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NONPARAMETRIC CONFIDENCE INTERVALS
FOR MONOTONE FUNCTIONS

BY PIET GROENEBOOM AND GEURT JONGBLOED

Delft University of Technology

We study nonparametric isotonic confidence intervals for monotone
functions. In [Ann. Statist. 29 (2001) 1699–1731], pointwise confidence in-
tervals, based on likelihood ratio tests using the restricted and unrestricted
MLE in the current status model, are introduced. We extend the method to
the treatment of other models with monotone functions, and demonstrate our
method with a new proof of the results of Banerjee–Wellner [Ann. Statist. 29
(2001) 1699–1731] and also by constructing confidence intervals for mono-
tone densities, for which a theory remained be developed. For the latter model
we prove that the limit distribution of the LR test under the null hypothesis is
the same as in the current status model. We compare the confidence intervals,
so obtained, with confidence intervals using the smoothed maximum likeli-
hood estimator (SMLE), using bootstrap methods. The “Lagrange-modified”
cusum diagrams, developed here, are an essential tool both for the compu-
tation of the restricted MLEs and for the development of the theory for the
confidence intervals, based on the LR tests.

1. Introduction. In many situations one would like to estimate functions un-
der the condition that they are monotone. Apart from giving algorithms for com-
puting such estimates and from deriving their (usually asymptotic) distribution
theory, it is also important to construct confidence intervals. These intervals can
be uniform (in which case they are usually called confidence bands) as well as
pointwise.

In this paper we consider two methods to obtain pointwise confidence intervals
for distribution functions and monotone densities, based on nonparametric esti-
mators. One approach, that of a (nonparametric) likelihood ratio (LR) test, based
on the maximum likelihood estimator (MLE) in the model, is related to the one
taken in [1] and [2]. The other approach, using a smoothed maximum likelihood
estimator (SMLE) is based on an estimator introduced in [6] and further analyzed
in [5]. Our methods can also be applied to monotone nonparametric least squares
estimates of monotone regression functions.

There are some important differences between the approaches, based on the
MLE and SMLE, respectively. How appropriate it is to use the MLE will largely
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depend on whether one expects (or allows) that the underlying monotone func-
tion will have jumps. Secondly, the bias of the MLE does not play a role in the
construction of the confidence intervals based on the MLE. But if one constructs
confidence intervals, using the SMLE with an optimal bandwidth, the bias will not
be negligible in the limiting distribution. There is an extensive literature on how to
deal with the bias in nonparametric function estimation; some approaches use un-
dersmoothing, other approaches, oversmoothing. A recent paper, discussing this
literature and giving a solution for confidence bands is [10]. We will use under-
smoothing, as suggested in [9].

The method of constructing confidence intervals based on the likelihood ratio
test for the MLE, and the method using the SMLE are both asymptotically pivotal.
For the method, based on the likelihood ratio test for the MLE, this arises from
the universality properties of likelihood ratio tests. For the intervals, based on the
SMLE, this is based on using bootstrap intervals for a “Studentized” statistic, to-
gether with the undersmoothing. We now first describe two models that will be
studied thoroughly in this paper.

EXAMPLE 1.1 (Monotone density functions). The classical example of a
monotone estimate of a monotone function is the so-called Grenander estima-
tor. Let X1, . . . ,Xn be a sample of random variables, generated by a decreasing
density f0 on [0,∞). The MLE f̂n of f0 is the Grenander estimator, which is by
definition the left derivative of the least concave majorant of the empirical distri-
bution function Fn of X1, . . . ,Xn, as proved in [3]; see also Lemma 2.2 in [5].
This is also the first example in [1], where there is the (implicit) conjecture that
pointwise confidence intervals, based on the Grenander estimate, will have simi-
lar properties to the confidence intervals for the current status model (see the next
example), based on a likelihood ratio test for the MLE. The difficulty in proving
this result for the monotone density model resides in the constraint that the density
integrates to 1, a condition which does not play a role in constructing LR tests for
the current status model. We shall prove that the conjecture in [1] is correct and
that one can use the same critical values as in the current status model in the con-
struction of the asymptotic confidence intervals. We also compare the confidence
intervals, obtained in this way, with confidence intervals based on the SMLE, using
bootstrap methods and asymptotic normality of the SMLE.

EXAMPLE 1.2 (The current status model). Consider a sample X1,X2, . . . ,Xn,
drawn from a distribution with distribution function F0. Instead of observing the
Xi’s (which can be thought of as an event time, such as “getting infected”), one
only observes for each i, whether or not Xi ≤ Ti for some random (inspection
time) Ti (independently of the other Tj ’s and all Xj ’s). More formally, instead of
observing Xi’s, one observes

(Ti,�i) = (Ti,1[Xi≤Ti ]), 1 ≤ i ≤ n.(1.1)
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One could say that the ith observation represents the current status of item i at
time Ti .

The problem is to estimate the unknown distribution function F based on the
data given in (1.1). Denote the ordered, realized Ti’s by t1 < t2 < · · · < tn and
the associated realized values of the �i ’s by δ1, . . . , δn. For this problem the log
likelihood function in F (conditional on the Ti ’s) is given by

�(F ) =
n∑

i=1

{
δi logF(ti) + (1 − δi) log

(
1 − F(ti)

)}
.(1.2)

The MLE maximizes � over the class of all distribution functions. Since distri-
bution functions are by definition nondecreasing, the problem belongs to the class
of problems we want to study. As can be seen from the structure of (1.2), the value
of � only depends on the values that F takes at the observed time points ti ; the
values of F in between are not relevant as long as F is nondecreasing. Hence one
can choose to consider only distribution functions that are constant between suc-
cessive observed time points ti . Lemma 2.1 below shows that this estimator can be
characterized in terms of a greatest convex minorant of a certain diagram of points.

The main result of [1] is that confidence intervals, based on an LR test for the
MLE, can be constructed, and that this is a pivotal way of constructing asymptotic
confidence intervals, since the limit distribution does not depend on the parameters
(under certain conditions). We will give a new proof, which is in line with our proof
for the monotone density model.

There are numerous other models where our approach can be adopted. Exam-
ples include the model where one has a monotone hazard rate and right censored
observations (see Sections 2.6 and 11.6 in [5]), the competing risk model with
current status observations (see [7]) and monotone regression.

The methods based on the LR tests for the MLEs in the context of Examples 1.1
and 1.2 follow the same line of argument, where, in both cases, an essential role is
played by the penalization parameter μ̂n, which is of order Op(n−2/3). Our meth-
ods rely on cumulative sum (cusum) diagrams which could be called Lagrange-
modified cusum diagrams, since they incorporate the Lagrange multipliers for the
penalties. Asymptotic distribution theory is derived from the asymptotic properties
of the Lagrange multipliers, used to construct these cusum diagrams. Once this has
been done, the theory for the confidence intervals follows.

2. Confidence intervals for the current status model. The following lemma
characterizes the unrestricted MLE in the current status model. This is Example 1.2
in Section 1, and we use the notation introduced there.
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LEMMA 2.1 (Lemma 2.7 in [5]). Consider the cumulative sum diagram con-
sisting of the points P0 = (0,0) and

Pi =
(
i,

i∑
j=1

δj

)
, 1 ≤ i ≤ n,(2.1)

recalling that the δi’s correspond to the ti’s, which are sorted. Then the unre-
stricted MLE F̂n is given at the point ti by the left derivative of the greatest convex
minorant of this diagram of points, evaluated at the point i. This maximizer is
unique among all subdistribution functions with mass concentrated on the inspec-
tion times t1, . . . , tn.

REMARK 2.1. The left derivative of the convex minorant at Pi determines the
value of F̂n at ti and hence (by right continuity of the step function) on [ti , ti+1),
a region to the right of ti .

The characterization via Lemma 2.1 is well known and a proof can, for example,
be found in [14] and [5].

For the confidence intervals based on likelihood ratio tests for the MLE, we also
have to compute the MLE under the restriction that its value is equal to a prescribed
value a at a point t0. There are different ways to do this. It is suggested in [1] to

compute the restricted MLE in two steps. The restricted MLE F̂
(0)
n is computed

for values at points t to the left of t0 under the restriction that F̂
(0)
n (t) ≤ a and for

values at points t to the right of t0 under the restriction that F̂
(0)
n (t) ≥ a. To this end

two cusum diagrams of type (2.1) are formed. Let m be such that tm ≤ t0 ≤ tm+1.
Then a diagram of type (2.1) is formed, with n replaced by m, for the values to
the left of t0. Next the minimum of a and the left derivative of the greatest convex
minorant of this diagram of points is taken as the solution to the left of t0. For the
points on the right-hand side of t0, the cusum diagram consisting of the points

P0 = (0,0) and Pi =
(
i,

i∑
j=1

(1 − δn−j+1)

)
, 1 ≤ i ≤ n − m(2.2)

is considered, and the maximum of a and 1 minus the left derivatives of the great-
est convex minorant of this diagram of points, with the obvious renumbering, is
taken as the solution F̂

(0)
n (ti) to the right of t0. Note that in this approach there is

not necessarily a point ti where F̂
(0)
n (ti) = a is actually achieved; we only have

inequalities. Of course, in view of the log likelihood, allowing an extra jump of the
distribution function at t0, the value of F̂

(0)
n (t0) can be taken equal to a if this is

required.
In view of our general approach, where we also will prove the result for mono-

tone densities, we will follow a different path, where we make the connection with
the penalization methods studied in, for example, [4] and earlier in [19]. We have
the following result.
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LEMMA 2.2. Let 0 < a < 1 and 1 < i0 < n be such that δi = 1 for some
i ≤ i0 and δi = 0 for some i > i0. Moreover, let t0 ∈ (ti0, ti0+1). Denote by
(F̂1, . . . , F̂ (t0), . . . , F̂n) the vector of values of a piecewise constant nondecreas-
ing function F̂ at the observation points and at the point t0, where F̂i0 ≤ F̂ (t0) ≤
F̂i0+1. Then:

(i) If F̂i is given by the left-hand slope of the greatest convex minorant of the
cusum diagram with points (0,0) and(

i,

i∑
j=1

δj

)
, i = 1, . . . , n,(2.3)

and if F̂i0 ≤ a ≤ F̂i0+1, we put F̂ (t0) = a, and F̂ (0) = (F̂1, . . . , F̂ (t0), . . . , F̂n) is
the maximizer of

∑n
i=1{δi logFi + (1 − δi) log(1 − Fi)}, under the side condition

F(t0) = a.
(ii) If (F̂1, . . . , F̂n) is defined as in (i), but F̂i0 > a or F̂i0+1 < a, we define

μ̂ ∈ R to be the solution (in μ) of the equation

max
k≤i0

min
i≥i0

∑i
j=k δj + nμa(1 − a)

i − k + 1
= a(2.4)

and define F̂
(0)
i by the left-hand slope of the greatest convex minorant of the cusum

diagram with points (0,0) and(
i,

i∑
j=1

{
δj + nμ̂a(1 − a)1{j=i0}

})
, i = 1, . . . , n.(2.5)

We put F̂ (0)(t0) = a. Then F̂ (0) = (F̂
(0)
1 , . . . , F̂ (0)(t0), . . . , F̂

(0)
n ) is the max-

imizer of
∑n

i=1{δi logFi + (1 − δi) log(1 − Fi)}, under the side condition
F(t0) = a.

REMARK 2.2. We use the condition δi = 0 for some i > i0 to avoid trivialities
for the case that δi = 1 for all i ≥ i0, in which case the only reasonable value of
Fi is 1 for i ≥ i0. A similar remark holds for the condition that δi = 1 for some
i ≤ i0. If this were not the case, we would put Fi equal to 0 for i ≤ i0. For the
asymptotic confidence intervals we concentrate on interior points of the support of
the distribution F0.

PROOF OF LEMMA 2.2. (i) If F̂i is given by the left-hand slope of the greatest
convex minorant of the cusum diagram (2.3), then F̂ = (F̂1, . . . , F̂n) maximizes∑n

i=1{δi logFi + (1 − δi) log(1 − Fi)} without the side condition F̂ (ti0) ≤ a ≤
F̂ (ti0+1). Since the side condition is also satisfied under (i), F̂ is also the maxi-
mizer under this side condition in this case.

(ii) We can reduce the proof to the situation where δn = 0. For if δj = 1 for
j ≥ i, we put Fj = 1 for j ≥ i. For similar reasons we can assume δ1 = 1. A similar
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reduction of the maximization problem was used in Proposition 1.3, page 46, of
[8]. An advantage of this reduction is that maximizing � over all vectors F =
(F1, . . . ,Fn) with 0 ≤ F1 ≤ · · · ≤ Fn ≤ 1 is equivalent to maximizing � over the
cone C = {F = (F1, . . . ,Fn) : 0 ≤ F1 ≤ · · · ≤ Fn}.

Now first suppose F̂ (ti0) > a for the unrestricted solution in (i). Then we have
to make F̂ (ti0) smaller to allow F̂ (t0) = a. We do this by changing the object
function to be maximized over C into

φμ(F1, . . . ,Fn) = �(F ) + nμ(Fi0 − a)
(2.6)

=
n∑

i=1

{
δi logFi + (1 − δi) log(1 − Fi)

} + nμ(Fi0 − a),

where μ < 0 is a suitable Lagrange multiplier.
The elements of the cone C can be uniquely expressed as positive linear com-

binations of its so-called generators

g1 = (0,0, . . . ,0,0,1), g2 = (0,0, . . . ,0,1,1), . . . ,

gn = (1,1, . . . ,1,1,1).

The necessary and sufficient Fenchel conditions for maximizing a concave func-
tion over a convex cone (see (7.35) of [5]), applied to these generators, lead to the
following inequalities:

〈∇φμ(F ), gj

〉 = n∑
j=i

{
δj − Fj

Fj {1 − Fj } + nμ1{j=i0}
}

≤ 0, i = 1, . . . , n,(2.7)

where ∇φμ(F ) is the nabla vector ( ∂
∂F1

φμ, . . . , ∂
∂Fn

φμ) at F and μ of the func-
tion (2.6). These inequalities can be rewritten as

n∑
j=i

{
δj − Fj + nμ1{j=i0}a(1 − a)

Fj {1 − Fj }
}

≤ 0, j = 1, . . . , n.

We also have the equality part of the Fenchel conditions,

〈∇φμ(F ),F
〉 = n∑

j=1

δj − Fj

1 − Fj

+ nμa = 0.(2.8)

Multiplying this relation on blocks of constancy of F by 1 − Fj (see the proof of
Lemma 2.3 in [5]), we find

n∑
j=1

(δj − Fj ) + nμa(1 − a) = 0.(2.9)

The Fenchel conditions (2.7) and (2.8) or (2.9) are necessary and sufficient condi-
tions for the MLE, restricted to be equal to a at ti0 .



NONPARAMETRIC ISOTONIC CONFIDENCE INTERVALS 2025

It now follows that F̂ (0) is given by the left derivatives of the greatest convex
minorant of the cusum diagram (2.5), where μ̂ is the solution of equation (2.4).
The left derivative of the greatest convex minorant of the cusum diagram at i0
is given by the left-hand side of (2.4), by a well-known maxmin characterization
(see, e.g., Theorem 1.4.4 in [14]), and if (2.4) holds, we also have (2.9), since the
greatest convex minorant will be equal to the second coordinate

∑n
j=1{δj +μ̂a(1−

a)1{j=i0}} of the cusum diagram at n. Since F̂
(0)
i0

= a, we can also let F̂ 0(t0) = a.

If F̂ (ti0+1) < a, for F̂ as in (i), we also have F̂ (ti0) < a, and we reason in
a similar way, this time for a Lagrange multiplier μ̂ > 0. This will again give
F̂

(0)
i0

= a, and we can define F̂ (0)(t0) = a again. �

REMARK 2.3. Cusum diagrams, incorporating the penalty, are shown in Fig-
ure 1. We have μ̂ > 0 if F̂i0+1 < a for the unrestricted solution of the maximization
problem, and the cusum diagram for the restricted maximization problem is moved
upward at i0. If F̂i0 > a, it is the other way around. The penalties give a local de-
viation of the restricted MLE F̂ (0) from the unrestricted MLE, but outside a local
neighborhood of the point of restriction, F̂ (0) and F̂ will coincide again, where
F̂ (0) picks up the same points of jump as F̂ .

Note, however, that we cannot say F̂ (0)(t) = a for the values t where F̂ (0)(t) �=
F̂ (t). A typical picture is shown in Figure 2, where, on the region where F̂ (0) and

FIG. 1. Pieces of two “Lagrange modified” cusum diagrams for the current status model, for sam-
ple size 1000 from the truncated exponential distribution function F0 on [0,2]; the observation dis-
tribution is uniform on [0,2], and t0 = 1, F0(t0) = 0.731058. The unrestricted MLE F̂ has value
0.722892 at t0. In the example we have t529 < t0 = 1 < t530. Here (a) gives the local cusum diagram
for F̂ (0)(t0) = a = F0(t0) − 0.1 = 0.631058, μ̂ = −0.039998, and (b) gives the cusum diagram for
F̂ (0)(t0) = a = F0(t0) + 0.1 = 0.831058, μ̂ = 0.043355. In both cases the big jump is at the point
i0 = 529.
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FIG. 2. The unrestricted MLE and restricted MLE for the same data as in Figure 1, where F0
(dotted) is the truncated exponential on [0,2] and the observation distribution is uniform on [0,2].
Moreover, F̂ (0)(1) = F0(1) + 0.1. The deviation of the restricted MLE F̂ (0) from the unrestricted
MLE F̂ is dashed. The jumps of the restricted and unrestricted MLE do not coincide on the interval

of deviation. The value of F̂
(0)
n at t0 = 1 equals 0.831058; the vertical bar connects the points (1,0)

and (1,F0(1) + 0.1).

F̂ are different, the points of jump of F̂ (0) and F̂ are at different locations. There is
also not a “contained in” relation in either direction for the sets of points of jump.

The proof of Theorem 2.1 below will use the following lemma, which is of
a similar nature to the results in [4]. To indicate the dependence on the sample

size n, we now will denote the unrestricted and restricted MLE by F̂n and F̂
(0)
n ,

respectively.

LEMMA 2.3. Under the conditions of Theorem 2.1, we have if a = F0(t0), as
n → ∞,

μ̂n = Op

(
n−2/3)

.

PROOF. Consider the function

φ(μ) = max
k≤i0

min
i≥i0

∑i
j=k δj + nμa(1 − a)

i − k + 1
, a = F0(t0).

By the conditions of Theorem 2.1 we may assume that the observation times
have two successive order statistics Ti0 and Ti0+1, as in Lemma 2.2, such that
t0 ∈ (Ti0, Ti0+1). By the maxmin characterization of the unrestricted MLE F̂n, we
have

φ(0) = max
k≤i0

min
i≥i0

∑i
j=k δj

i − k + 1
= F̂n(Ti0).
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Let k1 ≤ i0 and i1 ≥ i0 be the indices, satisfying

F̂n(Ti0) =
∑i1

j=k1
δj

i1 − k1 + 1
= max

k≤i0
min
i≥i0

∑i
j=k δj

i − k + 1
.

Suppose a > F̂n(Ti0), and let, for μ > 0, iμ ≥ i0 be the index such that∑iμ
j=k1

δj + nμa(1 − a)

iμ − k1 + 1
= min

i≥i0

∑i
j=k1

δj + nμa(1 − a)

i − k1 + 1
.

Then since the function

μ 	→ min
i≥i0

∑i
j=k1

δj + nμa(1 − a)

i − k1 + 1
is continuous and increasing in μ and tends to ∞, as μ → ∞, there exists a μ > 0
such that ∑iμ

j=k1
δj + nμa(1 − a)

iμ − k1 + 1
= min

i≥i0

∑i
j=k1

δj + nμa(1 − a)

i − k1 + 1
= a.

Using a = F0(t0) and denoting the empirical measure of {(Tj ,�j ) : 1 ≤ j ≤ n}
by Pn, this means that

μF0(t0)
(
1 − F0(t0)

) =
∫
t∈[τ−,Tiμ ]

{
F0(t0) − δ

}
dPn(t, δ),(2.10)

where τ− = Tk1 is the last jump point of F̂n before ti0 . By a well-known fact on
the jump points of the MLE in the current status model (see, e.g., Lemma 5.4 and
its proof on page 95 of [8]), we have that t0 − τ− = Op(n−1/3). By the same type
of argument, we can choose for each ε > 0 an M > 0 such that

P

{∫
u∈[τ−,t]

{
F0(t0) − δ

}
dPn(u, δ) < 0

}
> 1 − ε

if t > t0 +Mn−1/3. Denote the distribution function of the observation times by G,
with corresponding empirical distribution function Gn. Then since we must have

0 <

∫
t∈[τ−,Tiμ ]

{
F0(t0) − δ

}
dPn(t, δ)

=
∫
t∈[τ−,Tiμ ]

{
F0(t0) − F0(t)

}
dGn(t) +

∫
t∈[τ−,Tiμ ]

{
F0(t) − δ

}
dPn(t, δ)

=
∫
t∈[τ−,Tiμ ]

{
F0(t0) − F0(t)

}
dG(t)(2.11)

+
∫
t∈[τ−,Tiμ ]

{
F0(t0) − F0(t)

}
d(Gn − G)(t)

+
∫
t∈[τ−,Tiμ ]

{
F0(t) − δ

}
dPn(t, δ),
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by the positivity of μ, relation (2.10) and the conditions of Theorem 2.1, it now
follows that Tiμ − t0 = Op(n−1/3), and therefore

μF0(t0)
(
1 − F0(t0)

) =
∫
t∈[τ−,Tiμ ]

{
F0(t0) − δ

}
dPn(t, δ) = Op

(
n−2/3)

,

since t0 − τ− = Op(n−1/3), Tiμ − t0 = Op(n−1/3), and therefore all three expres-
sions on the right-hand side of (2.11) are Op(n−2/3).

Hence μ = Op(n−2/3) and

φ(μ) = max
k≤i0

min
i≥i0

∑i
j=k δj + nμa(1 − a)

i − k + 1
≥ min

i≥i0

∑i
j=k1

δj + nμa(1 − a)

i − k1 + 1
= a.

By the monotonicity and continuity of the function φ, we can now conclude that

0 ≤ μ̂n ≤ μ = Op

(
n−2/3)

.

The case a < F̂n(t0) can be treated in a similar way. �

REMARK 2.4. The crux of the matter in proving a result like Tiμ − t0 =
Op(n−1/3) in the proof of Lemma 2.3 [see the discussion below (2.11)], is that,
outside a neighborhood of order n−1/3, the last two of the three terms on the right-
hand side of (2.11) cannot cope with the negative parabolic drift of the first term.
Arguments of this type are familiar by now, and were, for example, also used in
the proofs of Lemma 3.5 in [5] and Lemma 5.4 on page 95 of [8]. Arguments of
this type can also be found in [12].

The preceding lemmas enable us to prove the following result, which corre-
sponds to Theorem 2.5 in [1]. The proof is given in Appendix A.

THEOREM 2.1. Let F0 and G be distribution functions with continuous densi-
ties f0 and g in a neighborhood of the point t0 such that 0 < F0(t0) < 1 and f0(t0)

and g(t0) are strictly positive. Let F̂n be the unrestricted MLE, and let F̂
(0)
n be the

MLE under the restriction that F̂
(0)
n (t0) = F0(t0). Moreover, let the log likelihood

ratio statistic 2 log�n be defined by

2 log�n = 2
n∑

i=1

{
�i log

F̂n(Ti)

F̂
(0)
n (Ti)

+ (1 − �i) log
1 − F̂n(Ti)

1 − F̂
(0)
n (Ti)

}
.

Then

2 log�n
D−→ D,

where D is the universal limit distribution as given in [1].
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Construction of SMLE based confidence intervals for the distribution func-
tion. Let F0 be defined on an interval [a, b] with a < b satisfying F0(a) = 0 and
F0(b) = 1. Then we can estimate F0 by the SMLE, using a boundary correction

F̃nh(t) =
∫ {

K

(
t − x

h

)
+K

(
t + x − 2a

h

)
−K

(
2b − t − x

h

)}
dF̂n(x),(2.12)

where F̂n is the MLE, K(x) = ∫ x
−∞ K(u)du and K is a symmetric kernel density,

like the triweight kernel. If t ∈ [a+h,b−h], the SMLE coincides with the familiar

F̃nh(t) =
∫

K

(
t − x

h

)
dF̂n(x),

the other two terms in (2.12) are only there for correction at the left and right
boundary. For simplicity we take a = 0 in the following (the usual case), and the
interval, containing the support of F0, will now be denoted by [0, b].

For the construction of the 1 − α confidence interval we take a number of boot-
strap samples (T ∗

1 ,�∗
1), . . . , (T

∗
n ,�∗

n) with replacement from (T1,�1), . . . , (Tn,

�n). For each such sample we compute the SMLE F̃ ∗
nh, using the same band-

width h as we used for the SMLE F̃nh in the original sample, and the same type of
boundary correction. Next we compute at the points t ,

Z∗
n,h(t) = F̃ ∗

nh(t) − F̃nh(t)√
n−2 ∑n

i=1{Kh

(
t − T ∗

i ) − Kh(t + T ∗
i ) − Kh(2b − t − T ∗

i )}2(�∗
i − F̂ ∗

n

(
T ∗

i

))2
,

(2.13)

where F̂ ∗
n is the ordinary MLE (not the SMLE!) of the bootstrap sample

(T ∗
1 ,�∗

1), . . . , (T
∗
n ,�∗

n).
Let U∗

α(t) be the αth percentile of the B bootstrap values Z∗
n,h(t). Then, dis-

regarding the bias for the moment, the following bootstrap 1 − α interval is sug-
gested: [

F̃nh(t) − U∗
1−α/2(t)Snh(t), F̃nh(t) − U∗

α/2(t)Snh(t)
]
,(2.14)

where

Snh(t)
2 = n−2

n∑
i=1

{
Kh(t − Ti) − Kh(t + Ti) − Kh(2b − t − Ti)

}2(
�i − F̂n(Ti)

)2
.

The bootstrap confidence interval is inspired by the fact that the SMLE is asymp-
totically equivalent to the toy estimator

F
toy
nh (t) =

∫ {
Kh(t − u) +Kh(t + u) −Kh(2b − t − u)

}
dF0(u)

+ 1

n

n∑
i=1

{Kh(t − Ti) − Kh(t + Ti) − Kh(2b − t − Ti)}{�i − F0(Ti)}
g(Ti)

,
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the variance of which can be estimated by

Sn(t)
2 = 1

n2

n∑
i=1

{Kh(t − Ti) − Kh(t + Ti) − Kh(2b − t − Ti)}2{�i − F0(Ti)}2

g(Ti)2 ,

and also by Theorem 4.2, page 365 in [6], which states that if h ∼ cn−1/5, under
the conditions of that theorem, for each t ∈ (0, b),

n2/5{
F̃nh(t) − F0(t)

} D−→ N
(
μ,σ 2)

, n → ∞,

where

μ = 1

2
c2f ′

0(t)

∫
u2K(u)du

and

σ 2 = F0(t){1 − F0(t)}
cg(t)

∫
K(u)2 du.

We now first study the behavior of intervals of type (2.14) for a situation where
the asymptotic bias plays no role (the uniform distribution) and compare the behav-
ior of the intervals with the confidence intervals, based on LR tests for the MLE.

Simulation for uniform distributions. We generated 1000 samples (T1,

�1), . . . , (Tn,�n) by generating T1, . . . , Tn, n = 1000, from the uniform distri-
bution on [0,2] and, independently, a sample X1, . . . ,Xn, also from the uniform
distribution on [0,2]. If Xi ≤ Ti , we get a value �i = 1, otherwise �i = 0. For
each such sample (T1,�1), . . . , (Tn,�n) we generated 1000 bootstrap samples
and computed the 25th and 975th percentile of the values (2.13) at the points
tj = 0.02,0.04, . . . ,1.98. On the basis of these percentiles we constructed the
confidence intervals (2.14) for all of the (99) tj ’s and checked whether F0(tj )

belonged to it. The percentages of simulation runs that F0(tj ) did not belong to
the interval are shown in Figure 3. We likewise computed the confidence interval,
based on the LR test for the MLE for each tj , and also counted the percentages
of times that F0(tj ) did not belong to the interval. The corresponding confidence
intervals for one sample are shown in Figure 4.

Simulation for truncated exponential distributions. To investigate the role of
the asymptotic bias of the SMLE, we also generated 1000 samples (T1,�1), . . . ,

(Tn,�n) by generating T1, . . . , Tn, n = 1000, from the uniform distribution on
[0,2] and, independently, X1, . . . ,Xn, from the truncated exponential distribution
on [0,2], with density

f0(x) = e−x

1 − e−2 , x ∈ [0,2].
If Xi ≤ Ti , we get �i = 1, otherwise �i = 0. For each such sample (T1,�1), . . . ,

(Tn,�n), we generated B = 1000 bootstrap samples and computed the confidence



NONPARAMETRIC ISOTONIC CONFIDENCE INTERVALS 2031

FIG. 3. Uniform samples. Proportion of times that F0(ti ), ti = 0.02,0.02, . . . ,1.98 is not in the
95% CI’s in 1000 samples (T1,�1), . . . , (Tn,�n) using the SMLE and 1000 bootstrap samples from
the sample (T1,�1), . . . , (Tn,�n). In (a), the SMLE is used with CI’s given in (2.14). In (b) CI’s are
based on the LR test. The observations are based on two independent samples of Ti ’s and Xi ’s,
uniformly distributed on [0,2].

intervals in the same way as for the uniform samples, discussed above, where the
interval is of the form (2.14) and bias is neglected. This is compared in Figure 5
with the results for confidence intervals of the form[

F̃nh(t) − β(t) − U∗
1−α/2(t)Sn(t), F̃nh(t) − β(t) − U∗

α/2(t)Sn(t)
]
,(2.15)

where U∗
α/2, U∗

1−α/2 and Sn(t) are as in (2.14), and where β(t) is the actual asymp-

FIG. 4. Uniform samples: 95% confidence intervals for F0(ti ), ti = 0.02,0.02, . . . ,1.98 for one
sample (T1,�1), . . . , (Tn,�n). For (a) the SMLE and 1000 bootstrap samples are used; F0 is dashed
and the SMLE solid. For (b) the LR test is used; F0 is dashed and the MLE solid.
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FIG. 5. Coverage for the truncated exponential distribution function F0. Proportion of times that
F0(ti ), ti = 0.01,0.02, . . . is not in the 95% CI’s in 1000 samples (T1,�1), . . . , (Tn,�n). In (a) the
confidence intervals (2.14) are used, in (b), the bias corrected confidence intervals (2.15). The band-
width is h = 2n−1/5.

totic bias, which is, for t ∈ [h,2 − h], given by

1

2
f ′

0(t)h
2
∫

u2K(u)du = −h2e−t
∫

u2K(u)du

2{1 − e−2} .

For t /∈ [h,2 − h], this expression is of the form

−h2e−t {∫ u2K(u)du − 2
∫ 1
v (u − v)2K(u)du}

2{1 − e−2} ,

where v = t/h if t ∈ [0, h), and v = (2 − t)/h if t ∈ (2 − h,2].
It is seen in Figure 5 that if we use the bandwidth 2n−1/5 and do not use bias

correction for the SMLE, the 95% coverage is off at the left end (where the bias
is largest), but that the intervals are “on target” if we add the asymptotic bias to
the intervals, as in (2.15). However, we cannot use the method of Figure 5 in prac-
tice, since the actual bias will usually not be available. We are faced here with a
familiar problem in nonparametric confidence intervals, and we can take several
approaches. Two possible solutions are estimation of the bias and undersmoothing.

In the present case it turns out to be very difficult to estimate the bias term with
sufficient accuracy. Moreover, Hall [9] argues that undersmoothing has several ad-
vantages; one of these is that estimation of the bias term is no longer necessary.
For the present model, we changed the bandwidth of the SMLE from 2n−1/5 to
2n−1/4 (with n = 1000) and computed the confidence intervals again by the boot-
strap procedure, given above. This gave a remarkable improvement of the coverage
at the left end, as is shown in Figure 6. Nevertheless, the undersmoothing has the
tendency to make the confidence interval slightly liberal (anti-conservative), as
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FIG. 6. Coverage for the truncated exponential distribution function F0. Proportion of times that
F0(ti ), ti = 0.01,0.02, . . . is not in the CI’s in 1000 samples (T1,�1), . . . , (Tn,�n). In (a) the SMLE
and (2.14) are used for α/2 = 0.025 with undersmoothing. In (b), (2.14) is used with α/2 = 0.02
instead of α/2 = 0.025 and the same undersmoothing as in (a). The bandwidth is h = 2n−1/4.

can be seen from Figure 6, so one might prefer to take, for example, the 20th and
980th percentile if one wants to have a coverage ≥95%. The effect of this method
is shown in Figure 6, and the coverage of this method is compared to the coverage
of the method, using the LR test, as in [2], in Figure 7. Undersmoothing, together
with the method of Figure 6, will generally, of course, still produce narrower con-
fidence intervals than the method based on the LR test (which is based on cube

FIG. 7. Truncated exponentials for F0. Proportion of times that F0(ti ), ti = 0.01,0.02, . . . is not
in the CI’s in 1000 samples (T1,�1), . . . , (Tn,�n). Figure (a) uses the SMLE with the method of
Figure 6. In (b) the LR test for the MLE is used.
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FIG. 8. Truncated exponentials for F0: 95% confidence intervals for F0(ti ), ti = 0.01,0.02, . . . for
one sample (T1,�1), . . . , (Tn,�n). In (a) the SMLE is used with undersmoothing and the method
of Figure 6. Dashed: real F0; solid: SMLE. In (b) the LR test for the MLE is used. Dashed: real F0;
solid: MLE.

root n asymptotics), under the appropriate smoothness conditions, as can be seen
in Figure 8.

Another method of bias correction is to use a higher order kernel in the defi-
nition of the SMLE, for example, a 4th order kernel, but still use a bandwidth of
order n−1/5. Since a 4th order kernel has necessarily negative parts, and since the
estimate of F0 will be close to zero or 1 at the boundary of the interval, this gives
difficulties at the end of the interval. We therefore stick to the method described
above.

3. Confidence intervals for the monotone density case. In this section we
construct confidence intervals for a decreasing density, in the setting of Exam-
ple 1.1. We start by considering the confidence intervals based on the LR tests.
To this end, we first give a characterization of the restricted MLE. In view of Ex-
ample 3.1 below, in which the observations are on a discrete scale and therefore
have ties in the observations, we denote the number of observations at the ordered
points ti by wi . The number of strictly different observation times is denoted by m,
and the total number of observations is again denoted by n, so n = ∑m

j=1 wj .
In Lemma 3.1 a characterization of the unrestricted MLE is given.

LEMMA 3.1. Let f̂ = (f̂1, . . . , f̂m) be the vector of left-continuous slopes of
the least concave majorant of the cusum diagram with points (0,0) and(

tj ,
1

n

j∑
i=1

wi

)
, j = 1, . . . ,m.(3.1)
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Then f̂ maximizes
∑m

i=1 wi logfi , under the condition that f is nonincreasing and
the side condition

∑m
i=1 fi(ti − ti−1) = 1.

PROOF. Introducing the Lagrange multiplier λ, we get the maximization prob-
lem of maximizing

φλ,μ(f1, . . . , fm) = 1

n

m∑
i=1

wi logfi − λ

{
m∑

i=1

fi(ti − ti−1) − 1

}
,(3.2)

over the convex cone Cm = {(f1, . . . , fm) : f1 ≥ f2 ≥ · · · ≥ fm ≥ 0}, where we
look for λ̂ ∈ R+ such that the maximizer f̂ = (f̂1, . . . , f̂n) satisfies

m∑
i=1

f̂i(ti − ti−1) = 1.

Using the equality part of the Fenchel conditions for this maximization problem,
the solution has to satisfy

〈∇φ
λ̂
(f̂ ), f̂

〉 = 1

n

m∑
i=1

wi − λ̂

m∑
i=1

(ti − ti−1)f̂i

(3.3)

= 1 − λ̂

m∑
i=1

(ti − ti−1)f̂i = 1 − λ̂ = 0.

Thus λ̂ = 1.
The generators of the cone Cm are of the form

g1 = (1,0,0, . . . ,0,0), g2 = (1,1,0, . . . ,0,0), . . . ,

gm = (1,1,1, . . . ,1,1).

The inequality part of the Fenchel conditions can therefore be written as

〈∇φ
λ̂,μ̂

(f̂ ), gj

〉 = j∑
i=1

{
wi

nfi

− (ti − ti−1)

}
≤ 0, j = 1, . . . ,m.

Using that f̂m > 0, these conditions are equivalent to

j∑
i=1

{
wi

n
− (ti − ti−1)f̂i

}
≤ 0, j = 1, . . . ,m.

Since, by (3.3), we also have
m∑

i=1

{
wi

n
− (ti − ti−1)f̂i

}
= 0,

this proves our claim. �
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We now add the condition f (t0) = a and proceed in a similar way as in the pre-
ceding section to characterize the solution under this restriction. However, because
of the side condition that the density integrates to 1, we cannot allow the density
to have a jump in the interval, containing t0, as we did for the current status model
in that section, without making further adaptations of the function. In order not to
complicate things unnecessarily, we restrict the functions in our set to functions,
only having jumps at the observation points, and do not allow jumps at t0. Estima-
tors, arising in this way, will be asymptotically equivalent to the estimators, which
would allow an extra jump at t0.

LEMMA 3.2. Let t0 ∈ (ti0−1, ti0). We define μ̂ ∈ R to be the solution (in μ) of
the equation

min
1≤i≤ max≤j≤m

∑j
k=i wk/n + μa

(tj − ti−1)
= a{1 + μa},(3.4)

and define f̂
(0)
i by the left-hand slope of the least concave majorant of the cusum

diagram with points (0,0) and cusum diagram with points (0,0) and(
(1 + μ̂a)tj ,

j∑
i=1

{
wi

n
+ μ̂a1{i=i0}

})
, j = 1, . . . ,m.(3.5)

Then f̂ maximizes
∑m

i=1 wi logfi , for nonincreasing sequences (f1, . . . , fm), un-
der the side conditions

∑m
i=1 fi(ti − ti−1) = 1 and f (ti0) = a.

REMARK 3.1. The values of f̂i and f̂
(0)
i are defined by left-continuous slopes

of a concave majorant, we extend this to piecewise left-continuous functions f̂ and
f̂ (0), having the values f̂i and f̂

(0)
i at ti . Note that this differs from the definition of

the piecewise right-continuous distribution functions F̂ and F̂ (0) in the preceding
section. Since f̂ (0)(ti0) = a and t0 ∈ (ti0−1, ti0), we have f̂ (0(t0) = a.

PROOF OF LEMMA 3.2. Introducing the Lagrange multipliers λ and μ, we get
the maximization problem of maximizing

φλ,μ(f1, . . . , fm)
(3.6)

= 1

n

m∑
i=1

wi logfi − λ

{
m∑

i=1

fi(ti − ti−1) − 1

}
+ μ(fi0 − a),

over the convex cone Cm = {(f1, . . . , fm) : f1 ≥ f2 ≥ · · · ≥ fm ≥ 0}, where we
look for (λ̂, μ̂) ∈ R+ ×R such that the maximizer f̂ = (f̂1, . . . , f̂n) satisfies

m∑
i=1

f̂i(ti − ti−1) = 1 and f̂i0 = a.
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Using the equality part of the Fenchel conditions for this maximization problem,
the solution has to satisfy

〈∇φ
λ̂,μ̂

(f̂ ), f̂
〉 = 1

n

m∑
i=1

wi − λ̂

m∑
i=1

(ti − ti−1)f̂i + μ̂f̂i0

= 1 − λ̂

m∑
i=1

(ti − ti−1)f̂i + μ̂f̂i0 = 1 − λ̂ + μ̂a = 0.

This yields the following relation between the two Lagrange multipliers:

μ̂ = λ̂ − 1

a
.(3.7)

The generators of the cone Cm are of the form

g1 = (1,0,0, . . . ,0,0), g2 = (1,1,0, . . . ,0,0), . . . ,

gm = (1,1,1, . . . ,1,1).

The inequality part of the Fenchel conditions can therefore be written as

〈∇φ
λ̂,μ̂

(f̂ ), gj

〉 = j∑
i=1

{
wi

nfi

− λ̂(ti − ti−1)

}
+ μ̂1{j≥i0}

=
j∑

i=1

{
wi

nfi

− λ̂(ti − ti−1) + μ̂1{i=i0}
}

≤ 0, j = 1, . . . ,m.

Using that f̂m > 0, these conditions are equivalent to
j∑

i=1

{
wi

n
− λ̂(ti − ti−1)f̂i + μ̂1{i=i0}a

}
≤ 0, j = 1, . . . ,m,

which we obtain by multiplying the ith component of the inner product with f̂i .
We now consider the equation

g(λ,μ,a) = a,(3.8)

where

g(λ,μ,a) = min
1≤i≤i0

max
i0≤j≤m

∑j
k=i wk/n + μa

λ(tj − ti−1)

= 1

λ
min

1≤i≤i0
max

i0≤j≤m

∑j
k=i wk/n + μa

(tj − ti−1)
.

Note that g(λ,μ,a) is the left-hand slope of the least concave majorant of the
cusum diagram with points (0,0) and(

λtj ,

j∑
i=1

{
wi

n
+ μa1{i=i0}

})
, j = 1, . . . ,m,
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evaluated at λti0 . Thus g(λ,μ,a) should be equal to the value of the restricted
MLE at t0 and hence should be equal to a.

On the other hand, using the identity λ = 1 + aμ, (3.8) turns into

μ = 1

a2 min
1≤i≤i0

max
i0≤j≤m

∑j
k=i wk/n + μa

(tj − ti−1)
− 1

a
.

Multiplying by a2 yields (3.4). �

The cusum diagram for the restricted MLE is shown in Figure 9 for a sam-
ple of size n = 1000 from a truncated exponential distribution on [0,2], where we
subtract the line connecting (0,0) and (λ̂tm,1+aμ̂) for clearer visibility of the dif-
ference between the least concave majorant and the values of the cusum diagram.
We took i0 = 700, which gave ti0 = 0.909047 and a value f̂n(ti0) = 0.519022 for
the unrestricted MLE at ti0 . The restricted MLE was specified to have the value
0.519022 + 0.1 = 0.619022 at ti0 . The computation of the restricted MLE gave
μ̂ = 0.064020, and ti0 was transformed into the point 0.945073 on the axis of the
cumulative weights by multiplying by 1 + aμ̂.

The lifting of the cusum diagram at (1 + aμ̂)ti0 is clearly visible in part (a) of
Figure 9. Part (b) of this figure shows that the unrestricted MLE is globally changed
over the whole interval instead of the only local change of the MLE in the current
status model. Nevertheless, the (universal) limit distribution of the log likelihood
ratio statistic is the same as in the current status model, as we show below.

FIG. 9. Cusum diagram and MLEs for a sample of size n = 1000 from a truncated exponential
distribution with density f0 on [0,2]. We restrict f̂ (0) to have value a = f0(1)+ 0.2 at t0 = 1, where
f0(1) = 0.425459. (a) Cusum diagram with added penalty for the restricted MLE between 0.9 and
1.3. The penalty is added at the location 1.069658 = (1 + μ̂a)ti0 on the x-axis, where μ̂ = 0.10932
and ti0 = 1.001199. (b) The restricted MLE (dashed) and the unrestricted MLE (solid).
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REMARK 3.2. Note that it is clear from the geometric construction that the
penalty in the cusum diagram will only locally lead to different locations of points
of jump of the restricted MLE on an interval Dn with respect to the unrestricted
MLE. Outside Dn the points of jump will be the same. This correspondence also
follows from the minmax characterization of the MLEs. The correspondence of
the points of jump outside Dn is also clearly visible in part (b) of Figure 9, where
the restricted and unrestricted MLE are plotted in the same scale.

The proof of Theorem 3.1 below will use the following lemma, which is similar
to Lemma 2.3.

LEMMA 3.3. Under the conditions of Theorem 3.1 we have if a = f0(t0),

μ̂n = Op

(
n−2/3)

.

PROOF. Suppose t0 ∈ (ti0−1, ti0). Consider the function

φ : μ 	→ min
k≤i0

max
i≥i0

∑i
j=k wj/n + μa

(1 + μa)(ti − tk−1)
, a = f0(t0).

By the least concave majorant characterization of the unrestricted MLE f̂n, we
have

φ(0) = min
k≤i0

max
i≥i0

∑i
j=k wj

n(ti − tk−1)
= f̂n(t0).

Let k1 ≤ i0 and i1 ≥ i0 be the indices, satisfying

f̂n(ti0) =
∑i1

j=k1
wj

n(ti1 − tk1−1)
= min

k≤i0
max
i≥i0

∑i
j=k wj

n(ti − tk−1)
.

Note that, by the definition of f̂n, ti1 is the first point of jump [in the sense that
f̂n(t) < f̂n(ti1) if t > ti1 ] to the right of ti0 , and tk1−1 the last point of jump [simi-
larly, f̂n(t) < f̂n(tk1−1) if t > tk1−1] before ti0 .

Suppose a > f̂n(ti0), and let for μ > 0, kμ ≤ i0 be the index such that

∑i1
j=kμ

wj/n + μa

ti1 − tkμ−1
= min

k≤i0

∑i1
j=k wj/n + μa

ti1 − tk−1
.

Then if a(ti1 − tkμ−1) �= 1, there exists a μ > 0 such that

∑i1
j=kμ

wj + nμa

n(ti1 − tkμ−1)
= min

k≤i0

∑i1
j=k wj + nμa

n(ti1 − tk−1)
= a(1 + μa),



2040 P. GROENEBOOM AND G. JONGBLOED

and this μ is given by

μ = a(ti1 − tkμ−1) − ∑i1
j=k wj/n

a{1 − a(ti1 − tkμ−1)} .

Using a = f0(t0), this can be written in the following form:

0 < μf0(t0) =
∫
t∈(tkμ−1,ti1 ] f0(t0) dt − ∫

t∈(tkμ−1,τi1 ] dFn(t)

1 − ∫
t∈(tkμ−1,τi1 ] f0(t0) dt

,(3.9)

where Fn is defined by

Fn(t) = n−1
∑

i:ti≤t

wi.

As noted above, ti1+1 is the first point of jump of f̂n to the right of ti0 . Let
τ+ = ti1 . As in the proof of Lemma 2.3, we have τ+ − ti0 = Op(n−1/3). To see
this, note that by (3.9), we must have∫

t∈(tkμ−1,τ+]
f0(t0) dt −

∫
t∈(tkμ−1,τ+]

dFn(t) > 0,

and ∫
t∈(tkμ−1,τ+]

f0(t0) dt −
∫
t∈(tkμ−1,τ+]

dFn(t)

=
∫
t∈(tkμ−1,τ+]

{
f0(t0) − f0(t)

}
dt −

∫
t∈(tkμ−1,τ+]

d(Fn − F0)(t),

where the first term on the right gives a negative parabolic drift which cannot
be compensated by the second random term outside a neighborhood of order
Op(n−1/3) of t0.

By the same type of argument, we can choose for each ε > 0, an M > 0 such
that

P

{∫
u∈(t,τ+] f0(ti0) du − ∫

u∈(t,τ+] dFn(u)

1 − ∫
u∈(t,τ+] f0(ti0) du

< 0
}

> 1 − ε

if t < ti0 − Mn−1/3. But since we must have∫
t∈(tkμ−1,τ+]

f0(ti0) dt −
∫
t∈(tkμ−1,τ+]

dFn(t) > 0,

by the positivity of μ and relation (3.9), it now follows that ti0 − tkμ−1 = Op(n−1/3)

and therefore

μf0(ti0) =
∫
t∈(tkμ−1,τ+] f0(ti0) dt − ∫

t∈(tkμ−1,τ+] dFn(t)

1 − ∫
t∈(tkμ−1,τ+] f0(ti0) dt

= Op

(
n−2/3)

.
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Hence μ = Op(n−2/3) and

φ(μ) = min
k≤i0

max
i≥i0

∑i
j=k wj/n + aμ

ti − tk−1
≥ min

k≤i0

∑i1
j=k wj/n + aμ

ti − tk−1
= a(1 + aμ).

As in the proof of Lemma 2.3 we can now conclude that

0 ≤ μ̂n ≤ μ = Op

(
n−2/3)

.

The case a < f̂n(ti0) can be treated in a similar way. �

We can now prove the following result. The proof is given in Appendix B.

THEOREM 3.1. Let f0 be a decreasing density, which is continuous and has
a continuous strictly negative derivative f ′

0 in a neighborhood of t0. Let f̂n be the

unrestricted MLE, and let f̂
(0)
n be the MLE under the restriction that f̂

(0)
n (t0) =

f0(t0). Moreover, let the log likelihood ratio statistic 2 log�n be defined by

2 log�n = 2
n∑

i=1

log
f̂n(Ti)

f̂
(0)
n (Ti)

.

Then

2 log�n
D−→ D,

where D is the universal limit distribution as given in [1].

REMARK 3.3. The condition that f0 has a continuous strictly negative deriva-
tive f ′

0 in a neighborhood of t0 corresponds to condition A in [1] for the current
status model, which is the condition that the derivative f0 of F0 is strictly positive
at t0 and continuous in a neighborhood of t0. A condition of this type is necessary
for getting Brownian motion with parabolic drift in the limit distribution of the
MLEs. This fails if we choose f0 to be a uniform density, in which case we get a
different type of asymptotics; see Section 3.10 in [5].

EXAMPLE 3.1. Suppose we have a sample Z1, . . . ,Zn from the length biased
distribution, associated with an unknown distribution function F of interest. This
means that the distribution function of Zi is given by

F̄ (z) = P(Zi ≤ z) = 1

mF

∫ z

0
x dF(x),(3.10)

where mF = ∫ ∞
0 x dF(x) is assumed to be nonzero and finite. However, instead

of observing the values of Zi directly, we only observe the data X1, . . . ,Xn where
Xi is a uniform random fraction of Zi . More specifically, we observe

Xi = UiZi,
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where U1, . . . ,Un is a random sample from the uniform distribution on [0,1],
independent of the Zi’s. Now the density of Xi can be seen to be

g(x) = 1

mF

(
1 − F(x)

)
, x ≥ 0;(3.11)

see (2.5) in Section 2.2 and Exercise 2.4 in [5]. This means that the survival func-
tion 1 − F(x) is given by g(x)/g(0).

Hence, by monotonicity of the initial distribution function F and the fact that
0 < mF < ∞, it follows that sampling density g is bounded and decreasing on
[0,∞). Moreover, if no additional assumptions are imposed on F , any density
of this type can be represented by (3.11). The density g can be estimated by the
Grenander estimator of a decreasing density; see [18] and [17] for applications of
this model.

In [16] a data set of current durations of pregnancy in France is studied. The aim
is to estimate the distribution of the time it takes for a woman to become pregnant
after having started unprotected sexual intercourse. For 867 women the current
duration of unprotected intercourse, measured in months, was recorded and this is
the basis of part of the research, reported in [16].

Given that the woman in the study is currently trying to become pregnant, the
actual recorded data (current duration) can be viewed as uniform random fraction
of the true, total duration. In that sense, the model as given in (3.11) is not un-
reasonable. The left panel of Figure 10 shows a part of the empirical distribution
function of 618 recorded current durations, kindly provided to us by Niels Keiding,
where the data are truncated at 36 months and are of a similar nature as the data
in [16]. Based on the least concave majorant, the right panel of Figure 10 is com-
puted, showing the resulting MLE of the decreasing density of the observations

FIG. 10. The left panel shows the empirical distribution function and its least concave majorant
for the values between 10 and 20 months of the 618 current durations ≤ 36 months. The resulting
Grenander estimate (the MLE) of the observation density on the interval [0,36] is shown in the right
panel, together with its smoothed version (dashed, the SMLE).
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together with its smoothed version, the smoothed maximum likelihood estimator
(SMLE), defined by

g̃nh(t) = −
∫

K
(
(t − x)/h

)
dĝn(x), K(x) =

∫ ∞
x

K(u)du,(3.12)

where ĝn is the Grenander estimator (the MLE) and K is a symmetric kernel, for
which we took the triweight kernel

K(u) = 35

32

(
1 − u2)31[−1,1](u), u ∈ R.

The bandwidth h was chosen to be

h = 36n−1/5 ≈ 9.95645,

where n = 618. Near the boundary points 0 and 36, the same boundary correction
as in Section 2 was used. For t ∈ [h,b − h], where b = 36, the SMLE is asymptot-
ically equivalent to the ordinary kernel density estimator∫

Kh(t − x)dFn(x), Kh(u) = h−1K(u/h),(3.13)

which, however, will in general not be monotone, and so will not belong to the
allowed class.

The 95% confidence intervals for density (3.11), based on the SMLE and the LR
test for the MLE, respectively, are shown in Figure 11. The survival function for
the time until pregnancy or end of the period of unprotected intercourse is given by
g(x)/g(0), where g is the density of the observations. The 95% confidence inter-
vals for the survival function at the 99 equidistant points 0.36,0.72, . . . ,35.64, are

FIG. 11. 95% confidence intervals, based on the SMLE [part (a)] and MLE [part (b)], respectively,
for the data in [16] at the points 0.36,0.72, . . . ,35.64. The chosen bandwidth for the SMLE was
36n−1/4 ≈ 7.2203. The time is measured in months.
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constructed from 1000 bootstrap samples T ∗
1 , . . . , T ∗

n , also of size n, drawn from
the original sample, and in these samples we computed

g̃∗
nh(t)/g̃

∗
nh(0) − g̃nh(t)/g̃nh(0),(3.14)

where g̃nh and g̃∗
nh are the SMLEs in the original sample and the bootstrap sample,

respectively. The chosen bandwidth was 36n−1/4 ≈ 7.2203, so (according to the
method of undersmoothing; see Section 2), smaller than the bandwidth used in
Figure 10, which uses a bandwidth for which the squared bias and variance are
approximately in equilibrium. The 95% asymptotic confidence intervals are given
by [

g̃nh(t)/g̃nh(0) − U∗
0.975, g̃nh(t)/g̃nh(0) − U∗

0.025
]
,

where U∗
0.025 and U∗

0.975 are the 2.5% and 97.5% percentiles of the bootstrap val-
ues (3.14). The result is shown in Figure 13(a) and should be compared with the
confidence intervals in part A of Figure 2, page 1495 of [16], based on a parametric
(generalized gamma) model.

We have here the easiest, but also somewhat unusual, situation that the isotonic
estimator is asymptotically equivalent to an ordinary non-isotonic estimator. The
more usual situation is that we only can find a so-called toy estimator, which is
asymptotically equivalent to the MLE or SMLE, but still contains parameters that
have to be estimated. This is the case in the current status model, as seen in Sec-
tion 2.

In [16] and [11] parametric models are also considered for analyzing these data.
We compute the MLE as the slope of the smallest concave majorant of the data
≤36 months, where the x-values are only the strictly different values, and where
we use the number of values at a tie as the increase of the second coordinate of the
cusum diagram. In this way we get 618 values ≤36, but only 248 strictly different
ones. It is clear that the SMLE has a somewhat intermediate position w.r.t. the
parametric models and the fully nonparametric MLE, considered in [16] and [11].

In the model considered here, the nonparametric MLE is inconsistent at zero
and can therefore not be used as an estimate of g(0), and therefore also not as
an estimate of the survival function g(x)/g(0), unless we also use penalization
at zero. This is in contrast with the SMLE, which is consistent at zero due to the
boundary correction. This difficulty with the inconsistency of the MLE at zero for
the present model is discussed in [11]. We solve this difficulty by adding a penalty
at zero, as in [19], and maximize the function

φα,λ,μ(f1, . . . , fm)

(3.15)
= 1

n

m∑
i=1

wi logfi − λ

{
m∑

i=1

fi(ti − ti−1) − 1

}
+ μ(fi0 − a) − α(f1 − b),
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where b is the value of a consistent estimator at zero (e.g., the value of the SMLE);
we switch to the notation f = (f1, . . . , fm) again (instead of using g) to be in line
with the presentation in the preceding section. The solution has to satisfy

〈∇φ
α̂,λ̂,μ̂

(f̂ ), f̂
〉 = 1

n

m∑
i=1

wi − λ̂

m∑
i=1

(ti − ti−1)f̂i + μ̂f̂i0 − α̂f̂1

= 1 − λ̂

m∑
i=1

(ti − ti−1)f̂i + μ̂f̂i0 − αf̂1 = 1 − λ̂ + μ̂a − α̂b = 0,

and hence

μ̂ = λ̂ − 1 + α̂b

a
.(3.16)

Analogously to Lemma 3.2, we now get the following lemma.

LEMMA 3.4. Let f̂ = (f̂1, . . . , f̂m) be the vector of slopes of the least concave
majorant of the cusum diagram with points (0,0) and(

α̂ + λ̂tj ,

j∑
i=1

{
wi

n
+ (λ̂ − 1 + α̂b){i = i0}

})
, j = 1, . . . ,m,(3.17)

where (α̂, λ̂) is the solution of the equations [in (α,λ)]

min
1≤i≤i0

max
i0≤j≤m

∑j
k=i wk/n + λ − 1 + αb

λ(tj − ti−1) + 1{i=1}α
= a, max

i≥1

∑i
j=1 wj/n

α + λti
= b.(3.18)

Then f̂ maximizes
∑m

i=1 wi logfi , under the condition that f is nonincreasing and
the boundary conditions

m∑
i=1

fi(ti − ti−1) = 1, f1 = b and fi0 = a.

We now restrict the MLE of the density to have a value at zero, given by a con-
sistent estimator at zero. There are several possible choices; we took the value of
the SMLE at zero for illustrative purposes. The resulting estimate of the survival
function, based on the MLE restricted at zero to have the same value as the SMLE,
is shown in Figure 12. It is also possible to take histogram-type estimates at zero if
one wants to impose more lenient conditions. Next we can compute the 95% confi-
dence intervals again by the likelihood ratio method, where one restricts the MLE
to have a value at zero, prescribed by the consistent estimate. Using Lemma 3.4 we
can then compute the LR tests again for the values of fi0 . The result is shown in
part (b) of Figure 13, where we used the same asymptotic critical values as before.
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FIG. 12. Estimates of the survival function, based on the MLE (step function) and SMLE (smooth
function), where the MLE is restricted to have the same value at zero as the (consistent) SMLE.

4. Computational aspects and concluding remarks. There are several ways
of computing the restricted MLEs. One way of computing the restricted MLE for
the current status model was given in [1]; see the discussion following Remark 2.1
in Section 2. We computed the restricted MLE by first solving equation (2.4), (3.4)
or (3.18) for the Lagrange multiplier μ̂ or α̂ and λ̂, and next computing in one step
the left derivative of the greatest convex minorant, respectively, the smallest con-
cave majorant, of the cusum diagrams, which were constructed using the Lagrange
multipliers. Thus the iterative part of the algorithm lies in determining the solution

FIG. 13. 95% confidence intervals, based on the SMLE [part (a)] and MLE [part (b)], respectively,
for the survival functions in [16] at the points 0.36,0.72, . . . ,35.64. The chosen bandwidth for the
SMLE was 36n−1/4 ≈ 7.2203 and the MLE was restricted to have the same value as the (consistent)
SMLE at zero.
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μ̂ or α̂ and λ̂. For the monotone density case it is not clear that a completely non-
iterative method for computing the restricted MLE exists (as in the current status
model, if one adapts the definition in terms of inequalities in [1]). For solving the
nonlinear equations for μ̂ or α̂ and λ̂ in Lemma 3.4, we wrote C programs, which
seem to work fine and are given on https://github.com/pietg.

In practice we would recommend to use the methods based on the MLE or
SMLE in conjunction; the intervals based on the LR test for the MLE seem pretty
much on target, except, perhaps, for values close to the boundary, and use fewer as-
sumptions. On the other hand, the intervals, based on the SMLE are narrower and
based on asymptotically normal limit distributions, which enables the use of boot-
strap methods in constructing the confidence intervals. Direct bootstrap methods
have been shown to fail for the MLE; see [13] and [15].

APPENDIX A

PROOF OF THEOREM 2.1. Let Dn be the smallest interval [an, bn) such that
F̂n and F̂

(0)
n coincide on Dc

n and such that the boundary points of Dn are points
of jump of F̂n and F̂

(0)
n ; we assume F̂n and F̂

(0)
n to be right-continuous. Then

μ̂n = Op(n−2/3), and as argued in the proof of Lemma 2.3, the nearest points of

jump to t0 of F̂
(0)
n and F̂n are at distance Op(n−1/3) of t0.

Suppose t� > ti1 , where (tk1−1, ti1] is the interval around t0 where F̂
(0)
n is con-

stant. The maxmin characterization of F̂
(0)
n then gives

F̂ (0)
n (t�) = max

i0<k≤�
min
i≥�

∑i
j=k δj

i − k + 1
.

Note that the term μ̂a1{i=i0} does no longer occur in the minmax characterization,
since the relevant intervals do not contain i0. Likewise, if t� > ti′1 , where (tk′

1−1, ti′1]
is the interval around t0 where F̂n is constant, the maxmin characterization of F̂n

gives

F̂n(t�) = max
i0<k≤�

min
i≥�

∑i
j=k δj

i − k + 1
.

Since we have ti1 − t0 = Op(n−1/3) and ti′1 − t0 = Op(n−1/3), we get therefore

that the functions F̂n and F̂
(0)
n coincide with high probability for values t ≥ t0 +

Mn−1/3, is M > 0 is sufficiently large. The same argument holds on intervals to
the left of t0. In other words, the length of the interval Dn = [an, bn) is of order
Op(n−1/3). By the monotonicity of the functions F̂n and F̂

(0)
n and the properties

of the unrestricted F̂n, this also implies

sup
t∈Dn

∣∣F̂n(t) − F0(t0)
∣∣ = Op

(
n−1/3)

and

(A.1)
sup
t∈Dn

∣∣F̂ (0)
n (t) − F0(t0)

∣∣ = Op

(
n−1/3)

.

https://github.com/pietg
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We now have, by (A.1) the Taylor development of the logarithm at the point
F0(t0), respectively, 1 − F0(t0), separately for log F̂n(t), log F̂

(0)
n (t), etc., and the

fact that the length of Dn is of order Op(n−1/3),

2n

∫
t∈Dn

{
δ log

F̂n(t)

F̂
(0)
n (t)

+ (1 − δ) log
1 − F̂n(t)

1 − F̂
(0)
n (t)

}
dPn(t, δ)

= 2n

∫
t∈Dn

{
δ
F̂n(t) − F̂

(0)
n (t)

F0(t0)
− (1 − δ)

F̂n(t) − F̂
(0)
n (t)

1 − F0(t0)

}
dPn(t, δ)

− n

∫
t∈Dn

{
δ
{F̂n(t) − F0(t0)}2

F0(t0)2 + (1 − δ)
{F̂n(t) − F0(t0)}2

{1 − F0(t0)}2

}
dPn(t, δ)(A.2)

+ n

∫
t∈Dn

{
δ
{F̂ (0)

n (t) − F0(t0)}2

F0(t0)2 + (1 − δ)
{F̂ (0)

n (t) − F0(t0)}2

{1 − F0(t0)}2

}
dPn(t, δ)

+ Op

(
n−1/3)

.

For the first term on the right-hand side, we get

2n

∫
t∈Dn

{
δ
F̂n(t) − F̂

(0)
n (t)

F0(t0)
− (1 − δ)

F̂n(t) − F̂
(0)
n (t)

1 − F0(t0)

}
dPn(t, δ)

(A.3)

= 2n

F0(t0){1 − F0(t0)}
∫
t∈Dn

{
δ − F0(t0)

}{
F̂n(t) − F̂ (0)

n (t)
}
dGn(t, δ).

We also have∫
t∈Dn

{
δ − F0(t0)

}{
F̂n(t) − F0(t0)

}
dPn(t, δ) =

∫
Dn

{
F̂n(t) − F0(t0)

}2
dGn(t)

and∫
t∈Dn

{
δ − F0(t0)

}{
F̂ (0)

n (t) − F0(t0)
}
dPn(t, δ) =

∫
Dn

{
F̂ (0)

n (t) − F0(t0)
}2

dGn(t),

since, by the characterizations of F̂n and F̂
(0)
n ,∫

t∈Dn

{
δ − F̂n(t)

}{
F̂n(t) − F0(t0)

}
dPn(t, δ) = 0

and ∫
t∈Dn

{
δ − F̂ (0)

n (t)
}{

F̂ (0)
n (t) − F0(t0)

}
dPn(t, δ) = 0,

where we use that the increments over the δ coincide with the increments of F̂n

and F̂
(0)
n between jumps, except for F̂

(0)
n on the interval [τ−, τ+) between the
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successive jumps τ−, τ+, covering t0, where, however, F̂
(0)
n (t) = F0(t0). Thus we

obtain ∫
t∈Dn

{
δ − F0(t0)

}{
F̂n(t) − F0(t0)

}
dPn(t, δ)

(A.4)
=

∫
Dn

{{
F̂n(t) − F0(t0)

}2 − {
F̂ (0)

n (t) − F0(t0)
}2}

dGn(t).

By (A.3), this deals with the first term on the right-hand side of (A.2).
To deal with the second and third terms of (A.2), we note that∫
t∈Dn

{
δ
{F̂n(t) − F0(t0)}2

F0(t0)2 + (1 − δ)
{F̂n(t) − F0(t0)}2

{1 − F0(t0)}2

}
dPn(t, δ)

=
∫
Dn

{
F̂n(t)

{F̂n(t) − F0(t0)}2

F0(t0)2 + (
1 − F̂n(t)

){F̂n(t) − F0(t0)}2

{1 − F0(t0)}2

}
dGn(t)

again by the fact that since the increments over the δ coincide with the increments
of F̂n (note that the integrands on the right-hand side are constant on the intervals
of constancy of F̂n). This can be written

∫
Dn

F̂n(t) − F0(t0)}2

F0(t0){1 − F0(t0)} dGn(t)

+
∫
Dn

{
F̂n(t) − F0(t0)

}3
{

1

F0(t0)2 − 1

{1 − F0(t0)}2

}
dGn(t)

=
∫
Dn

F̂n(t) − F0(t0)}2

F0(t0){1 − F0(t0)} dGn(t) + Op

(
n−4/3)

.

For the same reasons, but using in addition that F̂
(0)
n (t) = F0(t0) on the interval of

constancy of F̂
(0)
n , containing t0, we get

∫
t∈Dn

{
δ
{F̂ (0)

n (t) − F0(t0)}2

F0(t0)2 + (1 − δ)
{F̂ (0)

n (t) − F0(t0)}2

{1 − F0(t0)}2

}
dPn(t, δ)

=
∫
Dn

F̂
(0)
n (t) − F0(t0)}2

F0(t0){1 − F0(t0)} dGn(t) + Op

(
n−4/3)

.

Combining the preceding results, we get

2n

∫
t∈Dn

{
δ log

F̂n(t)

F̂
(0)
n (t)

+ (1 − δ) log
1 − F̂n(t)

1 − F̂
(0)
n (t)

}
dPn(t, δ)

= n

F0(t0){1 − F0(t0)}
∫
Dn

{{
F̂n(t) − F0(t0)

}2 − {
F̂ (0)

n (t) − F0(t0)
}2}

dGn(t)

+ Op

(
n−1/3)

(A.5)
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= ng(t0)

F0(t0){1 − F0(t0)}
∫
Dn

{{
F̂n(t) − F0(t0)

}2 − {
F̂ (0)

n (t) − F0(t0)
}2}

dt

+Op

(
n−1/3)

.

This means that the dominant term of the log likelihood ratio equals

Ln
def= g(t0)

F0(t0){1 − F0(t0)}
∫ n1/3(bn−t0)

n1/3(an−t0)

{
Xn(t)

2 − Yn(t)
2}

dt,

where Xn and Yn are as defined on page 1723 of [1],

Xn(t) = n1/3{
F̂n

(
t0 + n−1/3t

) − F0(t0)
}
,

Yn(t) = n1/3{
F̂ (0)

n

(
t0 + n−1/3t

) − F0(t0)
};

see also Theorem 2.4 on page 1710 of [1]. The resulting convergence of Ln to the
universal limit distribution D now follows from the joint convergence of (Xn,Yn)

on bounded intervals, as stated in part B of Theorem 2.4 of [1], together with
Brownian scaling. �

APPENDIX B

PROOF OF THEOREM 3.1. We extend the values f̂ni and f̂
(0)
ni of the solution

f̂n and f̂
(0)
n as vectors to left-continuous functions f̂n and f̂

(0)
n on [0,∞). Let Dn

be the smallest interval (an, bn] such that f̂n and f̂
(0)
n have the same points of jump

on Dc
n and such that the boundary points of Dn are points of jump of f̂n and f̂

(0)
n ;

see Remark 3.2. This means that for t /∈ Dn,

f̂ (0)
n (t) = 1

1 + μ̂na
min
i:ti≤t

max
j :tj≤t

∑j
k=i wk/n

tj − ti−1
= f̂n(t)

1 + μ̂na
,

since the scale of first coordinates of the cusum diagram for f̂
(0)
n has the factor

1 + μ̂na. Since μ̂n = Op(n−2/3), we get

2n

∫
Dc

n

log
f̂n(t)

f̂
(0)
n (t)

dFn(t)

= 2n log{1 + aμ̂n}
∫
Dc

n

dFn(t) = 2naμ̂n

∫
Dc

n

dFn(t) + Op

(
n−1/3)

.

The function f̂
(0)
n must satisfy ∫

f̂ (0)
n (x) dx = 1.

So ∫
Dn

f̂ (0)
n (t) dt +

∫
Dc

n

f̂ (0)
n (t) dt = 1,
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and hence, using μ̂n = Op(n−2/3),

2n

∫
Dn

f̂ (0)
n (t) dt = 2n

{
1 −

∫
Dc

n

f̂ (0)
n (t) dt

}
= 2n

{
1 − {1 + μ̂na}−1

∫
Dc

n

dFn(t)

}

= 2n

{∫
Dn

dFn(t) + μ̂na

∫
Dc

n

dFn(t)

}
+ Op

(
n−1/3)

= 2n

{∫
Dn

f̂n(t) dt + μ̂na

∫
Dc

n

dFn(t)

}
+ Op

(
n−1/3)

.

Thus we get

2nμ̂na

∫
Dc

n

dFn(t) = 2n

∫
Dn

{
f̂ (0)

n (t) − f̂n(t)
}
dt + Op

(
n−1/3)

,

so we obtain

2n

∫
log

f̂n(t)

f̂
(0)
n (t)

dFn(t)

= 2n

∫
Dn

log
f̂n(t)

f̂
(0)
n (t)

dFn(t) + 2n

∫
Dc

n

log
f̂n(t)

f̂
(0)
n (t)

dFn(t)

= 2n

∫
Dn

log
f̂n(t)

f̂
(0)
n (t)

dFn(t) + 2naμ̂n

∫
Dc

n

dFn(t) + Op

(
n−1/3)

= 2n

∫
Dn

log
f̂n(t)

f̂
(0)
n (t)

dFn(t) − 2n

∫
Dn

{
f̂n(t) − f̂ (0)

n (t)
}
dt

+ Op

(
n−1/3)

,

by which we have reduced the log likelihood integrals on the shrinking neighbor-
hood Dn.

We now proceed as in the proof of Theorem 2.1. We expand the logarithm in a
neighborhood of the point f0(t0). This yields

2n

∫
Dn

log
f̂n(t)

f̂
(0)
n (t)

dFn(t) − 2n

∫
Dn

(
f̂n(t) − f̂ (0)

n (t)
)
dt

= 2n

∫
Dn

f̂n(t) − f0(t0)

f0(t0)
dFn(t) − 2n

∫
Dn

f̂
(0)
n (t) − f0(t0)

f0(t0)
dFn(t)

− 2n

∫
Dn

{
f̂n(t) − f̂ (0)

n (t)
}
dt − n

∫
Dn

{f̂n(t) − f0(t0)}2

f0(t0)2 dFn(t)

+ n

∫
Dn

{f̂ (0)
n (t) − f0(t)}2

f0(t0)2 dFn(t) + Op

(
n−1/3)



2052 P. GROENEBOOM AND G. JONGBLOED

= 2n

∫
Dn

f̂n(t) − f0(t0)

f0(t0)
dFn(t) − 2n

∫
Dn

f̂
(0)
n (t) − f0(t0)

f0(t0)
dFn(t)

− 2n

∫
Dn

{
f̂n(t) − f̂ (0)

n (t)
}
dt − n

∫
Dn

{f̂n(t) − f0(t0)}2

f0(t0)
dt

+ n

∫
Dn

{f̂ (0)
n (t) − f0(t)}2

f0(t0)
dt + Op

(
n−1/3)

.

We now have

2n

∫
Dn

f̂n(t) − f0(t0)

f0(t0)
dFn(t) − 2n

∫
Dn

{
f̂n(t) − f0(t0)

}
dt

= 2n

∫
Dn

f̂n(t) − f0(t0)

f0(t0)
f̂n(t) dt − 2n

∫
Dn

{
f̂n(t) − f0(t0)

}
dt

= 2n

∫
Dn

{f̂n(t) − f0(t0)}2

f0(t0)
dt,

and similarly get

2n

∫
Dn

f̂
(0)
n (t) − f0(t0)

f0(t0)
dFn(t) − 2n

∫
Dn

{
f̂ (0)

n (t) − f0(t0)
}
dt

= 2n

∫
Dn

{f̂ (0)
n (t) − f0(t0)}2

f0(t0)
dt,

using f̂n(t) = f0(t0) on the interval of constancy of f̂
(0)
n , covering the point t0.

Thus we can conclude that

2n

∫
log

f̂n(t)

f̂
(0)
n (t)

dFn(t)

= n

f0(t0)

∫
Dn

{{
f̂n(t) − f0(t0)

}2 − {
f̂ (0)

n (t) − f0(t0)
}2}

dt + Op

(
n−1/3)

= n2/3

f0(t0)

∫ n1/3(bn−t0)

n1/3(an−t0)

{{
f̂n

(
t0 + n−1/3t

) − f0(t0)
}2

− {
f̂ (0)

n

(
t0 + n−1/3t

) − f0(t0)
}2}

dt

+ Op

(
n−1/3)

,

where Dn = (an, bn).
Let W be standard two-sided Brownian motion on R, and let α = √

f0(t0) and
β = 1

2 |f ′
0(t0)|. The process

t 	→ (
n1/3{

f̂n

(
t0 + n−1/3t

) − f0(t0)
}
, n1/3{

f̂ (0)
n

(
t0 + n−1/3t

) − f0(t0)
})
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converges on bounded intervals in the Skohorod topology to the process (Sα,β,

S
(0)
α,β) on R, where Sα,β is the slope of the concave majorant of the process

t 	→ Xα,β(t)
def= aW(t) − βt2, t ∈ R,(B.1)

and where S
(0)
α,β is defined by S−

α,β(t) ∨ 0 for t < 0, where S−
α,β is the slope of the

process (B.1), restricted to the interval (−∞,0), and by S+
α,β(t) ∧ 0, where S+

α,β is
the slope of the process (B.1), restricted to the interval [0,∞). The notation Xα,β

was introduced in [1], page 1706.
We now follow the Brownian scaling argument on page 1724 of [1]. Let

X(t) = X1,1(t), t ∈ R.

Then

Xα,β(t)
D= α4/3

β1/3 X
(
(β/α)2/3t

)
, t ∈ R.

It follows that(
Sα,β, S

(0)
α,β

) D= α2/3β1/3(
S1,1

(
(β/α)2/3t

)
, S

(0)
1,1

(
(β/α)2/3t

))
.

Thus we get in the limit, noting that Sα,β and S
(0)
α,β only differ on a bounded inter-

val,

1

α2

∫ {
Sα,β(t)2 − S

(0)
α,β(t)2}

dt

= (β/α)2/3
∫ {

S1,1
(
(β/α)2/3t

)2 − S
(0)
1,1

(
(β/α)2/3t

)2}
dt

=
∫ {

S1,1(t)
2 − S

(0)
1,1(t)

2}
dt. �
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