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BEHAVIOR OF THE GENERALIZED ROSENBLATT PROCESS AT
EXTREME CRITICAL EXPONENT VALUES1

BY SHUYANG BAI AND MURAD S. TAQQU

Boston University

The generalized Rosenblatt process is obtained by replacing the single
critical exponent characterizing the Rosenblatt process by two different expo-
nents living in the interior of a triangular region. What happens to that gener-
alized Rosenblatt process as these critical exponents approach the boundaries
of the triangle? We show by two different methods that on each of the two
symmetric boundaries, the limit is non-Gaussian. On the third boundary, the
limit is Brownian motion. The rates of convergence to these boundaries are
also given. The situation is particularly delicate as one approaches the corners
of the triangle, because the limit process will depend on how these corners
are approached. All limits are in the sense of weak convergence in C[0,1].
These limits cannot be strengthened to convergence in L2(�).

1. Introduction. Maejima and Tudor [17] considered recently the following
process defined through a second-order Wiener–Itô integral:

Zγ1,γ2(t) = A

∫ ′
R2

[∫ t

0
(s − x1)

γ1+ (s − x2)
γ2+ ds

]
B(dx1)B(dx2),(1)

where A �= 0 is a constant, B(·) is a Brownian random measure, the prime ′ indi-
cates the exclusion of the diagonals x1 = x2 in the double stochastic integral and
the exponents γ1, γ2 live in the following open triangular region (see Figure 1):

� = {
(γ1, γ2) : −1 < γ1 < −1/2,−1 < γ2 < −1/2, γ1 + γ2 > −3/2

}
.(2)

This ensures that the integrand in (1) is in L2(R2), and hence the process
Zγ1,γ2(t) is well-defined (see Theorem 3.5 and Remark 3.1 of Bai and Taqqu [3]).

We shall call Zγ1,γ2(t) a generalized Rosenblatt process. The Rosenblatt process
Zγ (t) (Taqqu [31]) becomes the special case

Zγ (t) = Zγ,γ (t), −3/4 < γ < −1/2.(3)

Recent studies on the Rosenblatt process Zγ (t) include Tudor and Viens [32],
Bardet and Tudor [7], Arras [1], Maejima and Tudor [18], Veillette and Taqqu [33]
and Bojdecki, Gorostiza and Talarczyk [9]. The Rosenblatt and the generalized
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FIG. 1. Region � defined in (2). The three edges of the triangle are named e1, e2 and d (diagonal),
while the middle line segment (symmetric axis) is named m.

Rosenblatt processes are of interest because they are the simplest extension to the
non-Gaussian world of the Gaussian fractional Brownian motion.

Fractional Brownian motion BH (t), 1/2 < H < 1 is defined through a single
Wiener–Itô (or Wiener) integral:

BH(t) = C

∫
R

[∫ t

0
(s − x)

H−3/2
+ ds

]
B(dx),

and has covariance

EBH(s)BH(t) = C′

2

(|s|2H + |t |2H − |s − t |2H )
,(4)

where C and C′ are two related constants. Fractional Brownian motion reduces
to Brownian motion if one sets H = 1/2 in (4). Fractional Brownian motion has
stationary increments and, for any 1/2 < H < 1, these increments have a covari-
ance which decreases slowly as the lag increases. This slow decay is often referred
to as long memory or long-range dependence. Fractional Brownian motion is also
self-similar with self-similarity parameter (Hurst index) H , that is, BH (λt) has
the same finite-dimensional distributions as λH BH(t) for any λ > 0. It follows
from Bai and Taqqu [3] that the generalized Rosenblatt process Zγ1,γ2(t) is also
self-similar with stationary increments with self-similarity parameter

H = γ1 + γ2 + 2 ∈ (1/2,1).(5)

We get 1/2 < H < 1 because γ1, γ2 < −1/2 imply H < 1 and γ1 + γ2 > −3/2
implies H > 1/2.

Fractional Brownian motion and the generalized Rosenblatt process Zγ1,γ2(t)

belong to a broad class of self-similar processes with stationary increments defined
on a Wiener chaos called generalized Hermite processes. The generalized Hermite
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processes appear as limits in various types of non-central limit theorems involving
Volterra-type nonlinear process. In particular, the generalized Rosenblatt process
Zγ1,γ2(t) can arise as limit when considering a quadratic form involving two long-
memory linear processes with different memory parameters. See Bai and Taqqu
[3, 5, 6] for details.

It will be convenient to express the generalized Rosenblatt process as follows:

Zγ1,γ2(t) = A

2

∫ ′
R2

[∫ t

0

[
(s − x1)

γ1+ (s − x2)
γ2+

(6)

+ (s − x1)
γ2+ (s − x2)

γ1+
]
ds

]
B(dx1)B(dx2),

where we replaced the kernel A
∫ t

0 (s − x1)
γ1+ (s − x2)

γ2+ ds by its symmetrized ver-
sion. The process Zγ1,γ2(t) remains invariant under such a modification.

The goal of this paper is to study the distributional behavior of the standard-
ized Zγ1,γ2(t) (where A in (6) is chosen so that Var[Zγ1,γ2(1)] = 1), as (γ1, γ2)

approaches the boundaries of the region � defined in (2).
We show that on the diagonal boundary d , the limit is Brownian motion. On

each of the two symmetric boundaries e1 and e2 of �, the limit is non-Gaussian: it
is a fractional Brownian motion times an independent Gaussian random variable.
We give two different proofs of this convergence, one based on the method of
moments, and one which provides more intuitive insight. We also give the rate of
convergence to the marginal distribution in the preceding two cases.

The situation at the corners is particularly delicate. At the corner (γ1, γ2) =
(−1/2,−1/2), the limit process is a linear combination of two independent de-
generate chi-square processes. At the other two corners, the limit is a linear combi-
nation of two processes: a Brownian motion and the product of another Brownian
motion times an independent Gaussian random variable. These linear combina-
tions, which depend on the direction at which the critical exponents approach the
corners, will be given explicitly.

We also show that the convergences mentioned cannot be strengthened from
weak convergence to L2(�) convergence, nor even to convergence in probability.

The paper is organized as follows. In Section 2, we state the main results with
proofs in Section 3. In the following three sections, we provide some additional
results: showing that L2(�) convergence cannot hold, establishing the rate of
marginal convergence on the boundaries d , e1 and e2, and giving an alternate proof
of the convergence on the boundaries e1 and e2.

2. Main results. In the following theorems, we let ⇒ denote weak conver-
gence in the space C[0,1] with uniform metric. The multiplicative factor A in (6)
is chosen so that Var[Zγ1,γ2(1)] = 1. See (21) below for an explicit expression.

We focus first on results concerning the behavior of Zγ1,γ2(t) as (γ1, γ2) ap-
proaches the boundary of � in (2), excluding the corners. Theorem 2.1 involves
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FIG. 2. Illustration of limit taking in Theorem 2.1.

convergence to the diagonal edge d of �, where the limit is Brownian motion. See
Figure 2.

THEOREM 2.1. Let Zγ1,γ2(t), (γ1, γ2) ∈ �, be defined in (6) with A =
A(γ1, γ2) in (21). When γ1 + γ2 → −3/2 with γ1, γ2 > −1 + ε for arbitrarily
fixed ε > 0, we have

Zγ1,γ2(t) ⇒ B(t),(7)

where B(t) is a standard Brownian motion.

One has γ1 + γ2 = −3/2 all through the diagonal d . The corners of the tri-
angle are excluded by the requirement γ1, γ2 > −1 + ε. Convergence to Brow-
nian motion in (7) is expected heuristically since the self-similarity parameter
H = γ1 +γ2 +2 → 1/2 [see (5)], and 1/2 is the self-similarity parameter of Brow-
nian motion.

The next Theorem 2.2 involves convergence to either one of the two sides e1
and e2 of �. The vertical side e1 and the horizontal side e2 are parameterized
respectively by (−1/2, γ ) and (γ,−1/2) where −1 < γ < −1/2. See Figure 3.

THEOREM 2.2. Let Zγ1,γ2(t), (γ1, γ2) ∈ �, be defined in (6) with A =
A(γ1, γ2) in (21). When (γ1, γ2) → (−1/2, γ ) or (γ1, γ2) → (γ,−1/2), where
−1 < γ < −1/2, we have

Zγ1,γ2(t) ⇒ WBγ+3/2(t),(8)

where Bγ+3/2(t) is a standard fractional Brownian motion with self-similarity pa-
rameter γ + 3/2, and W is a standard normal random variable which is indepen-
dent of Bγ+3/2(t).
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FIG. 3. Illustration of limit taking in Theorem 2.2.

REMARK 2.1. The convergence (8) is more involved since WBγ+3/2(t) is
a self-similar process with stationary increments having self-similarity parameter
H = γ + 3/2 ∈ (1/2,1), and hence displays long-range dependence. This conver-
gence may be understood heuristically as follows: Zγ1,γ2(t) in (1) can be regarded
as an integrated process of a long-range dependent bilinear moving average of
white noise. This bilinear moving average involves a double summation. As the
exponent γ1 → −1/2, the corresponding summation yields a term which is ex-
tremely persistent, so that it behaves like a frozen Gaussian variable which is in-
dependent of the fractional noise defined through the other summation.

REMARK 2.2. Although intuitively the generalized Rosenblatt processes
Zγ1,γ2(t) in (1) form a richer class than the Rosenblatt process Zγ (t) in (3), they
are both self-similar with stationary increments, and hence have the same covari-
ance (4) when 2γ = γ1 + γ2. To show that they are different processes, one can
compare the higher moments, as was done in Bai and Taqqu [4]. The convergence
(8) provides another evidence that there are values of (γ1, γ2) for which Zγ1,γ2(t)

is different from Zγ (t). Indeed the limit WBγ+3/2(t) has a symmetric marginal
distribution (the so-called product-normal distribution), while the marginal distri-
bution of the Rosenblatt process Zγ (t) is skewed with a nonzero third cumulant
(see (10) and (12) of Veillette and Taqqu [33], or set γ1 = γ2 = γ in (20) below).

Note that in Theorems 2.1 and 2.2, we exclude the three corners (γ1, γ2) =
(−1/2,−1/2), (−1,−1/2) and (−1/2,−1). It turns out that the limit behavior of
Zγ1,γ2(t) at these corners depends on the direction these corners are approached.
Due to the symmetry of Zγ1,γ2(t) in (γ1, γ2), it is sufficient to focus on the case
γ1 ≥ γ2, that is, we focus on the subregion of � in (2) delimited by line segments
e1, d and m in Figure 4.
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FIG. 4. Illustration of limit taking in Theorem 2.3.

Consider first the corner (γ1, γ2) = (−1/2,−1). We will approach it through
the line

γ2 = 1

ρ − 1
(γ1 + 1/2) − 1,

which can also be expressed as

γ1 + γ2 + 3/2

γ2 + 1
= ρ.

The line passes through the corner (−1/2,−1) and has a negative slope of 1/(ρ −
1), 0 ≤ ρ ≤ 1. See Figure 4. When ρ = 0, the line coincides with the diagonal edge
d of the triangle �, which has slope −1. When ρ = 1, the line coincides with the
vertical side e1 of �, which has slope −∞.

THEOREM 2.3 [The corner (γ1, γ2) = (−1/2,−1)]. Let Zγ1,γ2(t), (γ1, γ2) ∈
�, be defined in (6) with A = A(γ1, γ2) in (21). Suppose that γ1 ≥ γ2. If (γ1, γ2) →
(−1/2,−1) in such a way that

γ1 + γ2 + 3/2

γ2 + 1
= 1 + γ1 + 1/2

γ2 + 1
→ ρ ∈ [0,1],(9)

then

Zγ1,γ2(t) ⇒ Xρ(t) := ρ1/2WB(t) + (1 − ρ)1/2B′(t),(10)

where W is a standard normal random variable, B(t) and B′(t) are standard Brow-
nian motions, and W , B(t) and B′(t) are independent.

REMARK 2.3. In Theorem 2.3, the limit Xρ(t) is an independent linear com-
bination of the two limits obtained in Theorems 2.2 and 2.1 (edges e1 and d), after
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FIG. 5. Illustration of limit taking in Theorem 2.4.

setting γ = −1 in Theorem 2.2. Note that since γ + 3/2 = −1 + 3/2 = 1/2, the
fractional Brownian motion Bγ+3/2(t) in Theorem 2.2 becomes Brownian motion
B(t).

Consider now the corner (γ1, γ2) = (−1/2,−1/2). We will approach it through
the line

γ2 = 1

ρ
(γ1 + 1/2) − 1/2,

which passes through it and has a positive slope of 1/ρ, 0 ≤ ρ ≤ 1. See Figure 5.
When ρ = 0, the line coincides with the vertical side e1 of �, which has slope
+∞. When ρ = 1, the line coincides with the middle line m, which has slope 1.

THEOREM 2.4 [The corner (γ1, γ2) = (−1/2,−1/2)]. Let Zγ1,γ2(t), (γ1,

γ2) ∈ �, be defined in (6) with A = A(γ1, γ2) in (21). Suppose that γ1 ≥ γ2. If
(γ1, γ2) → (−1/2,−1/2) in such a way that

γ1 + 1/2

γ2 + 1/2
→ ρ ∈ [0,1],(11)

then

Zγ1,γ2(t) ⇒ Yρ(t)

= t ·
[

(ρ + 1)−1 + (2
√

ρ)−1√
2(ρ + 1)−2 + (2ρ)−1

· X1(12)

+ (ρ + 1)−1 − (2
√

ρ)−1√
2(ρ + 1)−2 + (2ρ)−1

· X2

]
,
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where X1 and X2 two independent standardized chi-squared random variables
with one degree of freedom (with mean 0 and variance 1). The case ρ = 0 is un-
derstood as the limit as ρ → 0.

REMARK 2.4. Since by (5), the self-similarity parameter H equals γ1 + γ2 +
2, we get that H tends to 1 as (γ1, γ2) → (−1/2,−1/2). It is known (see, e.g.,
Theorem 3.1.1 of Embrechts and Maejima [12]) that the only self-similar finite-
variance processes with stationary increments having H = 1 are degenerate pro-
cesses. We see this in Theorem 2.4, where the limit is a random variable multiplied
by t .

REMARK 2.5. In Theorem 2.4, if ρ = 1, Yρ(t) reduces to tX1, where X1 is
a standardized chi-squared random variable with one degree of freedom. Consider
now the standardized Rosenblatt process Zγ (t) in (3). In this case, γ1 = γ2 = γ ,
and thus ρ = 1, which corresponds to the middle line m in Figure 5. From Theo-
rem 2.4, we conclude that if γ → −1/2, then the limit is tX1. This is consistent
with a previous result of Veillette and Taqqu [33], that the limit is a standardized
chi-squared random variable when t = 1.

REMARK 2.6. If ρ = 0, Yρ(t) = t√
2
(X1 − X2), which has the same distribu-

tion as t (WB), where W and B are two independent standard normal random vari-
ables [see (31) below]. This is consistent with Theorem 2.2, where on the edge e1
the limit is WBγ+3/2. This tends, as γ → −1/2, to W ·B1(t) = W ·B · t = t (WB),
where B is a standard Gaussian random variable.

REMARK 2.7. Theorems 2.1 to 2.4 are consistent with Theorem 3.1 of Nour-
din and Poly [22], stating that the limit of a double Wiener–Itô integral can only be
a linear combination of a normal and an independent double Wiener–Itô integral.

REMARK 2.8. Theorems 2.3 and 2.4 concern the limit behavior of Zγ1,γ2(t) as
(γ1, γ2) approaches the corners along some straight-line direction. What happens
if one does not approach the corners following a straight-line direction? Then there
will be no convergence. To see this, consider the case of Theorem 2.3 (a similar
argument can be made for Theorem 2.4). Let

ρ(γ1, γ2) = γ1 + γ2 + 3/2

γ2 + 1
∈ (0,1)

parameterize the straight-line direction. Suppose that ρ(γ1, γ2) does not converge
as (γ1, γ2) approaches the corner (−1

2 ,−1). Then there are two subsequences of
(γ1, γ2), such that ρ(γ1, γ2) of the first subsequence converges to ρ1 and ρ(γ1, γ2)

of the second subsequence converges to ρ2, with ρ1 �= ρ2. By Theorem 2.3, the
corresponding processes Zγ1,γ2(t) converge to two different limits. Therefore, the
original process Zγ1,γ2(t) does not converge if (γ1, γ2) does not follow a straight-
line direction.



1286 S. BAI AND M. S. TAQQU

3. Proof of the main theorems. Since we will use a method of moments, we
state first a cumulant formula for a linear combination of Zγ1,γ2(t) at finite time
points. We let κm(·) denote the mth cumulant. In the following proposition, the
constant A in (6) is arbitrary.

PROPOSITION 3.1. The mth cumulant (m ≥ 2) of
∑n

i=1 ciZγ1,γ2(ti), ci ∈ R,
ti ∈ [0,∞), equals

κm

(
n∑

i=1

ciZγ1,γ2(ti)

)
= 1

2
(m − 1)!AmCm(γ1, γ2; t, c),(13)

where

Cm(γ1, γ2; t, c)

= ∑
σ∈{1,2}m

n∑
i1,...,im=1

ci1 · · · cim

∫ ti1

0
ds1 · · ·

∫ tim

0
dsm

(14)

×
m∏

j=1

[
(sj − sj−1)

γσj
+γσ ′

j−1
+1

+ B(γσ ′
j−1

+ 1,−γσj
− γσ ′

j−1
− 1)

+ (sj−1 − sj )
γσj

+γσ ′
j−1

+1

+ B(γσj
+ 1,−γσj

− γσ ′
j−1

− 1)
]
,

where

B(x, y) =
∫ 1

0
ux−1(1 − u)y−1 du =

∫ ∞
0

wx−1(1 + w)−x−y dw,

(15)
x, y > 0,

is the beta function, the sum runs over σ = (σ1, . . . , σm) with σi = 1 or 2, and σ ′ is
the complement of σ , namely, σ ′

i = 1 if σi = 2 and σ ′
i = 2 if σi = 1, i = 1, . . . ,m.

Moreover, σ ′
0 = σ ′

m and s0 = sm, i = 1, . . . ,m.

Proposition 3.1 is an extension of Theorem 2.1 of Bai and Taqqu [4]. We shall
use the following cumulant formula for a double Wiener–Itô integral (see, e.g.,
(8.4.3) of Nourdin and Peccati [20]).

LEMMA 3.1. If f is a symmetric function in L2(R2), then the mth cumulant
of the double Wiener–Itô integral X = ∫ ′

R2 f (y1, y2)B(dy1)B(dy2) is given by the
following circular integral:

κm(X) = 2m−1(m − 1)!
∫
Rm

f (y1, y2)f (y2, y3) · · ·
× f (ym−1, ym)f (ym, y1) dy1 · · ·dym.

PROOF OF PROPOSITION 3.1. Set

g(x, y) = A

2

(
x

γ1+ y
γ2+ + x

γ2+ y
γ1+

)
.
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Let

ht (x, y) =
∫ t

0
g(s − x, s − y)ds,

and observe that ht is symmetric. So using the linearity of the Wiener–Itô integral
and Lemma 3.1, we have

κm

(
n∑

i=1

ciZγ1,γ2(ti)

)
= κm

(∫ ′
R2

n∑
i=1

cihti (x1, x2)B(dx1)B(dx2)

)

= 2m−1(m − 1)!
∫
Rm

dx
m∏

j=1

[
n∑

i=1

cihti (xj , xj+1)

]

= 2m−1(m − 1)!
n∑

i1,...,im=1

ci1 · · · cim

∫
Rm

dx

×
m∏

j=1

∫ tij

0
g(sj − xj , sj − xj+1) dsj ,

and hence

κm

(
n∑

i=1

ciZγ1,γ2(ti)

)

= 1

2
(m − 1)!Am

n∑
i1,...,im=1

ci1 · · · cim

(16)

×
∫ ti1

0
ds1 · · ·

∫ tim

0
dsm

(∫
Rm

m∏
j=1

[
(sj − xj )

γ1+ (sj − xj+1)
γ2+

+ (sj − xj )
γ2+ (sj − xj+1)

γ1+
]
dx

)
,

where we view the index j as modulo m, for example, xm+1 = x1.
Then using the notation in the statement of Proposition 3.1, one has

I :=
∫
Rm

m∏
j=1

[
(sj − xj )

γ1+ (sj − xj+1)
γ2+ + (sj − xj )

γ2+ (sj − xj+1)
γ1+

]
dx

= ∑
σ∈{1,2}m

∫
Rm

m∏
j=1

(sj − xj )
γσj

+ (sj − xj+1)
γσ ′

j

+ dx

= ∑
σ∈{1,2}m

∫
Rm

m∏
j=1

(sj − xj )
γσj

+ (sj−1 − xj )
γσ ′

j−1
+ dx,
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and thus

I = ∑
σ∈{1,2}m

m∏
j=1

[
(sj − sj−1)

γσj
+γσ ′

j−1
+1

+

× B(γσ ′
j−1

+ 1,−γσj
− γσ ′

j−1
− 1)(17)

+ (sj−1 − sj )
γσj

+γσ ′
j−1

+1

+ B(γσj
+ 1,−γσj

− γσ ′
j−1

− 1)
]
,

where we have used the following relation valid for a, b ∈ (−1,−1/2):∫
R

(s1 − u)a+(s2 − u)b+ du

= (s2 − s1)
a+b+1+ B(a + 1,−a − b − 1)(18)

+ (s1 − s2)
a+b+1+ B(b + 1,−a − b − 1).

(See Lemma 3.2 of Bai and Taqqu [4].) Substituting (17) into (16), equation (13)
is obtained. �

Note that EZγ1,γ2(1) = 0 by the property of Wiener–Itô integral, and hence the
second and the third moments coincide with the second and the third cumulants.
As two special cases of Proposition 3.1, one has the following explicit formulas
for the second and the third moment of the generalized Rosenblatt distribution (Bai
and Taqqu [4], Theorem 2.1).

The second moment of Zγ1,γ2(1) is

μ2(γ1, γ2) = A2

(γ1 + γ2 + 2)(2(γ1 + γ2) + 3)

× [
B(γ1 + 1,−γ1 − γ2 − 1)B(γ2 + 1,−γ1 − γ2 − 1)(19)

+ B(γ1 + 1,−2γ1 − 1)B(γ2 + 1,−2γ2 − 1)
]
.

The third moment of Zγ1,γ2(1) is

μ3(γ1, γ2)

= 2A3

(γ1 + γ2 + 2)(3(γ1 + γ2) + 5)
(20)

×
[ ∑
σ∈{1,2}3

B(γσ1 + 1,−γσ1 − γσ ′
3
− 1)B(γσ ′

1
+ 1,−γσ ′

1
− γσ2 − 1)

× B(γσ ′
2
+ 1,−γσ ′

2
− γσ3 − 1)B(γσ ′

1
+ γσ2 + 2, γσ ′

2
+ γσ3 + 2)

]
.
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To standardize Zγ1,γ2(t), we set μ2(γ1, γ2) = 1. By (19), this determines the
constant A as

A(γ1, γ2) = [
(γ1 + γ2 + 2)

(
2(γ1 + γ2) + 3

)]1/2

× [
B(γ1 + 1,−γ1 − γ2 − 1)B(γ2 + 1,−γ1 − γ2 − 1)(21)

+ B(γ1 + 1,−2γ1 − 1)B(γ2 + 1,−2γ2 − 1)
]−1/2

.

3.1. Proof of Theorem 2.1. We will use a result for bounding integral of
powers of linear functions in Euclidean space. First, some notation. Let L1(s) =
〈w1, s〉, . . . ,Lm(s) = 〈wm, s〉 be linear functions on R

n, where 〈·, ·〉 denotes the
Euclidean inner product. Let

P(s) =
m∏

j=1

∣∣Lj(s)
∣∣αj .

Set T = {w1, . . . ,wm}. For any nonempty W ⊂ T , define

S(W) = T ∩ span{W },(22)

where span{W } denotes linear subspace spanned by W , and define the quantity

d(P,W) = |W | + ∑
j :wj∈S(W)

αj ,

where |W | is the cardinality of the set W . Then we have the following so-called
power counting lemma.

LEMMA 3.2 (Theorem 3.1 of Fox and Taqqu [13]). Suppose that

d(P,W) > 0(23)

for any W ⊂ T which consists of linearly independent wj ’s.2 Then∫
[0,1]n

P (s) ds < ∞.

LEMMA 3.3. The function

f (α1, . . . , αm) :=
∫
[0,1]m

|s1 − sm|α1 |s2 − s1|α2 · · · |sm − sm−1|αm ds(24)

is finite and continuous on the domain

D =
{
(α1, . . . , αm) : αi > −1,

m∑
i=1

αi + m > 1

}
.(25)

2Theorem 3.1 of Fox and Taqqu [13] states that it is enough to consider W ⊂ T consisting of
linearly independent wj ’s with negative exponent αj ’s. This is because the nonnegative exponents
αj cannot make the integral

∫
[0,1]n P (s) ds blow up.
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PROOF. We first show that f (α1, . . . , αm) < ∞ on D using Lemma 3.2.
Following the notation introduced for the lemma, we have L1(s) = s1 − sm,
L2(s) = s2 − s1, . . . ,Lm(s) = sm − sm−1, and hence w1 = (1,0, . . . ,0,−1), w2 =
(−1,1,0, . . . ,0), . . . ,wm = (0, . . . ,0,−1,1) and T = {w1, . . . ,wm}.

It is easy to see that a subset W ⊂ T consists of linearly independent wj ’s if and
only if |W | ≤ m − 1. When |W | ≤ m − 2, the set S(W) defined in (22) is equal to
W . The condition (23) is satisfied in this case because each αj > −1, and hence

D(P,W) = |W | + ∑
j :wj∈S(W)

αj > |W | + ∑
j :wj∈W

(−1) = |W | − |W | = 0.

When |W | = m − 1, one has span(W) = T , and hence S(W) = T . Thus, the con-
dition (23) in this case becomes

D(P,W) = m − 1 +
m∑

i=1

αi > 0,

which is satisfied in view of (25). Hence, the integral f (α1, . . . , αm) in (24) is
finite by Lemma 3.2.

To verify the continuity of f (α1, . . . , αm), suppose that as n → ∞, αn → α :=
(α1, . . . , αm). Then for large n, αn ≥ αε := (α1 − ε, . . . , αm − ε), where the small
ε is chosen such that αε ∈ D. Denote the integrand in (24) by I (s;α), and re-
call that I (s;α) is decreasing in every component of α. Hence, when n is large,
I (s;αn) ≤ I (s;αε). Since I (s;αε) is integrable, we can apply the dominated con-
vergence theorem to obtain the convergence f (αn) → f (α) as n → ∞, proving
the continuity. �

In the following corollary, the exponents are supposed to be away from the
boundary of the set D defined in (25).

COROLLARY 3.1. Let C1,C2 be two fixed constants such that C1 > −1 and
C2 > 1. Then the function f (α1, . . . , αm) defined in (24) is bounded on the domain

D(C1,C2) =
{
(α1, . . . , αm) : αi ≥ C1,

m∑
i=1

αi + m ≥ C2

}
.

PROOF. Let M be a large positive constant. Define

DM(C1,C2) = D(C1,C2) ∩ (−∞,M]m

=
{
(α1, . . . , αm) : C1 ≤ αi ≤ M,

m∑
i=1

αi + m ≥ C2

}
.

Since DM(C1,C2) is a compact subset of D in (25), and f (α1, . . . , αm) is con-
tinuous on D by Lemma 3.3, we deduce that f is bounded on DM(C1,C2). The
boundedness on D(C1,C2) follows since f decreases when any αi increases. �
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LEMMA 3.4. Let A(γ1, γ2) be as in (21), where (γ1, γ2) ∈ � which is defined
in (2). Then there exits a constant C > 0 independent of γ1 and γ2 such that∣∣A(γ1, γ2)

∣∣ ≤ C
[
2(γ1 + γ2) + 3

]1/2
.

PROOF. This is immediate by noting that the beta function B(x, y) defined
in (15) is decreasing in x and in y. Since in addition � is a bounded region, the
beta functions in (21) are bounded from below, and hence the factor with negative
power −1/2 in (21) is bounded from above. �

The following hypercontractivity inequality for multiple Wiener–Itô integral
(see, e.g., Corollary 5.6 of Major [19] or Theorem 2.7.2 of Nourdin and Peccati
[20]) is useful.

LEMMA 3.5. For any m ∈ Z+, there exists a constant Cm > 0, such that

E
∣∣Ik(f )

∣∣2m ≤ Cm

(
E

∣∣Ik(f )
∣∣2)m for all f ∈ L2(

R
k
)
.

Tightness of standardized Zγ1,γ2(t) in C[0,1] will follow from the following
lemma.

LEMMA 3.6. Let Zγ1,γ2(t) be as in (6) with A as in (21) and (γ1, γ2) in the
region � defined in (2). Then there exists a constant C > 0 which does not depend
on γ1, γ2, such that for all 0 ≤ s ≤ t ≤ 1,

E
∣∣Zγ1,γ2(t) − Zγ1,γ2(s)

∣∣4 ≤ C(t − s)2,

which implies that the law of {Zγ1,γ2(t) : (γ1, γ2) ∈ �} is tight in C[0,1].

PROOF. Using Lemma 3.5, self-similarity and stationary-increment property
of Zγ1,γ2(t), one has

E
∣∣Zγ1,γ2(t) − Zγ1,γ2(s)

∣∣4 ≤ C2
(
E

∣∣Zγ1,γ2(t) − Zγ1,γ2(s)
∣∣2)2

= C2(t − s)4H ≤ C2(t − s)2,

where H := γ1 + γ2 + 2 ≥ 1/2 and 0 ≤ t − s ≤ 1. So Zγ1,γ2(t) by Kolmogorov’s
criterion admits a continuous version. Tightness follows from, for example,
Prokhorov [28], Lemma 2.2. �

We now prove Theorem 2.1. By Lemma 3.6, tightness in C[0,1] holds. We are

left to show convergence of finite-dimensional distributions (
f.d.d.−→). From here on,

we let C and c denote constants whose values can change from line to line.
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PROOF OF
f.d.d.−→ THEOREM 2.1. Due to self-similarity and stationary incre-

ments, the covariance of the standardized Zγ1,γ2(t) is

EZγ1,γ2(s)Zγ1,γ2(t) = 1
2

(
s2γ1+2γ2+4 + t2γ1+2γ2+4 −|s− t |2γ1+2γ2+4)

, t, s ≥ 0,

which converges to the Brownian motion covariance EB(s)B(t) = s ∧ t = 1
2(s +

t − |s − t |) as γ1 + γ2 → −3/2. By using the method of moments, it is sufficient
to show that

κm

(
n∑

i=1

ciZγ1,γ2(ti)

)
→ 0, m ≥ 3.(26)

As γ1 + γ2 → −3/2, the factor A(γ1, γ2) in (21) converges to zero by
Lemma 3.4. It is therefore sufficient to show that for m ≥ 3, and γ1, γ2 > −1 + ε,
the factor Cm(γ1, γ2; t, c) in (14) is bounded.

Under the constraints γ1 + γ2 ≥ −3/2 and γ1, γ2 > −1 + ε (or equivalently
γ1, γ2 < −1/2 − ε), the factors B(γσ ′

j−1
+ 1,−γσj

− γσ ′
j−1

− 1) and B(γσj
+

1,−γσj
− γσ ′

j−1
− 1) are bounded by a constant C > 0 for any σ and j . This

is because the beta function B(x, y) defined in (15) is bounded if both x and y stay
away from a neighborhood of 0. Choosing T ≥ max(t1, . . . , tn), one then has

∣∣Cm(γ1, γ2; t, c)
∣∣ ≤ C

∑
σ∈{1,2}m

∫
[0,T ]m

ds
m∏

j=1

|sj − sj−1|
γσj

+γσ ′
j−1

+1

≤ C
∑

σ∈{1,2}m

∫
[0,1]m

ds
m∏

j=1

|sj − sj−1|
γσj

+γσ ′
j−1

+1
,

where the last constant C depends on T , m and ε.
We now want to apply Corollary 3.1 to establish the boundedness of each of the

term in the preceding sum. Using the notation in Lemma 3.3, we set

αj = γσj
+ γσ ′

j−1
+ 1.

Recall that γσj
and γσ ′

j−1
are either γ1 or γ2 and γσj

+ γσ ′
j
= γ1 + γ2. Now since

γ1 + γ2 ≥ −3/2 and γj ≥ −1 + ε, we have

αj ≥
{

2γj + 1 ≥ −1 + 2ε, if σ ′
j−1 = σj ,

γ1 + γ2 + 1 ≥ −3/2 + 1 = −1/2, if σ ′
j−1 �= σj .

We get αj ≥ C1 := −1 + 2ε > −1.
On the other hand, when m ≥ 3,

m∑
i=1

αi + m = m(γ1 + γ2) + 2m ≥ m(−3/2) + 2m = m

2
≥ C2 := 3

2
> 1.

So Corollary 3.1 can be applied to deduce the boundedness of |Cm(γ1, γ2; t, c)|
when γ1, γ2 ≥ −1 + ε, and the proof is thus concluded. �
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REMARK 3.1. Theorem 2.1 involves convergence to a Gaussian process. In
this case, according to the results of Nualart and Peccati [24] and Peccati and
Tudor [26], it suffices to show that (26) holds for m = 4 and n = 1. Focusing on
the fourth cumulant, the covariance structure and the one-dimensional distribution,
however, does not simplify significantly the proof as can be seen by examining the
proof of Theorem 2.1.

3.2. Proof of Theorem 2.2.

LEMMA 3.7. Suppose that α > −1, then for any t1, t2 ∈ R,∫ t1

0

∫ t2

0
|x1 − x2|α dx1 dx2 = 1

(α + 1)(α + 2)

(|t1|α+2 + |t2|α+2 − |t1 − t2|α+2)
.

PROOF. Suppose 0 < t1 ≤ t2. The other cases are similar. Then∫ t1

0

∫ t2

0
|x1 − x2|α dx1 dx2

=
∫ t1

0

∫ t1

0
|x1 − x2|α dx1 dx2 +

∫ t1

0

∫ t2

t1

(x2 − x1)
α dx2 dx1

= 2

(α + 1)(α + 2)
tα+2
1 + 1

(α + 1)(α + 2)

[
tα+2
2 − tα+2

1 − (t2 − t1)
α+2]

= 1

(α + 1)(α + 2)

[
tα+2
1 + tα+2

2 − (t2 − t1)
α+2]

. �

Below the notation A ∼ B means asymptotic equivalence, namely, the ratio A/B
converges to 1. We include first a fact about the asymptotics of the beta function
B(·, ·) when one of the exponents approaches the boundary.

LEMMA 3.8. Let 0 < b0 < b1 < ∞. Then as α → 0, we have

αB(α,β) → 1

uniformly in β ∈ [b0, b1]. Since the beta functions is symmetric, we also have
αB(β,α) → 1 as α → 0 uniformly in β ∈ [b0, b1].

PROOF. Assume without loss of generality that b0 ≤ 1 ≤ b1. Fix any small
ε > 0. Then

B(α,β) =
∫ ε

0
xα−1(1 − x)β−1 dx +

∫ 1

ε
xα−1(1 − x)β−1 dx

(27)
=: I1(α,β; ε) + I2(α,β; ε).
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For I1(α,β; ε), we have

α−1εα(1 − ε)b1−1 =
∫ ε

0
xα−1 dx(1 − ε)b1−1 ≤ I1(α,β; ε)

≤
∫ ε

0
xα−1 dx(1 − ε)b0−1 = α−1εα(1 − ε)b0−1.

This yields that

(1 − ε)b1−1 ≤ lim inf
α→0,β∈[b0,b1]

αI1(α,β, ε)

(28)
≤ lim sup

α→0,β∈[b0,b1]
αI1(α,β, ε) ≤ (1 − ε)b0−1.

For I2(α,β; ε), it is uniformly bounded with respect to α ≤ 1 and β as follows:

I2(α,β; ε) ≤ εα−1
∫ 1

ε
(1 − x)β−1 dx = εα−1β−1(1 − ε)β

(29)
≤ ε−1b−1

0 (1 − ε)b0 .

Combining (27), (28) and (29), we get

(1 − ε)b1−1 ≤ lim inf
α→0,β∈[b0,b1]

αB(α,β) ≤ lim sup
α→0,β∈[b0,b1]

αB(α,β) ≤ (1 − ε)b0−1.

Since ε is arbitrary, we get that αB(α,β) → 1 as α → 0. �

The limit αB(α,β) → 1 as α → 0 will be used extensively, mostly in the form

B(α,β) ∼ α−1 → ∞.

LEMMA 3.9. Let WBγ+3/2(t) be the process given as Theorem 2.2. We also
include the case γ = −1 where Bγ+3/2(t) = B1/2(t) is Brownian motion. Then the
mth cumulant of the linear combination of WBγ+3/2(t) at different time points is
given by

κm

(
n∑

i=1

ciWBγ+3/2(ti)

)

(30)

= (m − 1)!
[

n∑
i1,i2=1

ci1ci2

2

(|ti1 |2γ+3 + |ti2 |2γ+3 − |ti1 − ti2 |2γ+3)]m/2

if m is even, and 0 if m is odd.

PROOF.
n∑

i=1

ciWBγ+3/2(ti) = W

n∑
i=1

ciBγ+3/2(ti) = σWZ,
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where Z is a standard normal random variable which is independent of W , and

σ =
(

Var

[
n∑

i=1

ciBγ+3/2(ti)

])1/2

=
[
E

n∑
i1,i2=1

ci1ci2Bγ+3/2(ti1)Bγ+3/2(ti2)

]1/2

=
[

n∑
i1,i2=1

ci1ci2

2

(|ti1 |2γ+3 + |ti2 |2γ+3 − |ti1 − ti2 |2γ+3)]1/2

,

using the covariance of fractional Brownian motion. Then note that

WZ = 1

2

[(
W + Z√

2

)2

−
(

W − Z√
2

)2]
,(31)

where Z2
1 := [W+Z√

2
]2 and Z2

2 := [W−Z√
2

]2 are two independent χ2
1 (chi-squared

random variables with one degree of freedom). The independence is due to the
fact that Z + W and Z − W are uncorrelated. Since the mth cumulant of a χ2

1
variable is 2m−1(m − 1)!, and using the scaling property and the additive property
of cumulant under independence, we have

κm(σWZ) =
(

σ

2

)m[
κm

(
Z2

1
) + (−1)mκm

(
Z2

2
)]

=
(

σ

2

)m[
2m−1(m − 1)! + (−1)m2m−1(m − 1)!],

which is equal to 0 if m is odd, and equal to σm(m− 1)! if m is even, proving (30).
�

REMARK 3.2. Starting with the χ2
1 characteristic function φ(t) = (1 −

2it)−1/2, it is easy to derive using (31) that the characteristic function of the stan-
dard product-normal distribution WZ is ϕ(t) = (1 + t2)−1/2.

In view of Lemma 3.6, we are left to prove the convergence of the finite-

dimensional distributions (
f.d.d.−→) in Theorem 2.2.

PROOF OF
f.d.d.−→ IN THEOREM 2.2. By the Cramér–Wold device, we need to

show as γ1 → −1/2 and γ2 → γ ∈ (−1/2,−1) that
n∑

i=1

ciZγ1,γ2(ti)
d→

n∑
i=1

ciWBγ+3/2(ti).

Since
∑n

i=1 ciWBγ+3/2(ti) has an analytic characteristic function (Remark 3.2),
its distribution is moment-determinate, and hence we can apply a method of mo-
ments here. In fact, by Theorem 3.4 of Nourdin and Poly [22], only a finite number
of moments are required to prove convergence in distribution.
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The cumulant formula of
∑n

i=1 ciZγ1,γ2(ti) is given in Proposition 3.1, which
involves the factors A(γ1, γ2) in (21) (recall that Zγ1,γ2 is standardized) and
Cm(γ1, γ2; t, c) in (14). Assume m ≥ 2 below.

Examining A(γ1, γ2), by Lemma 3.8, one can see that as γ1 → −1/2 and γ2 →
γ ,

A(γ1, γ2)
m ∼ [

(γ + 3/2)(2γ + 2)
]m/2[

B(1/2,−γ − 1/2)B(γ + 1,−γ − 1/2)

+ B(1/2,−2γ1 − 1)B(γ + 1,−2γ − 1)
]−m/2

.

The first two and the fourth beta functions are bounded but the third blows up since

B(1/2,−2γ1 − 1) ∼ (−2γ1 − 1)−1

as γ1 → −1/2 by Lemma 3.8. Hence, as γ1 → −1/2,

A(γ1, γ2)
m

∼ [
(γ + 3/2)(2γ + 2)

]m/2[
B(1/2,−2γ1 − 1)B(γ + 1,−2γ − 1)

]−m/2(32)

∼ (−2γ1 − 1)m/2(2γ + 3)m/2(γ + 1)m/2B(γ + 1,−2γ − 1)−m/2,

which converges to zero.
On the other hand, in the expression of Cm(γ1, γ2; t, c) in (14), the only factors

diverging to ∞ as γ1 → −1/2 and γ2 → γ are B(γσ ′
j−1

+ 1,−γσj
− γσ ′

j−1
− 1)

and B(γσj
+ 1,−γσj

− γσ ′
j−1

− 1) and only when σj = σ ′
j−1 = 1, because −γσj

−
γσ ′

j−1
−1 = −2γ1 −1 → 0, and hence the beta functions each diverge like (−2γ1 −

1)−1 by Lemma 3.8. To get the highest order of divergence to ∞, one chooses
σ ∈ {1,2}m such that σj = σ ′

j−1 = 1 happens as many times as possible.
In the case m is odd,

max
σ∈{1,2}m #

{
j : σj = σ ′

j−1 = 1, j = 1, . . . ,m
} = (m − 1)/2,

because if σj = σ ′
j−1 = 1, then σ ′

j = 2, and we therefore cannot have σj+1 = σ ′
j =

1. So

Cm(γ1, γ2; t, c) ∼ cB(1/2,−2γ1 − 1)(m−1)/2 ∼ c(−2γ1 − 1)−(m−1)/2,(33)

which diverges to ∞ as γ1 → −1/2. By (32) and (33), when m is odd,

κm

(
n∑

i=1

ciZγ1,γ2(ti)

)
= 1

2
(m − 1)!A(γ1, γ2)

mCm(γ1, γ2; t, c)

(34)
∼ c(−2γ1 − 1)1/2 → 0.

When m is even, the sequences σ for which one has the greatest number of j ’s
such that σj = σ ′

j−1 = 1 is

argmax
σ∈{1,2}m

#
{
j : σj = σ ′

j−1 = 1, j = 1, . . . ,m
}

(35)
= (1,2,1,2, . . . ,1,2) or (2,1,2,1, . . . ,2,1),
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and one gets maximally m/2 number of j ’s where σj = σ ′
j−1 = 1. The product

of the m/2 contributing beta factors diverge like (−2γ1 − 1)m/2. But since the
case m even will yield a nonzero limit, we need to keep track of the multiplicative
constants. Because σ = (1,2,1,2, . . . ,1,2) and σ = (2,1,2,1, . . . ,2,1) yield the
same term, one has as γ1 → −1/2 and γ2 → γ that

Cm(γ1, γ2; t, c)

∼ 2(−2γ1 − 1)−m/2

[
n∑

i1,...,in=1

ci1 · · · cimB(γ + 1,−2γ − 1)m/2

×
∫ ti1

0
· · ·

∫ tim

0
|s1 − s2|2γ+1|s3 − s4|2γ+1 · · · |sm−1 − sm|2γ+1 ds

]
(36)

= 2(−2γ1 − 1)−m/2(2γ + 3)−m/2(γ + 1)−m/2B(γ + 1,−2γ − 1)m/2

×
[

n∑
i1,i2=1

ci1ci2

2

(|ti1 |2γ+3 + |ti2 |2γ+3 − |ti1 − ti2 |2γ+3)]m/2

,

where the asymptotic equivalence ∼ in the first line can be justified by the domi-
nated convergence theorem, and the last equality is due to Lemma 3.7.

Combining (13), (32) and (36), one gets as γ1 → −1/2 and γ2 → γ that for m

even,

κm

(
n∑

i=1

ciZγ1,γ2(ti)

)

(37)

→ (m − 1)!
[

n∑
i1,i2=1

ci1ci2

2

(|ti1 |2γ+3 + |ti2 |2γ+3 − |ti1 − ti2 |2γ+3)]m/2

.

The proof is complete by comparing (34) and (37) with Lemma 3.9. �

We state a byproduct of the preceding proof which will be used in Section 5.

COROLLARY 3.2. Under the condition and the notation of Theorem 2.2, when
m ≥ 4 is even, we have

κm

(
Zγ1,γ2(1)

) = (m − 1)! + O(−γ1 − 1/2).

PROOF. We are focusing here on the marginal distribution, and hence t = 1,
c = 1 and n = 1 in (14). To get the rate of convergence O(−γ1 − 1/2), we need to
expand Cm(γ1, γ2;1,1) to a higher order than (36). Following the preceding proof
of Theorem 2.2, we need to consider the σ ’s with the second most occurrences of
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σ ′
j−1 = σj = 1. These σ ’s have σ ′

j−1 = σj = 1 occurring m/2 − 1 times instead of
m/2 times as in (35). Adding this type of σ ’s into (36), we have

Cm(γ1, γ2;1,1) = cγ,m(−γ1 − 1/2)−m/2 + O
(
(−γ1 − 1/2)−m/2+1)

,

where cγ,m is the constant given by (36) with t = 1, c = 1 and n = 1. By Proposi-
tion 3.1,

κm

(
Zγ1,γ2(1)

) = 1
2(m − 1)!A(γ1, γ2)

mCm(γ1, γ2;1,1).

So the conclusion follows in view of the expression A(γ1, γ2)
m in (32). �

3.3. Proof of Theorem 2.3.

LEMMA 3.10. Let t1, . . . , tm > 0, and m ≥ 4 be an even integer. Consider the
function:

f (a, b; t) =
∫ t1

0
· · ·

∫ tm

0
|x1 − xm|a|x2 − x1|b|x3 − x2|a|x4 − x3|b · · ·

(38)
× |xm−1 − xm−2|a|xm − xm−1|b dx,

where −1 < a,b < 0. Then as (a, b) → (0,−1), we have that

f (a, b; t) ∼ (b + 1)−m/2
∏

i=2,4,...,m

(
ti + ti−1 − |ti − ti−1|).

PROOF. First, assume without loss of generality that t1, . . . , tm < 1. Other-
wise, one can scale them by a change of variables.

We first derive a lower bound for f (a, b; t). Since each |xi − xi−1|a ≥ 1, one
has by Lemma 3.7 that

f (a, b; t) ≥ f (0, b; t)

= ∏
i=2,4,...,m

∫ ti

0

∫ ti−1

0
|xi − xi−1|b dxi dxi−1

(39)
= (b + 1)−m/2(b + 2)−m/2

∏
i=2,4,...,m

(
tb+2
i + tb+2

i−1 − |ti − ti−1|b+2)

∼ (b + 1)−m/2
∏

i=2,4,...,m

(
ti + ti−1 − |ti − ti−1|) as b → −1.

To get an upper bound for f (a, b; t), we apply the Cauchy–Schwarz inequality
to break the cyclic structure. In particular in (38), view |x1 − xm|a|x3 − x2|a as the
integrand, and treat the other factors as the density of measure. We have

f (a, b; t) ≤
√

f1(a, b; t)f2(a, b; t),(40)
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where

f1(a, b; t) =
∫ t1

0
dx1 · · ·

∫ tm

0
dxm|x1 − xm|2a|x2 − x1|b|x4 − x3|b|x5 − x4|a · · ·

× |xm−1 − xm−2|a|xm − xm−1|b
and

f2(a, b; t) =
∫ t1

0
dx1 · · ·

∫ tm

0
dxm|x3 − x2|2a|x2 − x1|b|x4 − x3|b|x5 − x4|a · · ·

× |xm−1 − xm−2|a|xm − xm−1|b.
Set

|x|a = 1 + ha(x).

Then the integrand in f1 can be rewritten as[
1 + h2a(x1 − xm)

]|x2 − x1|b|x4 − x3|b[
1 + ha(x5 − x4)

] · · ·
× [

1 + ha(xm−1 − xm−2)
]|xm − xm−1|b.

Observe that the product of terms involving neither ha nor h2a equals f (0, b; t).
Hence, one can write

f1(a, b; t) = f (0, b; t) + R(a, b; t),

where the remainder R(a, b; t) is a sum of terms each involving at least one ha

or h2a . We claim that |R(a, b; t)| = o((b + 1)−m/2). Indeed, let R1(a, b; t) be the
term of R(a, b; t) involving only one h2a and no other ha . Using the fact that when
f is a nonnegative function and 0 < x1, x2 < t , we have∫ t

0
f (x2 − x1) dx2 =

∫ t−x1

−x1

f (x) dx ≤
∫ 1

−1
f (x) dx.

Therefore,∣∣R1(a, b; t)
∣∣

=
∫ t1

0
dx1 · · ·

∫ tm

0
dxmh2a(x1 − xm)|x2 − x1|b|x4 − x3|b · · · |xm − xm−1|b

≤
∫ t1

0
dx1

∫ t3

0
dx3 · · ·

∫ tm

0
dxmh2a(x1 − xm)

×
∫ 1

−1
|x2|b dx2|x4 − x3|b · · · |xm − xm−1|b

≤ 2(b + 1)−1

×
∫ t3

0
dx3 · · ·

∫ tm

0
dxm

∫ 1

−1
h2a(x1) dx1|x4 − x3|b · · · |xm − xm−1|b(41)
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≤ 2(b + 1)−1

×
∫ t3

0
dx3 · · ·

∫ tm

0
dxm

∫ 1

−1

(|x1|2a − 1
)
dx1|x4 − x3|b · · · |xm − xm−1|b

= 4
[
(2a + 1)−1 − 1

]
(b + 1)−1

∫ t3

0
dx3 · · ·

×
∫ tm

0
dxm|x4 − x3|b|x6 − x5|b · · · |xm − xm−1|b

≤ · · · ≤ C
[
(2a + 1)−1 − 1

]
(b + 1)−m/2 = o(1)(b + 1)−m/2.

Similar estimates apply to the other terms of R(a, b; t), which may involve a
greater number of ha or h2a , and end up converging faster to zero as a → 0. Hence,

f1(a, b; t) ≤ f (0, b; t) + o
(
(b + 1)−m/2)

∼ (b + 1)−m/2
∏

i=2,4,...,m

(
ti + ti−1 − |ti − ti−1|)

using (39). The same estimate holds for f2(a, b; t). Hence, by (40),

f (a, b; t) ≤ f (0, b; t) + o
(
(b + 1)−m/2)

(42)
∼ (b + 1)−m/2

∏
i=2,4,...,m

(
ti + ti−1 − |ti − ti−1|).

Combining (39) and (42) completes the proof. �

LEMMA 3.11. Let Xρ(t) be the limit process in (10). For m ≥ 3,

κm

(
n∑

i=1

ciXρ(ti)

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ρm/2(m − 1)!
[

n∑
i,j=1

cicj

1

2

(|ti | + |tj | − |ti − tj |)
]m/2

,

if m is even,

0, if m is odd.

PROOF. Then because B1(t), B2(t) and W are independent,

κm

(
n∑

i=1

ciXρ(ti)

)
= κm

(
ρ1/2

n∑
i=1

ciWB(ti)

)
+ κm

(
(1 − ρ)1/2

n∑
i=1

ciB
′(ti)

)
.

Now note that the second term is Gaussian, and thus the cumulants of order higher
than 2 are always zero. Applying Lemma 3.9 (with γ = −1) to the first term com-
pletes the proof. �

Now we proceed to the proof of Theorem 2.3. Again by Lemma 3.6, tightness
always holds. We only need to show the convergence of the finite-dimensional
distributions.
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PROOF OF
f.d.d.−→ IN THEOREM 2.3. The distribution of

∑n
i=1 ciXρ(ti) is

moment-determinate since it is a second-order polynomial in normal random vari-
ables (see, e.g., Slud [30]). One can therefore use a method of moments.

We analyze the asymptotics of the cumulants in (13) with m ≥ 3 and A(γ1, γ2)

as given in (21) as (γ1, γ2) → (−1/2,−1). First, by Lemma 3.8,

A(γ1, γ2)
m

∼ (γ1 + γ2 + 3/2)m/2

× [
B(1/2,1/2)B(γ2 + 1,1/2) + B(1/2,−2γ1 − 1)B(γ2 + 1,1)

]−m/2(43)

∼ (γ1 + γ2 + 3/2)m/2[
B(1/2,−2γ1 − 1)B(γ2 + 1,1)

]−m/2

∼ (γ1 + γ2 + 3/2)m/2(−2γ1 − 1)m/2(γ2 + 1)m/2,

which converges to 0.
Now we analyze the asymptotics of the terms of Cm(γ1, γ2; t, c) in (14) as σ

varies in {1,2}m. When m is even, consider first the two main terms where

σ = (1,2,1,2, . . . ,1,2) and σ = (2,1,2,1, . . . ,2,1),

which correspond to #{j : σj = σ ′
j−1 = 1} = m/2. As in the proof of Theorem 2.2,

the corresponding term when σ = (1,2,1,2, . . . ,1,2) in (14) [it is the same for
σ = (2,1,2,1, . . . ,2,1)] is

n∑
i1,...,im=1

ci1 · · · cimB(γ1 + 1,−2γ1 − 1)m/2B(γ2 + 1,−2γ2 − 1)m/2

×
∫ ti1

0
ds1 · · ·

∫ tim

0
dsm|s1 − sm|2γ1+1|s2 − s1|2γ2+1 · · ·

(44)
× |sm−1 − sm−2|2γ1+1|sm − sm−1|2γ2+1

∼ (−2γ1 − 1)−m/2(γ2 + 1)−m

[
n∑

i,j=1

cicj

1

2

(|ti | + |tj | − |ti − tj |)
]m/2

,

where the last line is due to Lemmas 3.8 and 3.10.
Any other σ term in (14) is negligible because it is of order O((−2γ1 −

1)−r (γ2 + 1)−m), where

r = #
{
j : σj = σ ′

j−1 = 1
} = #

{
j : σj = σ ′

j−1 = 2
}
< m/2.(45)

Indeed, let us suppose (45) and examine a corresponding σ term in the expansion
of the product

∏m
j=1 in (14). Call this term Pm. In Pm, there are r factors of

B(γ1 + 1,−2γ1 − 1)|sj − sj−1|2γ1+1,(46)
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and there are r factors of

B(γ2 + 1,−2γ2 − 1)|sj − sj−1|2γ2+1.(47)

Since (45) implies that #{j : σj �= σ ′
j−1} = m − 2r , there are also m − 2r factors

in Pm, which are either

(sj − sj−1)
γ1+γ2+1
+ B(γ1 + 1,−γ1 − γ2 − 1)

+ (sj−1 − sj )
γ1+γ2+1
+ B(γ2 + 1,−γ1 − γ2 − 1)

or

(sj − sj−1)
γ1+γ2+1
+ B(γ2 + 1,−γ1 − γ2 − 1)

+ (sj−1 − sj )
γ1+γ2+1
+ B(γ1 + 1,−γ1 − γ2 − 1).

These last two expressions are both bounded by

|sj − sj−1|γ1+γ2+1[
B(γ2 + 1,−γ1 − γ2 − 1)

(48)
+ B(γ1 + 1,−γ1 − γ2 − 1)

]
.

In view of Lemma 3.8, the beta functions in (46), (47) and (48) behave like
(−2γ1 − 1)−1, (γ2 + 1)−1 and (γ2 + 1)−1, respectively. Therefore, the beta func-
tions contribute an order

(−2γ1 − 1)−r (γ2 + 1)−r (γ2 + 1)−(m−2r) = (−2γ1 − 1)−r (γ2 + 1)−(m−r).

The integrand involving |sj−1 − sj |2γ2+1 contribute an order (γ2 + 1)−r . So the
total order is (−2γ1 −1)−r (γ2 +1)−m. These arguments can be rigorously justified
by first applying the Cauchy–Schwartz as in (40) to break the cyclic integrand, and
then bound as in (41). Therefore in view of (44), and after also including the case
σ = (2,1,2,1, . . . ,2,1), we conclude that

Cm(γ1, γ2; t, c)
(49)

∼ 2(−2γ1 − 1)−m/2(γ2 + 1)−m

[
n∑

i,j=1

cicj

1

2

(|ti | + |tj | − |ti − tj |)
]m/2

,

if m is even.
When m is odd, there are at most (m − 1)/2 times of σj = σ ′

j−1 = 1 or σj =
σ ′

j−1 = 2. It can be shown similarly that Cm(γ1, γ2; t, c) is of the order

(−2γ1 − 1)−(m−1)/2(γ2 + 1)−m,(50)
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which is dominated by the order of convergence to 0 of A(γ1, γ2)
m in (43). Now

combining this fact with (9), (13), (43) and (49), we have when m is even,

κm

(
n∑

i=1

ciZγ1,γ2(ti)

)

∼
(

γ1 + γ2 + 3/2

γ2 + 1

)m/2

(m − 1)!
[

n∑
i,j=1

cicj

1

2

(|ti | + |tj | − |ti − tj |)
]m/2

(51)

→ ρm/2(m − 1)!
[

n∑
i,j=1

cicj

1

2

(|ti | + |tj | − |ti − tj |)
]m/2

,

and when m is odd,

κm

(
n∑

i=1

ciZγ1,γ2(ti)

)
→ 0.

Now use Lemma 3.11 to identify the limit process. �

3.4. Proof of Theorem 2.4. We state first a combinatorial result.

LEMMA 3.12. Let σ = (σ1, . . . , σm) ∈ {1,2}m. Let σ ′ = (σ ′
1, . . . , σ

′
m) be the

complement of σ , namely, σ ′
i = 1 if σi = 2 and σ ′

i = 2 if σi = 1, i = 1, . . . ,m. Let
σ0 be understood as σm and let σ ′

0 be understood as σ ′
m. Then for a fixed integer

0 ≤ r ≤ m/2,

#
{
σ ∈ {1,2}m : #

{
j : σj = σ ′

j−1 = 1
} = r

} = 2
(

m

2r

)
.(52)

PROOF. If σj−1 �= σj , we say that there is an alternation at j . There are
(m
k

)
ways to place k alternations. The positions of the alternations determine the whole
σ up to the replacement of 1’s into 2’s and vice versa. Hence, there are 2

(m
k

)
pos-

sible σ ’s. To relate k to r , note that the relation σj = σ ′
j−1 holds if and only if

σj−1 �= σj . Since

r = #
{
j : σj = σ ′

j−1 = 1
} = #

{
j : σj = σ ′

j−1 = 2
}
,

we have

k = #{j : σj �= σj−1} = #
{
j : σj = σ ′

j−1 = 1
} + #

{
j : σj = σ ′

j−1 = 2
} = 2r. �

LEMMA 3.13. Let Yρ(t) be the limit process in (12). For m ≥ 3,

κm

(
n∑

i=1

ciYρ(ti)

)
= [(ρ + 1)−1 + (2

√
ρ)−1]m + [(ρ + 1)−1 − (2

√
ρ)−1]m

[(ρ + 1)−2 + (4ρ)−1]m/2

(53)

×
(

n∑
i=1

citi

)m
(m − 1)!

2
.
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PROOF. Let

aρ = (ρ + 1)−1 + (2
√

ρ)−1√
2(ρ + 1)−2 + (2ρ)−1

, bρ = (ρ + 1)−1 − (2
√

ρ)−1√
2(ρ + 1)−2 + (2ρ)−1

.

Because X1 and X2 are two independent standardized χ2
1 random variables, we

have

κm

(
n∑

i=1

ciYρ(ti)

)
= κm

(
n∑

i=1

citi(aρX1 + bρX2)

)

=
(

n∑
i=1

citi

)m[
κm(aρX1) + κm(bρX2)

]

=
(

n∑
i=1

citi

)m(
am
ρ + bm

ρ

)
κ(X1)

= 2m/2(
am
ρ + bm

ρ

)( n∑
i=1

citi

)m
(m − 1)!

2
.

The factor 2m/2(am
ρ + bm

ρ ) can be rewritten as the first factor in (53). �

Note that a +b ∼ A+B for a, b,A,B > 0, if a ∼ A, b ∼ B and a/b ∼ λ, where
λ is a fixed number from 0 to ∞ (can be ∞), as will always be the case under our
assumptions.

We now prove Theorem 2.4. In view of Lemma 3.6, we only need to show the
convergence of the finite-dimensional distributions.

PROOF OF
f.d.d.−→ IN THEOREM 2.4. We can use a method of moments again

because the limit
∑n

i=1 ciYρ(ti) is a second-order polynomial in normal random
variables. We analyze the asymptotics of the cumulants in (13) with m ≥ 3 and
A(γ1, γ2) in (21) as (γ1, γ2) → (−1/2,−1/2). Lemma 3.8 yields

A(γ1, γ2)
m ∼ [

(−γ1 − γ2 − 1)−2 + (−2γ1 − 1)−1(−2γ2 − 1)−1]−m/2
,(54)

and Cm in (14) satisfies

Cm(γ1, γ2; t, c) ∼
(

n∑
i=1

citi

)m ∑
σ∈{1,2}m

m∏
j=1

(−γσj
− γσ ′

j−1
− 1)−1,(55)

where we get the term (
∑n

i=1 ci ti)
m from

∑n
i1,...,im=1 ci1 · · · cim

∫ ti1
0 ds1 · · · ∫ tim

0 dsm.
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Let r = #{j : σj = σ ′
j−1 = 1} = #{j : σj = σ ′

j−1 = 2}. Then using Lemma 3.12,
we can write

∑
σ∈{1,2}m

m∏
j=1

(−γσj
− γσ ′

j−1
− 1)−1

(56)

= ∑
0≤r≤m/2

2
(

m

2r

)
(−2γ1 − 1)−r (−2γ2 − 1)−r (−γ1 − γ2 − 1)−(m−2r).

Hence by (13), (54), (55) and (56), one has

κm

(
n∑

i=1

ciZγ1,γ2(ti)

)

(57)

∼ (m − 1)!
(

n∑
i=1

citi

)m ∑
0≤r≤m/2

(
m

2r

)
U(γ1, γ2;m,r),

where

U(γ1, γ2;m,r) := (−2γ1 − 1)−r (−2γ2 − 1)−r (−γ1 − γ2 − 1)−(m−2r)

[(−γ1 − γ2 − 1)−2 + (−2γ1 − 1)−1(−2γ2 − 1)−1]m/2 .

As (γ1, γ2) → (−1/2,−1/2) and (γ1 + 1/2)/(γ2 + 1/2) → ρ ∈ [0,1], in the case
ρ > 0, some elementary calculation shows

U(γ1, γ2;m,r) → [1/(2
√

ρ)]2r [1/(ρ + 1)]m−2r

[(ρ + 1)−2 + (4ρ)−1]m/2 ,(58)

and in the case ρ = 0,

U(γ1, γ2;m,r) →
{

1, if r = m/2 (m must be even in this case),
0, if r < m/2.

(59)

This expression (59) also coincides with the limit in (58) as ρ → 0. In the argument
below, we omit the case ρ = 0, which can be either treated separately, or obtained
by taking the limit as ρ → 0.

Set a = 1/(2
√

ρ) and b = 1/(ρ + 1). Using the identity (a + b)m + (a − b)m =∑
0≤r≤m/2 2

(m
2r

)
a2rbm−2r , one can write following (57) and (58) that

κm

(
n∑

i=1

ciZγ1,γ2(ti)

)
→ (a + b)m − (a − b)m

(a2 + b2)m/2

(
n∑

i=1

citi

)m
(m − 1)!

2
,

which is (53). Now use Lemma 3.13 to identify the limit process, completing the
proof. �
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Additional results. We deal now with the following additional three points:

1. We show that the weak convergence proved in the previous theorems cannot
be strengthened to convergence in L2(�) nor even in probability.

2. We apply the results of Nourdin and Peccati [21] and Eichelsbacher and
Thäle [11] to determine the rate of convergence on the boundaries d and e1 (or e2).

3. We include an alternate proof of Theorem 2.2 in the spirit of Remark 2.1
which provides further insight on the convergence.

4. No convergence in L2(�). The generalized Rosenblatt process Zγ1,γ2(t)

was defined in (1) [see also (6)]. We have shown weak convergence (convergence
in distribution) for the generalized Rosenblatt process Zγ1,γ2(t) in previous the-
orems. Is it possible that some of these convergences are actually in a stronger
mode, say, in probability? We provide a negative answer here.

THEOREM 4.1. In Theorems 2.1, 2.2, 2.3 and 2.4, the weak convergence can-
not be extended to convergence in L2(�), nor even to convergence in probability.

REMARK 4.1. In fact, it suffices to show that the convergence cannot be
extended to convergence in L2(�). This is because, on a fixed order Wiener
chaos, convergence in L2(�) and convergence in probability are equivalent. See
Schreiber [29]. Alternatively, to verify the equivalence, suppose that Xn is a se-
quence on a fixed order Wiener chaos, and Xn converges in probability to X. The
sequence is therefore tight. Then by, for example, Lemma 2.1(ii) of Nourdin and
Rosinski [23], supnE|Xn|p < ∞ for any p > 0, which entails uniform integrabil-
ity, and hence convergence in L2(�).

To prove Theorem 4.1, it suffices to show that any sequence of

Zγ1,γ2 := Zγ1,γ2(1)

as (γ1, γ2) approach the boundaries is not a Cauchy sequence in L2(�). Let
(α1, α2) and (γ1, γ2) be in the region � in (2). Then since Zγ1,γ2 is standardized,
we have

E(Zα1,α2 − Zγ1,γ2)
2 = 2 − 2EZα1,α2Zγ1,γ2 .(60)

If (α1, α2) and (γ1, γ2) converge to the same point on the boundary, we may expect
that EZα1,α2Zγ1,γ2 → 1 and hence E(Zα1,α2 − Zγ1,γ2)

2 → 0, which would prove
Cauchy convergence. We will show, however, that

lim inf
(α1,α2),(γ1,γ2)→ boundary point

EZα1,α2Zγ1,γ2 < 1.(61)

In other words, we will show that there is no L2(�) continuity at the boundary.
First, we compute the covariance in (60).
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LEMMA 4.1.

EZα1,α2Zγ1,γ2

= A(α1, α2)A(γ1, γ2)(α1 + α2 + γ1 + γ2 + 3)−1(α1 + α2 + γ1 + γ2 + 4)−1

× [
B(α1 + 1,−α1 − γ1 − 1)B(α2 + 1,−α2 − γ2 − 1)

(62)
+ B(γ1 + 1,−α1 − γ1 − 1)B(γ2 + 1,−α2 − γ2 − 1)

+ B(α2 + 1,−α2 − γ1 − 1)B(α1 + 1,−α1 − γ2 − 1)

+ B(γ1 + 1,−α2 − γ1 − 1)B(γ2 + 1,−α1 − γ2 − 1)
]
.

PROOF. We shall use the representation (6) of Zγ1,γ2(t) in order to apply the
formula

EI2(f )I2(g) = 2〈f,g〉L2(R2)

for symmetric functions f and g (see (7.3.39) of Peccati and Taqqu [25]). Using
(18), we get

2A(α1, α2)
−1A(γ1, γ2)

−1
EZα1,α2Zγ1,γ2

=
∫
[0,1]2

ds
∫
R2

dx
[
(s1 − x1)

α1+ (s1 − x2)
α2+ + (s1 − x1)

α2+ (s1 − x2)
α1+

]
× [

(s2 − x1)
γ1+ (s2 − x2)

γ2+ + (s2 − x1)
γ2+ (s2 − x2)

γ1+
]

= 2
∫
[0,1]2

ds
[
(s2 − s1)

α1+α2+γ1+γ2+2
+

× B(α1 + 1,−α1 − γ1 − 1)B(α2 + 1, α2 − γ2 − 1)

+ (s1 − s2)
α1+α2+γ1+γ2+2
+ B(γ1 + 1,−α1 − γ1 − 1)

× B(γ2 + 1,−α2 − γ2 − 1)

+ (s2 − s1)
α1+α2+γ1+γ2+2
+ B(α2 + 1,−α2 − γ1 − 1)

× B(α1 + 1,−α1 − γ2 − 1)

+ (s1 − s2)
α1+α2+γ1+γ2+2
+ B(γ1 + 1,−α2 − γ1 − 1)

× B(γ2 + 1,−α2 − γ2 − 1)
]
.

Since α1 +α2 > −3/2 and γ1 + γ2 > −3/2, we have α1 +α2 + γ1 + γ2 + 2 > −1.
Since ∫

[0,1]2
(s1 − s2)

u+ ds =
∫
[0,1]2

(s2 − s1)
u+ ds = (u + 1)−1(u + 2)−1

for u > −1, we get (62). �
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PROOF OF THEOREM 4.1. Case of Theorem 2.1. By (7), an element of the sec-
ond chaos converges in distribution to a Gaussian. That this cannot be extended to
convergence in L2(�) follows from the fact that {I2(f ) : f ∈ L2(R2)} is a closed
subspace in L2(�). Hence the L2(�) limit of a double Wiener–Itô integral must
still be a double Wiener–Itô integral, which means that it cannot be Gaussian.

Case of Theorem 2.2. Let (α1, α2) → (−1/2, γ ) and (γ1, γ2) → (−1/2, γ ),
where γ ∈ (−1,−1/2). Assume in addition that the convergence speeds are com-
parable, that is, (α1 + 1/2)/(γ1 + 1/2) ∼ r ∈ (0,1). Then using (32) with m = 1,
Lemma 3.8, and (62), one has

EZα1,α2Zγ1,γ2

∼ (−2α1 − 1)1/2(−2γ1 − 1)1/2(2γ + 3)(γ + 1)B(γ + 1,−2γ − 1)−1

× (2 + 2γ )−1(3 + 2γ )−1[
2B(γ + 1,−2γ − 1)(−α1 − γ1 − 1)−1]

∼ (−2α1 − 1)1/2(−2γ1 − 1)1/2

(−α1 − γ1 − 1)
∼ 2r1/2/(1 + r) < 1.

Case of Theorem 2.3. When ρ < 1, the limit in (10) involves a Gaussian com-
ponent, which by the same reason as in “Case of Theorem 2.1” implies that L2(�)

convergence cannot hold. We only need to consider the case ρ = 1.
We therefore suppose that (α1, α2) → (−1/2,−1) and (γ1, γ2) → (−1/2,−1)

and that ρ = 1, that is by (9), that (α1 + 1/2)/(α2 + 1) → 0 and (γ1 + 1/2)/(γ2 +
1) → 0. Assume in addition that (α1 +1/2)/(γ1 +1/2) ∼ (α2 +1)/(γ2 +1) ∼ r ∈
(0,1). By (43) with m = 1, Lemma 3.8, and (62), we have

EZα1,α2Zγ1,γ2

∼ (α1 + α2 + 3/2)1/2(−2α1 − 1)1/2(α2 + 1)1/2(γ1 + γ2 + 3/2)1/2

× (−2γ1 − 1)1/2(γ2 + 1)1/2

× (α1 + α2 + γ1 + γ2 + 3)−1(−α1 − γ1 − 1)−1

× [
(α2 + 1)−1 + (γ2 + 1)−1]

∼ (α2 + 1)(−2α1 − 1)1/2(γ2 + 1)(−2γ1 − 1)1/2

(α2 + 1 + γ2 + 1)(−α1 − γ1 − 1)

× [
(α2 + 1)−1 + (γ2 + 1)−1]

∼ 2r1/2/(r + 1) < 1.

Case of Theorem 2.4. Suppose that (α1, α2) → (−1/2,−1/2) and (γ1, γ2) →
(−1/2,−1/2) and that (α1 +1/2)/(α2 +1/2) ∼ (γ1 +1/2)/(γ2 +1/2) ∼ ρ, where
ρ ∈ [0,1]. Assume in addition that (α1 + 1/2)/(γ1 + 1/2) ∼ (α2 + 1/2)/(γ2 +
1/2) ∼ r ∈ (0,1). We apply (54) with m = 1, (62) and Lemma 3.8. In this case, all
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beta functions in (62) blow up and we get

EZα1,α2Zγ1,γ2

∼ [
(−α1 − α2 − 1)−2 + (−2α1 − 1)−1(−2α2 − 1)−1]−1/2

× [
(−γ1 − γ2 − 1)−2 + (−2γ1 − 1)−1(−2γ2 − 1)−1]−1/2 × 1

2

× [
2(−α1 − γ1 − 1)−1(−α2 − γ2 − 1)−1

+ 2(−α2 − γ1 − 1)−1(−α1 − γ2 − 1)−1]
∼ 4r

(r + 1)2

(
(r + ρ)(1 + rρ) + (r + 1)2ρ

(1 + ρ)2 + 4ρ

)
(1 + ρ)2

(r + ρ)(1 + rρ)
,

which is close to zero if r is small. Thus, (61) holds. �

5. Convergence rate of marginal distribution on the boundaries. Rates of
convergence of the marginal distribution of multiple Wiener–Itô integrals are avail-
able when the limit is Gaussian or is a product of independent Gaussians. We can
thus apply these rates when converging to the boundaries of the triangle, with some
corners excluded.

First, we consider the convergence rate of the marginal distribution in the case
of Theorems 2.1 and 2.3 and the limit being Gaussian. We use the notation A � B,
where A and B are two nonnegative quantities, to denote that there exist constants
c < C independent of A and B such that cB ≤ A ≤ CB. Let dTV(X,Y ) denote
the total variation distance between the distributions of random variables X and Y ,
namely

dTV(X,Y ) = sup
S∈B(R)

∣∣P(X ∈ S) − P(Y ∈ S)
∣∣,

where B(R) denotes the Borel sets on R.
In Nourdin and Peccati [21] Theorem 1.2, the following result was established.

LEMMA 5.1. Let {Fγ : γ ∈ G ⊂ R
k} be a family of random variables defined

on a fixed-order Wiener chaos satisfying EF 2
γ = 1, where G is an open set of in-

dices. Suppose that the third cumulant κ3(Fγ ) and the fourth cumulant κ4(Fγ )

converge uniformly to zero as γ ∈ G approaches a set E ⊂ G (as the distance
between the point γ and the set E converges to zero). Then there exits a neighbor-
hood N (E) of E in R

k , such that when γ ∈ N (E) ∩ G, we have

dTV(Fγ ,N) � M(Fγ ),(63)

where N is a standard normal random variable and

M(Fγ ) = max
(∣∣EF 3

γ

∣∣, ∣∣EF 4
γ − 3

∣∣) = max
(∣∣κ3(Fγ )

∣∣, ∣∣κ4(Fγ )
∣∣).(64)
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(− 1
2 ,− 1

2 )

(− 1
2 ,−1)

(−1,− 1
2 )

N (Dε) ∩ �

Dε

FIG. 6. Illustration of the neighborhood N (Dε) of Dε in Theorem 5.1.

REMARK 5.1. Though the theorem was originally stated in Nourdin and Pec-
cati [21] for a sequence {Fn} with a discrete parameter n, examining the proof
there one sees that for (63) to hold, one only needs κ3(Fγ ) and κ4(Fγ ) to converge
uniformly to zero, which is implied by our statement of the theorem.

REMARK 5.2. Earlier in [8], the same result (63) was established for the fol-
lowing distributional distance dB(·, ·):

dB(X,Y ) = sup
h∈U

{∣∣Eh(X) −Eh(Y )
∣∣},(65)

where U is the class of functions that are twice differentiable with continuous
derivatives satisfying ‖h′′‖∞ < ∞.

In the case of Theorem 2.1, we considered convergence to the boundary
d through the neighborhood N (Dε) ∩ � illustrated in Figure 6. Applying
Lemma 5.1, we get the following.

THEOREM 5.1. Let Zγ1,γ2 = Zγ1,γ2(1), and let N be a standard normal ran-
dom variable. Then under the assumptions of Theorem 2.1, there exists a neigh-
borhood N (Dε) of the diagonal line segment Dε := {γ1 + γ2 + 3/2 = 0 : γ1, γ2 >

−1 + ε}, such that when (γ1, γ2) ∈ N (Dε) ∩ �, we3 have

dTV(Zγ1,γ2,N) � (γ1 + γ2 + 3/2)3/2.(66)

3Since � is an open set, N (Dε) ∩ � does not contain the segment Dε .
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PROOF. Since N is Gaussian, we can apply Lemma 5.1. To do so, we need to
compute the cumulants κ3 and κ4 which are given in Proposition 3.1. We examine
the relation (13) of Proposition 3.1 with A = A(γ1, γ2) given in (21), m = 1, t = 1,
and c = 1. The factor Cm(γ1, γ2,1,1) in (14) is a positive continuous function with
respect to (γ1, γ2). This can be shown by the dominated convergence theorem as
in Lemma 3.3. Under the assumption of Theorem 2.1, the parameter (γ1, γ2) is
restricted away from boundary. So Cm(γ1, γ2,1,1) is bounded below away from
zero and bounded above away from infinity, and so are the factors in (21) except
[2(γ1 + γ2) + 3]1/2, which goes to zero as γ1 + γ2 → −3/2. We get

κm(Zγ1,γ2) � A(γ1, γ2)
m � (γ1 + γ2 + 3/2)m/2, m ≥ 3.(67)

The maximum in (64) is then κ3(Fγ ). Combining this with (63), we get (66). �

From (67) and (63), it is the third cumulant that determines the rate of con-
vergence in the case of Theorem 2.1. When (γ1, γ2) is allowed to be close to the
corner (−1/2,−1), that is, in the case of Theorem 2.3 when ρ = 0, we will show
that the fourth cumulant may come into play in the rate of convergence.

THEOREM 5.2. Let Zγ1,γ2 = Zγ1,γ2(1), and let N be a standard normal ran-
dom variable. Then under the assumptions of Theorem 2.3 when ρ = 0, that is
when

−γ1 − 1/2 ∼ γ2 + 1,(68)

there exits a neighborhood N of (−1/2,−1), such that when (γ1, γ2) ∈ N ∩ �,
we have4

dTV(Zγ1,γ2,N) � (γ1 + γ2 + 3/2)3/2(γ2 + 1)−1(
1 + L(γ1, γ2)

)
,(69)

as (γ1, γ2) → (−1/2,−1), where

L(γ1, γ2) =
√

(−γ1 − 1/2)−1 − (γ2 + 1)−1

(70)
= o

(
(−γ1 − 1/2)−1/2)

or o
(
(γ2 + 1)−1/2)

.

PROOF. First in view of (9) with ρ = 0, we have

V (γ1, γ2) := (γ1 + γ2 + 3/2)3/2(γ2 + 1)−1 → 0 as (γ1, γ2) → (−1/2,−1).

By (13), (43), (50) with m = 3, and (68), we get for the third cumulant

κ3(Zγ1,γ2) � (−γ1 − 1/2)1/2(γ1 + γ2 + 3/2)3/2(γ2 + 1)−3/2

(71)
∼ V (γ1, γ2).

4As before, since � is an open set, N ∩ � does not contain the limit point (−1/2,−1).
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By (51) with m = 4 and also (68), we have for the fourth cumulant

κ4(Zγ1,γ2) �
(

γ1 + γ2 + 3/2

γ2 + 1

)2

∼ V (γ1, γ2)

(
γ1 + γ2 + 3/2

(−γ1 − 1/2)(γ2 + 1)

)1/2

(72)
= V (γ1, γ2)L(γ1, γ2).

Since max(x, y) � x + y for x, y ≥ 0, we get

max
[
κ3(γ1, γ2), κ4(γ1, γ2)

] � V (γ1, γ2)
[
1 + L(γ1, γ2)

]
.

We thus apply Lemma 5.1 to get (69). At last, note that (68) entails that

L(γ1, γ2) = (−γ1 − 1/2)−1/2

√
1 − −γ1 − 1/2

γ2 + 1

= o
(
(−γ1 − 1/2)−1/2)

or o
(
(γ2 + 1)−1/2)

. �

REMARK 5.3. In view of Remark 5.2, Theorems 5.1 and 5.2 also hold if the
distance dTV(·, ·) is replaced by the distance dB(·, ·) defined by (65).

REMARK 5.4. The rate of convergence to zero in (69) is always slower than
that of (66), which is expected since the corner (−1/2,−1) also belongs to the
non-Gaussian boundary.

REMARK 5.5. From (71) and (72), one has

κ4(Zγ1,γ2)

κ3(Zγ1,γ2)
�

√
(−γ1 − 1/2)−1 − (γ2 + 1)−1 = L(γ1, γ2),

which is the term (70) appearing in (69). Note that (−γ1 − 1/2)−1 > (γ2 + 1)−1

when (γ1, γ2) ∈ �. Therefore, in the case of Theorem 2.3, the fourth cumu-
lant plays a role in determining the rate of convergence as follows: if the fourth
cumulant converges much slower compared with the third cumulant, that is, if
L(γ1, γ2) → ∞, then this will slow the rate of convergence in (69); if L(γ1, γ2)

is asymptotically bounded, then both the third and fourth cumulants behave like
V (γ1, γ2).

Now we consider the marginal convergence rate in the case of Theorem 2.2 (see
Figure 3). This theorem involves a non-Gaussian limit. For two random variables
X and Y , we define the Wasserstein distance between their distributions to be

dW(X,Y ) = sup
h∈L

{∣∣Eh(X) −Eh(Y )
∣∣},

where L is the class of 1-Lipschitz functions [h ∈ L if |h(x) − h(y)| ≤ |x − y|].
The following result follows from Eichelsbacher and Thäle [11].
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LEMMA 5.2. Let Y = Z1Z2 where Zi’s are two independent standard normal
variables and let F = I2(f ) be an element on the second-order Wiener chaos with
EF 2 = 1. Then there exists a constant C > 0 such that

dW(F,Y ) ≤ C
(
1 + 1

6κ3(F )2 − 1
3κ4(F ) + 1

120κ6(F )
)1/2

.(73)

PROOF. By Proposition 1.2(iii) of Gaunt [14], the distribution of Z1Z2 is the
symmetric Variance-Gamma VG(1,0,1,0), that is, VG(2r,0,1/λ,0) with r = 1/2
and λ = 1. Inserting these values of r and λ in Theorem 5.10(b) of Eichelsbacher
and Thäle [11] gives (73). �

Using the preceding result, we get the following bound for the convergence rate
as (γ1, γ2) approaches the boundary e1.

THEOREM 5.3. Let Zγ1,γ2 = Zγ1,γ2(1), and let Y = Z1Z2 be as in Lemma 5.2.
As

(γ1, γ2) → (−1/2, γ ), −1 < γ < −1/2,

we have

dW(Zγ1,γ2, Y ) = O
(
(−γ1 − 1/2)1/2)

.(74)

PROOF. Following the proof of Theorem 2.2, one has by (34) that as
(γ1, γ2) → (−1/2, γ ),

κ3(Zγ1,γ2) = O
(
(−γ1 − 1/2)1/2)

.(75)

On the other hand by (37), we have the convergence κm(Zγ1,γ2) → (m − 1)! for m

even. So κ4(Zγ1,γ2) → 6 and κ6(Zγ1,γ2) → 120, and hence

1 + 1
6κ3(Zγ1,γ2)

2 − 1
3κ4(Zγ1,γ2) + 1

120κ6(Zγ1,γ2) → 1 + 0 − 2 + 1 = 0.

We thus need to study the rate of convergence of the even-order cumulants κ4 and
κ6. It follows from Corollary 3.2 that

κ4(Zγ1,γ2) = 6 + O(−γ1 − 1/2),
(76)

κ6(Zγ1,γ2) = 120 + O(−γ1 − 1/2).

The proof is complete by plugging (75) and (76) in (73). �

Recently, Arras et al. [2] obtained the rate of convergence when the limit is∑q
i=1 αiXi where Xi’s are standardized chi-square random variables with one de-

gree of freedom. Applying this result (Theorem 3.1 of Arras et al. [2]) to the
convergence of (γ1, γ2) ∈ � to the corner (−1/2,−1/2) in the context of The-
orem 2.4, they obtained as γ1 → −1/2 that

dW

(
Zγ1,γ2, Yρ(1)

) = O
(
(−γ1 − 1/2)1/2)

,

where Yρ(1) is as in Theorem 2.4. See Example 3.2 of Arras et al. [2].
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6. A constructive proof of Theorem 2.2. The method-of-moments proof of
Theorem 2.2 gives little intuitive insight of the convergence. Motivated by the ob-
servation made in Remark 2.1, we give an alternate proof of Theorem 2.2. The
proof is based on discretization which removes the singularities at s = x1 and
s = x2 of the integrand in (1), so that one is able to interchange the integration
orders between

∫ ′
R2 ·B(dx1)B(dx2) and

∫ t
0 ·ds. Then one uses the triangular ap-

proximation described at the end of the proof.
The proof is based on several lemmas. We use below the notation (s, x)

γ
N to

denote:

(s, x)
γ
N :=

( [Ns] − [Nx] + 1

N

)γ

I
{[Ns] > [Nx]}, γ < 0.(77)

Define also

[s − x]γN := (s − x + 2/N)γ I {s > x + 1/N}
(78)

≤ (s, x)
γ
N ≤ (s − x)γ I {s > x} = (s − x)

γ
+.

Let Zγ1,γ2(t) be as in (1), and let

ZN
γ1,γ2

(t) = AN(γ1, γ2)

∫ ′
R2

∫ t

0
(s, x1)

γ1
N (s, x2)

γ2
N dsB(dx1)B(dx2),(79)

where the Brownian measure B(·) is the same as the one defining Zγ1,γ2(t), and
where AN(γ1, γ2) is chosen such that EZN

γ1,γ2
(1)2 = 1.

LEMMA 6.1. For any t > 0, we have

lim
N→∞ lim sup

(γ1,γ2)→(−1/2,γ )

E
∣∣Zγ1,γ2(t) − ZN

γ1,γ2
(t)

∣∣2 = 0.(80)

PROOF. We take for simplicity that t = 1, while the other cases can be proved
similarly. Note that

E
∣∣Zγ1,γ2(1) − ZN

γ1,γ2
(1)

∣∣2 = 2 − 2EZγ1,γ2(1)ZN
γ1,γ2

(1).

So we need to show that

lim
N→∞ lim inf

(γ1,γ2)→(−1/2,γ )
EZγ1,γ2(1)ZN

γ1,γ2
(1) ≥ 1.(81)

Indeed, using the symmetrized kernel in (6), we have

EZγ1,γ2(1)ZN
γ1,γ2

(1) = 1

2
A(γ1, γ2)

1

2
AN(γ1, γ2)2!

∫
R2

dx1 dx2

∫ 1

0

∫ 1

0
ds1 ds2

× [
(s1 − x1)

γ1+ (s1 − x2)
γ2+ + (s1 − x1)

γ2+ (s1 − x2)
γ1+

]
(82)

× [
(s2, x1)

γ1
N (s2, x2)

γ2
N + (s2, x1)

γ2
N (s2, x2)

γ1
N

]
.
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By definition,

AN(γ1, γ2)
−2

= 1

2

∫ 1

0

∫ 1

0
ds1 ds2

∫
R2

dx1 dx2
[
(s1, x1)

γ1
N (s1, x2)

γ2
N + (s1, x1)

γ2
N (s1, x2)

γ1
N

]
× [

(s2, x1)
γ1
N (s2, x2)

γ2
N + (s2, x1)

γ2
N (s2, x2)

γ1
N

]
.

Applying the second inequality of (78) to (82), and using the normalization
AN(γ1, γ2), we have

EZγ1,γ2(1)ZN
γ1,γ2

(1) ≥ 1

2
A(γ1, γ2)AN(γ1, γ2)2AN(γ1, γ2)

−2 = A(γ1, γ2)

AN(γ1, γ2)
.

So (81) follows from the next lemma. �

LEMMA 6.2. Let the normalizations A(γ1, γ2) and AN(γ1, γ2) be as in (21)
and (79). Then

lim
N→∞ lim

(γ1,γ2)→(−1/2,γ )

A(γ1, γ2)

AN(γ1, γ2)
= 1,(83)

where −1 < γ1, γ2 < −1/2.

PROOF. By the second inequality of (78), we have

AN(γ1, γ2)
−2 ≤ A(γ1, γ2)

−2.(84)

By the first inequality of (78), we have

AN(γ1, γ2)
−2

≥ 1

2

∫ 1

0

∫ 1

0
ds1 ds2

×
∫
R2

dx1 dx2
([s1 − x1]γ1

N [s1 − x2]γ2
N + [s1 − x1]γ2

N [s1 − x2]γ1
N

)
(85)

× ([s2 − x1]γ1
N [s2 − x2]γ2

N + [s2 − x1]γ2
N [s2 − x2]γ1

N

)
= PN(γ1, γ2) + QN(γ1, γ2),

where

PN(γ1, γ2) = 2
∫

0<s1<s2<1
ds1 ds2

∫
R

[s1 − x1]γ1
N [s2 − x1]γ1

N dx1

×
∫
R

[s1 − x2]γ2
N [s2 − x2]γ2

N dx2
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and

QN(γ1, γ2) = 2
∫

0<s1<s2<1
ds1 ds2

∫
R

[s1 − x1]γ1
N [s2 − x1]γ2

N dx1

×
∫
R

[s1 − x2]γ2
N [s2 − x2]γ1

N dx2.

In the integrals over R, the exponents of QN alternate where as those of PN are
the same. Note that for α,β ∈ (−1,−1/2) and 0 < s1 < s2 < 1, we have∫

R

[s1 − x]αN [s2 − x]βN dx

=
∫ s1−1/N

−∞
(s1 − x + 2/N)α(s2 − x + 2/N)β dx

=
∫ ∞

0
(u + 3/N)α(s2 − s1 + u + 3/N)β du(86)

≤
∫ ∞

0
uα(u + s2 − s1)

β du

= (s2 − s1)
α+β+1B(α + 1,−α − β − 1),

after setting u = s1 − x − 1/N . Thus, the term QN from (85) satisfies

QN(γ1, γ2) ≤ 2(2γ1 + 2γ2 + 3)−1(2γ1 + 2γ2 + 4)−1

× B(γ1 + 1,−γ1 − γ2 − 1)B(γ2 + 1,−γ1 − γ2 − 1)(87)

= O(1)

as (γ1, γ2) → (−1/2, γ ). The other term PN in view of (78) and (86) becomes

PN(γ1, γ2)

= 2
∫

0<s1<s2<1
ds1 ds2

∫ ∞
0

(u + 3/N)γ1(s2 − s1 + u + 3/N)γ1 du

×
∫ ∞

0
(u + 3/N)γ2(s2 − s1 + u + 3/N)γ2 du.

Now in the second integral, use (u + 3/N)γ2 ≥ (s2 − s1 + u + 3/N)γ2 , and in the
third integral, replace u by u(s2 − s1) and then factor s2 − s1. One gets

PN(γ1, γ2)

≥ 2
∫

0<s1<s2<1
ds1 ds2

∫ ∞
0

(s2 − s1 + u + 3/N)2γ1 du

× (s2 − s1)
2γ2+1

∫ ∞
0

(
u + 3

N(s2 − s1)

)γ2(
1 + u + 3

N(s2 − s1)

)γ2

du.



EXTREME CRITICAL EXPONENT VALUES 1317

Since
∫ ∞

0 (s2 − s1 + u + 3/N)2γ1 du = (−2γ1 − 1)−1(s2 − s1 + 3/N)2γ1+1, one
has

PN(γ1, γ2)

≥ 2(−2γ1 − 1)−1
∫

0<s1<s2<1
ds1 ds2(s2 − s1 + 3/N)2γ1+1(s2 − s1)

2γ2+1

(88)

×
∫ ∞

0

(
u + 3

N(s2 − s1)

)γ2(
u + 3

N(s2 − s1)
+ 1

)γ2

du

=: RN(γ1, γ2).

As (γ1, γ2) → (−1/2, γ ), we have

(−2γ1 − 1)RN(γ1, γ2) → 2
∫

0<s1<s2<1
ds1 ds2(s2 − s1)

2γ+1

×
∫ ∞

0

(
u + 3

N(s2 − s1)

)γ (
u + 3

N(s2 − s1)
+ 1

)γ

du.

As N → ∞, by the monotone convergence theorem, the right-hand side of the
preceding line converges to

2
∫

0<s1<s2<1
ds1 ds2(s2 − s1)

2γ+1
∫ ∞

0
uγ (u + 1)γ du

= (2γ + 3)−1(γ + 1)−1B(γ + 1,−2γ − 1).

On the other hand, from (32) with m = 2 we have

A(γ1, γ2)
2 ∼ (−2γ1 − 1)(2γ + 3)(γ + 1)B(γ + 1,−2γ − 1)−1.(89)

Hence,

lim
N→∞ lim

(γ1,γ2)→(−1/2,γ )
A(γ1, γ2)

2RN(γ1, γ2) = 1.(90)

Combining (85), (87), (88) and (90) yields

lim inf
N→∞ lim inf

(γ1,γ2)→(−1/2,γ )

A(γ1, γ2)
2

AN(γ1, γ2)2 ≥ 1.

This with (84) yields (83). �

We will now interchange the integrals
∫ t

0 ·ds and
∫ ′
R2 ·dx1 dx2, and write

ZN
γ1,γ2

(t) = AN(γ1, γ2)

∫ ′
R2

[∫ t

0
(s, x1)

γ1
N (s, x2)

γ2
N B(dx1)B(dx2) ds

]
(91)

= AN(γ1, γ2)

∫ t

0

[∫ ′
R2

(s, x1)
γ1
N (s, x2)

γ2
N B(dx1)B(dx2)

]
ds a.s.,
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by the stochastic Fubini theorem (see Pipiras and Taqqu [27], Theorem 2.1). It
applies since ∫ t

0

∫
R2

[
(s, x1)

γ1
N (s, x2)

γ2
N

]2
dx1 dx2 ds < ∞.(92)

Relation (92) follows from the following lemma.

LEMMA 6.3. For any γ ∈ (−1,−1/2), t > 0 and N ∈ Z+, we have

sup
s∈[0,t]

∫
R

(s, x)
2γ
N dx < ∞.

PROOF. In view of (77),∫
R

(s, x)
2γ
N dx = 1

N

∫
R

( [Ns] − [Nx] + 1

N

)2γ

I
{[Ns] > [Nx]}d(Nx)

= N−2γ−1
∑

−∞<i<[Ns]

([Ns] − i + 1
)2γ = N2γ−1

∞∑
k=2

k−2γ < ∞

since γ < −1/2, where we set k = [Ns]− i +1. Since the last expression does not
depend on s, the conclusion of the lemma holds. �

By the product formula of Wiener–Itô integrals (see, e.g., Nourdin and Peccati
[20], Theorem 2.7.10), the process ZN

γ1,γ2
(t) in (91) can be rewritten as follows:

ZN
γ1,γ2

(t) = AN(γ1, γ2)

×
∫ t

0

[∫
R

(s, x1)
γ1
N B(dx1)

∫
R

(s, x2)
γ2
N B(dx2)

−E

∫
R

(s, x1)
γ1
N B(dx1)

∫
R

(s, x2)
γ2
N B(dx2)

]
ds.

Note that by the scaling property of Brownian motion, for j = 1,2,

XN
γj

(s) :=
∫
R

(s, x)
γj

N B(dx)

=
∫
R

( [Ns] − [Nx] + 1

N

)γj

I
{[Ns] > [Nx]}B(dx)

f.d.d.= N−γj−1/2
∑

−∞<i<[Ns]

([Ns] − i + 1
)γj εi,

where εi’s are i.i.d. standard normal random variables, and f.d.d.= means equal
in finite-dimensional distributions. Hence (recall that the Hurst index
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H = γ1 + γ2 + 2),

ZN
γ1,γ2

(t)
f.d.d.= AN(γ1, γ2)

∫ t

0

[
XN

γ1
(s)XN

γ2
(s) −EXN

γ1
(s)XN

γ2
(s)

]
ds

= AN(γ1, γ2)N
−H

[Nt]∑
n=1

[
Yγ1(n)Yγ2(n) −EYγ1(n)Yγ2(n)

]
(93)

+ RN(t, γ1, γ2),

where

Yγ (n) = ∑
−∞<i<n−1

(n − i)γ εi =
∞∑
i=2

iγ εn−i(94)

is a linear stationary sequence and

RN(t, γ1, γ2)

= AN(γ1, γ2)N
−H (

Nt − [Nt])(95)

× (
Yγ1

([Nt] + 1
)
Yγ2

([Nt] + 1
) −EYγ1

([Nt] + 1
)
Yγ2

([Nt] + 1
))

.

We first show that this preceding remainder term is negligible.

LEMMA 6.4.

lim
N→∞ lim sup

(γ1,γ2)→(−1/2,γ )

ERN(t, γ1, γ2)
2 = 0.(96)

PROOF. Since Nt − [Nt] ≤ 1 and Yγ (n) is stationary, we can write

ERN(t, γ1, γ2)
2

≤ N−2HAN(γ1, γ2)
2[
EYγ1(0)2Yγ2(0)2 − (

EYγ1(0)Yγ2(0)
)2]

.

We have

EYγ1(0)Yγ2(0) =
∞∑
i=2

iγ1+γ2, EYγj
(0)2 =

∞∑
i=2

i2γj , j = 1,2.(97)

By the diagram formula (see, e.g., Janson [16], Theorem 1.36), we have for jointly
centered Gaussian variables (Y1, Y2) that EY 2

1 Y 2
2 = 2(EY1Y2)

2 + EY 2
1 EY 2

2 . Ex-
pressing this as EY 2

1 Y 2
2 − (EY1Y2)

2 = (EY1Y2)
2 +EY 2

1 EY 2
2 , one gets

ERN(t, γ1, γ2)
2

(98)

≤ N−2HAN(γ1, γ2)
2

[( ∞∑
i=2

iγ1+γ2

)2

+
( ∞∑

i=2

i2γ1

)( ∞∑
i=2

i2γ2

)]
.
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The first and last sums remain bounded as (γ1, γ2) → (−1/2, γ ), but this is not
the case for the second sum. Since the function x2γ1 is decreasing, we have for any
integer k ≥ 0,

(−2γ1 − 1)−1(k + 2)2γ1+1 =
∫ ∞

2
(x + k)2γ1 dx ≤

∫ ∞
2

(x + k)γ1xγ1 dx

≤
∞∑
i=2

(i + k)γ1 iγ1 ≤
∞∑
i=2

i2γ1 ≤
∫ ∞

1
x2γ1 dx(99)

= (−2γ1 − 1)−1.

In particular,
∑∞

i=2 i2γ1 explodes like (−2γ1 − 1)−1 as γ1 → −1/2. This, how-
ever, will be compensated by AN(γ1, γ2)

2, since by (83) and (89), we have
AN(γ1, γ2) ∼ A(γ1, γ2) � (−2γ1 − 1) as (γ1, γ2) → (−1/2, γ ). Hence, (98) im-
plies

lim sup
(γ1,γ2)→(−1/2,γ )

N2H
ERN(t, γ1, γ2)

2 < ∞,

which entails (96). �

The following lemma is key.

LEMMA 6.5. Let Yγ (n) be as in (94). As (γ1, γ2) → (−1/2, γ ), one has the
following joint convergence in distribution:

(
A(γ1, γ2)Yγ1(n), Yγ2(n)

)N
n=1

d→ (
σγ W,Yγ (n)

)N
n=1,

for any N ∈ Z+, where W is a standard normal random variable which is inde-
pendent of Yγ (n), and

σγ = (2γ + 3)1/2(γ + 1)1/2B(γ + 1,−2γ − 1)−1/2.(100)

PROOF. Since (A(γ1, γ2)Yγ1(n), Yγ2(n))Nn=1 is always a centered and jointly
Gaussian vector, we only need to show that its covariance structure converges to
that of (σγ W,Yγ (n))Nn=1. Let us first compute the covariance of A(γ1, γ2)Yγ1 . By
(89) and (99), we have for m ≥ n (similarly for m < n)

E
[
A(γ1, γ2)Yγ1(n)A(γ1, γ2)Yγ1(m)

]
= A(γ1, γ2)

2
E

[
Yγ1(n)Yγ1(m)

]
∼ (2γ + 3)(γ + 1)B(γ + 1,−2γ − 1)−1(−2γ1 − 1)

∞∑
i=2

(i + m − n)γ1iγ1

∼ (2γ + 3)(γ + 1)B(γ + 1,−2γ − 1)−1 = σ 2
γ .
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Since the limit is independent of n, the limit process is indeed a fixed Gaussian
random variable, say σγ W .

We now focus on the cross-covariance between A(γ1, γ2)Yγ1 and Yγ2 . We have
for m ≥ n (similarly for m < n) that

E
[
A(γ1, γ2)Yγ1(n)Yγ2(m)

]
∼ [

(2γ + 3)(γ + 1)B(γ + 1,−2γ − 1)−1(−2γ1 − 1)
]1/2(101)

×
∞∑
i=2

(i + m − n)γ1iγ → 0,

because
∑∞

i=2 i−1/2+γ < ∞. Thus, we have asymptotic independence. Finally, as
γ2 → γ , the covariance structure of the second term Yγ2 converges to that of Yγ .
The proof is then complete. �

The following convergence of normalized sum of long-memory linear process
to fractional Brownian motion can be found in Giraitis, Koul and Surgailis [15],
Corollary 4.4.1, which was originally due to Davydov [10].

LEMMA 6.6. Let Yγ (n) be as in (94). Then as N → ∞

ZN
γ (t) := N−γ−2/3

[Nt]∑
n=1

Yγ (n)
f.d.d.−→ σ−1

γ Bγ+3/2(t),

where σγ is as in (100) and Bγ+3/2(t) is a standard fractional Brownian motion
with Hurst index γ + 3/2.

We are now ready to combine the last few lemmas into an alternate proof of
Theorem 2.2.

PROOF OF THEOREM 2.2. Tightness still follows from Lemma 3.6. To
prove the convergence of the finite-dimensional distributions, namely, to prove
that

Zγ1,γ2(t)
f.d.d.−→ WBγ+3/2 as (γ1, γ2) → (−1/2, γ ),

it is sufficient to show that the following triangular approximation relations hold
(see, e.g., Lemma 4.2.1 of Giraitis, Koul and Surgailis [15]):

lim
N→∞ lim sup

(γ1,γ2)→(−1/2,γ )

E

∣∣∣∣Zγ1,γ2(t)

(102)

− A(γ1, γ2)

AN(γ1, γ2)

[
ZN

γ1,γ2
(t) − RN(t, γ1, γ2)

]∣∣∣∣
2

= 0,
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A(γ1, γ2)

AN(γ1, γ2)

[
ZN

γ1,γ2
(t) − RN(t, γ1, γ2)

] f.d.d.−→ σγ WZN
γ (t)

(103)
as (γ1, γ2) → (−1/2, γ ),

σγ WZN
γ (t)

f.d.d.−→ WBγ+3/2(t) as N → ∞.(104)

The convergence (102) follows from Lemmas 6.1, 6.2 and 6.4. For the convergence
(103), we have by (93), Lemma 6.5 and (101) that

A(γ1, γ2)

AN(γ1, γ2)

[
ZN

γ1,γ2
(t) − RN(t, γ1, γ2)

]

= N−H
[Nt]∑
n=1

[
A(γ1, γ2)Yγ1(n)Yγ2(n) −EA(γ1, γ2)Yγ1(n)Yγ2(n)

]

f.d.d.−→ N−γ−3/2
[Nt]∑
n=1

[
σγ WYγ (n) − 0

] = σγ WZN
γ (t).

Finally, (104) follows from Lemma 6.6. �
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