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WHEN DOES A DISCRETE-TIME RANDOM WALK IN R
n

ABSORB THE ORIGIN INTO ITS CONVEX HULL?

BY KONSTANTIN TIKHOMIROV AND PIERRE YOUSSEF

University of Alberta

We connect this question to a problem of estimating the probability that
the image of certain random matrices does not intersect with a subset of the
unit sphere S

n−1. In this way, the case of a discretized Brownian motion is
related to Gordon’s escape theorem dealing with standard Gaussian matrices.
We show that for the random walk BMn(i), i ∈ N, the convex hull of the first
Cn steps (for a sufficiently large universal constant C) contains the origin
with probability close to one. Moreover, the approach allows us to prove that
with high probability the π/2-covering time of certain random walks on S

n−1

is of order n. For certain spherical simplices on Sn−1, we prove an extension
of Gordon’s theorem dealing with a broad class of random matrices; as an
application, we show that Cn steps are sufficient for the standard walk on Zn

to absorb the origin into its convex hull with a high probability. Finally, we
prove that the aforementioned bound is sharp in the following sense: for some
universal constant c > 1, the convex hull of the n-dimensional Brownian mo-
tion conv{BMn(t) : t ∈ [1, cn]} does not contain the origin with probability
close to one.

1. Introduction. The goal of this paper is to study certain convexity aspects
of high-dimensional random walks. Given a discrete-time random walk W(i) with
values in R

n, we are interested in estimating the number of steps N when the ori-
gin becomes an interior point of the convex hull of {W(i)}i≤N . This question was
raised by I. Benjamini and considered by R. Eldan in [4]. Three models of random
walks are treated in our paper: a walk given by a discretization of the standard
Brownian motion in R

n, the standard random walk on Z
n and a random walk on

the unit sphere S
n−1. We employ a novel approach that reduces the problem to

a question about certain geometric properties of random matrices. Random ma-
trix theory has strong connections with asymptotic geometric analysis (see, e.g.,
[2] and [22]); in particular, random matrices appear in Gordon’s escape theorem
[8] and in various estimates of diameters of random sections of convex sets [15,
18]. The interconnection between random walks, random matrix theory and high-
dimensional convex geometry is at the heart of our paper.

The standard Brownian motion with values in R is defined as a centered Gaus-
sian process BM1(t), t ∈ [0,∞), such that the covariance cov(BM1(t),BM1(s)) =
min(t, s) for all t, s ∈ [0,∞). The Brownian motion in R

n, denoted by BMn, is a
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vector of n independent one-dimensional Brownian motions. We refer the reader
to [17] for extensive information on the process BMn. Various properties of the
convex hull of the Brownian motion in high dimensions were studied recently in
[4, 5] and [10]; in particular, results on interior and extremal points of the convex
hulls were obtained. It is easy to see that the interior of conv{BMn(t) : 0 < t < 1}
(with “conv” denoting the convex hull) contains the origin almost surely. In the
case when the domain t ∈ (0,1) is replaced by a finite subset of the unit interval,
the origin is outside of the convex hull with a nonzero probability. Our paper is
motivated by the following problem which in a more specific form was considered
by Eldan in [4].

Let t1 < t2 < · · · < tN be points in [0,1]. How is the probability that the origin
belongs to the interior of conv{BMn(ti) : i ≤ N} related to the structure of the set
{ti}i≤N ?

In [4], the numbers N and t1, t2, . . . , tN were generated by a homogeneous
Poisson point process in [0,1]. It was shown that when the expected number of
generated points N is greater than eCn log(n), the origin belongs to the interior of
conv{BMn(ti) : i ≤ N} with high probability [4], Theorem 3.1. A related result of
[4] dealing with the standard walk on Z

n states that, with probability close to one,
eCn log(n) steps are sufficient for the convex hull of the walk to absorb the origin.
It was not clear, however, whether the bound eCn log(n) was sharp. This question is
addressed in the first main theorem of our paper.

THEOREM A. There exists a constant C > 0 such that for any n ∈ N and
N ≥ exp(Cn) the following holds

• Setting ti := i/N , i = 1,2, . . . ,N , the set conv{BMn(ti), i ≤ N} contains the
origin in its interior with probability at least 1 − exp(−n).

• The convex hull of the first N steps of the standard random walk on Z
n starting

at 0, contains the origin in its interior with probability at least 1 − exp(−n).

The first part of this theorem also holds when {ti} is a homogeneous Poisson pro-
cess in [0,1] of intensity at least exp(Cn). Therefore, our result is strictly stronger
than the bound proved in [4].

Let us discuss optimality of the estimates in Theorem A. Regarding the sec-
ond assertion, it was proved in [4] that if the number of steps N is less than
exp(cn/ logn) then with probability close to one the origin does not belong to
the interior of the convex hull of the standard walk on Z

n.
For the first assertion of Theorem A, we prove that it is optimal in the sense

that the number of points N must be exponential in n in order to have, say, P{0 ∈
conv{BMn(ti), i ≤ N}} ≥ 1/2. More precisely, we prove the following.

THEOREM B. There exist universal constants c > 0 and n0 ∈ N with the fol-
lowing property: let n ≥ n0 and BMn(t) (0 ≤ t < ∞) be the standard Brownian
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motion in R
n. Then

P
{
0 ∈ conv

{
BMn(t) : t ∈ [1,2cn]}}≤ 1

n
.

REMARK 1. The bound 1
n

in the above theorem can be replaced with 1
nL for

any constant L > 0 at expense of decreasing c and increasing n0.

The statement of Theorem B is equivalent to the estimate

P

{
min

u∈Sn−1
max

t∈[1,2cn]
〈
u,BMn(t)

〉
< 0
}

≥ 1 − 1

n
,(1)

where the quantity in the brackets is the “minimax” of the one dimensional Gaus-
sian process 〈u,BMn(t)〉 indexed over Sn−1 ×[1,2cn]. We note that a comparison
theorem for the minimax of doubly indexed Gaussian processes was obtained in
[7] (see also [11], Corollary 3.13 and Theorem 3.16), and was the central ingredi-
ent in proving the escape theorem of [8].

The second main result of our paper deals with discrete-time random walks
on the sphere. For any θ ∈ (0, π/2), we consider a Markov chain Wθ with
values in S

n−1 such that the angle between two consecutive steps is θ (i.e.,
〈Wθ(j),Wθ(j + 1)〉 = cos θ , j ∈ N) and the direction from W(j) to W(j + 1)

is chosen uniformly at random in the sense that for any u ∈ S
n−1, the distribu-

tion of Wθ(j + 1) conditioned on Wθ(j) = u is uniform on the (n − 2)-sphere
S

n−1 ∩ {x ∈ R
n : 〈x,u〉 = cos θ}.

THEOREM C. For any θ ∈ (0, π/2), there exist L = L(θ) and n0 = n0(θ)

depending only on θ such that the following holds: Let n ≥ n0 and Wθ be the
process with values in S

n−1 described above. Then for all N ≥ Ln we have

P
{
0 belongs to conv

{
Wθ(i) : i ≤ N

}}≥ 1 − exp(−n).

It follows from dimension considerations that the estimate of the number of
steps is optimal up to a factor depending only on θ . We note here that a related
problem for the standard spherical Brownian motion was studied in [4].

Let us outline the main ideas behind the proofs of Theorems A and C. The
following simple observation relates the question about random walks to a problem
dealing with random matrices.

Let X(t) (t ∈ [0,∞) or t ∈ N ∪ {0}) be a random process with values in R
n,

with X(0) = 0; let 0 = t0 < t1 < · · · < tN be a collection of nonrandom points
and assume that the increments X(ti) − X(ti−1) are independent. Define A as the
N × n random matrix with independent rows obtained by appropriately rescaling
the increments X(ti) − X(ti−1), i = 1,2, . . . ,N . Then there exists a nonrandom
N × N lower-triangular matrix F such that the rows of FA are precisely X(ti),
i = 1,2, . . . ,N . Thus, we can restate our problem about the convex hull of X(ti)’s
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in terms of certain properties of the matrix FA. Namely, the convex hull of X(ti)’s
contains the origin in its interior if and only if for any unit vector y in R

n, the vector
FAy has at least one negative coordinate. Geometrically, this problem is reduced
to estimating the probability that the image of A escapes (i.e., does not intersect)
the set F−1(RN+) ∩ S

N−1, where R
N+ denotes the cone of positive vectors. For

the standard Brownian motion, A is the N × n standard Gaussian matrix. In this
case, we apply Gordon’s escape theorem [8] which estimates the probability that
a random subspace uniformly distributed on the Grassmannian does not intersect
with a given subset of SN−1. In a more general case, when the image of A is not
uniformly distributed, Gordon’s theorem cannot be applied. To treat that scenario,
we prove a statement which can be seen as an extension of Gordon’s theorem to
a broad class of random matrices, however, with considerable restrictions on the
subsets of SN−1.

THEOREM D. For any τ, δ ∈ (0,1] and any K > 1, there exist L and η > 0
depending only on τ , δ and K with the following property: Let N ≥ Ln and let A

be an N × n random matrix with independent rows (Ri)i≤N satisfying

P
{〈Ri, y〉 < −τ

}≥ δ, for any y ∈ S
n−1 and any i ≤ N .

Then for any N × N random matrix F , matrix FA satisfies

P
{∃y ∈ S

n−1,FAy ∈R
N+
}≤ exp

(−δ2N/4
)

+ P
{‖A‖ > K

√
N
}+ P
{‖F − I‖ > η

}
.

We use this result to deal with the random walk on Z
n. For the random walks

Wθ on the sphere we follow, with some modifications, the same scheme as for
processes in R

n with independent increments.
The paper is organized as follows. Section 2 contains preliminaries and notation.

Results about random matrices are given in Section 3, while corollaries for the
Brownian motion and the standard random walk on Z

n are stated in Section 4.
Section 5 is devoted to random walks on the sphere. Finally, we prove Theorem B
in Section 6.

2. Preliminaries. In this section, we introduce notation and discuss some
classical or elementary facts.

For a finite set I , let |I | be its cardinality. Let R+ and R− be the closed positive
and negative semi-axes, respectively. By {ei}Ni=1 we denote the standard unit basis
in R

N , by ‖ · ‖—the canonical Euclidean norm and by 〈·, ·〉—the corresponding
inner product. Let BN

2 and S
N−1 be the Euclidean ball of radius 1 in R

N and the
unit sphere, respectively.

For N ≥ n and an N × n matrix A, let smax(A) and smin(A) be its largest and
smallest singular values, respectively, that is, smax(A) = ‖A‖ (the operator norm
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of A) and smin(A) = infy∈Sn−1 ‖Ay‖. When A is an N × N invertible matrix, the
condition number of A is ‖A‖ · ‖A−1‖. Note that the condition number is equal to
the ratio of the largest and the smallest singular values of A.

Throughout this paper, g denotes a standard Gaussian variable. The following
estimate is well known (see, e.g., [6], Lemma VII.1.2):

P{g ≥ t} = 1√
2π

∫ ∞
t

exp
(−r2/2

)
dr <

1√
2πt

exp
(−t2/2

)
, t > 0.(2)

A random vector X in R
n is isotropic if EX = 0 and the covariance matrix of

X is the identity, that is, EXXt = I. The standard Gaussian vector Y in R
n is a

random vector with i.i.d. coordinates having the same law as g. As a corollary of
a concentration inequality for Gaussian variables (see [19], Theorem 4.7, or [16],
Theorem V.1), we have for any ε > 0:

P
{
(1 − ε)

√
n ≤ ‖Y‖ ≤ (1 + ε)

√
n
}≥ 1 − 2 exp

(−c̃ε2n
)

(3)

for a universal constant c̃ > 0. An N × n matrix is called the standard Gaussian
matrix if its entries are i.i.d. having the same law as g. We denote this matrix by G

(and recall that N ≥ n). Then for any t ≥ 0 we have

P
{√

N − √
n − t ≤ smin(G) ≤ smax(G) ≤ √

N + √
n + t
}

(4)
≥ 1 − 2 exp

(−t2/2
)

(see, e.g., [23], Corollary 5.35).
Given a vector x ∈ R

N , we denote by x+ and x− its positive and negative part,
respectively, that is,

x+ =
N∑

i=1

max
(
0, 〈x, ei〉)ei and x− =

N∑
i=1

max
(
0,−〈x, ei〉)ei.

The following simple observation will be useful in the proof of the main theorems.

LEMMA 1. Let x, y ∈R
N . Then ‖x−‖ ≥ ‖y−‖ − ‖x − y‖.

PROOF. Writing x = x+ − x− and y = y+ − y−, we obtain

‖x − y‖2 = ∥∥(x+ − y+) − (x− − y−)
∥∥2

= ‖x− − y−‖2 + ‖x+ − y+‖2 − 2〈x+ − y+, x− − y−〉
≥ ‖x− − y−‖2

≥ (‖y−‖ − ‖x−‖)2,
where the first inequality in the above formula holds since 〈x+ − y+, x− − y−〉 is
nonpositive. �
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Given a compact set S ⊂ R
N , the Gaussian width of S is defined by

w(S) := E sup
x∈S

〈Y,x〉,

where Y is the standard Gaussian vector in R
N (see [1, 3, 22]). The following is

a consequence of Urysohn’s inequality (see, e.g., Corollary 1.4 in [19]) and the
relation between the Gaussian and the mean width:

√
N − 1

(
VolN(S)

VolN(BN
2 )

)1/N

≤ w(S).(5)

Given a convex cone C in R
N , the polar cone C∗ of C is defined by

C∗ := {x ∈ R
N, 〈x, y〉 ≤ 0 for any y ∈ C

}
.

The next lemma provides a useful relation between the Gaussian widths of the parts
of a convex cone and its polar enclosed in the unit Euclidean ball. The lemma is
proved in [3] for intersections of cones with the unit sphere (see [3], Lemma 3.7);
we put it here in a version more convenient for us.

LEMMA 2. Let C ⊂ R
N be a nonempty closed convex cone. Then

w
(
C ∩ BN

2
)2 + w

(
C∗ ∩ BN

2
)2 ≤ N.

PROOF. For any x ∈ R
N , let PCx := arg infy∈C ‖x − y‖ be the projection of x

onto C. It can be checked that each vector x ∈ R
N can be decomposed as

x = PCx + PC∗x,(6)

with 〈PCx,PC∗x〉 = 0. As before, let Y be the standard Gaussian vector in R
N .

Having decomposition (6) in mind, we can write

w
(
C ∩ BN

2
)= E sup

x∈C∩BN
2

〈Y,x〉 ≤ E sup
x∈C∩BN

2

〈PCY,x〉,

where the last inequality holds since 〈PC∗Y,x〉 ≤ 0 for all x ∈ C. We deduce that

w
(
C ∩ BN

2
)≤ E‖PCY‖.(7)

Now using the decomposition (6) and the above inequality, we obtain

w
(
C ∩ BN

2
)2 ≤ E‖PCY‖2 = E‖Y‖2 −E‖PC∗Y‖2 = N −E‖PC∗Y‖2.(8)

Note that (7) applied to the cone C∗ yields w(C∗ ∩ BN
2 )2 ≤ E‖PC∗Y‖2. Plugging

it into (8), we complete the proof. �
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3. Escape theorems for random matrices. In this section, we estimate the
probability that the image of a random N × n matrix A escapes the intersection of
a given cone with the unit sphere S

N−1 (we shall restrict ourselves to considering
a special family of convex cones in R

N ). Similar questions have attracted consid-
erable attention recently in connection with the theory of compressed sensing [1].

Given a closed subset S ⊂ S
N−1, the problem of estimating the probability

P{Im(A)∩S =∅} can be treated in different ways. One may look at it as the ques-
tion of bounding the diameter of the random section conv(S,−S) ∩ Im(A) of the
convex set conv(S,−S): clearly, Im(A)∩S = ∅ if and only if diam(conv(S,−S)∩
Im(A)) < 2. The study of random sections of convex sets is a central theme in the
area of asymptotic geometric analysis and its importance has been highlighted in
Milman’s proof of Dvoretzky’s theorem [16, 19]. The question of estimating di-
ameters of random sections of proportional dimension was originally considered
in [15] and [18] in the case when the corresponding random subspace is uniformly
distributed on the Grassmannian (i.e., the randomness is given by a standard Gaus-
sian matrix). More recently, results for much more general distributions of sections
given by kernels and images of random matrices were obtained, among others, in
papers [12] and [14]. In our setting, however, these papers do not seem directly
applicable as they provide estimates for diameters up to a constant multiple: in
particular, if a convex set K , say, satisfies K ⊂ BN

2 ⊂ 2K , and E is a random
subspace given by a kernel or an image of a random matrix, those results only
give a trivial bound diam(K ∩ E) < C for a large constant C. At the same time, if
S = S

N−1 ∩R
N+ then it is easy to show that conv(S,−S) ⊂ BN

2 ⊂ √
2 conv(S,−S).

When the matrix A is Gaussian, a way of estimating the probability P{Im(A) ∩
S = ∅} which is more suitable in our setting is to apply the following result of
Gordon (see Corollary 3.4 in [8]):

THEOREM 3 (Gordon’s escape theorem). Let S be a subset of the unit Eu-
clidean sphere S

N−1 in R
N . Let E be a random n-dimensional subspace of RN ,

distributed uniformly on the Grassmannian with respect to the associated Haar
measure. Assume that w(S) <

√
N − n. Then E ∩ S = ∅ with probability at least

1 − 3.5 exp
(
− 1

18

(
N − n√

N − n + 1
− w(S)

)2)
.

For the standard Gaussian matrix G, its image is uniformly distributed on the
Grassmannian, and Gordon’s result provides an efficient estimate of probability
P{ImG∩ S = ∅}, as long as we have control over the Gaussian width of the set S.
In our setting, the choice of S is determined by the applications to random walks;
in fact, S shall always be a spherical simplex satisfying certain additional assump-
tions. A standard approach would be to bound w(S) in terms of the covering num-
bers of S using the classical Dudley’s inequality (see, e.g., [11], Theorem 11.17).
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However, in our case the set S is relatively large, so the upper bound given by Dud-
ley’s inequality is trivial (greater than

√
N ). Instead, we will estimate the Gaus-

sian width of S using the following proposition which is a direct consequence of
Lemma 2 and inequality (5).

PROPOSITION 4. Let C be a convex cone in R
N and denote by C∗ its polar

cone. Then

w
(
C ∩ BN

2
)2 ≤ N − (N − 1)

(
VolN(C∗ ∩ BN

2 )

VolN(BN
2 )

)2/N

.

The next theorem will be applied in Sections 4 and 5 to the discretized Brownian
motion and to random walks on the sphere.

THEOREM 5. For any γ ∈ (0,1], there exist positive L, κ and η depending
on γ such that the following is true: For N ≥ Ln, let F be an N × N random
matrix and F̃ be a deterministic invertible N ×N matrix with the condition number
satisfying ‖F̃‖ · ‖F̃−1‖ ≤ γ −1. If G is the N × n standard Gaussian matrix, then

P
{∃y ∈ S

n−1,FGy ∈ R
N+
}≤ 5.5 exp(−κN) + P

{‖F − F̃‖ > η‖F̃‖}.
The statement holds with L = 64/γ 2, κ = 2L−2/9 and η = γ /4L.

PROOF. Let γ ∈ (0,1) and take L,κ , and η as stated above. In view of
Lemma 1, we have

P
{∃y ∈ S

n−1, (FGy)− = 0
}

≤ P
{∃y ∈ S

n−1,
∥∥(F̃Gy)−

∥∥≤ ∥∥(F − F̃ )Gy
∥∥}

≤ P
{∃y ∈ S

n−1,
∥∥(F̃Gy)−

∥∥≤ η‖F̃‖ · ‖G‖}+ P
{∥∥F − F̃

∥∥> η‖F̃‖}.
Further,

P
{∃y ∈ S

n−1,
∥∥(F̃Gy)−

∥∥≤ η‖F̃‖ · ‖G‖}
≤ P
{∃y ∈ S

n−1, F̃Gy ∈ R
N+ + η‖F̃‖ · ‖G‖BN

2
}

≤ P

{
∃y ∈ S

n−1,
Gy

‖Gy‖ ∈ F̃−1(
R

N+
)+ η‖F̃‖ ‖G‖

smin(G)
F̃−1(BN

2
)}

(9)

≤ P

{
∃y ∈ S

n−1,
Gy

‖Gy‖ ∈ F̃−1(
R

N+
)+ 2η · γ −1BN

2

}

+ P
{‖G‖ > 2smin(G)

}
≤ P
{
Im(G) ∩ (F̃−1(

R
N+
)+ 2η · γ −1BN

2
)∩ S

N−1 �= ∅
}+ 2e−N/128,

where the last estimate follows from (4).
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To control the probability of escaping in (9) with help of Theorem 3, we have
to estimate the Gaussian width of the set


 := (F̃−1(
R

N+
)+ 2η · γ −1BN

2
)∩ S

N−1.

Note that 
 ⊂ (1 + 2η · γ −1)F̃−1(RN+) ∩ BN
2 + 2η · γ −1BN

2 . Therefore,

w(
) ≤ (1 + 2η · γ −1) · w(F̃−1(
R

N+
)∩ BN

2
)+ 2η · γ −1

√
N.(10)

It remains to bound the Gaussian width of F̃−1(RN+) ∩ BN
2 . Denote by C the cone

F̃−1(RN+) and note that C∗ = F̃ t (RN−). Then we have

VolN
(
F̃ t (

R
N−
)∩ BN

2
)= ∣∣det(F̃ )

∣∣ · VolN
(
R

N− ∩ (F̃ t )−1(
BN

2
))

≥ ∣∣det(F̃ )
∣∣ · ‖F̃‖−N · VolN

(
R

N− ∩ BN
2
)
.

Since |det(F̃ )| ≥ ‖F̃−1‖−N , we get VolN(C∗ ∩ BN
2 ) ≥ (γ /2)N · VolN(BN

2 ). Now,
applying Proposition 4, we deduce that

w
(
C ∩ BN

2
)≤√(1 − γ 2/8

)
N.(11)

Putting (10) and (11) together, we get that

w(
) ≤ (1 + 4η · γ −1 − γ 2/16
)√

N.

The proof is completed by a straightforward application of Theorem 3. �

As we will see in the next sections, Theorem 5 provides a way to deal with the
standard Brownian motion in R

n and random walks Wθ on the sphere. To treat the
standard walk on Z

n, we shall derive a statement covering a rather broad class of
random matrices. Let us introduce the following.

DEFINITION 6. A random variable ξ is said to have property P(τ, δ) (or saf-
isfy condition P(τ, δ)) for some τ, δ ∈ (0,1] if

P{ξ < −τ } ≥ δ.

A random vector X in R
n is said to have property P(τ, δ) for τ, δ ∈ (0,1] if for

any y ∈ S
n−1, the random variable 〈X,y〉 satisfies P(τ, δ).

Obviously, the above property holds (for some τ and δ) for any nonzero r.v. ξ

with Eξ = 0. As the next elementary lemma shows, with some additional assump-
tions on moments of ξ , the numbers τ and δ can be chosen as certain functions of
the moments.

LEMMA 7. Any random variable ξ such that Eξ = 0, Eξ2 = 1 and E|ξ |2+ε ≤
B < ∞ for some ε > 0, has the property P(τ, δ), with τ and δ depending only on
ε and B .
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PROOF. Indeed, an easy calculation shows that such ξ satisfies∫ ∞
Lξ

2
P
{
ξ2 ≥ t

}
dt ≤ 1

2

for some Lξ > 0 depending only on B and ε. Then

E|ξ | ≥
∫ Lξ

0
P
{|ξ | ≥ t

}
dt ≥ 1

2Lξ

∫ Lξ
2

0
P
{
ξ2 ≥ t

}
dt ≥ 1

4Lξ

,

implying, as Emax(0,−ξ) = 1
2E|ξ |,

1

8Lξ

≤
∫ ∞

0
P{ξ ≤ −t}dt

≤
∫ 8Lξ

0
P{ξ ≤ −t}dt +

∫ ∞
64Lξ

2

1

2
√

t
P
{
ξ2 ≥ t

}
dt

≤
∫ 8Lξ

0
P{ξ ≤ −t}dt + 1

16Lξ

.

Hence, P{ξ < −2−5Lξ
−1} ≥ 2−8Lξ

−2. �

The following theorem will be used to treat the standard walk on Z
n.

THEOREM 8. For any τ, δ ∈ (0,1] and any K > 1, there exist L and η > 0
depending only on τ , δ and K with the following property: Let N ≥ Ln and let A

be an N × n random matrix with independent rows having property P(τ, δ). Then
for any N × N random matrix F , matrix FA satisfies

P
{∃y ∈ S

n−1,FAy ∈R
N+
}≤ exp

(−δ2N/4
)

+ P
{‖A‖ > K

√
N
}+ P
{‖F − I‖ > η

}
.

PROOF. Define L as the smallest positive number satisfying(
3

η

)1/L

≤ exp
(
δ2/4
)
,

where η :=
√

δτ

2
√

2K
. Now, take any admissible N ≥ Ln and let A and F be as stated

above.
Let N be an η-net on S

n−1 of cardinality at most ( 3
η
)n. In view of Lemma 1, we

have

P
{∃y ∈ S

n−1,FAy ∈ R
N+
}

≤ P
{∃y ∈ S

n−1,
∥∥(Ay)−

∥∥≤ ∥∥(F − I)Ay
∥∥}

≤ P
{∃y ∈ S

n−1,
∥∥(Ay)−

∥∥≤ η‖A‖}+ P
{‖F − I‖ > η

}
≤ P
{∃y′ ∈ N ,

∥∥(Ay′)
−
∥∥≤ 2η‖A‖}+ P

{‖F − I‖ > η
}
.
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Further,

P
{∃y′ ∈ N ,

∥∥(Ay′)
−
∥∥≤ 2η‖A‖}

(12)
≤ P
{∃y′ ∈N ,

∥∥(Ay′)
−
∥∥≤ 2Kη

√
N
}+ P
{‖A‖ > K

√
N
}
.

Fix any y′ ∈ N . For all i = 1,2, . . . ,N , the random variable 〈Ay′, ei〉 satisfies
the property P(τ, δ). For any i ≤ N , denote by χi the indicator function of the
event {〈Ay′, ei〉 < −τ }. Then (χi)i≤N are independent and Eχi ≥ δ. Applying
Hoeffding’s inequality (see [9], Theorem 1), we get

P

{∣∣{i ≤ N : 〈Ay′, ei

〉
< −τ

}∣∣≤ δN

2

}
≤ P

{
1

N

∑
i≤N

(χi −Eχi) ≤ −δ

2

}

≤ exp
(−δ2N/2

)
.

Therefore, for any fixed y′ ∈ N , we have

P
{∥∥(Ay′)

−
∥∥≤ 2Kη

√
N
}≤ P

{∣∣{i ≤ N : 〈Ay′, ei

〉≤ −τ
}∣∣≤ 4K2η2N/τ 2}

≤ exp
(−δ2N/2

)
.

Combining the last estimate with (12) and the upper estimate for |N |, we get

P
{∃y ∈ S

n−1,FAy ∈ R
N+
}

≤
(

3

η

)n

exp
(−δ2N/2

)+ P
{‖A‖ > K

√
N
}+ P
{‖F − I‖ > η

}
.

The result follows by the choice of L. �

REMARK 2. Theorem 8, applied to the Gaussian matrix G, gives a weaker
form of Theorem 5 (with more restrictions on the choice of F ). Let us empha-
size that the theorems do not require F to be independent from G. This will be
important in Section 5.

4. Applications to random walks in R
n. In this section, we will apply the

statements about random matrices to the Brownian motion and the standard walk
on Z

n.

COROLLARY 9. For any K > 1, there are constants L and κ depending only
on K such that the following holds. Let N ≥ Ln and t1, . . . , tN be such that ti ≥
K · ti−1 for any i = 2 · · ·N and t1 > 0. Then

P
{
0 belongs to the interior of conv

{
BMn(ti) : i ≤ N

}}≥ 1 − 5.5 exp(−κN).
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PROOF. Let cK := 1 + (K − 1)−1/2∑
j≥0 K−j/2 and γ := c−1

K · (1 + (K −
1)−1/2)−1 be two constants depending only on K and take L = 64/γ 2 and κ :=
2L−2/9.

Denote δ1 := √
t1 and δi := √

ti − ti−1 for any i = 2 · · ·N . Observe that for any
j < i, we have δi ≥ K(i−j−1)/2

√
K − 1 · δj .

Define F as the N ×N lower triangular matrix whose entries are given by fii =
1 for any i ≤ N and fij = δj

δi
for any i > j . One can easily check that ‖F‖ ≤ cK .

Moreover, the inverse of F is a lower bi-diagonal matrix with 1 on the main diag-
onal and (δi/δi+1)i<N on the diagonal below. Hence, ‖F−1‖ ≤ 1 + (K − 1)−1/2,
and the condition number of F satisfies

‖F‖ · ∥∥F−1∥∥≤ γ −1.

Let (Ri)i≤N be the rows of FG. One can check that Ri = BMn(ti)/δi and, there-
fore,

0 ∈ conv
{
BMn(ti) : i ≤ N

} ⇐⇒ 0 ∈ conv{Ri : i ≤ N}.
Note that, by a standard separation argument, 0 does not belong to the interior of
conv{Ri : i ≤ N} if and only if rank(FG) < n or there is a vector y ∈ S

n−1 such
that 〈FGy, ei〉 = 〈y,Ri〉 ≥ 0 for any i ≤ N , where (ei)i≤N denotes the canonical
basis of RN . Since with probability one we have rank(FG) = n, the result follows
by applying Theorem 5 with F̃ := F . �

Suppose (ti) is a finite increasing sequence of points in [0,1]. The above state-
ment tells us that if (ti) contains a geometrically growing subsequence of length
Ln for an appropriate L > 0 then with high probability the origin of Rn is con-
tained in the interior of BMn(ti)’s. We shall apply this result to the case when the
ti’s are generated by the Poisson point process independent from BMn.

Recall that the homogeneous Poisson point process in [0,1] of intensity s > 0
is a random discrete measure Ns on [0,1] such that (1) for each Borel subset
B ⊂ [0,1], the random variable Ns(B) has the Poisson distribution with parameter
sμ(B), where μ is the usual Lebesgue measure on R, and (2) for any j ∈ N and
pairwise disjoint Borel sets B1,B2, . . . ,Bj ⊂ [0,1], the random variables Ns(B1),
Ns(B2), . . . ,Ns(Bj ) are jointly independent. The measure Ns admits a represen-
tation of the form

Ns =
τ∑

i=1

δξi
,

where ξ1, ξ2, . . . are i.i.d. random variables uniformly distributed on [0,1], δξi
is

the Dirac measure with the mass at ξi and τ is the random nonnegative integer
with the Poisson distribution with parameter s.

Theorem 3.1 of [4] states that if τ and the points ξ1, ξ2, . . . , ξτ are generated
by the homogeneous PPP in [0,1] of intensity s ≥ nCn then the convex hull of
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BMn(ξi)’s contains the origin in its interior with probability at least 1 − n−n. In
our next statement, we weaken the assumptions on s at expense of decreasing the
probability to 1 − exp(−n):

COROLLARY 10. There is a universal constant C̃ > 0 with the following prop-
erty: Let n ∈ N and let BMn(t), t ∈ [0,∞), be the standard Brownian motion in
R

n. Further, let τ and the points ξ1, ξ2, . . . , ξτ be given by the homogeneous Pois-
son process on [0,1] of intensity s ≥ exp(C̃n), which is independent from BMn(t).
Then

P
{
0 belongs to the interior of conv

{
BMn(ξi) : i ≤ τ

}}≥ 1 − exp(−n).

PROOF. Let K := 2 and κ,L be as in Corollary 9. Then we define the constant
C̃ := max(32

κ
,8L). Let n ∈ N and let Ns be as stated above. Take m := �C̃n� and

I1 := [0,K−m+1]; Ij := (Kj−m−1,Kj−m], j = 2,3, . . . ,m.

From the definition of Ns , we have

P
{
Ns(Ij ) > 0 for all j = 1,2, . . . ,m

}≥ 1 −
m∑

j=1

exp
(−sμ(Ij )

)

≥ 1 − m exp
(−sK−m).

In particular, with probability at least 1 − m exp(−sK−m) the set {ξi}τi=1 contains
a subset {ξi1, ξi2, . . . , ξim} such that ξij ∈ Ij for every admissible j , hence ξij+2 ≥
Kξij for any j ≤ m − 2. Conditioning on the realization of Ns , we obtain by
Corollary 9:

P
{
0 belongs to the interior of conv

{
BMn(ξi) : i ≤ τ

}}
≥ 1 − m exp

(−sK−m)− 5.5 exp
(−κ�m/2�)

≥ 1 − exp(−n),

and the proof is complete. �

The last result of this section concerns the standard random walk W(j) on Z
n,

which is defined as a walk with independent increments such that each incre-
ment W(j + 1) − W(j) is uniformly distributed on the set {±ej }j≤n. We note
that the random variables 〈√n/mW(m), y〉 (m ∈ N, y ∈ S

n−1) are not uniformly
sub-Gaussian; to be more precise, their sub-Gaussian moment depends on the di-
mension n. At the same time, the vectors W(m) still have very strong concentration
properties as the next lemma shows.
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LEMMA 11. Let W(j) (j ≥ 0) be the standard walk on Z
n starting at the

origin, and m ≥ n4 be any fixed integer. Then the vector X := √
n/mW(m) is

isotropic and satisfies for any y ∈ S
n−1:

P
{∣∣〈X,y〉∣∣≥ t

}≤ exp
(−2(mn)1/4)+ 2 exp

(−t2/4
)
, t > 0.

In particular, E|〈X,y〉|3 ≤ 100 for all y ∈ S
n−1, and X has the property P(τ, δ)

for some universal constants τ, δ.

PROOF. The isotropicity of X can be easily checked. Fix for a moment any
vector y ∈ S

n−1. The random variable 〈X,y〉 can be represented as

〈X,y〉 =√n/m

m∑
k=1

sk,

where the variables s1, s2, . . . , sm are i.i.d. and each

sk := 〈W(k) − W(k − 1), y
〉

is symmetrically distributed, has variance Esk
2 = 1

n
and takes values in the interval

[−1,1]. Applying Hoeffding’s inequality to the sum
∑m

k=1 sk
2, we get

P

{
m∑

k=1

sk
2 ≥ 2m

n

}
≤ exp

(−2m/n2).(13)

Further, since sk is symmetric, the distribution of the sum
∑m

k=1 sk is the same
as the distribution of

∑m
k=1 rksk , where r1, r2, . . . , rm are Rademacher variables

jointly independent with s1, s2, . . . , sm. Conditioning on the values of sk and using
(13) and the Khintchine inequality, we obtain for every t > 0:

P

{∣∣∣∣∣
m∑

k=1

sk

∣∣∣∣∣≥ mt

}

= P

{∣∣∣∣∣
m∑

k=1

rksk

∣∣∣∣∣≥ mt

}

≤ P

{
m∑

k=1

sk
2 ≥ 2m

n

}
+ P

{
m∑

k=1

sk
2 ≤ 2m

n
and

∣∣∣∣∣
m∑

k=1

rksk

∣∣∣∣∣≥ mt

}

≤ exp
(−2m/n2)+ 2 exp

(−mnt2/4
)
.

Whence, in view of the bound m ≥ n2(mn)1/4, we get

P
{∣∣〈X,y〉∣∣≥ t

}≤ exp
(−2(mn)1/4)+ 2 exp

(−t2/4
)
, t > 0.(14)

The condition (14), together with the bound ‖X‖ ≤ √
mn, gives E|〈X,y〉|3 ≤ 100.

It remains to apply Lemma 7. �

The next lemma follows from well-known concentration inequalities for sub-
exponential random variables (see, e.g., [23], Corollary 5.17).
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LEMMA 12. There is a universal constant C̃ > 0 such that for any N ∈ N and
independent centered random variables ξ̃1, ξ̃2, . . . , ξ̃N , each satisfying

P{ξ̃i ≥ t} ≤ 3 exp(−t/4), t > 0,(15)

we have

P

{
N∑

i=1

ξ̃i ≥ C̃N

}
≤ 40−N.(16)

In the next result, compared to Theorem 1.2 of [4], we decrease the bound on
the number of steps N of the walk on Z

n sufficient to absorb the origin with high
probability.

COROLLARY 13. There is a universal constant C > 0 with the following prop-
erty: Let n,R ∈ N, R ≥ exp(Cn) and let W(j), j ≥ 0, be the standard random
walk on Z

n starting at the origin. Then

P
{
0 belongs to the interior of conv

{
W(j) : j = 1, . . . ,R

}}≥ 1 − 2 exp(−n).

PROOF. Definition of constants and the matrix A. Let τ, δ > 0 be taken from
Lemma 11 and C̃—from Lemma 12. Now, we define K := 2

√
C̃ and let L and η

be taken from Theorem 8. Finally, we define C > 0 as the smallest positive number
satisfying

exp(Cn) ≥ (28N)4
⌈

4

η2 + 1
⌉N

for any n ∈N and N = n�max(L,4/δ2)�.
Fix any numbers n > 0 and R ≥ exp(Cn), and let N := n�max(L,4/δ2)�.

Further, let ti (i = 0,1, . . . ,N ) be numbers from {0,1, . . . ,R}, with t0 = 0,
t1 = (28N)4 and ti = � 4

η2 + 1�ti−1, i = 2,3, . . . ,N . Denote

Xi := √
n(ti − ti−1)

−1/2(W(ti) − W(ti−1)
)
, i = 1,2, . . . ,N.

Then the vectors are isotropic, jointly independent and, in view of Lemma 11,
satisfy

P
{∣∣〈Xi, y〉∣∣≥ t

}≤ exp
(−2(nti − nti−1)

1/4)+ 2 exp
(−t2/4

)
, t > 0(17)

for all y ∈ S
n−1. We let A to be the N × n random matrix with rows Xi .

Estimating the norm of A. Let N be a 1/2-net on S
n−1 of cardinality at most

5n. Fix any y′ ∈ N . For each i = 1,2, . . . ,N , let ξi := 〈Xi, y
′〉2, and let ξ̃i be its

truncation at level (nti − nti−1)
1/4, that is,

ξ̃i (ω) =
{

ξi(ω), if ξi(ω) ≤ (nti − nti−1)
1/4,

0, otherwise.
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Note that, in view of (17), the variables ξ̃i satisfy (15), and

P{ξi �= ξ̃i} ≤ 3 exp
(−(nti − nti−1)

1/4/4
)
.

Hence, by (16) and the above estimate, we have

P
{∥∥Ay′∥∥≥√C̃N

}= P

{
N∑

i=1

ξi ≥ C̃N

}

≤ 40−n + P
{
ξi �= ξ̃i for some i ∈ {1,2, . . . ,N}}

≤ 40−n + 3
N∑

i=1

exp
(−(nti − nti−1)

1/4/4
)

≤ 40−n + 3N exp
(−7Nn1/4)

≤ 20−n.

Taking the union bound for all y′ ∈ N and applying the standard approximation ar-
gument, we obtain ‖A‖ ≤ 2

√
CN = K

√
N with probability at least 1 − exp(−n).

Construction of the matrix F and application of Theorem 8. Let F be the N ×
N nonrandom lower-triangular matrix, with the entries

fij =
√

tj − tj−1

ti − ti−1
, i ≥ j.

Obviously, FA is the matrix whose ith row (i = 1, . . . ,N ) is precisely the vector√
n

ti − ti−1
W(ti).

Then, in view of the definition of ti’s, we have

‖F − I‖ ≤ η/2

1 − η/2
≤ η.

Finally, applying Theorem 8, we obtain

P
{
0 belongs to the interior of conv

{
W(j) : j = 1,2, . . . ,R

}}
≥ P
{
0 belongs to the interior of conv

{
W(ti) : i = 1,2, . . . ,N

}}
= P
{
rankA = n and Im(FA) ∩R

n+ = {0}}
≥ 1 − 2 exp(−n). �

5. Random walks on the sphere. Let n > 1 and θ ∈ (0, π/2). Here, we con-
sider the Markov chain Wθ taking values on S

n−1 such that the angle between two
consecutive steps is θ , that is, for any i ≥ 1 we have 〈Wθ(i),Wθ(i + 1)〉 = cos θ

a.s., and the direction from Wθ(i) to Wθ(i +1) is chosen uniformly at random. The
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latter condition means that for any u ∈ S
n−1, the distribution of Wθ(i + 1) condi-

tioned on Wθ(i) = u, is uniform on the (n − 2)-sphere S
n−1 ∩ {x ∈ R

n : 〈x,u〉 =
cos θ}. See [20] for a study of these walks and some of their generalizations.

The question addressed in this section is how many steps it takes for Wθ to
absorb the origin into its convex hull. Note that the answer does not depend on
the distribution of the first vector Wθ(1), and we shall further assume that Wθ(1)

is uniformly distributed on the sphere. The question can be equivalently reformu-
lated as a problem of estimating π/2-covering time of Wθ . For φ ∈ (0, π/2], a
φ-covering of Sn−1 is any subset S of the sphere such that the geodesic distance
from any point of the sphere to S is at most φ. Then the φ-covering time for Wθ is
the random variable

T = min
{
N : the set

{
Wθ(i), i ≤ N

}
is a φ-covering of Sn−1}.

A related problem of estimating φ-covering time of the spherical Brownian motion
was considered in [13] and [4], for φ → 0 and φ = π/2, respectively. It is not
clear whether the argument developed in [4] can be adopted to the walks Wθ .
Our approach to the above problem is based on the results of Section 3 and is
completely different from the argument in [4].

The walk Wθ can be constructively described as follows: Let Y1, Y2, . . . be a
sequence of independent standard Gaussian vectors in R

n. Let β1 := ‖Y1‖ and
define

Wθ(1) := Y1

‖Y1‖ = Y1

β1
.

Further, for any i ≥ 1 let

Wθ(i + 1) := αi+1Wθ(i) + Yi+1

βi+1
,(18)

where

βi+1 := ∥∥αi+1Wθ(i) + Yi+1
∥∥ and

(19)
αi+1 := cot θ‖PiYi+1‖ − 〈Yi+1,Wθ(i)

〉
, i ≥ 1,

with Pi denoting the (random) orthogonal projection onto the hyperplane orthog-
onal to Wθ(i). It can be easily checked that

βi = ‖Pi−1Yi‖
sin θ

, i ≥ 2,

and that Wθ is the Markov process described at the beginning of the section. For
any i = 2,3, . . . the coefficients αi and βi are random variables depending on Yi

and Wθ(i − 1). Using (2) and (3), one can deduce the following concentration
inequalities.
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LEMMA 14. There exist a universal constant c > 0 such that for δθ :=
c min(1, cot θ) and for any i = 2,3, . . . and ε > 0 we have

P
{
(1 − ε)

√
n cot θ ≤ αi ≤ (1 + ε)

√
n cot θ

}≥ 1 − 2 exp
(−δθ

2ε2n
)

and

P
{
(1 − ε) sin θ/

√
n ≤ βi

−1 ≤ (1 + ε) sin θ/
√

n
}≥ 1 − 2 exp

(−δθ
2ε2n
)
.

Moreover, (3) immediately implies

P
{
(1 − ε)/

√
n ≤ β1

−1 ≤ (1 + ε)/
√

n
}≥ 1 − 2 exp

(−cε2n
)
, ε > 0,(20)

provided that the constant c is sufficiently small. Before we state the main result
of the section, let us consider the following elementary lemma.

LEMMA 15. For any q ∈ (0,1) and 0 < ε ≤ 1−q
8 , we have

∞∑
k=0

(
(1 + ε)2k+1 − 1

)
qk ≤ 4ε

(1 − q)2 .

PROOF. First, note that the conditions on ε and q imply

q(1 + ε)2 ≤ 81q

64
− 9q2

32
+ q3

64
≤ q + 17q

64
− 17q2

64
≤ 1 + q

2
,

whence

1 − q(1 + ε)2 ≥ 1 − q

2
.

Using the last inequality, we obtain
∞∑

k=0

(
(1 + ε)2k+1 − 1

)
qk = (1 + ε)

∞∑
k=0

(
q(1 + ε)2)k −

∞∑
k=0

qk

= (1 + ε)

1 − q(1 + ε)2 − 1

1 − q

= ε + εq + ε2q

(1 − q)(1 − q(1 + ε)2)

≤ 4ε

(1 − q)2 . �

THEOREM 16. For any θ ∈ (0, π/2) there exist n0 = n0(θ) and K = K(θ)

depending only on θ such that the following holds: Let n ≥ n0 and let Wθ be the
random walk on S

n−1 defined above. Then for all N ≥ Kn we have

P
{
0 belongs to conv

{
Wθ(i) : i ≤ N

}}≥ 1 − exp(−n).
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PROOF. Fix an angle θ ∈ (0, π/2). Let γ := sin θ(1−cos θ)
1+cos θ

and let η,L and κ

be as in Theorem 5. Define ε := η sin θ(1 − cos θ)2/4 and let n0 be the smallest
integer such that for all n ≥ n0 we have

5.5 exp
(−κ�Ln�)+ 4�Ln� exp

(−δθ
2ε2n
)≤ exp(−μn),

where μ = 1
2 min(κ, δθ

2ε2) and δθ is taken from Lemma 14.
Fix n ≥ n0. First, we show that Ñ := �Ln� steps is sufficient to get the origin

in the convex hull of Wθ(i) (i ≤ Ñ ) with probability 1 − exp(−μn). This shall be
done by using the representation (18) for the walk Wθ and by applying Theorem 5.
Then we will augment the probability estimate to 1 − exp(−n) by increasing the
number of steps.

Let G be the standard Ñ × n Gaussian matrix with rows Yi (i ≤ Ñ ). We shall
construct a random lower-triangular Ñ × Ñ matrix F such that the ith row of FG

is Wθ(i). Define F := (fij ) with

fij :=
∏i

k=j+1 αk∏i
k=j βk

for j < i ≤ Ñ and fii := 1

βi

for i ≤ Ñ,

where αk and βk are given by (19). Since FG = (Wθ(1),Wθ(2), . . . ,Wθ(Ñ))t , the
origin does not belong to conv{Wθ(i) : i ≤ Ñ} only if there exists y ∈ S

n−1 such
that FGy ∈ R

Ñ+ . Now define F̃ as the Ñ × Ñ lower triangular matrix whose entries
are given by

f̃i1 = (cos θ)i−1
√

n
for any i ≤ Ñ and

f̃ij := sin θ
(cos θ)i−j

√
n

for 2 ≤ j ≤ i.

It is not difficult to see that

sin θ√
n

≤ ‖F̃‖ ≤ 1

(1 − cos θ)
√

n
.(21)

Further, let Q be the matrix obtained from F̃ by multiplying the first column of
F̃ by sin θ and leaving the other columns unchanged. Then, clearly, smin(Q) ≤
smin(F̃ ) implying ‖F̃−1‖ ≤ ‖Q−1‖. On the other hand, the inverse of Q is a lower

bi-diagonal matrix with
√

n
sin θ

on the main diagonal and − cos θ
√

n
sin θ

on the diagonal

below. Hence, ‖F̃−1‖ ≤ ‖Q−1‖ ≤ (1 + cos θ)
√

n
sin θ

, and the condition number of F̃

satisfies

‖F̃‖ · ∥∥F̃−1∥∥≤ 1 + cos θ

sin θ(1 − cos θ)
= γ −1.
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Applying Theorem 5, we get

P
{∃y ∈ S

n−1,FGy ∈ R
Ñ+
}≤ 5.5 exp(−κÑ) + P

{‖F − F̃‖ > η‖F̃‖}.
It remains to bound the probability P{‖F − F̃‖ > η‖F̃‖}. In view of Lemma 14
and (20), with probability at least 1 − 4Ñ exp(−δθ

2ε2n) we have

|fij − f̃ij | ≤ ((1 + ε)2(i−j)+1 − 1
)
f̃ij for any j ≤ i.

This, together with Lemma 15 and (21), implies that

‖F − F̃‖ ≤ 1√
n

∞∑
k=0

(
(1 + ε)2k+1 − 1

)
(cos θ)k ≤ 4ε

(1 − cos θ)2
√

n
≤ η‖F̃‖

with probability at least 1 − 4Ñ exp(−δθ
2ε2n). Hence, by the restriction on n0,

P
{∃y ∈ S

n−1,FGy ∈ R
Ñ+
}≤ 5.5 exp(−κÑ) + 4Ñ exp

(−δθ
2ε2n
)≤ exp(−μn),

where μ = 1
2 min(κ, δθ

2ε2). Finally, if N ≥ �μ−1�Ñ then the above estimate im-
plies

P
{
0 does not belong to conv

{
Wθ(i) : i ≤ N

}}
≤ P
{
0 does not belong to conv

{
Wθ(i) : i ≤ Ñ

}}�μ−1�

≤ exp(−n). �

6. Minimax of the n-dimensional Brownian motion. In this section, we will
prove Theorem B which, as noted in the Introduction, is equivalent to estimate (1).

Let us give an informal description of the proof. We construct a random unit
vector v̄ in R

n such that with probability close to one〈
v̄,BMn(t)

〉
> 0 for any t ∈ [1,2cn].(22)

The construction procedure shall be divided into a series of steps. At the initial
step, we produce a random vector v̄0 such that〈

v̄0,BMn

(
2i)〉> 0 for any i = 0,1, . . . , cn

(in fact, v̄0 will satisfy a stronger condition). At a step k, k ≥ 1, we update the
vector v̄k−1 by adding a small perturbation in such a way that

〈
v̄k,BMn

(
2j2−k )〉

> 0 for any j = 0,1, . . . ,2kcn.

(Again v̄k will in fact satisfy a stronger condition.) Finally, using some standard
properties of the Brownian bridge, we verify that v̄ := v̄log2 lnn satisfies (22) with
a large probability.
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6.1. Auxiliary facts. In this subsection, we introduce several auxiliary results
that will be used within the proof. The proof of the next lemma is straightforward,
so we omit it.

LEMMA 17. Let BMn(t) (0 ≤ t < ∞) be the standard Brownian motion in R
n

and let 0 < a < b. Fix any s ∈ (a, b) and set

w(s) := b − s

b − a
BMn(a) + s − a

b − a
BMn(b); u(s) := BMn(s) − w(s).

Then the process u(s), s ∈ (a, b), is a Brownian bridge, and

1. u(s) is a centered Gaussian vector with the covariance matrix
(b − s)(s − a)

b − a
In.

2. The random vector u(s) is independent from the process BMn(t) indexed
over t ∈ (0, a] ∪ [b,∞).

LEMMA 18. Let d,m ∈ N be such that m ≤ d/2. Let X1,X2, . . . ,Xm be
independent standard Gaussian vectors in R

d . Then for any nonrandom vector
b ∈ Sm−1, there exists a random unit vector ūb ∈ R

d such that

P
{〈ūb,Xi〉 ≥ c18

√
d|bi | for all i = 1,2, . . . ,m

}≥ 1 − exp(−c18d),

where c18 is a universal constant and bi ’s are the coordinates of b. Moreover, ūb

can be defined as a Borel function of Xi’s and b.

PROOF. Without loss of generality, we can assume that bi �= 0 for any i ≤ m

and that Xi ’s are linearly independent on the entire probability space. Denote by
E the random affine subspace of Rd spanned by {|bi |−1Xi}i≤m. Define ūb as the
unique unit vector in span{X1, . . . ,Xm} such that ūb is orthogonal to E and for
any i ≤ m we have 〈

ūb, |bi |−1Xi

〉= d(0,E),

where d(0,E) stands for the distance from the origin to E. Then we have

∑
i≤m

〈ūb,Xi〉2 =∑
i≤m

〈
ūb,

Xi

|bi |
〉2

|bi |2 =∑
i≤m

d(0,E)2 · |bi |2 = d(0,E)2.(23)

Let G be the d × m standard Gaussian matrix with columns Xi , i = 1,2, . . . ,m.
Using the definition of ūb together with (23), we obtain for any τ > 0:

P
{〈ūb,Xi〉 ≥ τ

√
d|bi | for all i = 1,2, . . . ,m

}= P
{
d(0,E) ≥ τ

√
d
}

= P

{√∑
i≤m

〈ūb,Xi〉2 ≥ τ
√

d

}

= P
{∥∥Gtūb

∥∥≥ τ
√

d
}

≥ P
{
smin(G) ≥ τ

√
d
}
,
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where the last inequality holds since ūb ∈ ImG. The proof is completed by choos-
ing a sufficiently small c18 := τ and applying (4). �

LEMMA 19. Let q ∈ N and r ∈ R with e ≤ r ≤ √
lnq , and let g1, g2, . . . , gq

be independent standard Gaussian variables. Define a random vector b =
(b1, b2, . . . , bq) ∈R

q by bi := max(0, gi − r), i ≤ q . Then

P
{‖b‖ ≤ 4

√
q exp
(−r2/8

)}≥ 1 − exp(−2
√

q).

PROOF. Let λ ∈ (0,1/2). We have

Eeλ‖b‖2 =
q∏

i=1

Eeλbi
2 =
(

1 +
∫ ∞

1
P
{
eλb1

2 ≥ τ
}
dτ

)q

.

Next, using (2), we get∫ ∞
1

P
{
eλb2

1 ≥ τ
}
dτ ≤ (r − 1)P{g1 > r} +

∫ ∞
r

P
{
eλb2

1 ≥ τ
}
dτ

≤ e−r2/2 +
∫ ∞
r

P

{
g1 ≥
√

ln τ

λ

}
dτ

≤ e−r2/2 +
∫ ∞
r

τ−1/(2λ) dτ

= e−r2/2 + r1−1/(2λ)

1/(2λ) − 1
.

Now, take λ = (2 + r2

ln r
)−1 so that 1

2λ
− 1 = r2

2 ln r
. After replacing λ with its value,

we deduce that

Eeλ‖b‖2 ≤ (1 + 2e−r2/2)q ≤ exp
(
2qe−r2/2).(24)

Using Markov’s inequality together with (24), we obtain

P
{
λ‖b‖2 ≥ 4qe−r2/2}≤ exp

(−2qe−r2/2)≤ exp(−2
√

q),

where the last inequality holds since r ≤ √
lnq . To complete the proof, it remains

to note that

4qe−r2/2

λ
≤ 8qr2e−r2/2 ≤ 16qe−r2/4. �

6.2. Proof of Theorem B. Throughout this part, we assume that c > 0 and
n0 ∈ N are appropriately chosen constants (with c sufficiently small and n0 suf-
ficiently large) and n ≥ n0 is fixed. The admissible values for c and n0 can be
recovered from the proof, however, we prefer to avoid these technical details. Fur-
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ther, in order not to overload the presentation, from now on we treat certain real-
valued parameters are integers. In particular, this concerns the product cn, as well
as several other quantities depending on n (we will point them out later). To prove
relation (1), we will construct a random unit vector v̄ ∈ R

n such that〈
v̄,BMn(t)

〉
> 0 for any t ∈ [1,2cn](25)

with probability close to one.
Let N := cn and define

a0 := 0 and ai := 2i−1, i = 1,2, . . . ,N + 1.

The starting point of the proof is to define a random vector v̄0 such that
〈v̄0,BMn(ai)〉 is large for all i ≤ N + 1. For this, we will use Lemma 18 tak-
ing all coordinates of the vector b equal. It will be more convenient to state the
next lemma (which is a direct consequence of Lemma 18) with generic parameters
m and d instead of N , n.

LEMMA 20. Let d,m ∈ N with m ≤ d/2 and BMd(t) be the standard Brown-
ian motion in R

d . Then there exists a random unit vector v̄0 ∈ R
d such that

P

{〈
v̄0,BMd(ai+1) − BMd(ai)

〉≥ c18

2

√
dai+1

m
, i = 0, . . . ,m

}

≥ 1 − exp(−c18d).

We note that, conditioned on a realization of BMd(a1), . . . ,BMd(am+1) (hence,
v̄0), for each admissible i ≥ 1 the process〈

v̄0,BMd

(
ai + t (ai+1 − ai)

)〉
, t ∈ [0,1],

is a (noncentered) Brownian bridge, and standard estimates (see, e.g., [21],
page 34) together with above lemma imply that given i, we have 〈v̄0,BMd(ai +
t (ai+1 − ai))〉 > 0 for all t ∈ [0,1] with probability at least 1 − 2 exp(−c′′d/m)

for a universal constant c′′. If m � d/ lnd then applying the union bound we get
〈v̄0,BMd(t)〉 > 0 for all 1 ≤ t ≤ am+1 with high probability.

The argument described above is given in [4]. Note that for m � d/ lnd the
probability that the ith Brownian bridge is not positive becomes too large to apply
the union bound over all i. For this reason, we significantly modified the approach
of [4]. Let M := log2 lnn (we will further treat the quantity as an integer, omitting a
truncation operation). Our construction will be iterative: after defining vector v̄0 as
described above, we will produce a sequence of random vectors v̄k , k = 1, . . . ,M ,
where each v̄k with a high probability satisfies 〈v̄k,BMn(t)〉 > 0 for all t in a
certain discrete subset of [1,2cn]. The subset for v̄k is obtained by zooming in and
adding mid-points between every two neighboring points of the subset generated
for v̄k−1. The size of those discrete subsets grows with k exponentially, so that the



988 K. TIKHOMIROV AND P. YOUSSEF

vector v̄ := v̄M will possess the required property (25) with probability close to
one. The definition of the subsets is made more precise below.

We split the interval [0, aN+1] into blocks. For each admissible i ≥ 0, the ith
block is the interval [ai, ai+1]. With the ith block, we associate a sequence of sets
I i
k , k = 0,1, . . . ,M , in the following way: for i = 0 we have I i

k = ∅ for all k ≥ 0;
for i ≥ 1, we set I i

0 = ∅ and

I i
k := {21/2k

ai,22/2k

ai,23/2k

ai, . . . ,2(2k−1)/2k

ai

}
, k = 1,2, . . . ,M.

Given any 0 < k ≤ M , the vector v̄k will be a small perturbation of the vector
v̄k−1. The operation of constructing v̄k will be referred to as the kth step of the
construction. We must admit that the construction is rather technical. In fact, each
step itself is divided into a sequence of substeps. To make the exposition of the
proof as clear as possible, we will not provide all the details at once but instead
introduce them sequentially.

At each step, to avoid issues connected with probabilistic dependencies, the
already constructed vector v̄k−1 and the perturbation added to it will be defined on
disjoint coordinate subspaces of Rn. Namely, we split Rn into M + 1 coordinate
subspaces as follows:

R
n :=

M∏
k=0

R
J k

,

where J k are pairwise disjoint subsets of {1, . . . , n} with |J k| = c̃n2−k/8 for an
appropriate constant c̃ (chosen so that

∑
k≤M |J k| = n) and R

J k = span{ei}i∈J k .
Again, for a lighter exposition we treat the quantities c̃n2−k/8 as integers. For every
k ≤ M , define Pk :Rn →R

n as the orthogonal projection onto R
J k

.
Let F,H : N → R+ be a decreasing and an increasing function, respectively,

satisfying the relations

8cF (1)2 = c̃c18
2 and ∀k ≤ M, F(k) ≥ Cf ≥ 2H(k),(26)

where Cf > 0 is a constant which will be determined later.
Now, we can state more precisely what we mean by the kth step of the construc-

tion (k = 0,1, . . . ,M). The goal of the kth step is to produce a random unit vector
v̄k with the following properties:

1. v̄k is supported on
k∏

p=0

R
Jp;(27)

2. v̄k is measurable with respect to the σ -algebra generated by
(28)

Pp(BMn(t)
)

for all 0 ≤ p ≤ k, t ∈
N⋃

i=0

({ai+1} ∪ I i
k

);



CONVEX HULL OF A RANDOM WALK IN Rn 989

3. The event

Ek := {〈v̄k,BMn(t) − BMn(ai)
〉≥ −H(k + 1)

√
ai and〈

v̄k,BMn(ai+1) − BMn(ai)
〉≥ F(k + 1)

√
ai+1

for all t ∈ I i
k and i = 0,1, . . . ,N

}
has probability close to one.

Quantitative estimates of P(Ek) are provided by the following lemma which will
be proved in the next section.

LEMMA 21 (kth Step). For a small enough constant c > 0 and a large enough
Cf > 0, there exist F and H satisfying (26) such that the following holds. Let
1 ≤ k ≤ M and assume that a random unit vector v̄k−1 satisfying properties (27),
(28) has been constructed. Then there exists a random unit vector v̄k satisfying
(27)–(28) and such that

P(Ek) ≥ P(Ek−1) − 1

n2 .

PROOF OF THEOREM B. In view of the relation (26), we have

2F(1) = c18

√
c̃

2c
≤ c18

√
|J 0|
N

.

Hence, in view of Lemma 20 (applied with m = N and d = |J 0|), there exists a
random unit vector v̄0 ∈ R

J 0
measurable with respect to the σ -algebra generated

by vectors P0(BMn(ai+1) − BMn(ai)), i = 0,1, . . . ,N , and such that

P(E0) = P
{〈
v̄0,BMn(ai+1) − BMn(ai)

〉≥ F(1)
√

ai+1 for i = 0,1, . . . ,N
}

≥ 1 − exp
(−c18

∣∣J 0∣∣)
≥ 1 − 1

n2 .

Applying Lemma 21 M times, we obtain a random unit vector v̄M satisfying (27)–
(28) such that

P(EM) ≥ 1 − M + 1

n2 .

Note that everywhere on EM , we have〈
v̄M,BMn(ai+1)

〉≥ 〈v̄M,BMn(ai+1) − BMn(ai)
〉≥ Cf

√
ai+1

and 〈
v̄M,BMn(t)

〉≥ 〈v̄M,BMn(ai)
〉− Cf

2

√
ai ≥ Cf

2

√
ai, t ∈ I i

k
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for all i = 0,1, . . . ,N . Hence, denoting Q := {a1, a2, . . . , aN+1} ∪⋃N
i=1 I i

M , we
get

EM ⊂
{〈

v̄M,
BMn(t)√

t

〉
≥ Cf

4
, t ∈ Q

}
.(29)

Now, take any two neighboring points t1 < t2 from Q. Note that, conditioned on a
realization of vectors BMn(t), t ∈ Q, the random process

X(s) =
〈
v̄M,

sBMn(t2) + (1 − s)BMn(t1)√
t2 − t1

〉
−
〈
v̄M,

BMn(t1 + s(t2 − t1))√
t2 − t1

〉
,

defined for s ∈ [0,1], is a standard Brownian bridge. Hence (see, e.g., [21],
page 34), we have for any τ > 0

P
{
X(s) ≥ τ for some s ∈ [0,1]}= exp

(−2τ 2).
Taking τ := 2

√
lnn, we obtain

P
{〈
v̄M,BMn(t)

〉≤ min
(〈
v̄M,BMn(t1)

〉
,
〈
v̄M,BMn(t2)

〉)
− 2

√
t2 − t1

√
lnn for some t ∈ [t1, t2]}

≤ 1

n8 .

Finally, note that, in view of (29), everywhere on EM we have

(t2 − t1)
−1/2 min

(〈
v̄M,BMn(t1)

〉
,
〈
v̄M,BMn(t2)

〉)− 2
√

lnn

≥ Cf

4

√
t1

t2 − t1
− 2

√
lnn

≥ 2M/2−3Cf − 2
√

lnn

> 0.

Taking the union bound over all adjacent pairs in Q (clearly, |Q| ≤ n2), we come
to the relation

P
{〈
v̄M,BMn(t)

〉
> 0 for all t ∈ [1,2cn]}≥ P(EM) − |Q|

n8 ≥ 1 − 1

n
. �

6.3. Proof of Lemma 21. Let M ′ = 1
4 log2 lnn. For every k ≤ M , we split J k

into pairwise disjoint subsets J k
� , � ≤ M ′, with |J k

� | = c′n2−(k+�)/8 for an ap-
propriate constant c′, chosen so that

∑
�≤M ′ |J k

� | = |J k| (to make computations
lighter, we will treat the quantities c′n2−(k+�)/8, k ≤ M,� ≤ M ′, as integers). For
every k ≤ M,� ≤ M ′, define Pk

� : Rn →R
n as the orthogonal projection onto R

J k
� .

Further, we define two functions f,h : N×N0 →R+ as follows:
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1. f is decreasing in both arguments; f (1,0) = Cf + 2−1/2(1 − 2−1/4)−2Cf ;
for each k > 0 and � > 0 we have f (k, � − 1) − f (k, �) = Cf 2−(k+�)/4; finally,
f (k,0) = lim�→∞ f (k − 1, �) for all k > 1. The constant Cf > 0 is defined via
the relation 8cf (1,0)2 = c̃c18

2, where c̃ is taken from the definition of sets J k and
c18 comes from Lemma 18.

2. h is increasing in both arguments; h(1,0) = 0; for each k > 0 and � > 0 we
have h(k, �)−h(k, �−1) = Ch2−(k+�)/4; moreover, h(k,0) = lim�→∞ h(k−1, �)

for all k > 1. The constant Ch is defined by Ch = 2−1/2(1 − 2−1/4)2Cf .

Now define F : N → R and H : N → R by F(k) := f (k,0) and H(k) :=
h(k,0) for any k ∈ N. Note that F and H satisfy (26).

Fix k ≥ 1. Assuming that the vector v̄k−1 is already constructed, the aim is to
construct v̄k such that the event Ek has large probability. The vector v̄k is obtained
via an embedded iteration procedure realized as a sequence of substeps. Namely,
we set v̄k,0 := v̄k−1 and inductively construct random vectors v̄k,�, 1 ≤ � ≤ M ′ and
take v̄k = v̄k,M ′ . Let us give a partial description of the procedure, omitting some
details.

For each � = 1,2, . . . ,M ′ + 1 and every block i = 0,1,2, . . . ,N the ith block
statistic is

Bi (k, �) := max
(

0,max
t∈I i

k

〈
v̄k,�−1,

BMn(ai) − BMn(t)√
ai

〉
− h(k, �),

(30) 〈
v̄k,�−1,

BMn(ai) − BMn(ai+1)√
ai+1

〉
+ f (k, �)

)
.

Note that the statistic for the zero block is simply

max
(
0,−〈v̄k,�−1,BMn(a1)

〉+ f (k, �)
)
.

The (N + 1)-dimensional vector (B0(k, �), . . . ,BN(k, �)) will be denoted by
B(k, �). Let us also denote

I(k, �) := {i : Bi (k, �) �= 0
}
.

Note that the event {I(k,M ′ + 1) = ∅} is contained inside Ek . At each sub-
step, using information about the statistics B(k, �) and choosing an appropriate
perturbation of v̄k,�−1 to obtain v̄k,�, we will control the measure of the event
{I(k, � + 1) = ∅}, and in this way will be able to estimate the probability of Ek

from below.
Given v̄k,�−1, the goal of the �th substep is to construct a random unit vector

v̄k,� such that

1. v̄k,� is supported on
∏

(p,q)�(k,�)

R
J

p
q , where the notation

(31)
(p, q)� (k, �) means “p < k or p = k, q ≤ �”;
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2. v̄k,� is measurable with respect to the σ -algebra generated by
(32)

Pp
q

(
BMn(t)

)
for all (p, q)� (k, �) and t ∈

N⋃
i=0

({ai+1} ∪ I i
k

);
3.
∥∥B(k, � + 1)

∥∥ is typically smaller than
∥∥B(k, �)

∥∥.
The third property will be made more precise later. For now, we note that the
typical value of ‖B(k, �)‖ will decrease with � in such a way that, after the M ′th
substep, the vector B(k,M ′ + 1) will be zero with probability close to one.

The vector v̄k,� will be defined as

v̄k,� = v̄k,�−1 + αk,��̄k,�√
1 + αk,�

2
,(33)

where �̄k,� is a random unit vector (perturbation) and αk,� := 16−k−�.
The vector �̄k,� will satisfy the following properties:

1. �̄k,� is supported on R
J k
� ;(34)

2. �̄k,� is measurable with respect to the σ -algebra generated by
(35)

Pp
q

(
BMn(t)

)
for all admissible (p, q)� (k, �), t ∈

N⋃
i=0

({ai+1} ∪ I i
k

);
3. For any subset I ⊂ {0,1, . . . ,N} such that P

{
I(k, �) = I

}
> 0,

�̄k,� is conditionally independent from the collection of vectors
(36) {

Pk
�

(
BMn(t) − BMn(ai)

)
, t ∈ I i

k ∪ {ai+1}, i /∈ I
}

given the event
{
I(k, �) = I

}
.

4. The event

Ek,� := {Bi (k, � + 1) = 0 for all i ∈ I(k, �)
}

has probability close to one.

Again, we will make the last property more precise later.
Let us sum up the construction procedure. We sequentially produce random

unit vectors v̄0 = v̄1,0, v̄1,1, v̄1,2, . . . , v̄1,M ′ = v̄1 = v̄2,0, v̄2,1, v̄2,2, . . . , v̄2,M ′ =
v̄2 = v̄3,0, . . . , . . . , v̄M,M ′ = v̄M (in the given order). Each next vector is a random
perturbation of the previous one. In a certain sense [quantified with help of order
statistics B(k, �)], each newly produced vector is a refinement of the previous one
in such a way that v̄M = v̄ will possess the required characteristics.

In the next two lemmas, we establish certain important properties of the block
statistics.

LEMMA 22 (Initial substep for block statistics). Fix any 1 ≤ k ≤ M and as-
sume that a random unit vector v̄k,0 := v̄k−1 satisfying properties (27) and (28)
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has been constructed. Then

P

{∣∣I(k,1)
∣∣≤ N exp

(−Ch
22k/2/16

)
and
∥∥B(k,1)

∥∥≤ 8
√

N

exp(Ch
22k/2/32)

}

≥ P(Ek−1) − 2 exp(−2
√

N).

PROOF. Let i > 0 so that I i
k �= ∅. For each t ∈ I i

k \ I i
k−1, let tL be the maximal

number in {ai} ∪ I i
k−1 strictly less than t (“left neighbor”) and, similarly, tR be

the minimal number in I i
k−1 ∪ {ai+1} strictly greater than t (“right neighbor”). For

every such t , let

wt := tR − t

tR − tL
BMn(tL) + t − tL

tR − tL
BMn(tR); ut := BMn(t) − wt .

It is not difficult to see that〈
v̄k,0,

BMn(ai) − wt√
ai

〉

≤ max
(〈

v̄k,0,
BMn(ai) − BMn(tL)√

ai

〉
,

〈
v̄k,0,

BMn(ai) − BMn(tR)√
ai

〉)

≤ max
(

0, max
τ∈I i

k−1

〈
v̄k,0,

BMn(ai) − BMn(τ )√
ai

〉
,

〈
2v̄k,0,

BMn(ai) − BMn(ai+1)√
ai+1

〉)
.

Hence, the ith block statistic (for i = 0,1, . . . ,N ) can be (deterministically)
bounded as

Bi (k,1) ≤ max
(

0, max
t∈I i

k−1

〈
v̄k,0,

BMn(ai) − BMn(t)√
ai

〉
− h(k,1),

max
t∈I i

k\I i
k−1

〈
v̄k,0,

BMn(ai) − wt√
ai

〉
− h(k,1) + max

t∈I i
k\I i

k−1

〈
v̄k,0,

−ut√
ai

〉
,

〈
v̄k,0,

BMn(ai) − BMn(ai+1)√
ai+1

〉
+ f (k,1)

)

≤ max
(

0, max
t∈I i

k−1

〈
v̄k,0,

BMn(ai) − BMn(t)√
ai

〉
− h(k,0),

〈
2v̄k,0,

BMn(ai) − BMn(ai+1)√
ai+1

〉
+ 2f (k,0)

)

+ max
(

0, max
t∈I i

k\I i
k−1

〈
v̄k,0,

−ut√
ai

〉
+ h(k,0) − h(k,1)

)
.
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Let us denote the first summand in the last estimate by ξi , so that

Bi (k,1) ≤ ξi + max
(

0, max
t∈I i

k\I i
k−1

〈
v̄k,0,

−ut√
ai

〉
+ h(k,0) − h(k,1)

)
.

Note that

Ek−1 = {ξi = 0 for all i = 0,1, . . . ,N}.(37)

Further, the property (28) of the vector v̄k,0 = v̄k−1, together with Lemma 17
and the independence of the Brownian motion on disjoint intervals, imply that
the Gaussian variables 〈v̄k,0,

−ut√
ai

〉 are jointly independent for t ∈ I i
k \ I i

k−1, i =
1,2, . . . ,N , and the variance of each one can be estimated from above by 21−k .
Thus, the vector B(k,1) can be majorized coordinate-wise by the vector(

ξi + max
t∈I i

k\I i
k−1

(
0,2(1−k)/2gt + h(k,0) − h(k,1)

))N
i=0

,

where gt (t ∈ I i
k \ I i

k−1, i = 0,1, . . . ,N ) are i.i.d. standard Gaussians (in fact, ap-
propriate scalar multiples of 〈v̄k,0,

−ut√
ai

〉). Denoting by g the standard Gaussian
variable, we get from the definition of h:

P

{
max

t∈I i
k\I i

k−1

(
0,2(1−k)/2gt + h(k,0) − h(k,1)

)
> 0
}

≤ 2k
P
{
g > Ch2k/4/2

}

≤ 2k exp
(−Ch

22k/2/8
)

≤ 1

2
exp
(−Ch

22k/2/16
)
.

(In the last two inequalities, we assumed that Ch is sufficiently large.) Applying
Hoeffding’s inequality to corresponding indicators, we infer∣∣I(k,1)

∣∣≤ ∣∣{i : ξi �= 0}∣∣+ N exp
(−Ch

22k/2/16
)

with probability at least 1 − exp(−2
√

N) [we note that, in view of the inequality
k ≤ M , we have 1

2 exp(−Ch
22k/2/16) ≥ N−1/4]. Next, it is not hard to see that the

Euclidean norm of B(k,1) is majorized (deterministically) by the sum∥∥(ξi)
N
i=0

∥∥+ 2(1−k)/2∥∥(max
(
0, gt − Ch2k/4/2

))
t

∥∥,
with the second vector having

∑N
i=0 |I i

k \ I i
k−1| ≤ 2kN coordinates. Applying

Lemma 19 to the second vector (note that for sufficiently large n we have
Ch2k/4/2 ≤ √

lnN ), we get

∥∥B(k,1)
∥∥≤ ∥∥(ξi)

N
i=0

∥∥+ 8
√

N

exp(Ch
22k/2/32)

with probability at least 1 − exp(−2
√

N). Combining the estimates with (37), we
obtain the result. �
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LEMMA 23 (Subsequent substeps for block statistics). Fix any 1 ≤ k ≤ M

and 1 < � ≤ M ′ + 1 and assume that the random unit vectors v̄k,�−2 and �̄k,�−1
satisfying properties (31)–(32) and (34)–(36), respectively, are constructed, and
v̄k,�−1 is defined according to formula (33). Then

P

{∣∣I(k, �)
∣∣≤ N exp

(−Ch
22(k+�)/2) and

∥∥B(k, �)
∥∥≤

√
N

exp(Ch
22(k+�)/2)

}

≥ P(Ek,�−1) − 2 exp(−2
√

N).

Moreover,

P
{
I(k, �) �= ∅

}≤ N exp
(−Ch

2/αk,�−1
)+ 1 − P(Ek,�−1).

PROOF. To shorten the notation, we will use α in place of αk,�−1 within the
proof. Using the definition of v̄k,�−1 in terms of v̄k,�−2 and �̄k,�−1, we get for
every i = 0,1, . . . ,N

Bi (k, �) = max
(

0,max
t∈I i

k

〈
v̄k,�−2 + α�̄k,�−1√

1 + α2
,

BMn(ai) − BMn(t)√
ai

〉
− h(k, �),

〈
v̄k,�−2 + α�̄k,�−1√

1 + α2
,

BMn(ai) − BMn(ai+1)√
ai+1

〉
+ f (k, �)

)

≤ Bi (k, � − 1)√
1 + α2

+ max
(

0,max
t∈I i

k

〈
α�̄k,�−1,

BMn(ai) − BMn(t)√
ai

〉

+ h(k, � − 1) − h(k, �),〈
α�̄k,�−1,

BMn(ai) − BMn(ai+1)√
ai+1

〉
+
√

1 + α2f (k, �) − f (k, � − 1)

)
.

Let us denote the second summand by ηi so that

Bi (k, �) ≤ Bi (k, � − 1)√
1 + α2

+ ηi.

Fix for a moment any subset I of {0,1, . . . ,N} such that P{I(k, � − 1) =
I } > 0. A crucial observation is that, conditioned on the event I(k, � − 1) = I , the
variables ηi , i /∈ I , are jointly independent. This follows from properties (34), (36)
of �̄k,�−1 and from independence of the Brownian motion on disjoint intervals.
Next, the same properties tell us that, conditioned on I(k, � − 1) = I , each vari-
able 〈�̄k,�−1,

BMn(ai)−BMn(t)√
ai

〉, t ∈ I i
k , and 〈�̄k,�−1,

BMn(ai)−BMn(ai+1)√
ai+1

〉 have Gaus-
sian distributions with variances at most 1. Further, note that, by the choice of α



996 K. TIKHOMIROV AND P. YOUSSEF

and the functions f and h, we have√
1 + α2f (k, �) − f (k, � − 1) ≤ h(k, � − 1) − h(k, �) = −Ch2(−k−�)/4.

Thus, denoting by g the standard Gaussian variable, we get

P
{
ηi > 0|I(k, � − 1) = I

}≤ 2k
P
{
g > α−1Ch2(−k−�)/4}

(38)
≤ 1

2 exp
(−Ch

2α−1), i ∈ {0,1, . . . ,N} \ I.

Hence, by Hoeffding’s inequality [note that exp(−Ch
22(k+�)/2) > 2N−1/4]:

P
{∣∣{i /∈ I : ηi > 0}∣∣≥ N exp

(−Ch
22(k+�)/2)|I(k, � − 1) = I

}≤ exp(−2
√

N).

Next, it is not difficult to see that for any τ > 0 and i /∈ I

P
{
η2

i ≥ τ |I(k, � − 1) = I
}

≤ 2k
P
{
max
(
0, αg − Ch2(−k−�)/4)2 ≥ τ

}
≤ 1 − exp

(−2k+1
P
{
max
(
0, αg − Ch2(−k−�)/4)2 ≥ τ

})
≤ 1 − P

{
max
(
0, αg − Ch2(−k−�)/4)2 < τ

}2k+1

≤ P

{2k+1∑
j=1

max
(
0, αgj − Ch2(−k−�)/4)2 ≥ τ

}

≤ P

{2k+1∑
j=1

max
(
0, αgj − 4αCh2(k+�)/4)2 ≥ τ

}
,

where gj (j = 1,2, . . . ,2k+1) are i.i.d. copies of g. Hence, the conditional c.d.f. of
‖(ηi)i /∈I‖ given I(k, � − 1) = I majorizes the c.d.f. of

α
∥∥(max

(
0, gj − 4Ch2(k+�)/4))2k+1N

j=1

∥∥=: αZ

for i.i.d. standard Gaussians gj , j = 1,2, . . . ,2k+1N . Applying Lemma 19 (note
that 4Ch2(k+�)/4 ≤ √

lnN ), we obtain

P

{∥∥(ηi)i /∈I

∥∥>
√

N

exp(Ch
22(k+�)/2)

∣∣∣I(k, � − 1) = I

}

≤ P

{
Z >

α−1
√

N

exp(Ch
22(k+�)/2)

∣∣∣I(k, � − 1) = I

}

≤ P

{
Z >

4
√

2k+1N

exp(2Ch
22(k+�)/2)

∣∣∣I(k, � − 1) = I

}

≤ exp(−2
√

N).
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Clearly, Bi (k, � − 1) = 0 for all i /∈ I given I(k, � − 1) = I . Hence, the above
estimates give

P

{∣∣I(k, �)
∣∣≥ N exp

(−Ch
22(k+�)/2)

or
∥∥B(k, �)

∥∥>
√

N

exp(Ch
22(k+�)/2)

∣∣∣I(k, � − 1) = I

}

≤ P
{
Bi (k, �) > 0 for some i ∈ I |I(k, � − 1) = I

}+ 2 exp(−2
√

N).

Summing over all admissible subsets I , we get

P

{∣∣I(k, �)
∣∣≥ N exp

(−Ch
22(k+�)/2) or

∥∥B(k, �)
∥∥>

√
N

exp(Ch
22(k+�)/2)

}

≤ 2 exp(−2
√

N)

+∑
I

P
{
Bi (k, �) > 0 for some i ∈ I |I(k, � − 1) = I

}
P
{
I(k, � − 1) = I

}

= 2 exp(−2
√

N) + P
{
Bi (k, �) > 0 for some i ∈ I(k, � − 1)

}
= 2 exp(−2

√
N) + 1 − P(Ek,�−1).

By analogous argument, as a corollary of (38),

P
{
I(k, �) �=∅

}≤ N exp
(−Ch

2α−1)+ 1 − P(Ek,�−1). �

The next lemma, which is the heart of the proof, provides a construction proce-
dure for the perturbation �̄k,�. Given vector v̄k,�−1, we examine its block statistics
B(k, �), and define the perturbation in such a way that its inner product with in-
crements of the Brownian motion is large on bad blocks I(k, �) [in fact, it will be
proportional to the values of corresponding Bi (k, �)], and random on other blocks.
This is achieved using Lemma 18.

LEMMA 24 (Construction of �̄k,�). Let 1 ≤ k ≤ M and 1 ≤ � ≤ M ′ and as-
sume that the random unit vector v̄k,�−1 satisfying properties (31) and (32) has
been constructed. Then one can construct a random unit vector �̄k,� satisfying
properties (34)–(36) and such that

P(Ek,�) ≥ P(Ek,�−1) − 3 exp(−√
N) if � > 1, or

P(Ek,�) ≥ P(Ek−1) − 3 exp(−√
N) if � = 1.

PROOF. Fix for a moment any subset I ⊂ {0,1, . . . ,N} such that the event


I = {I(k, �) = I
}
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has a nonzero probability. If |I | > N exp(−Ch
22(k+�)/2/32) then define a random

vector �̄I
k,� on 
I by setting �̄I

k,� := u for an arbitrary fixed unit vector u ∈ R
J k
� .

Otherwise, if |I | ≤ N exp(−Ch
22(k+�)/2/32), we proceed as follows:

Define a set of double indices

TI := {(i,p) : i ∈ I \ {0},p ∈ {1, . . . ,2k − 1
}}∪⋃

i∈I

{
(i,0)
}
.

For each (i,p) ∈ TI , define an increment Xi,p on the probability space (
I ,

P(·|
I )) by

Xi,p := Pk
�(BMn(ti,p+1) − BMn(ti,p))√

ti,p+1 − ti,p
,

where ti,p = 2i−1+p2−k
for p = 0,1, . . . ,2k and i ∈ I \ {0}; additionally, if 0 ∈ I ,

then t0,1 = 1 and t0,0 = 0.
Note that B(k, �) is measurable with respect to the σ -algebra generated by pro-

cesses Pq
s BMn(t), (q, s) � (k, � − 1), where the notation “�” is taken from (31);

see formula (30). It implies that Pk
�(BMn(t)) (on �) is independent from the event


I ; moreover, considered on the space (
I ,P(·|
I )), the set {Xi,p, (i,p) ∈ TI } is
a collection of standard Gaussian vectors, such that all Xi,p and the vector B(k, �)

are jointly independent. Let us define a random vector b̃I ∈ R
TI on (
I ,P(·|
I ))

by

b̃I
i,p =

{
2−k/2Bi (k, �)/

∥∥B(k, �)
∥∥, if B(k, �) �= 0;

0, otherwise.

It is easy to see that ‖b̃I‖ ≤ 1 (deterministically) and that

|TI | ≤ 2k|I | ≤ 2kN exp
(−Ch

22(k+�)/2/32
)≤ 1

2 |J k
� |.

(In the last estimate, we used the assumption that Ch is a large constant.) Hence,
in view of Lemma 18, there exists a random unit vector �̄I

k,� on the space

(
I ,P(·|
I )) with values in R
J k
� , which is a Borel function of Xi,p and b̃I , and

such that

P

{〈
�̄I

k,�,Xi,p

〉≥ c18

√∣∣J k
�

∣∣b̃I
i,p for all (i,p) ∈ TI |
I

}
≥ 1 − exp

(−c18
∣∣J k

�

∣∣)
≥ 1 − exp(−√

N).

It will be convenient for us to denote by 
̃I the event{〈
�̄I

k,�,Xi,p

〉≥ c18

√∣∣J k
�

∣∣b̃I
i,p for all (i,p) ∈ TI

}
⊂ 
I .

By gluing together �̄I
k,� for all I , we obtain a random vector �̄k,� defined on

the entire probability space �.
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Clearly, �̄k,� satisfies properties (34) and (35). Next, on each 
I with P(
I ) > 0
the vector �̄k,� was defined as a Borel function of B(k, �) and Pk

�(BM(t) −
BM(τ )), t, τ ∈ I i

k ∪ {ai, ai+1}, i ∈ I , so, in view of independence of the Brow-
nian motion on disjoint intervals, �̄k,� satisfies (36).

Finally, we shall estimate the probability of Ek,�. Define

E =
{∣∣I(k, �)

∣∣≤ N exp
(−Ch

22(k+�)/2/32
)

and

∥∥B(k, �)
∥∥≤

√
N

exp(Ch
22(k+�)/2/64)

}
.

Note that, according to Lemmas 22 and 23, the probability of E can be estimated
from below by P(Ek,�−1)− 2 exp(−2

√
N) for � > 1 and P(Ek−1)− 2 exp(−2

√
N)

for � = 1.
Take any subset I ⊂ {0,1, . . . ,N} with |I | ≤ N exp(−Ch

22(k+�)/2/32) and
such that 
̃I ∩ E �= ∅, and let ω ∈ 
̃I ∩ E . If I(k, �) = ∅ at point ω then, ob-
viously, ω ∈ Ek,�. Otherwise, we have〈

�̄k,�(ω),
BMn(ti,p+1)(ω) − BMn(ti,p)(ω)√

ti,p+1 − ti,p

〉

≥ c182−k/2
√

|J k
� |Bi (k, �)(ω)

‖B(k, �)(ω)‖ for all (i,p) ∈ TI ,

whence, using the estimate ti,p+1 − ti,p ≥ 2i−k

4 [(i,p) ∈ TI ], we obtain for any
i ∈ I and t ∈ I i

k ∪ {ai+1}:〈
�̄k,�(ω),BMn(t)(ω) − BMn(ai)(ω)

〉
= ∑

p:ti,p<t

〈
�̄k,�(ω),BMn(ti,p+1)(ω) − BMn(ti,p)(ω)

〉

≥ c182−k−1
√

ai+1|J k
� |Bi (k, �)(ω)

‖B(k, �)(ω)‖ .

Further,

c182−k−1
√

|J k
� |

‖B(k, �)(ω)‖ ≥ c182−k−1
√

c′n2(−k−�)/8 exp(Ch
22(k+�)/2/64)√

N
≥ 1

αk,�

.

Using the definition of v̄k,� in terms of v̄k,�−1 and �̄k,� and the above estimates,
we get 〈

v̄k,�(ω),
BMn(t)(ω) − BMn(ai)(ω)√

ai

〉

≥ αk,�√
1 + αk,�

2

〈
�̄k,�(ω),

BMn(t)(ω) − BMn(ai)(ω)√
ai

〉
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− h(k, �) +Bi (k, �)(ω)√
1 + αk,�

2

≥ −h(k, �)√
1 + αk,�

2

≥ −h(k, � + 1), t ∈ I i
k, i ∈ I,

and, similarly,〈
v̄k,�(ω),

BMn(ai+1)(ω) − BMn(ai)(ω)√
ai+1

〉
≥ f (k, �)√

1 + αk,�
2

≥ f (k, � + 1), i ∈ I.

Thus, by the definition of the event Ek,�, we get ω ∈ Ek,�.
The above argument shows that

P(Ek,�) ≥∑
I

P(
̃I ∩ E),

where the sum is taken over all I with |I | ≤ N exp(−Ch
22(k+�)/2/32). Finally,∑

I

P(
̃I ∩ E) ≥∑
I

P(
I ∩ E) −∑
I

P(
I \ 
̃I ) ≥ P(E) − exp(−√
N),

and we get the result. �

PROOF OF LEMMA 21. As before, we set v̄k,0 := v̄k−1. Consecutively apply-
ing Lemma 24 and formula (33) M ′ times, we obtain a random unit vector v̄k,M ′
satisfying (31) and (32). Moreover, the same lemma provides the estimate

P(Ek,M′) ≥ P(Ek−1) − 3M ′ exp(−√
N).

Then, in view of Lemma 23 and the definition of M ′, we have

P
{
I
(
k,M ′ + 1

) �= ∅
}≤ N exp

(−Ch
2/αk,M ′

)+ 1 −P(Ek,M ′) ≤ 1

n2 + 1 −P(Ek−1).

Combining the above estimate with the definition of Ek , we get for v̄k := v̄k,M ′ that

P(Ek) ≥ P(Ek−1) − 1

n2 . �
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