality, defined as the mth root of the determinant of the in-
formation matrix M(w) = ∑s

i=1 wiAiA
T
i , where Ai, i = 1, . . . , s are known

matrices with m rows.
In this paper, we show that the criterion of D-optimality is second-order

cone representable. As a result, the method of second-order cone program-
ming can be used to compute an approximate D-optimal design with any
system of linear constraints on the vector of weights. More importantly, the
proposed characterization allows us to compute an exact D-optimal design,
which is possible thanks to high-quality branch-and-cut solvers specialized
to solve mixed integer second-order cone programming problems. Our re-
sults extend to the case of the criterion of DK -optimality, which measures
the quality of w for the estimation of a linear parameter subsystem defined by
a full-rank coefficient matrix K .

We prove that some other widely used criteria are also second-order cone
representable, for instance, the criteria of A-, AK -, G- and I -optimality.

We present several numerical examples demonstrating the efficiency and
general applicability of the proposed method. We show that in many cases
the mixed integer second-order cone programming approach allows us to find
a provably optimal exact design, while the standard heuristics systematically
miss the optimum.

1. Introduction. Consider an optimal experimental design problem of the
form

max
w∈W �

(
s∑

i=1

wiAiA
T
i

)
,(1.1)

where � is a criterion mapping the space S+
m of m × m positive semidefinite ma-

trices over the set R+ := [0,∞). In (1.1), Ai ∈ Rm×�i , i = 1, . . . , s are known
matrices, and W is a compact subset of Rs+ representing the set of all permissible
designs.
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Problem (1.1) arises in linear regression models with a design space X ≡ [s] :=
{1, . . . , s}, independent trials and a vector θ ∈ Rm of unknown parameters, pro-
vided that the trial in the ith design point results in an �i -dimensional response yi ,
satisfying E(yi ) = AT

i θ and Var(yi ) = σ 2I�i
, where Ik is the k × k-identity ma-

trix. For a design w ∈ W , the moment matrix M(w) := ∑s
i=1 wiAiA

T
i represents

the total information gained from the design w.
When the criterion � satisfies certain properties, problem (1.1) can be inter-

preted as selecting the weights wi that yield the most accurate estimation of θ . In
this paper, we mainly focus on the D-optimal problem, where the criterion � is
set to

�D : M → (detM)1/m.(1.2)

In the case of Gaussian measurement error, this corresponds to the problem of min-
imizing the volume of the standard confidence ellipsoid for the best linear unbiased
estimator (BLUE) θ̂ of θ .

More generally, if the experimenter is interested in the estimation of the param-
eter subsystem ϑ = KT θ , where K is an m × k matrix (k ≤ m) of full column
rank [rank(K) = k], a relevant criterion is DK -optimality, obtained when the D-
criterion is applied to the information matrix CK(M) for the linear parametric
subsystem given by the coefficient matrix K , defined by (Section 3.2 in [31])

CK(M) = min�
L∈Rk×m

LK=Ik

LMLT .

Here the minimum is taken with respect to Löwner ordering, over all left inverses
L of K . This information matrix is equal to (KT M−K)−1 if the estimability con-
dition holds (rangeK ⊆ rangeM); otherwise CK(M) is a singular matrix, so

�D|K : M →
{(

detKT M−K
)−1/k

, if rangeK ⊆ rangeM;
0, otherwise.

(1.3)

In the previous formula M− denotes a generalized inverse of M , that is, a matrix
satisfying MM−M = M . Although M− is not unique in general, the definition of
�D|K is consistent. Indeed, the matrix KT M−K does not depend on the choice of
the generalized inverse M− if the columns of K are included in the range of M ;
cf. Pukelsheim [31]. Note that if k = 1, that is, if the matrix K = c is a nonzero
vector, then the criterion �D|K is equivalent to the criterion of c-optimality.

Other optimality criteria, such as A, AK , G and I -optimality, are also discussed
in the Appendix.

In the standard form of the problem, W is the probability simplex

W� :=
{

w ∈Rs+ :
s∑

i=1

wi = 1

}
,
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and the design w is a weight vector indicating the proportions of trials in the indi-
vidual design points. This problem, called the optimal approximate design problem
in the literature, is in fact a relaxation of a much more difficult and more funda-
mental discrete optimization problem: the optimal exact design problem of size N ,
where W takes the form

WN :=
{

n
N

: n ∈ Ns
0,

s∑
i=1

ni = N

}
.

Here, the experiment consists of N trials, and if w ∈ WN , then ni = Nwi indicates
the number of trials in the design point i. (In the above definition, N0 denotes the
set of all nonnegative integers, i.e., 0 ∈ N0.) Note that the constraint w ∈ W� is
obtained from w ∈ WN by relaxing the integer constraints on Nwi .

Many different approaches have been proposed to solve problems of type (1.1).
However, most methods are specialized and work only if the feasibility set W
is the probability simplex W� or the standard discrete simplex WN . In the for-
mer case (approximate optimal design, W = W�), the traditional methods are the
Fedorov–Wynn type vertex-direction algorithms [13, 45], and the multiplicative
algorithms [39, 41, 47, 48], eventually combined with adaptive changes of the fi-
nite grid X [19, 30, 46]. In the latter case (exact optimal design, W = WN ), the
classical methods are heuristics such as exchange algorithms [3, 13, 27], round-
ing methods [32] and metaheuristics such as simulated annealing [15] or genetic
algorithms [20]. For some small to medium size models, branch-and-bound meth-
ods [43] have been used to compute provably optimal solutions.

In many practical situations, however, more complicated constraints are im-
posed on the design [9], and there is a need for more general algorithms. For ex-
ample, assume that the experimental region can be partitioned as X = X1 ∪ X2,
and that 40% (resp., 60%) of the trials should be chosen in X1 (resp., X2); that is,
the constraint w ∈ W� is replaced by

w ∈ W :=
{

w ∈ Rs+ : ∑
i∈X1

wi = 0.4,
∑
i∈X2

wi = 0.6
}
.

This is an example of a stratified design [16], which is a generalization of the
well-known marginally constrained design [10]. Other examples of relevant de-
sign domains W defined by a set of linear inequalities are discussed in [42]. For
example, it is possible to consider a case in which a total budget is allocated, and
the design points are associated to possibly unequal costs c1, . . . , cs . It is also pos-
sible to consider decreasing costs when trials of specific design points are grouped,
or to avoid designs that are concentrated on a small number of design points.

For some special linear constraints, the approximate D-optimal design problem
can be solved by modifications of the vertex-direction and the multiplicative al-
gorithms (see, e.g., [9, 16, 26]), but the convergence of these methods is usually
slow. Recently, modern mathematical programming algorithms [12, 14, 18, 25, 28,
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34, 36, 42] have been gaining in popularity. The idea is to reformulate the optimal
design problem under a canonical form that specialized solvers can handle, such
as maxdet programs (MAXDET), semidefinite programs (SDP) or second-order
cone programs (SOCP).

Reformulating an optimal design problem as an SOCP or an SDP is useful in
many regards. First, it allows one to use modern software to compute an opti-
mal solution efficiently. Second, the available interior point methods are known
to return an ε-optimal solution in polynomial time with respect to the size of the
instance and log 1

ε
because a self-concordant barrier exists for these problems;

cf. [6]. Third, mathematical programming methods are general in the sense that
they are not restricted to the use of special linear constraints. Nevertheless, the
inclusion of general linear constraints within mathematical programming charac-
terizations is not completely straightforward. For instance, we show in Section 2
that the SOCP formulation of [34] for the standard approximate D-optimal design
problem (over W�) does not yield a valid SOCP formulation of the constrained
D-optimal design problem when the constraint w ∈ W� is replaced by w ∈W .

The main result of this paper is proved in Section 4 and states that the deter-
minant criterion is SOC-representable. More precisely, it is possible to express
that (t,w) belongs to the hypograph of w → �D(M(w)), that is, tm ≤ detM(w),
as a set of second-order cone inequalities. Consequently, we obtain an alternative
SOCP formulation for D-optimality, which remains valid for any weight domain
W that can be expressed by SOC inequalities; see Section 3.

In the Appendix, we prove that other widely used criteria, such as A, G or
I -optimality are also SOC-representable. We have summarized the SOCP formu-
lations of constrained D-, A- and G-optimality in Table 1.

Before this paper, the state of the art method for solving optimal design prob-
lems with arbitrary linear constraints was the MAXDET formulation of Vanden-
berghe, Boyd and Wu [42], which is in fact reformulated as an SDP by most inter-
faces, such as YALMIP [24] or PICOS [35], by using the construction described
in [5]. Having an SOCP instead of an SDP formulation has two main advantages.
The first is purely computational: it is well known that the computational effort
per iteration required by the interior point methods to solve an SOCP is much less
than that required to solve an SDP; cf. [1]. When the parameter θ is of large dimen-
sion m, or when the number of candidate support points s is large, the SOCP can
improve the computational time by one or two orders of magnitude (compared to
MAXDET), as was already evidenced in [34] for D-optimality over the probability
simplex W�.

The second and probably more important benefit of SOCP formulations (com-
pared to SDP) is that specialized solvers can handle SOCP problems with integer
variables, while there is currently no reliable solver to handle SDPs with integer
variables. Indeed, much progress has been made recently in the development of
algorithms for second-order cone programming, when some of the variables are
constrained in the integral domain (MISOCP: mixed integer second-order cone
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TABLE 1
SOCP formulation of the DK , AK and G-optimal design problems over a compact weight region
W ⊆Rs+. In the above, K represents a given m × k matrix of full column rank. The particular case
k = 1 (where c = K is a column vector) gives SOCP formulations for the c-optimal design problem,

and the case K = Im yields the standard D and A-optimality problems. The variables Zi , Yi

(i ∈ [s]) are of size �i × k, the variables H
j
i (i ∈ [s], j ∈ [s]) are of size �j × �i , J is of size k × k,

the weight vector is w ∈W and the variables tij (i ∈ [s], j ∈ [k]), u
j
i (i ∈ [s], j ∈ [s]),

μi (i ∈ [s]) and ρ are scalar

max
w∈W �D|K

(
M(w)

) = max
w,Zi ,tij ,J

k∏
j=1

(Jj,j )1/k

s.t.
∑
i∈[s]

AiZi = KJ ,

J is lower triangular,

‖Ziej‖2 ≤ tijwi

(
i ∈ [s], j ∈ [k]),

s∑
i=1

tij ≤ Jj,j

(
j ∈ [k]),

tij ≥ 0
(
i ∈ [s], j ∈ [k]),

w ∈W ,

max
w∈W �A|K

(
M(w)

) = max
w,Yi ,μi

∑
i∈[s]

μi

s.t.
∑
i∈[s]

AiYi =
( ∑

i∈[s]
μi

)
K ,

‖Yi‖2
F ≤ μiwi

(
i ∈ [s]),

μi ≥ 0
(
i ∈ [s]),

w ∈W ,

max
w∈W �G

(
M(w)

) = max
w,H

j
i ,u

j
i ,ρ

ρ

s.t.
∑

j∈[s]
AjH

j
i =

( ∑
j∈[s]

u
j
i

)
Ai

(
i ∈ [s]),

∥∥Hj
i

∥∥2
F ≤ wju

j
i

(
i ∈ [s], j ∈ [s]),

u
j
i ≥ 0

(
i ∈ [s], j ∈ [s]),

ρ ≤ ∑
j∈[s]

u
j
i

(
i ∈ [s]),

w ∈W .



COMPUTING EXACT OPTIMAL DESIGNS BY MISOCP 2203

programming). Thus the SOCP formulation of D-optimality presented in this ar-
ticle, unlike the existing SOCP and SDP formulations, allows us to use those spe-
cialized codes to solve exact design problems. Indeed, our formulation is valid for
any compact weight domain W , so in particular it is valid for the set WN of ex-
act designs of size N , and more generally for any polyhedron intersected with a
lattice of integer points. Compared to the raw branch-and-bound method for com-
puting exact designs proposed by Welch [43], the MISOCP approach is not only
easier to implement, but also much more efficient. The reason is that specialized
solvers such as CPLEX [21] or MOSEK [2] rely on branch-and-cut algorithms
with sophisticated branching heuristics, and they use cut inequalities to separate
noninteger solutions.

In Section 5, we demonstrate the general applicability of the proposed approach,
incorporating illustrative examples taken from two application areas of the theory
of optimal experimental designs. The following key aspects of the MISOCP ap-
proach will be emphasized:

(1) the ability to handle any system of linear constraints on the weights;
(2) the ability to compute exact-optimal designs with a proof of optimality;
(3) the ability to rapidly identify a near exact-optimal design for applications

where the computing time must remain short, while giving a lower bound on its
efficiency; moreover this bound is usually much better than the standard bound
obtained from the approximate optimal design.

In particular, our algorithm can compute constrained exact optimal designs, a fea-
ture out of reach of the standard computing methods, although some authors have
proposed heuristics to handle some special cases such as cost constraints [40, 44].
A notable exception is the recent DQ-optimality approach of Harman and Filová
[17], which is a heuristic based on integer quadratic programming (IQP) that can
handle the general case of linearly constrained exact designs. However, for some
specific D-optimum design problems, the IQP approach leads to very inefficient
designs; cf. Section 4 in [17].

In practice, the MISOCP solvers take an input tolerance parameter ε > 0, and
the computation stops when a design w∗ is found, with a guarantee that no design
w with value �(M(w)) ≥ (1 + ε)�(M(w∗)) exists. In some cases such as D-
optimal block designs, there is a positive value of ε > 0 for which the returned
design is verifiably optimal; see Section 5. Otherwise we can set ε > 0 to a small
constant (i.e., a tolerance allowing a reasonable computation time), so the design
found with the MISOCP approach will have an efficiency guarantee of (1+ε)−1 ≥
1 − ε, which is usually a much better efficiency bound than the one based on the
comparison with the approximate optimal design. In many situations, the solver is
further able to terminate with an optimality status, which means that the branch
and bound tree has been completely trimmed and constitutes a proof of optimality.
Moreover, it often produces better designs than the standard heuristics (also in
cases when perfect optimality is not guaranteed).
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2. Former SOCP formulation of D-optimality. A second-order cone pro-
gram (SOCP) is an optimization problem where a linear function fT x must be
maximized, among the vectors x belonging to a set S-defined by second-order
cone inequalities, that is,

S = {
x ∈Rn : ∀i = 1, . . . ,Nc,‖Gix + hi‖ ≤ cT

i x + di

}
for some Gi,hi , ci , di of appropriate dimensions. Optimization problems of this
class can be solved efficiently to the desired precision using interior point tech-
niques; see [6].

We first recall the result from [34] about D-optimality, rewritten with the nota-
tion of the present article. Note that ‖Z‖F := √

traceZZT denotes the Frobenius
norm of the matrix Z, which also corresponds to the Euclidean norm of the vec-
torization of Z: ‖Z‖F = ‖vec(Z)‖. In the following formulation, the restriction to
lower triangular matrices is just a compact notation for the set of linear constraints
that appears in [34]:

PROPOSITION 2.1 (Former SOCP for D-optimality [34]). Let (Z1, . . . ,Zs,

L,w) be optimal for the following SOCP:

max
Zi∈R�i×m

L∈Rm×m

w∈Rs+

(
m∏

k=1

Lk,k

)1/m

s.t.
s∑

i=1

AiZi = L,

L is lower triangular,(2.1)

‖Zi‖F ≤ √
mwi ∀i ∈ [s],

w ∈ W�.

Then �D(M(w)) = det1/m M(w) = (
∏

k Lk,k)
2/m, and w ∈ W� is optimal for

the standard approximate D-optimal design problem.

If we want to solve a D-optimal design problem over another design region W ,
it is very tempting to replace the last constraint in problem (2.1) by w ∈ W . How-
ever, this approach fails. Consider, for example, the following experimental design
problem with three regression vectors in a two-dimensional space: A1 = [1,0]T ,

A2 = [−1
2 ,

√
3

2 ]T ,A3 = [−1
2 ,−

√
3

2 ]T . For reasons of symmetry, it is clear that the
approximate D-optimal design (over W�) is w1 = w2 = w3 = 1

3 , and this is indeed
the vector w returned by problem (2.1). Define now W := {w ∈ R3+ : ∑3

i=1 wi =
1,w1 ≥ w2 +0.25}. The optimal design over W is w∗ = [0.4583,0.2083,0.3333],
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but solving problem (2.1) with the additional constraint w1 ≥ w2 + 0.25 yields the
design w = [0.4482,0.1982,0.3536], which is suboptimal.

It can be proved that any optimal pair of variables (w∗,L∗) for problem (2.1)
satisfies M(w∗) = (L∗)(L∗)T ; that is, L∗ is a Cholesky factor of the optimal in-
formation matrix. However, this relation is only true for optimality over the unit
simplex W�, which is a consequence of a generalization of Elfving’s theorem;
cf. [34]. In the present article, we give an alternative SOCP formulation of the
D-optimal problem, which remains valid for any compact weight domain W . The
main idea of our new formulation is that the Cholesky factorization of a matrix
HHT can be computed by solving an SOCP that mimics the Gram–Schmidt or-
thogonalization process of the rows of H . Moreover, our new SOCP handles the
more general case of DK -optimality. To derive our result, we use the notion of
SOC-representability, which we next present.

3. SOC-representability. In this section, we briefly review some basic no-
tions about second-order cone representability. The following definition was intro-
duced by Ben-Tal and Nemirovski [5]:

DEFINITION 3.1 (SOC-representability of a set). A convex set S ⊆ Rn is said
to be second-order cone representable, abbreviated SOC-representable, if S is the
projection of a set in a higher-dimensional space that can be described by a set
of second-order cone inequalities. More precisely, S is SOC-representable if and
only if there exist Gi ∈ Rni×(n+m),hi ∈ Rni , ci ∈ Rn+m,di ∈ R (i = 1, . . . ,Nc),
such that

x ∈ S ⇐⇒ ∃y ∈ Rm : ∀i = 1, . . . ,Nc,

∥∥∥∥Gi

[
x
y

]
+ hi

∥∥∥∥ ≤ cT
i

[
x
y

]
+ di.

An important example of an SOC-representable set is the following:

LEMMA 3.2 (Rotated second-order cone inequalities). The set

S = {
(x, t, u) ∈ Rn ×R×R : ‖x‖2 ≤ tu, t ≥ 0, u ≥ 0

} ⊆ Rn+2

is SOC-representable. In fact, it is easy to see that

S =
{
(x, t, u) ∈ Rn ×R×R :

∥∥∥∥ 2x
t − u

∥∥∥∥ ≤ t + u

}
.

The notion of SOC-representability is also defined for functions:

DEFINITION 3.3 (SOC-representability of a function). A convex (resp., con-
cave) function f : S ⊆ Rn �→ R is said to be SOC-representable if and only if
the epigraph of f , {(t,x) : f (x) ≤ t} [resp., the hypograph {(t,x) : t ≤ f (x)}], is
SOC-representable.
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It follows immediately from these two definitions that the problem of maxi-
mizing a concave SOC-representable function (or minimizing a convex one) over
an SOC-representable set can be cast as an SOCP. It is also easy to verify that
sets defined by linear equalities (i.e., polyhedrons) are SOC-representable, that
intersections of SOC-representable sets are SOC-representable and that the (point-
wise) minimum of concave SOC-representable functions is still concave and SOC-
representable.

We next give another example which is of major importance for this article: the
geometric mean of n nonnegative variables is SOC-representable.

LEMMA 3.4 (SOC-representability of a geometric mean [5]). Let n ≥ 1 be an
integer. The function f mapping x ∈ Rn+ to

∏n
i=1 x

1/n
i is SOC-representable.

For construction of the SOC representation of f , see [23] or [1]. In what fol-
lows, we show the case n = 5. For all t ∈ R+, x ∈R5+, we have

t5 ≤ x1x2x3x4x5 ⇐⇒ t8 ≤ x1x2x3x4x5t
3

⇐⇒ ∃u ∈ R5+ :

⎧⎪⎪⎨
⎪⎪⎩

u2
1 ≤ x1x2, u2

4 ≤ u1u2,

u2
2 ≤ x3x4, u2

5 ≤ u3t ,

u2
3 ≤ x5t, t2 ≤ u4u5,

and each of these inequalities can be transformed to a standard second-order cone
inequality by Lemma 3.2.

4. SOC-representability of the D-criterion. The key to SOC representation
of the D-criterion is a Cholesky decomposition of the moment matrix, as given by
the following lemma. Note that the lemma is general in the sense that it does not
require the estimability conditions to be satisfied.

LEMMA 4.1. Let H be an m × n matrix (m ≤ n), and let K be an m × k

matrix (k ≤ m) of full column rank. If k = m, let U = K , and if k < m, let U be a
nonsingular matrix of the form [V,K], where V ∈ Rm×(m−k). Then there exists a
QR-decomposition of HT U−T = Q̃R̃ where Q̃ is an orthogonal n × n matrix and
R̃ is an upper triangular n × m matrix, satisfying R̃ii ≥ 0 for all i ∈ [m] and

R̃ii = 0 implies R̃i1 = · · · = R̃im = 0 for all i ∈ [m].(4.1)

Let LT∗ be the k × k upper triangular sub-block of R̃ with elements (LT∗ )ij =
R̃m−k+i,m−k+j for all i, j ∈ [k]. Then CK(HHT ) = L∗LT∗ ; that is, L∗LT∗ is a
Cholesky factorization of the information matrix for the linear parametric system
given by the coefficient matrix K , corresponding to the moment matrix HHT .
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PROOF. It is simple to show that a QR decomposition satisfying (4.1) can
be obtained from any QR-decomposition HT U−T = Q̄R̄, using an appropriate
sequence of Givens rotations and row permutations applied on R̄.

Consider the decomposition HT U−T = Q̃R̃ satisfying (4.1). Assume that k <

m < n. Partition the orthogonal matrix Q̃ and the upper triangular matrix R̃ as
follows:

Q̃ =
m−k←→ k←→ n−m←→
[Q1 Q∗ Q2] � n,

R̃ =
m−k←→ k←→⎡

⎣LT
1 B

0 LT∗
0 0

⎤
⎦ � m − k

� k

� n − m

(4.2)

where the block sizes are indicated on the border of the matrices. Let U−1 =
[ZT ,XT ]T , where X is a k × m matrix. Note that [ZT ,XT ]T K = U−1K =
[0, Ik]T , which implies XK = Ik ; that is, X is a left inverse of K . Define
Y = Im − KX. By a direct calculation, we obtain XH = BT QT

1 + L∗QT∗ and
YH = H − KXH = [V,K]R̃T Q̃T − K(BT QT

1 + L∗QT∗ ) = V L1Q
T
1 . Therefore,

using the orthogonality of Q̃, that is, QT
1 Q1 = Im−k , QT∗ Q∗ = Ik , QT

1 Q∗ = 0 and
a representation of CK given by [31], Section 3.2, we have

CK

(
HHT ) = XHHT XT − XHHT YT (

YHHT YT )−
YHHT XT

(4.3) = BT B + L∗LT∗ − BT LT
1 V T (

V L1L
T
1 V T )−

V L1︸ ︷︷ ︸
P

B,

where P is the orthogonal projector on range(LT
1 V T ). Note that (4.1) implies

range(B) ⊆ range(LT
1 ), and rank(V ) = m − k gives range(LT

1 ) = range(LT
1 V T ).

That is, PB = B , and from (4.3) we obtain the required result CK(HHT ) =
L∗LT∗ .

If k = m or n = m, the lemma can be proved in a completely analogous way,
treating the matrices Q1,L1,B (if and only if k = m) and Q2 (if and only if m = n)
as empty. �

The next theorem shows that the blocks Q∗ and L∗ from decomposition (4.2)
can be computed by solving an optimization problem over an SOC-representable
set.

THEOREM 4.2. Let H be an m × n matrix (m ≤ n), let K be an m × k matrix
(k ≤ m) of full column rank and let L∗ be optimal for the following problem:

max
Q∈Rn×k

L∈Rk×k

detL

s.t. L is lower triangular,
(4.4)

HQ = KL,

‖Qej‖ ≤ 1
(
j ∈ [k]).

Then �D|K(HHT ) = (det(L∗))2/k .
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PROOF. Consider the QR decomposition HT U−T = Q̃R̃ from the statement
of Lemma 4.1, and the block partition (4.2). We will show that the blocks Q∗ and
L∗ form an optimal solution to the problem from the theorem.

First, L∗ is clearly lower triangular, and using direct block multiplication to-
gether with QT∗ Q∗ = Ik , we can verify that QT∗ HT = LT∗ KT , that is, HQ∗ =
KL∗. Second, Q∗ has columns of unit length, which implies ‖Q∗ej‖ = 1 for
all j ∈ [k]. Therefore, Q∗,L∗ are feasible. From Lemma 4.1, we know that
CK(HHT ) = L∗LT∗ , that is, (det(L∗))2/k = �D|K(HHT ). To complete the proof
of the theorem, we only need to show that any feasible L satisfies (det(L))2/k ≤
�D|K(HHT ).

Let Q,L be a feasible pair of matrices. As in the proof of Lemma 4.1, let
U = [V,K] be an invertible matrix, and let U−1 = [ZT ,XT ]T , where X is a
k × m matrix. Obviously, U−1H = [CT ,DT ]T , where C = ZH and D = XH ,
and [CT ,DT ]T Q = U−1HQ = U−1KL = [0, Ik]T L = [0,LT ]T , which implies
CQ = 0 and DQ = L. Define the projector P = In − CT (CCT )−C, that is,
P 2 = P , and then observe that CQ = 0 entails PQ = Q. From the previous
equalities and the Cauchy–Schwarz inequality for determinants [e.g., [38], for-
mula 12.5(c)], we have

det
(
LLT ) = (

det(DQ)
)2 = (

det(DPQ)
)2 ≤ det

(
DPDT )

det
(
QT Q

)
.(4.5)

The Hadamard determinant inequality (e.g., [38], formula 12.27) and the feasibil-
ity of Q give

det
(
QT Q

) ≤
k∏

i=1

(
QT Q

)
ii =

k∏
i=1

‖Qei‖2 ≤ 1.(4.6)

Combining (4.5) and (4.6), we obtain det(LLT ) ≤ det(DPDT ), and the proof will
be complete, once we prove DPDT = CK(HHT ).

Note that Im = UU−1 = [V,K][ZT ,XT ]T = V Z + KX, that is, Y := Im −
KX = V Z. Moreover, rank(V ) = m−k implies range(HT YT ) = range(HT ZT ×
V T ) = range(HT ZT ); that is, the orthogonal projectors HT YT (YHHT YT )−HY

and HT ZT (ZHHT ZT )−HZ coincide. Consequently, using [31], Section 3.2, we
have

CK

(
HHT ) = XHHT XT − XHHT YT (

YHHT YT )−
YHHT XT

= XHHT XT − XHHT ZT (
ZHHT ZT )−

ZHHT ZT

= DDT − DCT (
CCT )−

CDT = DPDT . �

We next apply Theorem 4.2 to the matrix H = [√w1A1, . . . ,
√

wsAs]. This will
allow us to express �D|K(M(w)) as the optimal value of an SOCP. Moreover, we
make a change of variables which transforms the optimization problem into an
SOCP where w may play the role of a variable.
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THEOREM 4.3. Let K be an m × k matrix (k ≤ m) of full column rank. For
all nonnegative weight vectors w ∈ Rs+, denote by OPT(w) the optimal value of
the following optimization problem, where the optimization variables are tij ∈ R+
(∀i ∈ [s],∀j ∈ [k]), Zi ∈ R�i×k (∀i ∈ [s]) and J ∈Rk×k:

max
Zi,tij ,J

(
k∏

j=1

Jj,j

)1/k

(4.7a)

s.t.
s∑

i=1

AiZi = KJ,(4.7b)

J is lower triangular,(4.7c)

‖Ziej‖2 ≤ tijwi

(
i ∈ [s], j ∈ [k]),(4.7d)

s∑
i=1

tij ≤ Jj,j

(
j ∈ [k]).(4.7e)

Then we have

OPT(w) = �D|K
(
M(w)

)
.

PROOF. Let w ∈ Rs+, and define H := [√w1A1, . . . ,
√

wsAs]. We are going to
show that every feasible solution to problem (4.7a)–(4.7e) yields a feasible solution
for problem (4.4) in which Jj,j = L2

j,j for all j ∈ [k], and vice versa. Hence the
optimal value of problem (4.7a)–(4.7e) is

OPT(w) = (detJ )1/k = (detL)2/k = �D|K
(
HHT ) = �D|K

(
M(w)

)
,

from which the conclusion follows.
Consider a feasible solution (Zi, tij , J ) to problem (4.7a)–(4.7e). We denote

by zij the j th column of Zi : zij := Ziej . We now make the following change of
variables: denote by Qi the matrix whose j th column is qij , where

qij =
⎧⎨
⎩

zij√
wi

√
Jj,j

, if wi > 0 and Jj,j > 0;

0, otherwise,

and define Q as the vertical concatenation of the Qi : Q = [QT
1 , . . . ,QT

s ]T . Let j ∈
[k]. If Jj,j = 0, then qij = 0 for all i, so ‖Qej‖2 = ∑

i ‖qij‖2 = 0 ≤ 1. Otherwise
(Jj,j > 0), constraint (4.7d) together with the nonnegativity of tij implies ‖qij‖2 ≤
tij

Jj,j
, and by constraint (4.7e), we must have

‖Qej‖2 = ∑
i

‖qij‖2 ≤ ∑
i

tij

Jj,j

≤ 1.
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Observe that constraints (4.7d) and (4.7e) also imply that zij = 0 whenever
wi = 0 or Jj,j = 0, so that for all i ∈ [s], j ∈ [k], we can write zij = √

wi

√
Jj,j qij .

Now, we define the matrix L column-wise as follows:

∀j ∈ [k], Lej :=
⎧⎪⎨
⎪⎩

J ej√
Jj,j

, if Jj,j > 0;

0, otherwise.

Note that L is lower triangular [because so is J ; see (4.7c)]. We can now prove that
HQ = KL, which we do column-wise. If Jj,j = 0, then we know that Qej = 0,
so the j th columns of HQ and KL are zero. If Jj,j > 0, then using (4.7b) we have

KLej = KJ ej√
Jj,j

=
∑

i Aizij√
Jj,j

= ∑
i

√
wiAiqij = HQej .

Hence the proposed change of variables transforms a feasible solution (Z, tij , J )

to problem (4.7a)–(4.7e) into a feasible pair (Q,L) for problem (4.4), with the
property Jj,j = L2

j,j for all j ∈ [k].
Conversely, let (Q,L) be feasible for problem (4.4), where H has been set to

[√w1A1, . . . ,
√

wsAs]. For i ∈ [s], define Zi as the matrix of size �i × k whose
j th column is zij = √

wiLj,j qij , and J as the lower triangular matrix whose j th
column is J ej = Lj,jLej . We have

∑
i AiZi = KJ , which can be verified column-

wise as follows:

KJ ej = Lj,jKLej = Lj,jHQej = Lj,j

∑
i

√
wiAiqij = ∑

i

Aizij = ∑
i

AiZiej .

Define further tij = L2
j,j‖qij‖2, so that constraints (4.7d) and (4.7e) hold. This

shows that (Zi, tij , J ) is feasible, with Jj,j = L2
j,j for all j ∈ [k], and the proof is

complete. �

COROLLARY 4.4 (SOC-representability of �D|K ). For any m × k matrix K

of rank k, the function w → �D|K(M(w)) is SOC-representable.

PROOF. Problem (4.7a)–(4.7e) can be reformulated as an SOCP, because
by Lemmas 3.4 and 3.2 the geometric mean in (4.7a) and inequalities of the
form ‖Ziej‖2 ≤ tijwi are SOC-representable. Hence the optimal value of (4.7a)–
(4.7e), w → OPT(w), is SOC-representable, and we know from Theorem 4.3 that
OPT(w) = �D|K(M(w)). �

COROLLARY 4.5 [(MI)SOCP formulation of the D-optimal design problem].
If the set W is SOC-representable (in particular, if W is defined by a set of linear
inequalities), then the constrained DK -optimal design problem (1.1) can be cast
as an SOCP. If W is the intersection of an SOC-representable set with the integer
lattice Zs , then the exact DK -optimal design problem over W can be cast as an
MISOCP.
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For K = Im, Corollaries 4.4 and 4.5 cover the case of the standard D-optimality.
The (MI)SOCP formulation of problem (1.1) for DK -optimality (� = �D|K ) is
summarized in Table 1, together with formulations for the other criteria presented
in the Appendix. Finally, we note that the SOCP formulation of the optimal design
problem with constraints on the weights has consequences in terms of complexity,
which we next present.

Complexity of computing constrained approximate DK -optimal designs. Re-
call that s denotes the number of candidate support points, and k ≤ m denotes the
number of features that we wish to estimate. (The full rank coefficient matrix K

is in Rm×k .) Assume for simplicity that �i = � for all i ∈ [s], that the set of de-
sign weights W is defined by a set of n inequalities and that k is a power of 2,
so that the geometric mean can be represented by k inequalities and k auxiliary
variables; cf. Lemma 3.4 or [36] for more details. Then the SOCP formulation for
DK -optimality of Table 1 contains:

• s + s�k + sk + 1
2k(k + 1) + k variables,

• mk + k + n linear (in)equalities,
• k SOC inequalities of size 2 and ks SOC inequalities of size � + 1.

The number of iterations required by the interior point methods (IPM) to compute
an ε-approximate solution depends only on the number q of second-order cones.
Indeed it is shown in [5] that the IPM finds an ε-approximate solution after at most√

qO(log 1
ε
) iterations, which is

√
k(s + 1)O(log 1

ε
) iterations in our setting. How-

ever, it is well known that this bound is overconservative, and in practice the IPM
always returns an excellent solution after 10 to 40 iterations, almost independently
of the problem size. In other words, the critical point is the algorithmic complexity
of one iteration. Again, a result of [5] (Section 4.6.2) allows us to bound the num-
ber of algorithmic operations for one iteration in O(ks�((ks�)2 + (mk + n)2)),
which is O((ks�)3) if m and n are not too large. But it is well known that this
bound is very conservative, too. In fact, the bottleneck of one iteration is the res-
olution of a linear system of the form Bδ = β , where B is a O(ks�) × O(ks�)

symmetric positive semidefinite matrix. In practice, for SOCPs the matrix B has a
“diagonal + sparse low rank” structure, which allows for an efficient computation
of the Newton direction δ [1].

5. Examples. In this section, we will present numerical results for several ex-
amples taken from various application areas of the theory of optimal designs. With
these examples, we aim to demonstrate the general applicability of the (MI)SOCP
technique for the computation of exact or approximate D-optimal designs.

Our computations were conducted on a PC with a 4-core processor at 3 GHz.
We used MOSEK [2] to solve the approximate optimal design problems and
CPLEX [21] for the exact optimal design problems (with integer constraints). The
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solvers were interfaced through the Python package PICOS [35], which allows
users to pass (MI)SOCP models to different solvers in a simple fashion. We re-
fer the reader to the example section of the PICOS documentation for a practical
implementation of the (MI)SOCP approach for optimal design problems.

It is common to compare several designs against each other by using the metric
of D-efficiency, which is defined as

effD(w) = �D(M(w))

�D(M(w∗))
=

(
detM(w)

detM(w∗)

)1/m

,

where w∗ is a reference design, such that M(w∗) is nonsingular. Unless stated
otherwise, we always give D-efficiencies relative to the optimal design; that is,
w∗ is a solution to problem (1.1).

Block designs with blocks of size two. An important category of models studied
in the experimental design literature is the class of block designs. Here the effect
of t treatments should be compared, but their effects can only be measured inside
a number b of blocks, each inducing a block effect on the measurements. The op-
timal design problem entails choosing which treatments should be tested together
in each block. We refer the reader to Bailey and Cameron [4] for a comprehensive
review on the combinatorics of block designs.

In the case where the blocks are of size two, that is, the treatments can
be tested pairwise against each other, a design can be represented by a vector
w = [w1,2,w1,3, . . . ,w1,t , . . . ,wt−1,t ] of size s = (t

2

)
. For i < j , wi,j indicates the

number of blocks where treatments i and j are tested simultaneously. The obser-
vation matrix associated with the block (i, j) can be chosen as the column vector
of dimension m = (t − 1),

Ai,j = P(ei − ej ),(5.1)

where ei denotes the ith unit vector in the canonical basis of Rt and P is the matrix
that transforms a t-dimensional vector v to the vector obtained by keeping the first
(t − 1) coordinates of v.

The problem of D-optimality has a nice graph theoretic interpretation: let w ∈
Ns

0 be a feasible block design, and denote by G the graph with t vertices and an
edge of multiplicity wi,j for every pair of nodes (i, j). (If wi,j = 0, then there is
no edge from i to j .) This graph is called the concurrence graph of the design. We
have M(w) = PL(w)P T , where L(w) := ∑

i,j wi,j (ei − ej )(ei − ej )
T ∈ Rt×t is

the Laplacian of G. In other words, M(w) is the submatrix of the Laplacian of G

obtained by removing its last row and last column. So by Kirchhoff’s theorem the
determinant of M(w) is the number of spanning trees of G. In other words, the
exact D-optimal designs of size N correspond to the graphs with t nodes and N

edges that have a maximum number of spanning trees.
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REMARK 5.1. There is an alternative parametrization of block designs with
blocks of size two; see [17]. Define the observation matrices by

A′
i,j = UT (ei − ej ),(5.2)

where the columns of U ∈ Rt×(t−1) form an orthonormal basis of Ker 1 (1 is the
vector with all components equal to 1); that is, the t × t-matrix [U, 1√

t
1] is orthog-

onal. It can be seen that the t − 1 eigenvalues of M ′(w) = ∑
i,j wi,jA

′
i,jA

′T
i,j =

UT L(w)U coincide with the t − 1 largest eigenvalues of L(w), and the small-
est eigenvalue of L(w) is 0. So the set of D-optimal designs for observation
models (5.1) and (5.2) coincide. In our experiments, we have used the former
model (5.1) because it involves sparse information matrices and yields more ef-
ficient computations. However, note that for some other criteria depending on the
eigenvalues of the information matrix, the model given by (5.2) should be used.

To illustrate the new capability of the MISOCP approach, we computed designs
of N = 15 blocks on t = 10 treatments by imposing different types of constraints
on the replication numbers (i.e., the numbers of times that each treatment is tested).
Such constraints can be easily expressed by linear (in)equalities. For example, a
design w has treatment j replicated rj times if and only if

j−1∑
i=1

wi,j +
t∑

i=j+1

wj,i = rj .

The concurrence graphs of these constrained optimal designs are displayed in Fig-
ure 1. Note that these constrained exact optimal designs cannot be computed by
any of the standard methods.

Mixed integer optimization solvers rely on sophisticated branch-and-cut algo-
rithms. After each iteration, the value L = �D(M(ŵ)) of the best solution ŵ found
so far is compared to an upper bound U provided by a series of continuous relax-
ation of the problem, and the gap defined by δ = U−L

L
is displayed. Note that

δ can directly be interpreted as a guarantee on the D-efficiency of ŵ, namely
effD(ŵ) ≥ (1 + δ)−1. The following remark shows that for block designs, the cur-
rent best solution is actually proved to be exact D-optimal as soon as the gap δ

reaches a small tolerance parameter ε > 0.

REMARK 5.2. Let Tw denote the number of spanning trees of the concurrence
graph G corresponding to an exact design w, and T ∗ denote the maximal number
of spanning trees for a particular block design problem. By using the fact that
Tw = detM(w) is an integer, it can be seen that a tolerance parameter of

ε =
(

1 + 1

T ∗
)1/m

− 1 � 1

mT ∗
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Design (a) (b) (c) (d)

CPU (s) 9.07 4.9 13.8 5.7
Lower bound on effD (initial) 90.15% 92.56% 91.36% 91.27%
Lower bound on effD (10 min) 100.0% 96.56% 98.04% 100.0%

FIG. 1. Concurrence graphs of the D-optimal designs of N = 15 blocks on t = 10 treatments,
among the class of 2-block designs that (a) are equireplicate; (b) have half of the treatments repli-
cated 2 times, and the other half replicated 4 times; (c) have one treatment replicated at least 6 times;
(d) have two treatments replicated at least 6 times. For each case, the table gives the time required by
the MISOCP solver to find the optimal design; the (initial) lower bound on the D-efficiency of the op-
timal design, compared to the constrained approximate design; the lower bound on the D-efficiency
of the optimal design that is guaranteed after 10 min of computing time.

ensures that the design w∗ returned by the MISOCP approach is (perfectly) op-
timal. We have used this value of ε in our numerical experiments. When the
value of T ∗ is unknown, note that an upper bound can be used (e.g., the bound
T ∗ ≤ 1

t
( 2N
t−1)t−1 given by the optimal design w = [N

s
, . . . , N

s
]T for the relaxed

problem without integer constraints).

To achieve a faster convergence, a few variables can be set equal to 0 or 1 in
order to break the symmetry of the problem. For example, if we search for a D-
optimal design in a class of exact designs with at least one treatment replicated
exactly 4 times, we can assume without loss of generality that treatment 1 has
replication number 4, so w1,2 = w1,3 = w1,4 = w1,5 = 1 and w1,i = 0 for all i ∈
{6, . . . , t}.

The table in Figure 1 gives information on the computing time required by
CPLEX. In all four situations, the optimal design was found in the first seconds
of computation. However, note that the time required to obtain a certificate of op-
timality can be much longer [a few minutes for cases (a) and (d), and as much
as 3 hours for case (b)]. However, the bound on the D-efficiency provided by the
MISOCP solver after a few minutes is already much better than the standard bound
of D-efficiency relative to the (constrained) approximate optimal design.

This example also demonstrates that sometimes we can use independent theoret-
ical results to add some linear constraints to the original optimum design problem
that can greatly improve the computational efficiency. Indeed, it has been conjec-
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tured that every optimal block design with blocks of size two is (almost) equirepli-
cate for t − 1 ≤ N ≤ (t

2

)
. The conjecture is known to hold for t ≤ 11 [8] and for all

pairs (t,N) such that N ≥ (t
2

) − t + 2 [29]. The MISOCP solver required 333.7 s
to obtain a certificate of optimality of the design plotted in Figure 1(a) in the class
of equireplicate designs. In contrast, several hours of computation are required
if we omit the constraints on the replication numbers in the MISOCP formula-
tion.

More computational results for optimal block designs can be found in an ear-
lier version of this manuscript that is available on the web [37]. In particular,
we show that even for the case of standard (unconstrained) exact design prob-
lems (W = WN ), the MISOCP approach sometimes outperforms state-of-the-
art algorithms such as the KL-exchange procedure [3]. The manuscript [37]
also presents numerical results on other criteria, such as A-optimality and G-
optimality.

Locally D-optimal design in a study of chemical kinetics. Another classical
field of application of the theory of optimal experimental designs is the study
of chemical kinetics. Here, the goal is to select the points in time at which a
chemical reaction should be observed, to estimate the kinetic parameters θ ∈ Rm

of the reaction (rates, orders, etc.). The measurements at time t are of the form
yt = ηt (θ) + εt , where ηt (θ) = [η1

t , . . . , η
k
t ]T is the vector of the concentrations

of k reactants at time t and εt is a random error. The kinetic models are usually
given as a set of differential equations, which can be solved numerically to find the
concentrations ηt (θ) over time. Unlike the linear model described in the introduc-
tion of this paper, in chemical kinetics the expected measurements E[yt ] = ηt (θ)

at time t depend nonlinearly on the vector θ of unknown parameters of the reac-
tion. So a classical approach is to search for a locally optimal design using a prior
estimate θ0 of the parameter, that is, a design which would be optimal if the true
value of the parameters was θ0. To do this, the observation equations are linearized
around θ0, so in practice we replace the observation matrix At of each individual
trial at time t by its sensitivity at θ0, which is defined as

Ft := ∂ηt (θ)

∂θ

∣∣∣∣
θ=θ0

=

⎛
⎜⎜⎜⎜⎜⎝

∂η1
t

∂θ1
· · · ∂ηk

t

∂θ1
...

. . .
...

∂η1
t

∂θm

· · · ∂ηk
t

∂θm

⎞
⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣
θ=θ0

∈ Rm×k.

A classical example is presented in [3], the study of two consecutive reactions

A
θ1→B

θ2→C.
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The chemical reactions are assumed to be of order θ3 and θ4, respectively, so the
concentrations of the reactants are determined by the differential equations

d[A]
dt

= −θ1[A]θ3,

d[B]
dt

= θ1[A]θ3 − θ2[B]θ4,(5.3)

d[C]
dt

= θ2[B]θ4,

together with the initial condition ([A], [B], [C])|t=0 = (1,0,0). These equations
can be differentiated with respect to θ1, . . . , θ4, which yields another set of differ-

ential equations that determines the elements ∂η
j
t

∂θi
of the sensitivity matrices.

We now assume that measurements can be performed at each t ∈ X = {0.2,0.4,

. . . ,19.8,20}, where the time is expressed in seconds, and that the observed
quantities are the concentrations of the reactants A and C, that is, k = 2 and
ηT

t = ([A](t), [C](t)). We have solved numerically the differential equations gov-
erning the entries of (Ft )t∈X for θ0 := [1,0.5,1,2]T . These sensitivities are plot-
ted in Figure 2.

We used the MISOCP method to compute the exact D-optimal design of size
N = 5 for this problem (for the prior estimate θ0). The optimum consists in tak-
ing 1 measurement at t = 0.8, 3 measurements at t = 2.8 and 1 measurement
at t = 16.6. In comparison, the exchange algorithm (using the same settings as
described for the block designs, with NR = 100) found a design with 1 measure-
ment for each t ∈ {0.8,3.4,17.4} and 2 measurements at t = 2.6. This design is
of course very close to the optimum (its D-efficiency is 98.42%), but we note
that the true optimum could not be identified by the exchange algorithm, even
with a very large number of tries. We ran the exchange procedure NR = 5000
times which took 100 s and returned a design of D-efficiency 99.42%, while the
MISOCP found a provable optimal design after 25 s (CPLEX returned the status
MIP_OPTIMAL).

We plotted these designs in Figure 3 together with the concentrations of the
reactants over time when we assume θ = θ0. In the figure, we have also plotted
other designs which can be of interest to practitioners. For example, it might be
natural to search designs where at most 1 measurement is taken at a given point
in time. The exchange algorithm can also be adapted to the case of binary designs
(by rejecting candidate points that already support the design during the exchange
procedure). It returned a design of D-efficiency 98.97%. The last case we have
considered is the following: assume that the experimenter must wait at least one
second after a measurement before performing another measurement. This con-
straint can be modeled as a set of inequalities that can be added into the MISOCP
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FIG. 2. Measurement sensitivities (entries of Ft ) plotted against time for θ0 = [1,0.5,1,2]T .

formulation,

{w0.2 + w0.4 + w0.6 + w0.8 + w1.0 ≤ 1,

w0.4 + w0.6 + w0.8 + w1.0 + w1.2 ≤ 1, . . . ,

w19.2 + w19.4 + w19.6 + w19.8 + w20.0 ≤ 1}.
This model was solved in 42 s with CPLEX, and the corresponding optimal design
is depicted on the last row of Figure 3. We do not know of any other algorithm that
can handle this type of exact design problem with several linear constraints.

APPENDIX: OTHER OPTIMALITY CRITERIA

A.1. AK -optimality. Another widely used criterion in optimal design is A-
optimality, which is defined by

�A : M →
{(

traceM−1)−1
, if M is nonsingular;

0, otherwise.
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FIG. 3. Concentration of the reactants against time (determined by solving equation (5.3), assum-
ing θ = θ0 = [1,0.5,1,2]T ). Several designs are represented below the graph. The marks indicate
the time at which the measurements should be performed, and the size of the marks indicate the
number of measurements at a given point in time. Binary means that the design space is restricted to
designs having at most one measurement for each t ∈ X , and 1 second means that at least 1 second
must separate 2 measurements.

More generally, it is possible to use the criterion of AK -optimality if the experi-
menter is interested in the estimation of the parameter subsystem ϑ = KT θ ,

�A|K : M →
{(

traceKT M−K
)−1

, if rangeK ⊆ rangeM;

0, otherwise.

Here M− denotes a generalized inverse of M ; see the discussion following
equation (1.3) in the Introduction. Note that �A|K coincides with �A if K = Im,
and �A|K reduces to the criterion of c-optimality when K = c �= 0 is a column
vector.

The following lemma was already used in [34], under a slightly different form.
In fact, this lemma is a consequence of the Gauss–Markov theorem, which states
that the variance–covariance matrix of the best linear unbiased estimator of KT θ

is proportional to KT M(w)−K (e.g., Pukelsheim [31]).

LEMMA A.1. Let K be an (m × k)-matrix, and let w ∈ Rs+ be a vector of
design weights, such that the estimability condition rangeK ⊆ rangeM(w) is sat-
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isfied. Define I := {i ∈ [s] : wi > 0}. Then

traceKT M(w)−K = min
(Zi)i∈I

∑
i∈I

‖Zi‖2
F

wi

(A.1)
s.t.

∑
i∈I

AiZi = K,

where the variables Zi (i ∈ I ) are of size �i × k.

After some changes of variable, we obtain an SOC representation of �A|K :

PROPOSITION A.2. Let K be an (m × k)-matrix, and let w ∈ Rs+ be a vector
of design weights. Then

�A|K
(
M(w)

) = max
μ∈Rs+,Yi∈R�i×k

∑
i∈[s]

μi

s.t.
∑
i∈[s]

AiYi =
(∑

i∈[s]
μi

)
K,(A.2)

∀i ∈ [s],‖Yi‖2
F ≤ wiμi.

PROOF. We first handle the case where the estimability condition is not satis-
fied. In this situation, we have �A|K(M(w)) = 0, and we will see that the first con-
straint of problem (A.2) can only be satisfied if

∑s
i=1 μi = 0. Note that the second

constraint of problem (A.2) implies Yi = 0 for all i /∈ I . Hence every column of the
matrix

∑s
i=1 AiYi must be in the set range[√w1A1, . . . ,

√
wsAs] = rangeM(w).

Thus if (at least) one column of K is not included in the range of M(w), then we
must have

∑
i μi = 0.

Now, assume that the estimability condition rangeK ⊆ rangeM(w) holds, so
that

�A|K
(
M(w)

) = (
traceKT M(w)−K

)−1
> 0.

Let Zi (∀i ∈ I ) be optimal matrices for the problem on the right-hand side of (A.1).
Then for all i ∈ I , define λi := tracew−1

i ZT
i Zi = w−1

i ‖Zi‖2
F , μi := (

∑
j λj )

−2λi ,
and Yi := (

∑
j λj )

−1Zi [note that
∑

i∈I λi = traceKT M(w)−K > 0], and for
i ∈ [s] \ I let μi := 0 and Yi := 0 ∈ R�i×k . We have

∑
i∈[s] μi = (

∑
i∈I λi)

−1 =
�A|K(M(w)), and by construction the variables μi and Yi satisfy the constraints
of problem (A.2).

Conversely, let μi and Yi be feasible variables for problem (A.2). If
∑

i μi = 0,
then we have

∑
i μi < �A|K(M(w)). Otherwise, define Zi := (

∑
i∈[s] μi)

−1Yi , so
that the variables Zi (i ∈ I ) are feasible for the problem on the right-hand side
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of (A.1). Hence

traceKT M(w)−K ≤ ∑
i∈I

1

wi

‖Zi‖2
F = ∑

i∈I

1

wi(
∑

i∈[s] μi)2 ‖Yi‖2
F

≤ ∑
i∈I

wiμi

wi(
∑

i∈[s] μi)2 ≤ 1∑
i∈[s] μi

.

Finally, we obtain the desired inequality by taking the inverse∑
i∈[s]

μi ≤ �A|K
(
M(w)

)
.

This completes the proof of the proposition. �

COROLLARY A.3. Let K be an m×k matrix. The function w �→ �A|K(M(w))

is SOC-representable.

The reformulation of problem (1.1) for the criterion � = �A|K as an (MI)SOCP
is indicated in Table 1.

REMARK A.4 (The case of c-optimality). The case of c-optimality arises as
a special case of both AK and DK -optimality when the matrix K = c �= 0 is a
column vector (k = 1). The two SOCP formulations (for �A|c and �D|c- in Ta-
ble 1) are equivalent, which can be verified by the change of variables Yi = J−1

1,1 Zi ,

μi = J−2
1,1 ti1. (Note that here the matrix J is of size 1 × 1, i.e., a scalar.)

We next show how Proposition A.2 can be used to obtain an SOC representation
of G and I -optimality.

A.2. G-optimality. A criterion closely related to D-optimality is the criterion
of G-optimality,

�G : M →
(
max
i∈[s] traceAT

i M−Ai

)−1 = min
i∈[s]�A|Ai

(M),

where the equality holds if we use the convention traceKT M−K := +∞ for all
matrices M that do not satisfy the estimability condition (rangeK � rangeM). In
the common case of single-response experiments for linear models, the matrices Ai

are column vectors, and the scalar σ 2AT
i M(w)−Ai represents the variance of the

prediction ŷi = AT
i θ̂ . Hence G-optimal designs minimize the maximum variance

of the predicted values ŷ1, . . . , ŷs .
The G and D-optimality criteria are related to each other by the celebrated

equivalence theorem of Kiefer and Wolfowitz [22], which was generalized to the
case of multivariate regression (�i > 1) by Fedorov in 1972 [13]. An important
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consequence of this theorem is that D- and G-optimal designs coincide when the
weight domain W is the standard probability simplex W�. However, exact G-
optimal designs do not necessarily coincide with their D-optimal counterparts.
In a recent article [33], the Brent minimization algorithm was proposed to com-
pute near exact G-optimal factorial designs. But in general, we do not know any
standard algorithm for the computation of exact G-optimal designs or G-optimal
designs over arbitrary weight domains W that are defined by a set of linear in-
equalities.

We know from Corollary A.3 that the concave functions fi : w → �A|Ai
(M(w))

are SOC-representable, and hence their minimum is also concave and SOC-
representable. An (MI)SOCP formulation of problem (1.1) for the criterion � =
�G is indicated in Table 1. For the case where the weight domain W is the proba-
bility simplex W�, it gives a new alternative SOCP formulation for D-optimality.
Note, however, that in this situation, the SOCP formulation (2.1) for D-optimality
from [34] is usually more compact (i.e., it involves fewer variables and fewer con-
straints) than the G-optimality SOCP of Table 1.

A.3. I -optimality. Another widely used criterion is the one of I -optimality
(or V -optimality). Here, the criterion is the inverse of the average of the variances
of the predicted values ŷ1, . . . , ŷs :

�I : M →
(

1

s

∑
i∈[s]

traceAT
i M−Ai

)−1

.

In fact, this criterion coincides with the �A|K criterion, by setting K to any
matrix of full column rank satisfying KKT = 1

s

∑s
i=1 AiA

T
i ; see, for example,

Section 9.8 in [31]. Hence �I -optimal designs can be computed by SOCP. Note
that there is also a weighted version of I -optimality, which can be reduced to an
AK -optimal design problem in the same manner.

A.4. Bayesian optimal designs for nonlinear models. For nonlinear mod-
els, the information matrix of a design w depends on the value of the unknown
parameter θ [we denote it by M(w, θ)]; see, for example, [7]. One way to handle
this challenging cyclic problem is to search a design w maximizing the expected
value �π(w) of the criterion � with respect to some prior π ,

�π(w) :=
∫
θ∈Rm

�
(
M(w, θ)

)
π(dθ).

Another alternative, known as standardized Bayesian design, is to search for a
design maximizing the expected efficiency

φπ(w) :=
∫
θ∈Rm

�(M(w, θ))

maxω∈W �(M(ω, θ))
π(dθ).
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In a recent article, Duarte and Wong approximated such integrals by finite sums
using Gaussian quadrature formulas [11], in order to obtain SDP formulations of
Bayesian optimal design problems. By using the same technique, we immediately
see that the Bayesian versions �π and φπ of a SOC-representable criterion � are
also SOC-representable (modulo the approximation of the integral by a finite sum).
This offers the possibility of computing (constrained) exact Bayesian designs by
using MISOCP solvers.

Finally, we point out that the standard Bayesian versions of the D- and A-
criteria have forms that slightly differ from the formulas given above, and which
have other statistical interpretations (see [7] for more details),

�D,π(w) :=
∫
θ∈Rm

logdetM(w, θ)π(dθ),

�A,π (w) := −
∫
θ∈Rm

traceM(w, θ)−1π(dθ).

Bayesian optimality with respect to the above criteria can also be formulated as
an (MI)SOCP, by combining the techniques used in the present paper with those
of [11].
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