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OPTIMAL DETECTION OF MULTI-SAMPLE ALIGNED
SPARSE SIGNALS

BY HOCK PENG CHAN1 AND GUENTHER WALTHER2

National University of Singapore and Stanford University

We describe, in the detection of multi-sample aligned sparse signals, the
critical boundary separating detectable from nondetectable signals, and con-
struct tests that achieve optimal detectability: penalized versions of the Berk–
Jones and the higher-criticism test statistics evaluated over pooled scans, and
an average likelihood ratio over the critical boundary. We show in our results
an inter-play between the scale of the sequence length to signal length ratio,
and the sparseness of the signals. In particular the difficulty of the detection
problem is not noticeably affected unless this ratio grows exponentially with
the number of sequences. We also recover the multiscale and sparse mixture
testing problems as illustrative special cases.

1. Introduction. Consider a population of sequences having a common time
(or location) index. Signals, when they occur, are present in a small fraction of the
sequences and aligned in time. In the detection of copy number variants (CNV)
in multiple DNA sequences, Efron and Zhang [11] used local f.d.r., Zhang et al.
[29] and Siegmund, Yakir and Zhang [24] applied scans of weighted χ2-statistics,
Jeng, Cai and Li [17] applied higher-criticism test statistics. Tartakovsky and Veer-
avalli [25], Mei [20] and Xie and Siegmund [28] considered the analogous sequen-
tial detection of sparse aligned changes of distribution in parallel streams of data,
with applications in communications, disease surveillance, engineering and hospi-
tal management. These advances have brought in an added multi-sample dimen-
sion to traditional scan statistics works (see, e.g., the papers in [12]) that consider
a single stream of data.

In this paper, we tackle the problem of detectability of aligned sparse signals,
extending sparse mixture detection (cf. [4, 6, 9, 13–15, 27]) to aligned signals, and
extending multiscale detection (cf. [8, 10, 19, 23]) to multiple sequences. Hence
not surprisingly, we incorporate ideas developed by the sparse mixture and mul-
tiscale detection communities to find the critical boundary separating detectable
from nondetectable hypotheses. In Arias-Castro, Donoho and Huo [1, 2], there
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are also links between sparse mixtures and multiscale detection methods in the
detection of a sparse component on an unknown low-dimensional curve within
a higher-dimensional space. Our work here is less geometrical in nature as the
aligned-signal assumption allows us to reduce the problem to one dimension by
summarizing across sample first.

We supply optimal adaptive max-type tests: penalized scans of the higher crit-
icism and Berk–Jones test statistics. We also supply an optimal Bayesian test: an
average likelihood ratio (ALR) that tests against alternatives lying on the critical
boundary. The rationale behind the ALR is to focus testing at the most sensitive
parameter values, where small perturbations can result in sharp differences of de-
tection powers.

We state the main results in Section 2. We describe the detectable region of
aligned sparse signals in the multi-sample setting, and show that the penalized
scans achieve asymptotic detection power 1 there. We learn from the detection
boundary the surprising result that the requirement to locate the signal in the time
domain does not affect the overall difficulty of the detection problem, unless the
sequence length to signal length ratio grows exponentially with the number of
sequences.

In Section 3, we show the optimality of the ALR and consider special cases of
our model that have been well studied in the literature using max-type tests: the
detection of a signal with unknown location and scale in a single sequence, and
the detection of a sparse mixture in many sequences of length 1. We show that
the general form of our ALR provides optimal detection in these important special
cases. We also illustrate the detectability and detection of multi-sample signals on
a CNV dataset.

In Section 4, the detection problem is extended to heteroscedastic signals. The
extension illustrates the adaptivity of the penalized scans. Even though the detec-
tion boundary has to be extended to take into account the heteroscedasticity, the
penalized scans as described in Section 2 are still optimal. On the other hand, the
ALR tests have to be re-designed to ensure optimality under heteroscedasticity.
The model set-up here is similar to that in Jeng, Cai and Li [17]. There optimal-
ity is possible without imposing penalties on the scan of the higher-criticism test
because the signal length was assumed to be very short.

2. Main results. Let {(Xn1, . . . ,XnT ) : 1 ≤ n ≤ N} be a population of se-
quences. We consider the prototypical set-up

Xnt = μnt + Znt where Znt are i.i.d. N(0,1).(2.1)

Under the null hypothesis H0 of no signals, μnt = 0 for all n and t . Under the
alternative hypothesis H1 of aligned signals, there exists an unknown q > 0 of
disjoint intervals (j

(k)
T , j

(k)
T + �

(k)
T ] such that for the kth interval, 1 ≤ k ≤ q , there
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is a probability π
(k)
N > 0 that this interval has an elevated mean

μnt =
{

μ
(k)
N I

(k)
n /

√
�
(k)
T , if j

(k)
T < t ≤ j

(k)
T + �

(k)
T ,

0, otherwise,
(2.2)

I (k)
n ∼ Bernoulli

(
π

(k)
N

)
,

with μ
(k)
N > 0 and the I

(k)
n ’s and Znt ’s jointly independent. Let πN = π

(1)
N , μN =

μ
(1)
N and so forth.
Model (2.2) extends sparse mixture detection by adding a time-dimension, and

there is a similar extension in potential applications. For example, in the detection
of bioweapons use, as introduced in [9], we can assume that there are N observa-
tional units in a geographical region, each accumulating information over time on
bioweapons usage. The bioweapons are in use over a specific but unknown time
period, and only a small fraction of the units are affected. Alternatively in covert
communications detection, only a small fraction of N detectors, each tuned to a
distinct signal spectrum, observes unusual activities during the period in which
communications are taking place. In the detection of genes that are linked to can-
cer, readings of DNA copy numbers are taken from the chromosomes of N cancer
patients, and only a small fraction of the patients exhibits copy number changes at
the gene locations. In Section 4, we shall consider an extension of (2.1) and (2.2)
to signals carrying a noise component.

In the detection of copy number changes, the common practice was to pro-
cess samples one at a time; see Lai et al. [18]. In contrast, Efron and Zhang [11],
Zhang et al. [29] and Jeng et al. [17] proposed procedures that pool across samples
first. Our analysis here shows that the alignment information is important, and we
should indeed pool across samples first. In Appendix C, we provide a compari-
son between pooling information across sample versus pooling information within
sample first.

Consider πN = N−β for some 1
2 < β < 1. Ingster [14, 15] and Donoho and

Jin [9] showed that in the special case T = 1 (hence q = 1, j1 = 0, �1 = 1), as
N → ∞, the critical detectable value of μN is b∗

N(β) := √
2ρ∗(β) logN , where

ρ∗(β) =
{

β − 1
2 , if 1

2 < β ≤ 3
4 ,

(1 − √
1 − β)2, if 3

4 < β < 1.
(2.3)

That is, if μN = √
2ρ logN with ρ < ρ∗, then no test can detect that μN �= 0 in

the sense that the sum of Type I and Type II error probabilities tends to 1 for any
test. Donoho and Jin [9] further showed that Tukey’s higher criticism as well as the
Berk–Jones statistic achieve the detection boundary b∗

N ; that is, if ρ > ρ∗, then the
sum of Types I and II error probabilities tends to 0. Jager and Wellner [16] showed
that Tukey’s test is a member of a family of goodness-of-fit φ-divergence tests that
can each achieve the detection boundary.
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When T > 1, we need to deal with the complication of multiple comparisons
over jT and �T , and the question arises of how much harder the detection problem
becomes. The number of disjoint intervals in (0, T ] with common length �T is
approximately T/�T . This ratio has to be factored into the computation of the
detection boundary. The main message of Section 2.1 is that the difficulty of the
detection problem is not noticeably affected unless this ratio of sequence length to
signal length grows exponentially with the number N of sequences. Sections 2.2
and 2.3 provide optimal max-type tests that attain the detection boundary.

2.1. Detectability of aligned signals. Let am ∼ bm if limm→∞(am/bm) = 1
and am ∼̇bm if limm→∞(am/bm) = C for some constant C > 0. Let 	·
 be the
greatest integer function and #B the number of elements in a set B . Let E0(E1)

denote expectation under H0(H1). We are interested here in the signal length �
(k)
T

in (2.2) satisfying

T/�
(k)
T ∼ exp

(
Nζ(k) − 1

)
for some ζ (k) ≥ 0.(2.4)

The case of T varying sub-exponentially with N will be considered in Section 4.
We shall show that under (2.4) with N → ∞, the asymptotic threshold de-

tectable value of μN when πN = N−β and β ∈ (0,1) is

bN(β, ζ )
(2.5)

=

⎧⎪⎪⎨⎪⎪⎩
√

log
(
1 + N2β−1+ζ

)
, if 0 ≤ ζ ≤ 1 − 4β/3,

(
√

1 − ζ − √
1 − ζ − β)

√
2 logN, if 1 − 4β/3 < ζ ≤ 1 − β,√

Nβ+ζ−1, if ζ > 1 − β.

The first case 0 ≤ ζ ≤ 1 − 4β/3 can be further sub-divided into: (a) 0 ≤ ζ ≤
1 − 2β , under which

bN(β, ζ ) ∼̇N−(1−2β−ζ )/2 (decays polynomially with N),(2.6)

and (b) 1 − 2β < ζ ≤ 1 − 4β/3, under which

bN(β, ζ ) ∼
√

(2β − 1 + ζ ) logN (grows at
√

logN rate).(2.7)

Formula (2.5) specifies the functional form of bN as a function of β . Since β

appears in the exponent in (2.6) and in the third case of (2.5), bN is specified only
up to multiplicative constants in these cases.

The boundary bN is an extension of the Donoho–Ingster–Jin boundary b∗
N . In

the case of a sparse mixture, T = �T = 1, and (2.4) is satisfied with ζ = 0. By
the second case in (2.5) and by (2.7), bN(β,0) ∼ b∗

N(β) when 1
2 < β < 1. Fur-

thermore, bN(β,0) in (2.6) recovers the detection boundary in the dense case
0 < β ≤ 1

2 established by Cai, Jeng and Jin [5].
Formula (2.5) likewise recovers the detection boundary for the special case of

only one sequence. For the scaled mean μN in (2.2), this boundary is known to be
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√
2 log(eT /�T ) and is attained by the penalized scan; see, for example, [8]. To see

how this special case is subsumed in the general setting above, set T ∼ exp(N −1)

so that it suffices to consider ζ ∈ (0,1) in (2.4) to parametrize the scale of the sig-
nal �T /T ∈ (0,1). Then set β = 0 so that the signal is present in each of the N se-
quences. Since the signals are aligned and have the same means, by sufficiency one
can equivalently consider the one sequence St of length T obtained by summing
the Xnt over n. Dividing by

√
N to restore unit variance and formally plugging

β = 0 into (2.6) gives a detection threshold for
√

NμN of ∼̇Nζ/2 ∼ √
log(eT /�T ).

This yields the above detection threshold for the one sequence problem apart from
the multiplicative constant

√
2, which can be recovered with a more refined anal-

ysis in (2.5).
The general formula (2.5) shows how the growth coefficient and the phase tran-

sitions of the
√

logN growth are altered by the effect of multiple comparisons in
the location of signals. The formula also shows that in the case ζ > 0, the signal
detection thresholds can grow polynomially with N .

THEOREM 1. Assume that (2.2) and (2.4) hold for 1 ≤ k ≤ q , with μ
(k)
N =

bN(β(k), ζ (k)) and π
(k)
N = N−β(k)−ε(k)

for some 0 < β(k) < 1 and ε(k) > 0. Under

these conditions, there is no test that can achieve, at all j
(k)
T , 1 ≤ k ≤ q ,

P(Type I error) + P(Type II error) → 0.(2.8)

The simple likelihood ratio of (Xn1, . . . ,XnT ), for H0 against (2.2), is
Ln�T jT

(πN,μN), where

Ln�j

(
π∗,μ

)= 1 − π∗ + π∗ exp
(
μYn�j − μ2/2

)
,(2.9)

with Yn�j = �−1/2∑j+�
t=j+1 Xnt . The key to proving Theorem 1 (details in Sec-

tion 5) is to show that under the conditions of Theorem 1,

N∏
n=1

Ln�T jT
(πN,μN) = Op(T /�T ).(2.10)

That is, the likelihood ratio of the signal does not grow fast enough to overcome
the noise due to the ∼T/�T independent comparisons of length �T . Theorem 1
follows because the likelihood ratio test is the most powerful test.

2.2. Optimal detection with the penalized higher-criticism test. As an illustra-
tion, first consider sparse mixture detection. That is, let T = 1 and test

Xn
i.i.d.∼ (1 − πN)N(0,1) + πNN(μN,1), 1 ≤ n ≤ N,(2.11)

for H0: πN = 0 against H1: πN > 0 and μN > 0. Let p(1) ≤ · · · ≤ p(N) be the
ordered p-values of the Xn’s.
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Donoho and Jin [9] proposed to separate H0 from H1 by applying Tukey’s
higher-criticism test statistic

HCN := max
1≤n≤(N/2) : p(n)≥N−1

n/N − p(n)√
p(n)(1 − p(n))/N

.(2.12)

They showed that the higher-criticism test is optimal for sparse mixture detec-
tion. Under H0, HCN ∼ √

2 log logN ; see [9], Theorem 1. Under H1, the ar-
gument of HCN at some p(n) is asymptotically larger than

√
2 log logN , when

πN = N−β for some 1
2 < β < 1, and μN lies above the detection boundary

b∗
N(β) = √

2ρ∗(β) logN . For μN lying below the detection boundary, it is not
possible to separate H0 from H1. Cai et al. [5] showed that optimality extends to
β ∈ (0, 1

2).
We motivate the extension of the higher-criticism test to T > 1 by first con-

sidering a fixed, known signal on the interval (j, j + �]. By sufficiency, testing
for an aligned signal there is the same as testing H0 against H1 for the sample
Y1�j , . . . , YN�j . Let p(1)�j ≤ · · · ≤ p(N)�j be the ordered p-values of the sample,
and let s�T = log(eT /�). We define the higher-criticism test statistic on this inter-
val to be

HCN�j := max
1≤n≤(N/2) : p(n)≥s�T /N

n/N − p(n)�j√
p(n)�j (1 − p(n)�j )/N

.(2.13)

For � = T , the constraint in (2.13) becomes p(n) ≥ N−1, which agrees with
the constraint in (2.12). As explained in [9], Section 3, the standardization of p(n)

given in (2.13) has increasingly heavy tails as n becomes smaller, so if HCN�j is
defined without constraints on p(n), then it has large values frequently due to the
smallest p(n). For � < T , the multiple comparisons when maximizing HCN�j over
j necessitates a more restrictive constraint of p(n) ≥ s�T /N .

The term s�T appears also in the scan of the higher-criticism test statistic

PHCNT := max
(j,j+�)∈BT

(HCN�j −
√

s�T log s�T ),(2.14)

as a penalty that increases with T/� to counter-balance the generally higher scores
under H0 for larger T/� when maximizing HCN�j over j .

We will now specify the scanning set BT in (2.14). In applications T is of-
ten large, so maximizing HCN�j over all j and � is computationally expensive;
the cost is NT 2. We construct below an approximating set BT , similar to that
in Walther [26] and Rivera and Walther [22], which has a computation cost of
NT logT .

Construction of BT : Let dr,T = 	T/(r1/2er)
 + 1, and let

Br,T = {
(j, j + �) ∈ (dr,T Z)2 : 0 ≤ j ≤ T − �,T /er < � ≤ T/er−1}.(2.15)
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We define BT = ⋃rT
r=1 Br,T , where rT = 	logT 
. The specification of dr,T is so

that for any (jT , �T ), we can find (j∗
T , �∗

T ) ∈ Br,T for some r such that jT ≤ j∗
T <

j∗
T + �∗

T ≤ jT + �T and

1 − �∗
T /�T = O

(
r−1/2).(2.16)

This property plays a part in ensuring that the loss of information due to restriction
to BT is negligible.

THEOREM 2. Assume (2.2) and that for some 1 ≤ k ≤ q , (2.4) holds and
μ

(k)
N = bN(β(k), ζ (k)), π

(k)
N = N−β(k)+ε(k)

for some 0 < β(k) < 1 − ζ (k) and 0 <

ε(k) ≤ β(k). Under these conditions, P(Type I error) + P(Type II error) → 0 can
be achieved by testing with PHCNT .

For signal identification, when applying the penalized higher-criticism test
statistics at a threshold c:

(1) Rank the pairs (j, j + �) ∈ BT in order of descending values of HCN�j −√
s�T log s�T , and remove those pairs with values less than c.
(2) Starting with the highest-ranked pair and moving downward, remove a pair

from the list if its interval overlaps with that of a higher-ranked pair still on the list
by more than a fraction f ≥ 0 of its length.

Jeng et al. [17] focused on the detection of signal segments that are well sepa-
rated. Hence their signal identification procedure is restricted to f = 0. Zhang et
al. [29] focused on both the detection of signal segments that are well separated,
as well as the detection of overlapping or nested signal segments. Hence their pro-
cedure allows for f > 0. If there are a finite number of well-separated signal seg-
ments, then intuitively, all the segments are identified with probability converging
to 1, in the sense that a segment with local maximum score, in a suitably defined
neighborhood of each signal segment, is identified.

2.3. Optimal detection with the penalized Berk–Jones test. Let K(x, t) =
x log(x

t
) + (1 − x) log(1−x

1−t
) if x ≥ t and K(x, t) = 0 otherwise. This is the Berk–

Jones [4] test statistic that was first proposed as a more powerful alternative to
the Kolmogorov–Smirnov test statistic for testing a distribution function; see also
Owen [21]. Jager and Wellner [16] showed that there is a class of test statistics that
includes the Berk–Jones and higher-criticism test statistics as special cases that
can be used to detect sparse mixtures (2.11) optimally. Specifically for T = 1, the
testing of πN > 0 and μN > 0 in (2.11) can be detected optimally by

BJN := N max
1≤n≤(N/2) : p(n)<n/N

K(n/N,p(n)).(2.17)

Therefore, analogously to (2.13),

BJN�j := N max
1≤n≤(N/2) : p(n)�j <n/N

K(n/N,p(n)�j )(2.18)



1872 H. P. CHAN AND G. WALTHER

can optimally detect aligned signals on the interval (j, j +�]. In Theorem 3 below,
we shall show that analogously to (2.14), the penalized Berk–Jones test statistic

PBJNT := max
(j,j+�)∈BT

(BJN�j − s�T log s�T )(2.19)

is optimal for aligned signals detection when the signal locations are unknown.

THEOREM 3. Assume (2.2) and that for some 1 ≤ k ≤ q , (2.4) holds and
μ

(k)
N = bN(β(k), ζ (k)), π

(k)
N = N−β(k)+ε(k)

for some 0 < β(k) < 1 and 0 < ε(k) ≤
β(k). Under these conditions,

P(Type I error) + P(Type II error) → 0

can be achieved by testing with PBJNT .

As in Section 2.2, a sequential approach can be used to identify signals when
the penalized Berk–Jones exceeds a specified threshold.

3. Optimal detection with ALR tests. We shall introduce in Section 3.1 an
ALR that is optimal for detecting multi-sample aligned signals. We then consider
the special cases of detecting a sparse mixture (T = 1 with N → ∞) in Section 3.2
and multiscale detection in a single sequence (N = 1 with T → ∞) in Section 3.3.

3.1. Detecting multi-sample aligned signals. The ALR builds upon the like-
lihood ratios Ln�T jT

(πN,μN) as defined in (2.9), first by substituting μN by its
asymptotic threshold detectable value, followed by integrating πN = N−β over β

and finally by summing over an approximating set for �T and jT . In view of (2.4),
let ζ�,NT = logN [log(T /�) + 1], and let

Ln�j (β) = Ln�j

(
N−β, bN(β, ζ�,NT )

);(3.1)

see (2.5) for the definition of bN .
In the case of the ALR, we consider

ANT := 6

π2

rT ∨1∑
r=1

1

r3er+1

∑
(j,j+�)∈Br,T

∫ 1

0

[
N∏

n=1

Ln�j (β)

]
dβ,(3.2)

where rT and Br,T are given in Section 2.2. By (2.15), #Br,T ≤ rer+1.
The weights in (3.2) are chosen for the following reason: Since Ln�j (β) is a

likelihood ratio for H0, it has expectation 1 under H0. Hence it follows from (3.2)
that

E0(ANT ) = 6

π2

rT∑
r=1

1

r3er+1 (#Br,T ) ≤ 6

π2

∞∑
r=1

1

r2 = 1.(3.3)
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From (3.3), it follows that under H0, ANT = Op(1) uniformly over N and T .

If the aligned signals under H1 are such that ANT
p→ ∞ as N → ∞, then

P(Type I error) + P(Type II error) → 0 is achieved by simply selecting rejection
thresholds going to infinity slowly enough.

The ALR (3.2) is, by its construction, optimal when μN = bN(β, ζ�T ,NT ). It is
not designed to be optimal at other μN . However, there is really no point in being
optimal at smaller μN , where the maximum power that can be attained is small.
At larger μN , the ALR test has power close to 1, so there is not much more to
be gained in being optimal there. By focusing only on the boundary detectable
values, we remove the noise due to the consideration of unproductive likelihood
ratios associated with too large and too small μN .

THEOREM 4. Assume (2.2) and that for some 1 ≤ k ≤ q (2.4) holds and
μ

(k)
N = bN(β(k), ζ (k)), π

(k)
N = N−β(k)+ε(k)

for some 0 < β(k) < 1 and 0 <

ε(k) ≤ β(k). Under these conditions, ANT
p→ ∞. Hence P(Type I error) +

P(Type II error) → 0 can be achieved by testing with ANT .

Among the three optimal tests that we propose here, the ALR is the most in-
tuitive, and the proof of its optimality is also the most straightforward. However,
its computation involves the evaluation of a nonstandard integral, and its form is
closely linked to normal errors. On the other hand, the penalized scans involve no
integrations in their computations, and the p-values in their expressions are not
tied to normal errors.

3.2. Detecting sparse mixtures. This setting has been studied in [9] and dis-
cussed briefly in Section 2. It corresponds to the special case T = 1 in the
above theory, and our test statistic ANT simplifies as follows: T = 1 implies
rT = ζ = ζ�,NT = 0, and BT contains only j = 0, � = 1. Hence

AN1 = 6

π2e2

∫ 1

0

N∏
n=1

(
1 − N−β + N−β exp

{
bN(β,0)Xn − b2

N(β,0)/2
})

dβ,

where

bN(β,0) =
⎧⎨⎩
√

log
(
1 + N2β−1

)
, if 0 < β ≤ 3

4 ,

(1 − √
1 − β)

√
2 logN, if 3

4 < β < 1,

is essentially the Cai–Jeng–Jin detection boundary b∗
N(β) := N−1/2+β for β ∈

(0, 1
2), and the Donoho–Ingster–Jin detection boundary b∗

N(β) = √
2ρ∗(β) logN

for β ∈ (1
2 ,1).

COROLLARY 1. Assume (2.11) with μN = bN(β,0) and πN = N−β+ε for

some 0 < β < 1 and 0 < ε ≤ β . Under these conditions, AN1
p→ ∞ and (2.8) can

be achieved by testing with AN1.
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3.3. Signal detection in a single sequence. Let N = 1 and π1 = 1. The re-
sulting β = 0 is not covered by our general theory, but it is a boundary case, and
therefore it is of interest to see whether our general statistic ANT still allows op-
timal detection in this important special case. For this testing problem in a single
sequence with T → ∞, it is known that the critical detectable value of μT is
bT (�T ), where bT (�) = √

2 log(eT /�), and that the popular scan statistic is subop-
timal except for signals on the smallest scales; see Chan and Walther [8]. It is also
shown there that optimal detection can be achieved by modifying the scan with the
penalty method introduced by Dümbgen and Spokoiny [10], or by employing the
condensed average likelihood ratio.

Note that when analyzing a single sequence we know a priori that β = 0, and
therefore it makes sense to set β to 0 in the definition of ANT rather than integrat-
ing β over (0,1). The resulting statistic is

AT := 6

π2

rT ∨1∑
r=1

1

r3er+1

∑
(j,j+�)∈Br,T

exp
[
bT (�)Y�j − b2

T (�)/2
]
,(3.4)

where Y�j = �−1/2 ∑j+�
t=j+1 X1t .

The test statistic AT is able to achieve the detection boundary bT (�) simply
because it optimizes detection power there:

THEOREM 5. If there exist �T and jT such that E1(Y�T jT
) = bT (�T ) + cT ,

with cT → ∞ as T → ∞, then AT
p→ ∞ and (2.8) can be achieved by testing

with AT .

3.4. An example. Efron and Zhang [11] applied local f.d.r. to detect CNV
in multi-sample DNA sequences. Measurements from T = 42,075 probes were
taken on each chromosome 1 of N = 207 glioblastoma subjects from the Cancer
Genome Atlas Project [7]. At each probe on each sequence, the moving averages
of the readings over windows of length � = 51 were normalized. These normalized
averages correspond to the Yn�j scores defined just before (2.9). The computed lo-
cal f.d.r. of the scores at each j determined the conclusion of an aligned signal
there. The scientific purpose is to detect rare inherited CNV that may occur in a
small fraction, perhaps 5%, of the population.

Consider, for example, �T = 51 and πN = 0.05. The solution of T/�T =
exp(Nζ − 1) [see (2.4)] is ζ = 0.383. The solution of N−β = 0.05 is β = 0.568.
Since 1−4β/3 < ζ ≤ 1−β , we are under the second case in (2.5). Based on (2.5),
the signal-to-noise ratio (for a single observation in a variant segment) required for
successful detection in a mixture with 5% variant is then

bN(β, ζ )/
√

�T = 0.258.

It is known from earlier studies that the sequence between probes 8800 and
8900 contains two genes that enhance cell death. Copy number losses of these
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FIG. 1. (Left) Plot of likelihood against marker position. The tallest peak is at marker 8852. (Right)
Plot of likelihood against variant fraction πN = N−β at marker 8852.

genes promote unregulated cell growth, leading to tumor. The display in Figure 1
(left) shows that the likelihood at marker j (for a signal on the probe interval
j < t ≤ j + �),

L�j :=
∫ 1

0

[
N∏

n=1

Ln�j (β)

]
dβ,

is maximized at j = 8852. The display in Figure 1 (right) shows that the likelihood
at marker j = 8852 for variant fraction πN = N−β ,

L�j (β) :=
N∏

n=1

Ln�T j (β),

is maximized at β = 0.61. This translates to an estimated 4% of the population
tested having copy number losses in the probe interval 8852 < t ≤ 8903.

4. Extensions. Cai, Jeng and Jin [5] and Cai and Wu [6] showed that the HC
test is optimal for heteroscedastic and more general mixtures, respectively. Arias-
Castro and Wang [3] analyzed the detection capabilities of distribution-free tests
for null hypotheses that are not fully specified. Jeng, Cai and Li [17] showed that
the HC test statistic is optimal for detecting heteroscedastic aligned sparse signals
when assuming that the signal length is very small and that T does not grow rapidly
with N . However, when the aligned signals may range over multiple scales, the
penalty terms introduced in Section 2.2 are critical in ensuring optimality of the
HC test.

Below, we shall show how the detection boundary of Cai et al. [5] looks for
general T/�T asymptotics, and show that the adaptive optimality of the HC and BJ
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tests extends to heteroscedastic signals when their penalties, as given in Section 2,
are applied. This brings home the point that the penalties are not tied down to a
particular model. Following Jeng et al. [17], we assume in place of (2.1) that

Xnt = Unt + Znt where Znt are i.i.d. N(0,1).(4.1)

Under the null hypothesis H0 of no signals, Unt ≡ 0 for all n and t . Under the
alternative hypothesis H1 of aligned signals, there exists an unknown q > 0 of
disjoint intervals (j

(k)
T , j

(k)
T + �

(k)
T ], 1 ≤ k ≤ q , such that for the kth interval,

Unt = N
(
μ

(k)
N /

√
�
(k)
T , τ (k)

)
if I (k)

n = 1 and t ∈ (
j

(k)
T , j

(k)
T + �

(k)
T

]
,

(4.2)
I (k)
n ∼ Bernoulli

(
π

(k)
N

)
,

and Unt = 0 otherwise, with π
(k)
N > 0, μ

(k)
N > 0 and τ (k) ≥ 0. We shall denote

μ
(1)
N by μN , �

(1)
T by �T and so forth. Let bN(β, ζ, τ ) be such that bN(β, ζ,0) =

bN(β, ζ ), and for τ > 0 and 0 ≤ ζ < 1 − β , let

bN(β, ζ, τ )/
√

logN

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if ζ ≤ 1 − 2β or τ ≥ β

1 − ζ − β
,

√
(1 − τ)(2β + ζ − 1),

if 1 − 2β < ζ ≤ 1 − 4β

3 − τ
,

√
2(1 − ζ ) − √

2(1 + τ)(1 − ζ − β),

if 1 − min
(

2β,
4β

3 − τ

)
< ζ and τ <

β

1 − ζ − β
.

THEOREM 6. Assume (4.1) and (4.2). If for all 1 ≤ k ≤ q , (2.4) holds and
μ

(k)
N = bN(β(k), ζ (k), τ (k)), π

(k)
N = N−β(k)−ε(k)

for some 0 < β(k) < 1 − ζ (k) and

ε(k) > 0, then there is no test that can achieve, at all j
(k)
T , 1 ≤ k ≤ q ,

P(Type I error) + P(Type II error) → 0.(4.3)

Conversely, if for some 1 ≤ k ≤ q , (2.4) holds and μ
(k)
N = bN(β(k), ζ (k), τ (k)),

π
(k)
N = N−β(k)+ε(k)

for some 0 < β(k) < 1 − ζ (k) and 0 < ε(k) ≤ β(k), then (4.3)
can be achieved by the penalized HC and BJ tests.

It can be checked that setting ζ (k) = 0 will recover for us the boundary for
aligned signals in Jeng et al. [17]. Incidentally, they assumed that

logT = o
(
NC) for all C > 0,(4.4)

which effectively brings us to the case ζ (k) = 0. Corollary 2 below extends the
optimality of the HC test in Jeng et al. [17] to multiscale signal lengths, by
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introducing the penalty terms as described in Section 2. In place of (2.4), let
ζ

(k)
N = log log(eT /�

(k)
T )/ logN .

COROLLARY 2. Assume (4.1) and (4.2). Theorem 6 holds under (4.4) with
μ

(k)
N = bN(β(k), ζ

(k)
N , τ (k)) and 0 < β(k) < 1.

5. Proofs of Theorems 1, 4 and 5. We say that Um
p∼ Vm if Um = Op(Vm)

and Vm = Op(Um), and that am � bm if am/bm → ∞. We start with the proof of
Theorem 1 in Section 5.1, that detection is asymptotically impossible below the
detection boundary bN , followed by the proofs of Theorem 4 (in Section 5.2) and
Theorem 5 (in Section 5.3), that the average likelihood ratio test is optimal. These
proofs are consolidated in this section as they are unified by a likelihood ratio
approach. Since the detection problem is easier when q > 1 compared to q = 1,
we may assume without loss of generality that q = 1 under H1 in all the proofs.

5.1. Proof of Theorem 1. For ζ = 0 the claim of the theorem reduces to theo-
rems proved by Ingster [15] in the sparse case and by Cai, Jeng and Jin [5] in the
dense case.

Let ζ > 0, and set iT = 	T/�T 
 − 1, so iT ∼ exp(Nζ − 1), set μN = bN(β, ζ )

and πN = N−β−ε . Let Yn1 = �
−1/2
T (Xn,jT +1 + · · · + Xn,jT +�T

), and let each Yni ,

2 ≤ i ≤ iT , be of the form �
−1/2
T (Xn,j+1 + · · · + Xn,j+�T

), with all (j, j + �T ]
disjoint from each other, and from (jT , jT + �T ]. Let

Lni = 1 + πN

[
exp

(
μNYni − μ2

N/2
)− 1

]
, Li =

N∏
n=1

Lni.(5.1)

Since (j, j + �T ] are disjoint, L1, . . . ,LiT are independent. We take note that
L2, . . . ,LiT have identical distributions which are unchanged when we switch
from H0 to H1. In contrast, the distribution of L1 changes when we switch from
H0 to H1. Consider

L = 1

iT
L1 + 1

iT

iT∑
i=2

Li,

which is the likelihood ratio when jT is equally likely to take one of iT possible
values spaced at least �T apart, as explained above. This we assume without loss
of generality.

If we are able to find λN such that both

L1 = Op(λN) under H1 and(5.2)

P

(
aN + MλN >

iT∑
i=2

Li > aN

)
� 1 for all aN ∈ R and M > 0(5.3)
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are satisfied, then L is unable to achieve (2.8). If so, then no test is able to
achieve (2.8) because the likelihood ratio test is the most powerful test.

Case 1: 0 < ζ ≤ 1 − 4β/3, μN =
√

log(1 + N2β−1+ζ ), πN = N−β−ε with 0 <

ε < ζ/2. Under H1, Y11, . . . , YN1 are i.i.d. (1 − πN)N(0,1) + πN N(μN,1). Let

λN = E1(L1) = [
1 + π2

N

(
eμ2

N − 1
)]N = exp

{[
1 + o(1)

]
Nζ−2ε}.(5.4)

Hence (5.2) holds.
Let i ≥ 2. Since Yni ∼ N(0,1),

E0(Li) = 1, E0
(
L2

i

)= [
1 + π2

N

(
eμ2

N − 1
)]N = λN.(5.5)

We check in Appendix A that Lyapunov’s condition holds. Hence

1√
(λN − 1)(iT − 1)

iT∑
i=2

(Li − 1) ⇒ N(0,1).(5.6)

Since
√

(λN − 1)(iT − 1) = exp{[1 + o(1)](Nζ−2ε +Nζ )/2} � λN , (5.3) follows
from (5.6).

Case 2: 1 − 4β/3 < ζ ≤ 1 − β , μN = (x − y)
√

2 logN where x = √
1 − ζ ,

y = √
1 − ζ − β , πN = N−β−ε . Let

N 0 = {n : In = 0 or Yn1 < x
√

2 logN},
N 1 = {n : In = 1 and Yn1 ≥ x

√
2 logN},

and define, for h = 0,1,

Lh
1 = ∏

n∈N h

Ln1 where Ln1 = 1 + πN

[
exp

(
μNYn1 − μ2

N/2
)− 1

]
.(5.7)

Check that

m0 := E1(Ln1|In = 0) = 1,

m1 := E1
[
1 + (Ln1 − 1)I{Yn1≤x

√
2 logN}|In = 1

]
= 1 + πN

[
eμ2

N �(x
√

2 logN − 2μN) − �(x
√

2 logN − μN)
]
.

Since y2 − x2 = −β and x < 2(x − y) when 1 − 4β/3 < ζ ≤ 1 −β , it follows that

E1
(
L0

1
)= [

(1 − πN)m0 + πNm1
]N

≤ [
1 + π2

Neμ2
N �(x

√
2 logN − 2μN)

]N
(5.8)

= [
1 + O

(
N2(y2−x2)−2ε+2(x−y)2−(2y−x)2)

/
√

logN
]N

= exp
[
O
(
N1−x2−2ε)/√logN

]= exp
[
O
(
Nζ−2ε)/√logN

]
.
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Next we apply maxn∈N 1 Yn1 = Op(
√

logN) to show that

logL1
1 = Op

((
#N 1) logN

)= Op

(
NπN�(−y

√
2 logN) logN

)
(5.9)

= Op

(
Nζ−ε

√
logN

)
.

By (5.8), (5.9) and L1 = L0
1L

1
1, (5.2) holds for λN = exp(Nζ−ε logN).

Let i ≥ 2. Let L̃ni = 1 + πN [exp(μNYni − μ2
N/2) − 1]I{Yni≤x

√
2 logN} and L̃i =∏N

n=1 L̃ni . We check that

E0(L̃ni) = 1 + πN

[
�(x

√
2 logN − μN) − �(x

√
2 logN)

]
(5.10)

= 1 − [
C + o(1)

]
N−β−y2−ε/

√
logN,

where C = (2y
√

π)−1. From this and 1 − β − y2 = ζ , we conclude that

κN := E0(L̃i) = exp
{−[

C + o(1)
]
Nζ−ε/

√
logN

}
.(5.11)

Since E0(L̃
2
ni) ≥ [E0(L̃ni)]2 for n ≥ 2, it follows that

vN := Var0(L̃i) =
N∏

n=1

E0
(
L̃2

ni

)− κ2
N

(5.12)

≥
(

E0(L̃
2
1i )

[E0(L̃1i )]2
− 1

)
κ2
N ∼ Var0(L̃1i )κ

2
N,

and by (5.10),

Var0(L̃1i ) = π2
N

[
eμ2

N �(x
√

2 logN − 2μN)

− 2�(x
√

2 logN − μN) + �(x
√

2 logN)
]

(5.13)
− [

E0(L̃1i − 1)
]2

∼ C1N
ζ−1−2ε/

√
logN,

where C1 = [(2x − 4y)
√

π ]−1. We check that Lyapunov’s condition holds and
conclude that

1√
vN(iT − 1)

iT∑
i=2

(L̃i − κN) ⇒ N(0,1).(5.14)

By (5.11)–(5.13),
√

vN(iT − 1) ≥ exp{[1 + o(1)]Nζ/2} � λN , and so (5.3) holds,
but with Li replaced by L̃i . The variability of Li is larger than that of L̃i , and
hence (5.3) for Li holds as well.
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Case 3: ζ > 1 − β , μN = √
Nζ−1+β , πN = N−β−ε with 0 < ε < ζ + β − 1.

Let N h = {n : In = h}, h = 0,1, and define Lh
1 as in (5.7). Since maxn∈N 0 Yn1 =

Op(
√

logN) = op(μN), it follows that

P1
(
L0

1 ≤ 1
)→ 1.(5.15)

We next apply the inequality

log
(
1 − πN + πNeμNYn1−μ2

N/2)≤ 1 + max
(
μNYn1 − μ2

N/2 − β logN,0
)

to show that

logL1
1 ≤ [

1 + op(1)
]
NπNE

(
μNY11 − μ2

N/2|I1 = 1
) p∼ Nζ−ε.(5.16)

It follows from (5.15), (5.16) and L1 = L0
1L

1
1 that (5.2) holds for λN =

exp(Nζ−ε logN).
Let i ≥ 2 and �i = {Yni ≥ μN for all 1 ≤ n ≤ N1−β/2 + 1}. Then

logP(�i) ∼ −N1−βμ2
N/4 ∼ −Nζ/2.

Hence iT ∼ exp(Nζ − 1) � [P(�i)]−1 and

P
(
#{i :�i occurs} = kN

)
� 1 for any kN .(5.17)

If �i occurs, then

Li ≥ (1 − πN)N
(
1 − πN + πNeμ2

N/2)N1−β/2

= exp
{[

1 + o(1)
][−N1−β−ε + (

N1−β/2
)
Nζ−1+β/2

]}
(5.18)

= exp
{[

1 + o(1)
]
Nζ/4

}� λN.

Since typically Li � λN , we can conclude (5.3) from (5.17) and (5.18).

5.2. Proof of Theorem 4. Let (2.2) and (2.4) hold with μN = bN(β, ζ ) and
πN = N−β+ε . Let (j∗

T , j∗
T + �∗

T ) ∈ Br,T satisfy (2.16), and note that by (2.4)
and (2.15), r ∼ Nζ . Hence for ζ > 0 and N large,

E1(Yn�∗
T j∗

T
|In = 1) = μN

√
�∗
T /�T ≥ [

1 − O
(
N−ζ/2)]bN(β, ζ )

(5.19)
≥ bN(η, ζ�∗

T ,NT ), β1 ≤ η ≤ β2,

for any (β1, β2) lying in the interior of (β − ε,β), and this inequality can also be
checked for ζ = 0. Let

L(η) =
N∏

n=1

Ln�∗
T j∗

T
(η).(5.20)
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Since r3er+1 = O(N3ζ exp(Nζ )), in view of (3.2) and (5.19), Theorem 4 follows
from

N−3ζ exp
(−Nζ ) ∫ β2

β1

L(η)dη
p→ ∞.(5.21)

To show (5.21), it suffices to check that

N−3ζ exp
(−Nζ )L(η)

p→ ∞,(5.22)

when E1(Yn�∗
T j∗

T
|In = 1) ≥ bN(η, ζ�∗

T ,NT ), and πN = N−β+ε with β − ε < η. To

see why (5.22) leads to (5.21), define CNζ = N3ζ exp(Nζ ), let M > 0 and let

χN = Leb. meas.
{
η ∈ [β1, β2] :L(η) < MCNζ

}
.

By (5.22), E1χN → 0 and hence P1{χN < (β2 −β1)/2} → 1. If χN < (β2 −β1)/2,
then C−1

Nζ

∫ β2
β1

L(η)dη ≥ M(β2 − β1)/2. Since M > 0 can be chosen arbitrarily
large, (5.21) holds.

To cross-reference the results in the proof of Theorem 1 more easily, we relabel
j∗
T and �∗

T in (5.20) by jT and �T , respectively, and rephrase (5.22) as

N−3ζ exp
(−Nζ )L(β)

p→ ∞,(5.23)

when μN = bN(β, ζ ) and πN = N−β+ε .

Case 1: 0 ≤ ζ ≤ 1 − 4β/3, μN =
√

log(1 + N2β−1+ζ ), πN = N−β+ε with 0 <

ε < (1 − ζ )/2. Under H1, Yn1 = μN I{In=1} + Zn1, where Z11, . . . ,ZN1 are i.i.d.
N(0,1). Let Ln1 = 1 + N−β[exp(μNZn1 − μ2

N/2) − 1], and

L0
1 =

N∏
n=1

Ln1,(5.24)

L1
1 = ∏

n:In=1

(
1 + N−β[exp(μNYn1 − μ2

N/2) − 1]
1 + N−β[exp(μNZn1 − μ2

N/2) − 1]
)
.(5.25)

Since for v ≥ 0,

f (v) := 1 + N−β(veμ2
N − 1)

1 + N−β(v − 1)
is increasing and f (v) ≥ 1,(5.26)

it follows that

logL1
1 ≥ #{n : In = 1, Yn1 ≥ 2μN } log

(
1 + N−β(e3μ2

N/2 − 1)

1 + N−β(eμ2
N/2 − 1)

)
(5.27)

p∼ NπN�(−μN) ×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Nβ−1+ζ , if 0 ≤ ζ < 1 − 2β,

N−β
√

2, if ζ = 1 − 2β,

N−βe3μ2
N/2, if 1 − 2β < ζ < 1 − 4β/3,

log 2, if ζ = 1 − 4β/3.
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In the above, we apply the relation log[1 +N−β(eκμ2
N/2 − 1)] ∼ N−β(eκμ2

N/2 − 1)

for κ = 1,3, with the exception

log
[
1 + N−β(e3μ2

N/2 − 1
)]∼ log 2 when ζ = 1 − 4β/3.

Since �(−μN) ∼ 1
2 when 0 ≤ ζ < 1 − 2β , �(−μN) = �(−√

log 2) when ζ =
1−2β and �(−μN) ∼ e−μ2

N/2/(μN

√
2π) when 1−2β < ζ ≤ 1−4β/3, it follows

from checking each of the cases in (5.27) that

logL1
1

Nζ+ε(logN)−1

p→ ∞.(5.28)

We shall next obtain lower bounds of logL0
1. We apply Taylor’s expansion

log(1 + u) = u − [1
2 + o(1)]u2 to show that

E1(logLn1) ∼ −N−2β(eμ2
N − 1

)
/2 = −Nζ−1/2,(5.29)

and log(1 + u) ∼ u to show that

E1(logLn1)
2 ∼ N−2β(eμ2

N − 1
)= Nζ−1.(5.30)

It follows from (5.29) and (5.30) that logL0
1 = ∑N

n=1 logLn1
p∼ −Nζ/2. Since

L(β) = L0
1L

1
1, we can conclude (5.23) from (5.28).

Case 2: 1 − 4β/3 < ζ ≤ 1 − β , μN = (x − y)
√

2 logN where x = √
1 − ζ ,

y = √
1 − ζ − β , πN = N−β+ε . Define

L̃n1 = 1 + N−β[exp
(
μNZn1 − μ2

N/2
)− 1

]
I{Zn1≤x

√
2 logN},

L̃0
1 =

N∏
n=1

L̃n1,

L̃1
1 = ∏

n:In=1

( 1 + N−β[exp(μNYn1 − μ2
N/2) − 1]I{Zn1≤x

√
2 logN}

1 + N−β[exp(μNZn1 − μ2
N/2) − 1]I{Zn1≤x

√
2 logN}

)
.

By (5.26),

log L̃1
1 ≥ #{n : In = 1, x

√
2 logN ≤ Yn1 ≤ 2x

√
2 logN}

× log
(

1 + N−β[exp(μNx
√

2 logN − μ2
N/2) − 1]

1 + N−β [exp(μNx
√

2 logN − 3μ2
N/2) − 1]

)
(5.31)

∼ NπN�(−y
√

2 logN) log 2 ∼ C(log 2)Nζ+ε/
√

logN,

where C = (2y
√

π)−1. Recall that C1 = [(2x − 4y)
√

π ]−1.
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Apply Taylor’s expansion log(1 + u) = u − [1
2 + o(1)]u2 to show that

E1(log L̃n1)

= N−β[�(y
√

2 logN) − �(x
√

2 logN)
]

− [
1/2 + o(1)

]
N−2β[eμ2

N �
(
(2y − x)

√
2 logN

)
(5.32)

− 2�(y
√

2 logN) + �(x
√

2 logN)
]

= −[
1 + o(1)

]
CN−β−y2

/
√

logN − [
1/2 + o(1)

]
C1N

−x2
/
√

logN

= −[
1 + o(1)

]
(C + C1/2)Nζ−1/

√
logN,

and log(1 + u) ∼ u to show that

E1(log L̃n1)
2 ∼ C1N

ζ−1/
√

logN.(5.33)

It follows from (5.32) and (5.33) that

log L̃0
1 =

N∑
n=1

log L̃n1
p∼ −(C + C1/2)Nζ /

√
logN

if ζ > 0 and | log L̃0
1| = Op(1) if ζ = 0. Since L(β) ≥ L̃0

1L̃
1
1, we can con-

clude (5.23) from (5.31).
Case 3: ζ > 1 − β , μN = √

Nζ−1+β , πN = N−β+ε . The inequality

L(β) ≥ (
1 − N−β)N ∏

n:In=1

{
1 + N−β[exp

(
μNYn1 − μ2

N/2
)− 1

]}
leads to

logL(β) ≥ −2N1−β + [
1 + op(1)

]
NπN

[
μNE1(Yn1) − μ2

N/2 − β logN
]

= −2N1−β + [
1 + op(1)

]
Nζ+ε/2

p∼ Nζ+ε/2,

and from this, we can conclude (5.23).

5.3. Proof of Theorem 5. Let

E1(Y�T jT
) = bT (�T ) + cT with cT → ∞,

and let (j∗
T , j∗

T + �∗
T ) ∈ Br,T be such that (2.16) holds. Hence

E1(Y�∗
T j∗

T
) = [

bT (�T ) + cT

]√
�∗
T /�T = [

1 − O
(
r−1/2)][bT (�T ) + cT

]
.(5.34)

Since bT (�∗
T ) =

√
2 log(eT /�∗

T ) =
√

b2
T (�T ) + O(1) = bT (�T ) + O(1) and

r−1/2bT (�T ) = O(bT (�T )/
√

log(T /�T )) = O(1), it follows from (5.34) that

E1(Y�∗
T j∗

T
) = bT

(
�∗
T

)+ c′
T with c′

T → ∞.(5.35)
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We check that under (5.35),

exp[bT (�∗
T )Y�∗

T j∗
T

− b2
T (�∗

T )/2]
[log(T /�∗

T )]3(T /�∗
T )

p→ ∞.

Since r3er+1 = O([log(T /�T )]3(T /�T )), it follows from (3.4) that AT
p→ ∞.

6. Proofs of Theorems 2 and 3. We shall prove Theorem 3 in Section 6.1,
that the penalized Berk–Jones test is optimal, and Theorem 2 in Section 6.2, that
the penalized higher criticism test is optimal as well.

6.1. Proof of Theorem 3. In Lemma 1 below, we show that the Type I er-
ror probability of the penalized Berk–Jones test statistic goes to zero for the
threshold hN := 2 logN . We do this in more generality than is required for prov-
ing Theorem 3. For each � and j , we assume only that p1�j , . . . , pN�j are i.i.d.
Uniform(0,1) random variables under H0. Hence we allow for Xnt to be non-
Gaussian, and for Xn1, . . . ,XnT to be dependent random variables under H0.

LEMMA 1. Assume that for each � and j , p(1)�j ≤ · · · ≤ p(N)�j in (2.18) and
(2.19) are the ordered values of i.i.d. Uniform(0,1) random variables. Then

P0{PBJNT ≥ hN } → 0 as N → ∞.(6.1)

PROOF. Let aN� = hN +s�T log s�T . For each 1 ≤ � ≤ T and 1 ≤ n ≤ N , let ρ�

be such that K( n
N

,ρ�) = aN�/N . Let S̄N (t) [= S̄N�j (t)] = N−1∑N
n=1 I{Yn�j≥z(t)},

where z(t) denotes the upper t-quantile of the standard normal. By the Chernoff–
Hoeffding inequality,

P0
{
K(n/N,p(n)) ≥ aN�/N

}
(= P0

{
S̄N (ρ�) ≥ n/N

})≤ e−aN� = N−2e−s�T log s�T ,

and hence by Bonferroni’s inequality,

P0{BJN�j − s�T log s�T ≥ hN } ≤ N−1e−s�T log s�T .(6.2)

By (2.15), #Br,T ≤ rer+1. Since � ≤ T/er−1 for (j, j + �) ∈ Br,T , so s�T =
log(eT /�) ≥ r , and by (2.19) and (6.2),

P0{PBJNT ≥ hN } ≤ N−1
∞∑

r=1

rer+1−r log r ,(6.3)

and (6.1) holds. �

PROOF OF THEOREM 3. Let (j∗, j∗ + �∗) [= (j∗
T , j∗

T + �∗
T )] ∈ Br,T be such

that jT ≤ j∗ < j∗ + �∗ ≤ jT + �T and 1 − �∗/�T = O(r−1/2); see (2.16). Since
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aN�∗ = O(Nζ logN), in view of Lemma 1, it remains for us to show that if μN =
bN(β, ζ ) and πN = N−β+ε for ε > 0, then we can find tN such that in each case
below,

K(S̄N, tN)

Nζ−1 logN
→ ∞ where S̄N = S̄N�∗j∗(tN).(6.4)

Case 1(a): 0 ≤ ζ ≤ 1 − 2β , bN(β, ζ ) =
√

log(1 + N2β−1+ζ ). Let tN =
�(−2bN(β, ζ )). Except when ζ = 1 − 2β , we have bN(β, ζ ) → 0 and

E1S̄N − tN ∼ (2π)−1/2πNbN(β, ζ ) ∼ (2π)−1/2N(ζ−1)/2+ε.(6.5)

By Taylor’s expansion, K(t, x) ∼ 2(t − x)2 when t → 1
2 and x → 1

2 . Moreover,
the standard error of S̄N [∼ (4N)−1/2] is small relative to (6.5). Hence (6.4) holds
because

K(S̄N, tN)
p∼ 2(S̄N − tN )2 p∼ π−1Nζ−1+2ε.(6.6)

When ζ = 1 − 2β , bN(β, ζ ) = √
log 2 and

E1S̄N − tN ∼ C̃πN where C̃ = �(−2
√

log 2) − �(−
√

log 2).

This leads to (6.6) with π−1 replaced by 2C̃2, and then to (6.4).

Case 1(b): 1 − 2β < ζ < 1 − 4β/3, bN(β, ζ ) =
√

log(1 + N2β−1+ζ )

(∼ C
√

logN , where C = √
2β − 1 + ζ ). Let tN = �(−2bN(β, ζ )). Then

tN ∼ (C
√

8π logN)−1N−4β−2(ζ−1),(6.7)

E1S̄N − tN ∼ πN�
(−bN(β, ζ )

)
(6.8)

∼ (C
√

2π logN)−1N−2β−(ζ−1)/2+ε,

Var1 S̄N ∼ N−1[tN + πN�
(−bN(β, ζ )

)]
.(6.9)

We claim that a consequence of (6.7)–(6.9) is that√
tNNζ−1 logN +

√
Var1 S̄N = o(E1S̄N − tN ).(6.10)

By (6.10),
√

tNNζ−1 logN = op(|S̄N − tN |) and hence

(S̄N − tN )2/(2tN )

Nζ−1 logN

p→ ∞.(6.11)

By (6.7), the solution in y of y2/(2tN ) = aN�∗/N satisfies

y ∼
(

ζ ∗

C

√
logN

2π

)1/2

N−2β−(ζ−1)/2 [= o(tN) because ζ < 1 − 4β/3
]
,
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where ζ ∗ = ζ if ζ �= 0 and ζ ∗ = 2 if ζ = 0. Hence by (6.11) and K(x, t) ∼ (x−t)2

2t
,

as t → 0 and x
t

→ 1, (6.4) holds.

It remains for us to show (6.10). By (6.7), the exponent of N in
√

tNNζ−1 is
−2β − (ζ −1)/2, which is smaller than the exponent in N of E1S̄N − tN ; see (6.8).
Therefore, √

tNNζ−1 logN = o(E1S̄N − tN ).(6.12)

The leading exponent of N in Var1S̄N is

max
(−4β − 2ζ + 1,−2β − (ζ + 1)/2 + ε

) [
< −4β − (ζ − 1) + 2ε

]
,

and therefore by (6.8), Var1SN = o((E1S̄N − tN )2). This, together with (6.12),
implies (6.10).

Case 2: 1 − 4
3β < ζ ≤ 1 − β , bN(β, ζ ) = (x − y)

√
2 logN , where x = √

1 − ζ ,
y = √

1 − β − ζ . Let tN = �(−x
√

2 logN) [∼ (2x
√

π logN)−1Nζ−1]. Then

E1S̄N ∼ (1 − πN)tN + πN�(−y
√

2 logN) ∼ (2y
√

π logN)−1Nζ−1+ε,

which is large relative to tN , and

Var1 S̄N ∼ N−1[�(−x
√

2 logN) + πN�(−y
√

2 logN)
]

∼ (2y
√

π logN)−1Nζ−2+ε = o
(
(E1S̄N )2).

Therefore S̄N
p∼ (2y

√
logN)−1Nζ−1+ε , and by K(x, t) ∼ x log x

t
, as x → 0 and

x
t

→ ∞,

K(S̄N, tN)
p∼ S̄N log(S̄N/tN)

p∼ C′(logN)1/2Nζ−1+ε,

for some C′ > 0, and (6.4) therefore holds.
Case 3: ζ > 1 − β , bN(β, ζ ) = √

Nβ+ζ−1. Let tN = �(−bN(β, ζ )/2). Then

tN
p∼ (

πNβ+ζ−1/2
)−1/2 exp

(−Nβ+ζ−1/8
)

and S̄N
p∼ πN = N−β+ε.

Therefore S̄N/tN
p→ ∞ and by K(x, t) ∼ x log x

t
, as x → 0 and x

t
→ ∞,

K(S̄N, tN)
p∼ S̄N log(S̄N/tN)

p∼ Nζ−1+ε/8,

and (6.4) therefore holds. �

6.2. Proof of Theorem 2. In Lemma 2 below, we show that the Type I er-
ror probability of the penalized higher criticism test statistic goes to zero for the
threshold hN = 2 logN . Again as in Lemma 1, we do this more generally than is
required for proving Theorem 2.
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LEMMA 2. Assume that for each � and j , p(1)�j ≤ · · · ≤ p(N)�j in (2.13) and
(2.14) are the ordered values of i.i.d. Uniform(0,1) random variables. Then

P0{PHCNT ≥ hN } → 0 as N → ∞.

PROOF. We first modify (6.2)–(6.3), in the proof of Lemma 1, step-by-step to
show that for cN� := 2 logN + s�T + 3 log s�T ,

P0
{
BJN�j ≥ cN� for some (j, j + �) ∈ BT

}→ 0.

We then combine this with (B.2) in Appendix B to show that

P0
{
HCN�j ≥ (6cN�)

1/2(4 + s−1
�T logN

)1/4 for some (j, j + �) ∈ BT

}
(6.13)

→ 0.

Therefore it suffices to show that

(6cN�)
1/2(4 + s−1

�T logN
)1/4 ≤ hN + (s�T log s�T )1/2 for N large,(6.14)

uniformly over 1 ≤ � ≤ T . The left-hand side of (6.14) is o(hN) uniformly over
s�T ≤ logN , and o((s�T log s�T )1/2) uniformly over s�T > logN , so (6.14) indeed
holds. �

PROOF OF THEOREM 2. We apply the proofs for cases 1 and 2 in Theorem 3
to show that there exist (j∗, j∗ + �∗) ∈ BT and t∗N ∈ [ s�∗T

N
, 1

2 ] [t∗N = tN for case 1
and t∗N = s�∗T

N
(∼ Nζ−1) for case 2] such that

P1
{
K
(
S̄N�∗j∗

(
t∗N
)
, t∗N

)≥ Nζ−1+ε/2}→ 1.

Hence by x−t√
t (1−t)

≥ √
2K(x, t) for x ≥ t ,

P1
{
PHCNT ≥

√
2Nζ+ε/2 −

√
s�∗T log s�∗T

}→ 1.

Since hN + √
s�∗T log s�∗T = o(

√
Nζ+ε/2), the Type II error probability indeed

goes to zero. �

7. Proofs of Theorem 6 and Corollary 2. We prove Theorem 6 here and
in Sections 7.1 and 7.2. In Section 7.3, we prove Corollary 2. Let μN =
bN(β, ζ, τ ), Yn1 = �

−1/2
T

∑�T

�=1 Xn,jT +�, and for 2 ≤ i ≤ iT (= 	T/�T 
 − 1), let

Yni = �
−1/2
T

∑�T

�=1 Xn,j+�, with all (j, j + �T ] disjoint from each other, and from
(jT , jT + �T ]. Let Li =∏N

n=1 Lni , where

Lni = 1 + πN

{
1√

1 + τ
exp

[
−(Yni − μN)2

2(1 + τ)
+ Y 2

ni

2

]
− 1

}
(7.1)
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is the likelihood ratio of Yni ∼ (1 − πN)N(0,1) + πNN(μN,1 + τ) and Yni ∼
N(0,1). Below, we go over the relevant cases to show that there exists λN satis-
fying (5.2) and (5.3) when πN = N−β−ε . This implies that there is no test able to
achieve (4.3). We shall only consider τ > 0 as the case τ = 0 has been covered in
Theorem 1.

Case 1: 1 − 2β < ζ ≤ 1 − 4β
3−τ

(⇒ τ < 1), μN = √
(1 − τ)(2β + ζ − 1) logN .

Let C = (1 − τ 2)−1/2. By (7.1),

E1(Ln1) = 1 + π2
N

(
Ceμ2

N/(1−τ) − 1
)= 1 + [

C + o(1)
]
Nζ−1−2ε,

and therefore (5.2) holds with λN = E1(L1) (= exp{[C +o(1)]Nζ−2ε}). For i ≥ 2,
Yni ∼ N(0,1), E0(Li) = 1 and E0(L

2
i ) = E1(L1) = λN . We check Lyapunov’s

conditions to conclude (5.6) and (5.3).
Case 2: 1 − min(2β,

4β
3−τ

) < ζ ≤ 1 − β , τ <
β

1−ζ−β
, μN = (x − y)

√
2 logN

where x = √
1 − ζ and y = √

(1 + τ)(1 − ζ − β). Let

N 0 = {
n : In = 0 or |Yn1| < x

√
2 logN

}
,

N 1 = {
n : In = 1 and |Yn1| ≥ x

√
2 logN

}
,

Lh
1 = ∏

n∈N h

Ln1, h = 0,1.

Check that m0 := E1(Ln1|In = 0) = 1 and

m1 := E1
[
1 + (Ln1 − 1)I{|Yn1|≤x

√
2 logN}|In = 1

]
(7.2)

= 1 + [
C1 + o(1)

]
πNNζ−1+2β/

√
logN

for some C1 > 0, hence

E1
(
L0

1
)= [

(1 − πN)m0 + πNm1
]N

= {
1 + [

C1 + o(1)
]
π2

NNζ−1+2β/
√

logN
}N(7.3)

= exp
{[

C1 + o(1)
]
Nζ−2ε/

√
logN

}
.

Next, we apply maxn∈N 1 |Yn1| = Op(
√

logN) to show that

logL1
1 = Op

((
#N 1)√logN

)
(7.4)

= Op

(
NπN�

(−√
2(1 − ζ − β) logN

)√
logN

)= Op

(
Nζ−ε).

By (7.3), (7.4) and L1 = L0
1L

1
1, (5.2) holds for λN = exp(Nζ−ε logN). For i ≥ 2,

let

L̃ni = LniI{|Yni |≤x
√

2 logN}, L̃i =
N∏

n=1

L̃ni .
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Then by a change-of-measure argument,

E0(L̃ni) = 1 + πN

[
P1
{|Yn1| ≤ x

√
2 logN

}− P0
{|Yn1| ≤ x

√
2 logN

}]
= 1 − [

C2 + o(1)
]
N−ζ−1−ε/

√
logN,

where C2 = √
1 + τ/(2y

√
π), therefore

κN := E0(L̃i) = exp
{−[

C2 + o(1)
]
Nζ−ε/

√
logN

}
.

Moreover, E0(L̃
2
ni) ≥ [E0(L̃ni)]2 for i ≥ 2, and therefore, by (5.12),

Var0(L̃i) ≥ [
1 + op(1)

]
κ2
N Var0(L̃1i ).

By (7.2) and a change-of-measure argument,

Var0(L̃1i ) ∼ E0
(
L̃2

1i

)= E1(L̃11) ∼ C1N
ζ−1−2ε/

√
logN.

We check Lyapunov’s condition to conclude (5.14) and (5.3).

7.1. Optimal detection using the penalized BJ test. By Lemma 1, setting hN =
2 logN leads to P(Type I error) → 0. To show P(Type II error) → 0, it suffices to
find (j∗, j∗ + �∗) ∈ Br,T such that jT ≤ j∗ < j∗ + �∗ ≤ jT + �T , 1 − �∗/�T =
O(r−1/2) and

P1
{
K(S̄N, tN) ≥ Nζ−1+δ}→ 1(7.5)

for some 0 < tN < 1 and δ > 0, where S̄N = N−1∑N
n=1 I{Yn�∗j∗≥z(tN )} and πN =

N−β+ε , 0 < ε < β .
Case 1(a): 0 ≤ ζ ≤ 1 − 2β , μN = 0. Let tN = �(−N−ε/2). Then

E1S̄N − tN = πN

[
�
(−N−ε/2/

√
1 + τ

)− �
(−N−ε/2)]∼ C3N

−β+ε/2,

where C3 = 1√
2π

(1 − 1√
1+τ

), and since

Var1(S̄N) → (4N)−1 = o
(
(E1S̄N − tN )2),

therefore S̄N − tN
p→ C3N

−β+ε/2. Since K(t, x) ∼ 2(t − x)2 when t → 1
2 and

x → 1
2 , (7.5) holds for δ = ε/2.

Case 1(b): 1 − 2β < ζ < 1 − 4β
3−τ

(⇒ τ < 1), μN = C4
√

logN , where C4 =√
(1 − τ)(2β + ζ − 1). Let tN = �(−2μN/(1 − τ)). Then

tN ∼ C5N
−2C2

4/(1−τ)2
/
√

logN,(7.6)

where C5 = (1 − τ)/(C4
√

8π), and

E1S̄N − tN = πN

[
�

(
−μN

√
1 + τ

1 − τ

)
− tN

]
(7.7)

∼ C6N
−C2

4 (1+τ)/[2(1−τ)]2−β+ε/
√

logN,
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where C6 = (1 − τ)/(C4
√

2π(1 + τ)).
We claim that

Var1 S̄N

(
∼ N−1

[
tN + πN�

(
−μN

√
1 + τ

1 − τ

)])
= o

(
(E1S̄N )2).(7.8)

By (7.6)–(7.8) and tN = o(E1S̄N ),

(S̄N − tN )2/(2tN )
p∼ C7N

C2
4/(1−τ)−2β+2ε/

√
logN

(7.9)
= C7N

ζ−1+2ε/
√

logN

for some C7 > 0. Check that the inequality − 2C2
4

(1−τ)2 > ζ − 1 reduces to ζ < 1 −
4β

3−τ
. Therefore by (7.6), tN ∼ C5N

ζ−1+2δ/
√

logN for some δ > 0, and the root

of y2/(2tN ) = Nζ−1+δ satisfies y = o(tN). Since K(x,y) ∼ (x−t)2

2t
as t → 0 and

x
t

→ 1, (7.9) implies (7.5).
It remains to show (7.8) by comparing the leading exponent in N of the terms.

That is, it remains to show that

−1 + max
(
− 2C2

4

(1 − τ)2 ,−β + ε − C2(1 + τ)

2(1 − τ)2

)
< −C2

4(1 + τ)

(1 − τ)2 − 2β + 2ε,

summarized as −1 + max(A,B) < D. The inequality −1 + A < D reduces to
ζ > −2ε, which holds trivially, whereas −1 + B < D reduces to

ζ <
3 − τ

1 + τ

(
1 − 4β

3 − τ

)
+ 2(1 − τ)

1 + τ
ε,

which holds because 3−τ
1+τ

> 1 when τ < 1, and it is assumed that ζ < 1 − 4β
3−τ

.
Hence (7.8) holds.

Case 2: 1 − min(2β,
4β

3−τ
) ≤ ζ < 1 − β , τ <

β
1−ζ−β

, μN = (x − y)
√

2 logN

where x = √
1 − ζ and y = √

(1 + τ)(1 − ζ − β). Let tN = �(−x
√

2 logN)

[∼ Nζ−1/(2x
√

π logN)]. Then

E1S̄N = (1 − πN)tN + πN�
(−√

2(1 − ζ − β) logN
)

∼ C8N
ζ−1+ε/

√
logN (� tN ),

where C8 = (2
√

π(1 − ζ − β))−1. Moreover,

Var1S̄N ∼ E1S̄N/N ∼ C8N
ζ−2+ε/

√
logN = o

(
(E1S̄N )2).

Therefore S̄N
p∼ C8N

ζ−1+ε/
√

logN , and since K(x, t) ∼ x log(x
t
) as x → 0 and

x
t

→ ∞,

K(S̄N, tN)
p∼ S̄N log(S̄N/tN)

p∼ C9N
ζ−1+ε

√
logN(7.10)
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for some C9 > 0, (7.5) holds for δ = ε. By similar arguments, (7.5) holds for δ < ε

when tN ∼ Nζ−1.
Case 3: 1 − min(2β,

4β
3−τ

) ≤ ζ < 1 − β , τ ≥ β
1−ζ−β

, μN = 0. Let tN =
�(−√

2(1 − ζ ) logN) [∼ Nζ−1/(2x
√

π logN)]. Then

E1S̄N ∼ πN�

(
−
√

2(1 − ζ ) logN

1 + τ

)
∼ C10N

−β+ε−(1−ζ )/(1+τ)(7.11)

for some C10 > 0. Since τ ≥ β
1−ζ−β

, therefore the exponent of N in (7.11) is

at least ζ − 1 + ε, and so E1S̄N � tN . We apply the first relation in (7.10) to
conclude (7.5), for both tN = �(−√

2(1 − ζ ) logN) and tN ∼ Nζ−1.

7.2. Optimal detection using the penalized HC test. By Lemma 2, setting
hN = 2 logN leads to P(Type I error) → 0. Let

tN =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�
(−N−ε/2), if ζ ≤ 1 − 2β,

�

(
−2

√
2β − 1 + ζ

1 − τ
logN

)
, if 1 − 2β < ζ ≤ 1 − 4β

3 − τ
,

s�∗T
N

(∼ Nζ−1), if 1 − min
(

2β,
4β

3 − τ

)
< ζ ≤ 1 − β.

It was shown in (7.5) that in each case above, P1{K(S̄N, tN) ≥ Nζ−1+δ} → 1 for
some δ > 0. Since x−t√

t (1−t)
≥ √

2K(x, t) for x ≥ t and hN + √
s�∗T log s�∗T =

o(N(ζ+δ)/2), P(Type II error) → 0.

7.3. Proof of Corollary 2. Consider first the penalized HC test. By Lemma 2,
setting hN = 2 logN leads to P(Type I error) → 0. In the case πN = N−β+ε , the
arguments above and in Theorem 2 show that

P1

{
S̄N − tN√

tN (1 − tN )/N
≥
√

2Nδ log
(
T/�∗)}→ 1 for some δ > 0.

By (4.4), hN + √
s�∗T log s�∗T = o(

√
Nδ), and therefore P(Type II error) → 0,

and (4.3) holds. By similar arguments, (4.3) holds for the penalized BJ test.

APPENDIX A: VERIFICATION OF LYAPUNOV’S CONDITION

We check in particular Lyapunov’s condition to conclude (5.6). Let δ > 0 to be
specified. It follows from Taylor’s expansion that

(1 + u)2+δ ≤ 1 + (2 + δ)u + C∗u2, |u| ≤ 1/2,(A.1)

for some C∗ > 0 chosen large enough. If u > 1
2 , then

(1 + u)2+δ ≤
[

sup
v>1/2

(
1 + v

v

)2+δ]
u2+δ = (3u)2+δ.(A.2)
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By combining (A.1) and (A.2), we conclude that

(1 + u)2+δ ≤ 1 + (2 + δ)u + C∗u2 + C2|u|2+δ for all u ≥ −1/2,(A.3)

where C2 = 32+δ . We apply (A.3) with u = πN [exp(μNYn2 −μ2
N/2)− 1] on (5.1)

to show that

E0
(
L2+δ

2

)
(A.4)

≤ [
1 + C∗p2

N exp
(
μ2

N

)+ C2π
2+δ
N exp

(
μ2

N(1 + δ)(2 + δ)/2
)]N

.

Since μN =
√

log(1 + N2β−1+ζ ) and πN = N−β−ε , by (A.4),

E0
(
L2+δ

2

)≤ exp
{[

1 + o(1)
](

C∗Nζ−2ε + C2N
ζ−2ε+κ)},(A.5)

where κ = −δ(β + ε) + 3δ+δ2

2 (2β − 1 + ζ ). Let δ > 0 be small enough such that
κ < ε. Since iT − 1 ∼ exp(Nζ − 1) and Li − 1 ≥ −1, we get from (A.5) that

(iT − 1)E0(Li − 1)2+δ ≤ exp
{[

1 + o(1)
](

Nζ + C2N
ζ−ε)}.

On the other hand, Var0(Li) = λN − 1 and[
(iT − 1)(λN − 1)

]1+δ/2 = exp
{[

1 + δ/2 + o(1)
](

Nζ + Nζ−2ε)},
so Lyapunov’s condition is satisfied.

APPENDIX B: QUADRATIC BOUNDS FOR THE FUNCTION K

For given �, T , N , s�T
N

≤ t ≤ 1
2 and 0 < γ ≤ cN�

N
(recall that cN� = logN +

s�T + 3 log s�T ), let xt > t be such that

Q(xt , t)

[
:= (xt − t)2

2t (1 − t)

]
= γ.(B.1)

We claim that

K(xt , t) ≤ Q(xt , t) ≤
(
3
√

4 + s−1
�T logN

)
K(xt , t).(B.2)

The left inequality of (B.2) is known. To obtain the right inequality, first note that
by (B.1),

xt = t (1 + y) where y =
√

2γ (1 − t)/t.

Since d
dx

[(1 − x) log(1−x
1−t

)] = −1 − log(1−x
1−t

) ≥ −1 for x ≥ t , therefore

K(xt , t) ≥ xt log(xt/t) − (xt − t) = t
[
f (y)

]
,(B.3)

where f (y) = (1 + y) log(1 + y) − y. Check that d
dy

f (y) = log(1 + y), and that
d2

dy2 f (y) = 1
1+y

.
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For γ ≤ t , apply (B.1), (B.3) and f (y) ≥ y2

4 on 0 < y ≤ 1 to show that

Q(xt , t)

K(xt , t)
≤ 4γ

ty2 = 2

1 − t
≤ 4.

The right inequality of (B.2) holds.
For γ > t , apply (B.1), (B.3) and f (y) ≥ y/3 on y > 1 to show that

Q(xt , t)

K(xt , t)
≤ 3γ

ty
= 3

√
γ

2t (1 − t)
≤ 3

√
γ

t
≤ 3

√
cN�

s�T
.

The right inequality of (B.2) again holds.

APPENDIX C: DETECTABILITY OF NONALIGNED SIGNALS

Let Xnt = μnt + Znt , where Znt are i.i.d. N(0,1). Assume that there exists 1 ≤
�T ≤ T such that for the nth sequence, 1 ≤ n ≤ N , there is an unknown interval
(jnT , jnT + �T ] with probability πN > 0 of having an elevated mean

μnt =
{

μNIn/
√

�T , if jnT < t ≤ jnT + �T ,

0, otherwise,
(C.1)

In ∼ Bernoulli(πN),

with μN > 0 and the In’s and Znt ’s jointly independent. This model is distinct
from (2.2) in that we do not now assume that the signals are aligned.

We claim that if πN = N−β−ε for some 0 < β < 1 and ε > 0,

T/�T ∼ Nζ for some ζ > max(0,1 − 2β),(C.2)

and μN =
√

(2 logN)(ζ + 1)ρ∗( ζ+β
ζ+1 ), then there is no test that can achieve at all

such jnT ,

P(Type I error) + P(Type II error) → 0.(C.3)

Note that though μN ∼̇√
logN , as in the boundary for cases 1(b) and 2 in (2.5),

the growth of T/�T that is allowed in (C.2) is considerably smaller than that of
(2.4).

As in the proof of Theorem 1, set iT = 	T/�T 
 − 1, so that iT ∼ Nζ . Let
Yn1 = �

−1/2
T (Xn,jT +1 + · · · + Xn,jT +�T

) and each Yni , 2 ≤ i ≤ iT be of the form

�
−1/2
T (Xn,j+1 + · · · + Xn,j+�T

), with all (j, j + �T ] disjoint from each other, and
from (jnT , jnT + �T ]. Assume without loss of generality each jnT is equally
likely to take one of the iT possible values spaced at least �T apart, as given
above. Then when ε = 0, the detection of (nonaligned) signals satisfying (C.2)
is at least as difficult as detecting a mixture of ∼Nζ+1 normal random variables
{Yni : 1 ≤ i ≤ iT }, with a sparse fraction ∼N−(ζ+β) [= (Nζ+1)−(ζ+β)/(ζ+1)] of
them having mean μN . Therefore by the results in [14, 15], the critical detectable
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μN is
√

(2 logNζ+1)ρ∗( ζ+β
ζ+1 ). Hence when ε > 0, (C.3) cannot be achieved. Note

that the assumption ζ > 1 − 2β in (C.2) implies that ζ+β
ζ+1 > 1

2 , so ρ∗( ζ+β
ζ+1 ) is

well-defined.

Acknowledgments. We would like to thank an Associate Editor and two ref-
erees for their comments that have led to a more realistic model setting and the
adaptive optimal test statistics in this paper.

REFERENCES

[1] ARIAS-CASTRO, E., DONOHO, D. L. and HUO, X. (2005). Near-optimal detection of geo-
metric objects by fast multiscale methods. IEEE Trans. Inform. Theory 51 2402–2425.
MR2246369

[2] ARIAS-CASTRO, E., DONOHO, D. L. and HUO, X. (2006). Adaptive multiscale detection of
filamentary structures in a background of uniform random points. Ann. Statist. 34 326–
349. MR2275244

[3] ARIAS-CASTRO, E. and WANG, M. (2013). Distribution-free tests for sparse heteroscedastic
mixtures. Preprint.

[4] BERK, R. H. and JONES, D. H. (1979). Goodness-of-fit test statistics that dominate the Kol-
mogorov statistics. Z. Wahrsch. Verw. Gebiete 47 47–59. MR0521531

[5] CAI, T. T., JENG, X. J. and JIN, J. (2011). Optimal detection of heterogeneous and het-
eroscedastic mixtures. J. R. Stat. Soc. Ser. B. Stat. Methodol. 73 629–662. MR2867452

[6] CAI, T. T. and WU, Y. (2014). Optimal detection of sparse mixtures against a given null dis-
tribution. IEEE Trans. Inform. Theory 60 2217–2232. MR3181520

[7] THE CANCER GENOME ATLAS (2008). Comprehensive genomic characterization defines hu-
man gliobastoma genes losses and core pathways. Nature 455 1061–1068.

[8] CHAN, H. P. and WALTHER, G. (2013). Detection with the scan and the average likelihood
ratio. Statist. Sinica 23 409–428. MR3076173

[9] DONOHO, D. and JIN, J. (2004). Higher criticism for detecting sparse heterogeneous mixtures.
Ann. Statist. 32 962–994. MR2065195

[10] DÜMBGEN, L. and SPOKOINY, V. G. (2001). Multiscale testing of qualitative hypotheses. Ann.
Statist. 29 124–152. MR1833961

[11] EFRON, B. and ZHANG, N. R. (2011). False discovery rates and copy number variation.
Biometrika 98 251–271. MR2806427

[12] GLAZ, J., POZDNYAKOV, V. and WALLENSTEIN, S., eds. (2009). Scan Statistics: Methods
and Applications. Birkhäuser, Boston, MA. MR2761094

[13] HALL, P. and JIN, J. (2010). Innovated higher criticism for detecting sparse signals in corre-
lated noise. Ann. Statist. 38 1686–1732. MR2662357

[14] INGSTER, Y. I. (1997). Some problems of hypothesis testing leading to infinitely divisible
distributions. Math. Methods Statist. 6 47–69. MR1456646

[15] INGSTER, Y. I. (1998). Minimax detection of a signal for ln-balls. Math. Methods Statist. 7
401–428. MR1680087

[16] JAGER, L. and WELLNER, J. A. (2007). Goodness-of-fit tests via phi-divergences. Ann. Statist.
35 2018–2053. MR2363962

[17] JENG, X. J., CAI, T. T. and LI, H. (2013). Simultaneous discovery of rare and common seg-
ment variants. Biometrika 100 157–172. MR3034330

[18] LAI, W. R., JOHNSON, M. D., KUCHERLAPATI, R. and PARK, P. J. (2005). Comparative
analysis of algorithms for identifying amplifications and deletions in array CGH data.
Bioinformatics 21 3763–3770.

http://www.ams.org/mathscinet-getitem?mr=2246369
http://www.ams.org/mathscinet-getitem?mr=2275244
http://www.ams.org/mathscinet-getitem?mr=0521531
http://www.ams.org/mathscinet-getitem?mr=2867452
http://www.ams.org/mathscinet-getitem?mr=3181520
http://www.ams.org/mathscinet-getitem?mr=3076173
http://www.ams.org/mathscinet-getitem?mr=2065195
http://www.ams.org/mathscinet-getitem?mr=1833961
http://www.ams.org/mathscinet-getitem?mr=2806427
http://www.ams.org/mathscinet-getitem?mr=2761094
http://www.ams.org/mathscinet-getitem?mr=2662357
http://www.ams.org/mathscinet-getitem?mr=1456646
http://www.ams.org/mathscinet-getitem?mr=1680087
http://www.ams.org/mathscinet-getitem?mr=2363962
http://www.ams.org/mathscinet-getitem?mr=3034330


OPTIMAL DETECTION ALIGNED SPARSE SIGNALS 1895

[19] LEPSKI, O. V. and TSYBAKOV, A. B. (2000). Asymptotically exact nonparametric hypothe-
sis testing in sup-norm and at a fixed point. Probab. Theory Related Fields 117 17–48.
MR1759508

[20] MEI, Y. (2010). Efficient scalable schemes for monitoring a large number of data streams.
Biometrika 97 419–433. MR2650748

[21] OWEN, A. B. (1995). Nonparametric likelihood confidence bands for a distribution function.
J. Amer. Statist. Assoc. 90 516–521. MR1340504

[22] RIVERA, C. and WALTHER, G. (2013). Optimal detection of a jump in the intensity of a Pois-
son process or in a density with likelihood ratio statistics. Scand. J. Stat. 40 752–769.
MR3145116

[23] ROHDE, A. (2008). Adaptive goodness-of-fit tests based on signed ranks. Ann. Statist. 36 1346–
1374. MR2418660

[24] SIEGMUND, D., YAKIR, B. and ZHANG, N. R. (2011). Detecting simultaneous variant inter-
vals in aligned sequences. Ann. Appl. Stat. 5 645–668. MR2840169

[25] TARTAKOVSKY, A. G. and VEERAVALLI, V. V. (2008). Asymptotically optimal quick-
est change detection in distributed sensor systems. Sequential Anal. 27 441–475.
MR2460208

[26] WALTHER, G. (2010). Optimal and fast detection of spatial clusters with scan statistics. Ann.
Statist. 38 1010–1033. MR2604703

[27] WALTHER, G. (2013). The average likelihood ratio for large-scale multiple testing and de-
tecting sparse mixtures. In From Probability to Statistics and Back: High-Dimensional
Models and Processes. Inst. Math. Stat. (IMS) Collect. 9 317–326. IMS, Beachwood,
OH. MR3202643

[28] XIE, Y. and SIEGMUND, D. (2013). Sequential multi-sensor change-point detection. Ann.
Statist. 41 670–692. MR3099117

[29] ZHANG, N. R., SIEGMUND, D. O., JI, H. and LI, J. Z. (2010). Detecting simultaneous
changepoints in multiple sequences. Biometrika 97 631–645. MR2672488

DEPARTMENT OF STATISTICS

AND APPLIED PROBABILITY

NATIONAL UNIVERSITY OF SINGAPORE

6 SCIENCE DRIVE 2
SINGAPORE 117546
E-MAIL: stachp@nus.edu.sg

STATISTICS DEPARTMENT

STANFORD UNIVERSITY

390 SERRA MALL

STANFORD, CALIFORNIA 94305
USA
E-MAIL: gwalther@stat.stanford.edu

http://www.ams.org/mathscinet-getitem?mr=1759508
http://www.ams.org/mathscinet-getitem?mr=2650748
http://www.ams.org/mathscinet-getitem?mr=1340504
http://www.ams.org/mathscinet-getitem?mr=3145116
http://www.ams.org/mathscinet-getitem?mr=2418660
http://www.ams.org/mathscinet-getitem?mr=2840169
http://www.ams.org/mathscinet-getitem?mr=2460208
http://www.ams.org/mathscinet-getitem?mr=2604703
http://www.ams.org/mathscinet-getitem?mr=3202643
http://www.ams.org/mathscinet-getitem?mr=3099117
http://www.ams.org/mathscinet-getitem?mr=2672488
mailto:stachp@nus.edu.sg
mailto:gwalther@stat.stanford.edu

	Introduction
	Main results
	Detectability of aligned signals
	Optimal detection with the penalized higher-criticism test
	Optimal detection with the penalized Berk-Jones test

	Optimal detection with ALR tests
	Detecting multi-sample aligned signals
	Detecting sparse mixtures
	Signal detection in a single sequence
	An example

	Extensions
	Proofs of Theorems 1, 4 and 5
	Proof of Theorem 1
	Proof of Theorem 4
	Proof of Theorem 5

	Proofs of Theorems 2 and 3
	Proof of Theorem 3
	Proof of Theorem 2

	Proofs of Theorem 6 and Corollary 2
	Optimal detection using the penalized BJ test
	Optimal detection using the penalized HC test
	Proof of Corollary 2

	Appendix A: Veriﬁcation of Lyapunov's condition
	Appendix B: Quadratic bounds for the function K
	Appendix C: Detectability of nonaligned signals
	Acknowledgments
	References
	Author's Addresses

