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THE CHAOTIC REPRESENTATION PROPERTY OF
COMPENSATED-COVARIATION STABLE

FAMILIES OF MARTINGALES1

BY PAOLO DI TELLA2 AND HANS-JÜRGEN ENGELBERT

Technische Universität Dresden and Friedrich-Schiller-Universität Jena

In the present paper, we study the chaotic representation property for
certain families X of square integrable martingales on a finite time interval
[0, T ]. For this purpose, we introduce the notion of compensated-covariation
stability of such families. The chaotic representation property will be defined
using iterated integrals with respect to a given family X of square integrable
martingales having deterministic mutual predictable covariation 〈X,Y 〉 for
all X,Y ∈ X . The main result of the present paper is stated in Theorem 5.8
below: If X is a compensated-covariation stable family of square integrable
martingales such that 〈X,Y 〉 is deterministic for all X,Y ∈ X and, further-
more, the system of monomials generated by X is total in L2(�,FX

T ,P),
then X possesses the chaotic representation property with respect to the
σ -field FX

T . We shall apply this result to the case of Lévy processes. Rela-

tive to the filtration F
L generated by a Lévy process L, we construct families

of martingales which possess the chaotic representation property. As an illus-
tration of the general results, we will also discuss applications to continuous
Gaussian families of martingales and independent families of compensated
Poisson processes. We conclude the paper by giving, for the case of Lévy
processes, several examples of concrete families X of martingales including
Teugels martingales.

1. Introduction. In his paper [22], Norbert Wiener introduced the notion of
multiple integral and called it polynomial chaos. However, the Wiener polynomi-
als chaos of different order are not orthogonal. In [9], Itô gave another definition
of multiple integrals for a general normal random measure in such a way that the
orthogonality property is achieved. In the same paper, Itô established the relation
between orthogonal Hermite polynomials and multiple integrals. This was also
done by Cameron and Martin [3] for the special normal random measure induced
by a Wiener process. Using this relation, Itô proved that every square integrable
functional of a normal random measure can be expanded as an orthogonal sum of
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multiple integrals. This property is known in the literature as chaotic representa-
tion property (CRP). A similar result was shown in Kakutani [13]. In conclusion
of [9], Itô pointed out that the multiple integrals of a normal random measure in-
duced by a Wiener process W can be regarded as iterated stochastic integrals with
respect to W . In the later paper [10], which appeared in 1956, Itô generalized the
result of [9] stated for a normal random measure, and in particular for the Wiener
process, to the case of an orthogonal random measure (cf. Gihman and Skorohod
[8], Chapter IV, Section 4) defined as a sum of a normal random measure and
a compensated Poisson random measure. These random measures are associated
with processes with independent increments. For such a random measure, Itô intro-
duced multiple integrals and proved a chaos decomposition for square integrable
functionals. We call the multiple integrals introduced in [10] multiple Itô integrals.
In [10], no relation between multiple Itô integrals and iterated stochastic integrals
is given. However, we note that the relation between multiple Itô integrals and
polynomials is established by Segall and Kailath [20].

Multiple Itô integrals have been extensively studied for many decades. A self-
contained monograph about Itô-type integrals for completely random measures,
with particular attention to their combinatorial structure, is Peccati and Taqqu [17].
In [17], the authors also discuss the CRP for centred Gaussian measures and com-
pensated Poisson random measures (which are special cases of completely random
measures) and study the relation of multiple integrals with Hermite polynomials
for the Gaussian case and Charlier polynomials for the Poisson case.

For a stochastic process X, we denote by F
X the smallest filtration satisfying

the usual conditions such that X is adapted.
Let now X be a square integrable martingale on the finite horizon [0, T ], T > 0.

To approach the problem if the martingale X possesses the CRP with respect to the
space L2(�,FX

T ,P), it is necessary to define multiple integrals with respect to X.
In general, this is not an easy task because it is not clear how to associate a suitable
random measure with X allowing to introduce multiple integrals. For this reason, it
is more convenient to introduce iterated stochastic integrals with respect to X. But
this, as observed in Meyer [15], pages 321–331, is in general not straightforward.
However, if X is a square integrable martingale such that 〈X,X〉t = t , t ≥ 0, and
F is a square integrable deterministic function on [0, T ]n, then the n-fold iterated
integral Jn(F )T of F up to time T is well defined (cf. Meyer [15], pages 325–327).
Note that for n �= m, Jn(F )T and Jm(G)T are orthogonal. We recall that the so
called Azéma–Yor martingales, which were introduced in Azéma [1] and Azéma
and Yor [2], are of this type. Using the structure equation as a tool, Émery [7]
has shown that some of the Azéma–Yor martingales possess the CRP, meaning
that L2(�,FX

T ,P) allows a decomposition into the orthogonal sum of the linear
subspaces of n-fold iterated integrals associated with X.

In this paper, we deal with the CRP of certain families X of square integrable
martingales instead of only single processes X. We shall restrict ourselves to a
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finite time horizon [0, T ], T > 0, and to the filtration F
X , that is, the smallest

filtration satisfying the usual conditions with respect to which X is a family of
adapted processes. The study of the CRP for families X of square integrable mar-
tingales turns out to be of major interest. This is because the CRP for a single
square integrable martingale is a strong property and a relatively small class of
processes possesses it.

One important example of a family of square integrable martingales possessing
the CRP has been considered by Nualart and Schoutens [16]. Let L be a Lévy
process with Lévy measure ν. Under the assumption that ν has a finite exponen-
tial moment outside the origin, the authors define the family of orthogonalized
Teugels martingales, which is a family consisting of countably many orthogonal
square integrable F

L-martingales. Then the system of iterated integrals generated
by the orthogonalized Teugels martingales is introduced and it is shown that this
family of martingales possesses the CRP on L2(�,FL

T ,P) (for the precise defi-
nition of the CRP see Definition 3.6 below). Notice that in Nualart and Schoutens
[16] the assumption on the Lévy measure is rather strong. Furthermore in Nualart
and Schoutens [16] the relationship between the iterated integrals generated by the
orthogonalized Teugels martingales and the multiple Itô integrals introduced in
[10] is not studied. The problem was also mentioned in Solé, Utzet and Vives [21],
where in Proposition 7 the relationship between the iterated integrals generated
by the orthogonalized Teugels martingales and the multiple Itô integrals is stated
without proof.

The aim of this paper is to study the CRP for certain families X of square
integrable martingales such that the process 〈X,Y 〉 is deterministic whenever X

and Y belong to X . Note that the martingales in X need not have independent
increments: If a square integrable martingale X has independent increments, then
〈X,X〉 is deterministic, the converse is however not true. Most of normal martin-
gales X (i.e., square integrable martingales X such that 〈X,X〉t = t , t ≥ 0) and, in
particular, solutions of the structure equation do not have independent increments
(cf. Émery [7] where the very special case of independent increments is discussed
on page 74). For the family X as above the iterated integrals can be defined, and
we shall look for sufficient conditions to ensure that X possesses the CRP as it
will be introduced in Definition 3.6 below. We shall require that the family X
is compensated-covariation stable, that is, that for every X,Y ∈ X the process
[X,Y ] − 〈X,Y 〉 again belongs to X , [X,Y ] denoting the covariation process of
X and Y . This property of compensated-covariation stability of families of mar-
tingales has been introduced in Di Tella [5] and Di Tella and Engelbert [6], where
the predictable representation property is studied.

In Section 2, we recall some basic definitions and notation from stochastic anal-
ysis needed in the following sections of the paper.

Given a family X of square integrable martingales with deterministic pre-
dictable covariation 〈X,Y 〉 for all X and Y from X , in Section 3 the iterated
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integrals are introduced and their properties are studied. Furthermore, the defini-
tion of the CRP for such kind of families is given.

In Section 4, some more important properties of the iterated stochastic integrals
are obtained under the further assumption that X is a compensated-covariation
stable family.

The main result of this paper is proven in Section 5 (see Theorem 5.8 below):
If X is a compensated-covariation stable family of square integrable martingales
such that 〈X,Y 〉 is deterministic for all X,Y ∈ X , and furthermore the system
of monomials generated by X is total in L2(�,FX

T ,P), then X possesses the
CRP.

Section 6 is devoted to applications of the general results established in the pre-
vious sections to Lévy processes. Let L be a Lévy process with Lévy measure ν

and Gaussian part Wσ , where E[(Wσ
t )2] = σ 2t , σ 2 ≥ 0, and μ := σ 2δ0 + ν, δ0 be-

ing the Dirac measure in zero. With a deterministic function f in L2(μ), we asso-
ciate a square integrable martingale X(f ) by setting X

(f )
t := f (0)Wσ

t +M(1[0,t]f ),
where M(1[0,t]f ) denotes the stochastic integral of 1[0,t]f with respect to the com-
pensated Poisson random measure M associated with the jumps of L. We prove
that for a system T in L2(μ) the associated family XT := {X(f ), f ∈ T } pos-
sesses the CRP on L2(�,FL

T ,P) if and only if T is total (i.e., its linear hull is
dense) in L2(μ) (cf. Theorem 6.6 below). A particularly important situation occurs
when T is a complete orthogonal system: In this case XT is a family of orthogo-
nal martingales and we shall see that this simplifies the CRP considerably. This is
a major generalisation of Nualart and Schoutens [16] because we are able to con-
struct a great variety of families of martingales possessing the CRP for any Lévy
process, without any assumption on the Lévy measure, therefore also in the case
if Teugels martingales cannot be introduced. Then, for a total system T in L2(μ),
we investigate the relationship between the iterated integrals generated by X and
the multiple Itô integrals as well as between the CRP and the chaos expansion
obtained in Itô [10].

Finally, as an illustration of the general results in Section 7 several applications
will be given. We start with Gaussian families of continuous local martingales
and pass on to independent families of Poisson processes. Then we proceed with
examples for concrete families of martingales constructed from Lévy processes,
including the family of Teugels martingales as a particular case.

2. Basic definitions and notation. In this section, we recall some basic def-
initions and notation from stochastic analysis needed in the following sections of
the paper. By (�,F ,P) we denote a complete probability space and by F a filtra-
tion satisfying the usual conditions. We shall always consider real-valued stochas-
tic processes on a finite time horizon [0, T ], T > 0.

With a càdlàg process X = (Xt)t∈[0,T ], we associate the process X− =
(Xt−)t∈[0,T ] setting X0− := 0 and Xt− := lims↑t Xs , t > 0. The process �X =
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(�Xt)t∈[0,T ], �Xt := Xt − Xt−, t ∈ [0, T ], is called the jump process of X. Be-
cause of the definition of X0−, we always have �X0 = X0.

In the present paper, F-martingales are always assumed to be càdlàg. For a mar-
tingale X, by Xc and Xd we denote the continuous and the purely discontinuous
martingale part of X, respectively (cf. Jacod and Shiryaev [12], Theorem I.4.18).
We recall that Xc

0 = Xd
0 = 0.

We say that a martingale X is square integrable if X2
T is integrable. Because of

Doob’s inequality, this is equivalent to require that supt∈[0,T ] X2
t is integrable. By

H 2 = H 2(F) we denote the set of square integrable martingales and by H 2
0 the

subspace of the elements of H 2 starting at 0. For X ∈ H 2, we put ‖X‖H 2 :=
‖XT ‖2, where ‖ · ‖2 denotes the L2(P) := L2(�,F ,P)-norm, and for X,Y ∈ H 2

we put (X,Y )H 2 := E[XT YT ] which defines a scalar product on H 2. We can
identify (H 2,‖ · ‖H 2) with the space (L2(P),‖ · ‖2).

If X and Y belong to H 2, we say that they are orthogonal and write X⊥Y

if their product XY is a martingale with X0Y0 = 0 (cf. [11], Definition 2.10). If
X ⊆ H 2, we say that Y ∈ H 2 is orthogonal to X if Y⊥X for every X ∈ X . We
stress that if X,Y ∈ H 2 are orthogonal, then Xt and Yt are orthogonal in L2(P),
for every t ∈ [0, T ]. However, the converse is, in general, not true (cf. Protter [18],
page 181).

By V we denote the set of adapted càdlàg processes with paths of finite variation
on [0, T ]. If A ∈ V , then we say that A is a process of finite variation. If A ∈ V ,
by Var(A) = (Var(A)t )t∈[0,T ] we denote the variation process of A. We say that A

is of integrable variation if Var(A)T is integrable.
For A ∈ V we shall make use of the Riemann–Stieltjes integral of a mea-

surable process H with respect to A (cf. Jacod and Shiryaev [12], I, Sec-
tion 3a): If

∫ t
0 |Hs(ω)|d Var(A)s(ω) < +∞, we use the notation H · At(ω) :=∫ t

0 Hs(ω)dAs(ω) and otherwise H · At(ω) := +∞. We write H · A =
(H · At)t∈[0,T ] for the integral process. We stress that if A ∈ V and H is a mea-
surable process, then H · A belongs to V if and only if H · At(ω) is finite-valued,
that is,

∫ t
0 |Hs(ω)|d Var(A)s(ω) < +∞, for every t ∈ [0, T ] and ω ∈ �.

If X and Y belong to H 2 there exists a unique predictable process of integrable
variation, denoted by 〈X,Y 〉 and called the predictable covariation of X and Y ,
such that 〈X,Y 〉0 = 0 and XY − 〈X,Y 〉 is a martingale (cf. Jacod and Shiryaev
[12], Theorem I.4.2). Clearly E[XT YT −X0Y0] = E[〈X,Y 〉T ] and X,Y ∈ H 2 are
orthogonal if and only if 〈X,Y 〉 = 0 and X0Y0 = 0.

Let (X,F) be a semimartingale with decomposition X = X0 + M + A, where
M (without loss of generality) is locally in H 2

0 , A ∈ V with A0 = 0, and X0 is
F0-measurable. The continuous martingale part of X, denoted by Xc, is defined
by Xc := Mc. Note that Xc does not depend on the semimartingale decomposition
(cf. Jacod and Shiryaev [12], Proposition I.4.27). With two semimartingales X and
Y , we associate the process [X,Y ], called covariation of X and Y , defining

[X,Y ]t := 〈
Xc,Y c〉

t + ∑
0≤s≤t

�Xs�Ys, t ∈ [0, T ].(1)
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It is well known that the process [X,Y ] belongs to V (cf. Jacod [11], Theo-
rem 2.30). We remark that the definition (1) of the covariation [X,Y ] implies that
[X,Y ]0 = X0Y0. If X,Y ∈ H 2, then [X,Y ] is of integrable variation and 〈X,Y 〉
is the compensator of [X,Y ], that is, 〈X,Y 〉 is the unique predictable process of
integrable variation starting at zero such that [X,Y ] − 〈X,Y 〉 is a martingale.

Now we are going to recall the stochastic integral with respect to a martingale
X ∈ H 2. The space of integrands for X is given by L2(X) := {H predictable :
E[H 2 · 〈X,X〉T ] < +∞}. For X ∈ H 2 and H ∈ L2(X), by H · X we denote the
stochastic integral of H with respect to X. The stochastic integral of H with re-
spect to X is characterized as it follows: Let Z ∈ H 2. Then Z = H · X if and
only if Z0 = H0X0 and 〈Z,Y 〉 = H · 〈X,Y 〉, for every Y ∈ H 2. We stress that,
if X,Y ∈ H 2 are orthogonal martingales, then also H · X and K · Y are orthog-
onal martingales of H 2, for all H ∈ L2(X) and K ∈ L2(Y ). The notation H · X

is not ambiguous with the one introduced for the stochastic integral with respect
to a process of finite variation: If X ∈ H 2 ∩ V , then H · X coincides with the
Riemann–Stieltjes integral (cf. Jacod [11], Remark 2.47).

For a subset K of a Banach space (H ,‖ ·‖), by Span(K ) we denote the linear
hull of K and by cl(K )H the closure of K in H .

3. Iterated integrals and chaotic representation property. Let X ⊆
H 2(F) be a family of F-martingales. For notational convenience, we represent
X := {X(α), α ∈ 	} in parametric form where 	 is an associated index set. In
this paper, from now on we shall always assume that 〈X(α),X(β)〉 is deterministic,
α,β ∈ 	. For such a family, we are going to introduce the iterated integrals.

Let F0 be a bounded F0-measurable function and F1, . . . ,Fn bounded mea-
surable functions on ([0, T ],B([0, T ])). We denote by F := F0 ⊗ · · · ⊗ Fn =⊗n

k=0 Fk the tensor product of F0, . . . ,Fn defined on � × [0, T ]n and say that F

is an elementary function of order n.

DEFINITION 3.1. Let α1, . . . , αn ∈ 	 be given and F = F0 ⊗ · · · ⊗ Fn be
an elementary function of order n. The elementary iterated integral J0(F0) of
order zero of F0 and J

(α1,...,αn)
n (F ) of order n of F (n ≥ 1) with respect to the

martingales (X(α1), . . . ,X(αn)) is defined inductively as follows: If n = 0, then
J0(F0) := (J0(F0)t )t∈[0,T ] is the process defined by J0(F0)t = F0 for t ∈ [0, T ]
and, for all 1 ≤ m ≤ n,

J (α1,...,αm)
m (F0 ⊗ · · · ⊗ Fm)t

(2)

:=
∫ t

0
J

(α1,...,αm−1)

m−1 (F0 ⊗ · · · ⊗ Fm−1)u−Fm(u)dX(αm)
u , t ∈ [0, T ].

In the following lemma, we establish some important properties of the iterated
integrals.
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LEMMA 3.2. Let n ≥ 0, α1, . . . , αn ∈ 	 and F =⊗n
k=0 Fk be an elementary

function of order n.
(i) The elementary iterated integral J

(α1,...,αn)
n (F ) belongs to H 2 for n = 0 and

to H 2
0 for n ≥ 1.

(ii) Let moreover be m ≥ 0, β1, . . . , βm ∈ 	 and G = ⊗m
k=0 Gk an elemen-

tary function of order m. Then we have E[J (α1,...,αn)
n (F )tJ

(β1,...,βm)
m (G)t |F0] = 0,

t ∈ [0, T ], if n �= m, while, if m = n,

E
[
J (α1,...,αn)

n (F )tJ
(β1,...,βn)
n (G)t |F0

]
= F0G0

∫ t

0

∫ tn−
0

· · ·
∫ t2−

0
F1(t1)G1(t1) · · ·Fn(tn)Gn(tn)d

〈
X(α1),X(β1)

〉
t1

(3)

· · ·d
〈
X(αn),X(βn)〉

tn
.

PROOF. We start proving (i). If n = 0, J0(F ) is obviously a (constant)
bounded martingale and hence it belongs to H 2. If n = 1, the statement fol-
lows from the properties of the stochastic integral because (J0(F0)t−)t∈[0,T ] ∈
L2(X(α1)) and J

(α1)
1 (F0 ⊗ F1)0 = J0(F0)0−F1(0)X

(α1)
0 = 0 in view of the setting

X0− = 0 for any càdlàg process X. Now we assume that the claim holds for n

and we verify it for n + 1. From (2) and the definition of the stochastic integral,
it is shown as for n = 1 that J

(α1,...,αn+1)

n+1 (F )0 = 0. To see that J
(α1,...,αn+1)

n+1 (F ) is
a square integrable martingale, we only need to verify that the integrand on the
right-hand side of (2) for m = n + 1 is in L2(X(αn+1)):

E

[∫ T

0

(
J (α1,...,αn)

n (F0 ⊗ · · · ⊗ Fn)u−Fn+1(u)
)2 d

〈
X(αn+1),X(αn+1)

〉
u

]

≤ E
[(

J (α1,...,αn)
n (F0 ⊗ · · · ⊗ Fn)T

)2] ∫ T

0

(
Fn+1(u)

)2 d
〈
X(αn+1),X(αn+1)

〉
u

< +∞,

where we used that the predictable covariation 〈X(αn+1),X(αn+1)〉 and Fn+1 are
deterministic and the induction hypothesis. Now we show (ii). As a first step, we
assume that m = n and we deduce the result by induction. If n = 0, there is nothing
to prove. Now we assume (3) for n and verify it for n+1. Because from (i) follows
that the elementary iterated integrals are in H 2

0 , this is an immediate consequence
of the relation

E
[
J

(α1,...,αn+1)

n+1 (F )tJ
(β1,...,βn+1)

n+1 (G)t |F0
]

= E
[〈
J

(α1,...,αn+1)

n+1 (F ), J
(β1,...,βn+1)

n+1 (G)
〉
t |F0

]
=
∫ t

0
E

[
J (α1,...,αn)

n

(
n⊗

k=0

Fk

)
u−

J (β1,...,βn)
n

(
n⊗

k=0

Gk

)
u−

∣∣∣∣F0

]
Fn+1(u)Gn+1(u)

× d
〈
X(αn+1),X(βn+1)

〉
u
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(following from the properties of the predictable covariation of stochastic inte-
grals and the definition of the iterated integrals) and the induction hypothesis.
This completes the proof of (ii) for the case n = m. Now we consider the case
n �= m, say n = m + p, p > 0. We proceed by induction on m. If m = 0, then
(ii) follows from (i). It remains to prove the statement for m + 1 under the as-
sumption that it is fulfilled for m. To this end, we notice that if X,Y ∈ H 2 are
such that E[XtYt |F0] = 0 for every t ∈ [0, T ], then E[Xt−Yt−|F0] = 0 for ev-
ery t ∈ [0, T ]. Indeed, as a consequence of Doob’s inequality, supt∈[0,T ] |XtYt | ≤
1/2 supt∈[0,T ] X2

t +1/2 supt∈[0,T ] Y 2
t is integrable and the conclusion follows from

Lebesgue’s theorem on dominated convergence. To complete the proof of the in-
duction step, now we have only to recall (i) and that E[XtYt |F0] = E[〈X,Y 〉t |F0]
for every X,Y ∈ H 2

0 and t ∈ [0, T ] and to apply the induction hypothesis. �

For t ∈ [0, T ] and n ≥ 1, we introduce the sets

M
(n)
t := {

(t1, . . . , tn) : 0 ≤ t1 ≤ · · · ≤ tn ≤ t
}
, M

(n)

t := � × M
(n)
t .(4)

For every α ∈ 	, we also introduce the finite measure m(α) on ([0, T ],B([0, T ]))
generated by the right-continuous increasing function 〈X(α),X(α)〉. For any
α1, . . . , αn ∈ 	, we define the product measure m

(α1,...,αn)
P

:= P ⊗ ⊗n
k=1 m(αk)

on (� × [0, T ]n,F0 × B([0, T ]n)).
For n ≥ 1, we denote by E (α1,...,αn)

n,t the linear subspace of L2(M
(n)

t ,m
(α1,...,αn)
P

)

generated by the elementary functions F of order n restricted to M
(n)

t . Apply-
ing the expectation to (3), from the resulting isometry relation it easily follows
that J

(α1,...,αn)
n (·)t can be uniquely extended linearly to E (α1,...,αn)

n,t . Clearly, rela-

tion (3) extends to all F ∈ E (α1,...,αn)
n,t and G ∈ E

(β1,...,βn)
n,t . In particular, the map-

ping J
(α1,...,αn)
n (·)t linearly extended to E (α1,...,αn)

n,t is a linear and isometric map-

ping from L2(M
(n)

t ,m
(α1,...,αn)
P

) into L2(P). Setting αk = βk , k = 1, . . . , n, and

F = G ∈ E (α1,...,αn)
n,t in the extended isometry relation (3) and then taking the ex-

pectation, yields ∥∥J (α1,...,αn)
n (F )t

∥∥2
L2(P) = ‖F‖2

L2(M
(n)
t ,m

(α1,...,αn)

P
)
.(5)

On the other side, the linear space E (α1,...,αn)
n,t is dense in L2(M

(n)

t ,m
(α1,...,αn)
P

)

and therefore, the linear mapping F �→ J
(α1,...,αn)
n (F )t , F ∈ E (α1,...,αn)

n,t , can

uniquely be extended to an isometry on the space L2(M
(n)

t ,m
(α1,...,αn)
P

) with val-
ues in L2(P), for every n ≥ 1 and α1, . . . , αn ∈ 	. We denote this extension by
J

(α1,...,αn)
n (·)t , t ∈ [0, T ]. If n = 0, then the iterated integrals J0(F0)t of order

zero evaluated at time t ∈ [0, T ] are defined just as the identity J0(F0)t = F0 for
F0 ∈ L2(�,F0,P), the closure of the space of elementary functions of order zero.
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DEFINITION 3.3. Let n ≥ 1, α1, . . . , αn ∈ 	 and F ∈ L2(M
(n)

t ,m
(α1,...,αn)
P

).

We call the stochastic process J
(α1,...,αn)
n (F ) := (J

(α1,...,αn)
n (F )t )t∈[0,T ] the n-fold

iterated stochastic integral of F with respect to (X(α1), X(α2), . . . ,X(αn)). If n = 0,
we say that the constant square integrable martingale J0(F0) = (J0(F0)t )t∈[0,T ] is
the 0-fold iterated integral of F0 ∈ L2(�,F0,P).

Using the linearity and isometry of the iterated integral, we obtain the following

straightforward extension of Lemma 3.2 to arbitrary F ∈ L2(M
(n)

t ,m
(α1,...,αn)
P

) and

G ∈ L2(M
(m)

t ,m
(β1,...,βm)
P

).

PROPOSITION 3.4. Let n ≥ 1, α1, . . . , αn ∈ 	 and F ∈ L2(M
(n)

t ,m
(α1,...,αn)
P

).

(i) The iterated integral J
(α1,...,αn)
n (F ) belongs to H 2

0 .

(ii) Let moreover m ≥ 1, β1, . . . , βm ∈ 	 and G ∈ L2(M
(m)

t ,m
(β1,...,βm)
P

). Then,
for every t ∈ [0, T ], we have: If n �= m, then

E
[
J (α1,...,αn)

n (F )tJ
(β1,...,βm)
m (G)t |F0

]= 0,

while, if m = n,

E
[
J (α1,...,αn)

n (F )tJ
(β1,...,βn)
n (G)t |F0

]
= E

[∫ t

0

∫ tn−
0

· · ·
∫ t2−

0
F(t1, . . . , tn)G(t1, . . . , tn)d

〈
X(α1),X(β1)

〉
t1

(6)

· · ·d
〈
X(αn),X(βn)〉

tn

∣∣∣F0

]
.

In the following definition, we introduce some spaces of iterated stochastic in-
tegrals.

DEFINITION 3.5. (i) Let J0,0 be the space of bounded F0-measurable mar-
tingales (the 0-fold elementary iterated integrals) and J0 the space of square
integrable F0-measurable martingales (the 0-fold iterated integrals). To simplify
the notation, we shall identify martingales J0(F0) of J0,0 (resp., J0) with the
bounded (resp., square integrable) F0-measurable random variable F0.

(ii) Let n ≥ 1 and α1, . . . , αn ∈ 	. By J (α1,...,αn)
n (resp., J (α1,...,αn)

n,0 ) we denote
the space of n-fold (resp., the linear hull of elementary) iterated stochastic integrals
relative to the square integrable martingales (X(α1),X(α2), . . . ,X(αn)).

(iii) For all n ≥ 1, we introduce

Jn,0 := Span
( ⋃

(α1,...,αn)∈	n

J (α1,...,αn)
n,0

)
,

(7)

Jn := cl
(

Span
( ⋃

(α1,...,αn)∈	n

J (α1,...,αn)
n

))
H 2

,
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and then we define

Je := Span
(⋃

n≥0

Jn,0

)
, J := cl

(
Span

(⋃
n≥0

Jn

))
H 2

.(8)

We call J the space of iterated integrals generated by X .
(iv) By JT we denote the linear subspace of L2(P) of terminal variables

of iterated integrals from J . The linear spaces J (α1,...,αn)
n,T and Jn,T of ran-

dom variables in L2(P) are introduced analogously from the spaces of processes
J (α1,...,αn)

n and Jn, respectively, n ≥ 0.

Now we state the definition of the chaotic representation property on the space
L2(P).

DEFINITION 3.6. We say that X = {X(α), α ∈ 	} possesses the chaotic rep-
resentation property (CRP) on the Hilbert space L2(P) = L2(�,F ,P) if the linear
space JT [cf. Definition 3.5(iii)] is equal to L2(P).

We stress that, because the spaces (L2(P),‖ · ‖2) and (H 2,‖ · ‖H 2) can be
identified, we can equivalently claim that X possesses the CRP if J = H 2.

Proposition 3.4(ii) yields that Jn,T (n ≥ 1) [resp., Jn (n ≥ 1)] are pairwise
orthogonal closed subspaces of L2(P) (resp., H 2). Furthermore, it can easily be
checked that J0,T (resp., J0) is orthogonal to Jn,T (resp., Jn) for all n ≥ 1.
This immediately leads to the following equivalent description of the CRP.

PROPOSITION 3.7. (i) It holds JT =⊕∞
n=0 Jn,T (resp., J =⊕∞

n=0 Jn).
(ii) The family X possesses the CRP if and only if L2(P) =⊕∞

n=0 Jn,T (resp.,
H 2 =⊕∞

n=0 Jn).

Now we shortly discuss the relation between the CRP and the predictable rep-
resentation property (PRP). We recall that a closed linear subspace H of H 2 is a
stable subspace of H 2 if 1AXτ belongs to H , for every stopping time τ , A ∈ F0
and X ∈ H . Let X be a subfamily of H 2. The stable subspace generated by X is
denoted by L 2(X ) and is defined as the smallest stable subspace of H 2 contain-
ing X . Note that L 2(X ) is the smallest stable subspace of H 2 containing the set
{H · X,H ∈ L2(X),X ∈ X }. Furthermore, we have L 2({1}) = {X ∈ H 2,Xt ≡
X0} = J0. For more details on the theory of stable subspaces of martingales, cf.
Jacod [11], Chapter IV. We say that X possesses the PRP with respect to F if
L 2(X ∪ {1}) = H 2(F). We now assume that X possesses the CRP. Clearly the
inclusion Je ⊆ L 2(X ∪ {1}) holds. Indeed, an elementary iterated integral of
order n ≥ 1 can always be regarded as a stochastic integral with respect to an el-
ement of X (cf. Definition 3.1) and J0,0 ⊆ L 2({1}). Using that L 2(X ∪ {1})
is closed in H 2 we obtain H 2(F) = J = cl(Je)H 2 ⊆ L 2(X ∪ {1}). Hence,
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L 2(X ∪ {1}) = H 2(F). Thus, we have shown that, for every family X ⊆ H 2

for which 〈X,Y 〉 is deterministic, X,Y ∈ X , the CRP implies the PRP.
The following technical lemma will be used to prove Theorem 3.9 below.

LEMMA 3.8. Let X(α1), . . . ,X(αm);X(β1), . . . ,X(βm);X(αn
1 ), . . . ,X(αn

m) ∈ X
be such that for every k = 1, . . . ,m, X(αn

k ) −→ X(αk) in H 2 as n → +∞. Then
for any elementary function F = 1 ⊗ (

⊗m
k=1 Fk) of order m we have that∣∣∣∣∣

∫ t

0

∫ tm−
0

· · ·
∫ t2−

0

(
m⊗

k=1

Fk

)
(t1, . . . , tm)d

〈
X(αn

1 ),X(αn
1 )〉

t1
· · ·d

〈
X(αn

m),X(αn
m)〉

tm

(9)
−
∫ t

0

∫ tm−
0

· · ·
∫ t2−

0

(
m⊗

k=1

Fk

)
(t1, . . . , tm)d

〈
X(α1),X(α1)

〉
t1

· · ·d
〈
X(αm),X(αm)〉

tm

∣∣∣∣∣
and∣∣∣∣∣
∫ t

0

∫ tm−
0

· · ·
∫ t2−

0

(
m⊗

k=1

Fk

)
(t1, . . . , tm)d

〈
X(αn

1 ),X(β1)
〉
t1

· · ·d
〈
X(αn

m),X(βm)〉
tm

(10)
−
∫ t

0

∫ tm−
0

· · ·
∫ t2−

0

(
m⊗

k=1

Fk

)
(t1, . . . , tm)d

〈
X(α1),X(β1)

〉
t1

· · ·d
〈
X(αm),X(βm)〉

tm

∣∣∣∣∣
converge to zero uniformly in t ∈ [0, T ] as n → +∞.

PROOF. We verify only (9) because (10) easily follows from (9) using the
polarization formula 〈X,Y 〉 = 1

4(〈X +Y,X +Y 〉− 〈X −Y,X −Y 〉), X,Y ∈ H 2,
and the linearity of the Riemann–Stieltjes integral with respect to the integrator.
Now we start with the proof of (9). Let F = 1⊗F1 ⊗· · ·⊗Fm be such that |Fk| ≤ c

for k = 1, . . . ,m with c > 0, and let t ∈ [0, T ]. We introduce the abbreviation

H
(α1,...,αm)
t,m

(11)
:=

∫ t

0

∫ tm−
0

· · ·
∫ t2−

0

(
m⊗

k=1

Fk

)
(t1, . . . , tm)d

〈
X(α1),X(α1)

〉
t1

· · ·d
〈
X(αm),X(αm)〉

tm

with the convention Ht,0 = 1. Note that

H
(α1,...,αm)
t,m =

∫ t

0
Fm(u)H

(α1,...,αm−1)

u,m−1 d
〈
X(αm),X(αm)〉

u.

Rewriting the left-hand side of (9) using (11) and observing that for all bounded
measurable processes H,K and for X,Y ∈ H 2 the equality

H · 〈X,X〉 − K · 〈Y,Y 〉 = (H − K) · 〈X,Y 〉 + H · 〈X,X − Y 〉 − K · 〈Y,Y − X〉
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holds and that |H · A| ≤ |H | · Var(A) for every A ∈ V and measurable process H ,
we get

sup
t∈[0,T ]

∣∣∣∣∫ t

0
Fm(tm)H

(αn
1 ,...,αn

m−1)

tm−,m−1 d
〈
X(αn

m),X(αn
m)〉

tm

−
∫ t

0
Fm(tm)H

(α1,...,αm−1)

tm−,m−1 d
〈
X(αm),X(αm)〉

tm

∣∣∣∣
≤ c sup

t∈[0,T ]
∣∣H(αn

1 ,...,αn
m−1)

t,m−1 − H
(α1,...,αm−1)

t,m−1

∣∣∥∥X(αn
m)
∥∥
H 2

∥∥X(αm)
∥∥
H 2

+ c sup
t∈[0,T ]

∣∣H(αn
1 ,...,αn

m−1)

t,m−1

∣∣∥∥X(αn
m)
∥∥
H 2

∥∥X(αn
m) − X(αm)

∥∥
H 2

+ c sup
t∈[0,T ]

∣∣H(α1,...,αm−1)

t,m−1

∣∣∥∥X(αm)
∥∥
H 2

∥∥X(αm) − X(αn
m)
∥∥
H 2,

where in the last passage we used that Fm is bounded, Kunita–Watanabe’s inequal-
ity in the form of Meyer [15], Corollary II.22, the relation E[X2

T ] ≥ E[〈X,X〉T ]
for X ∈ H 2, and the assumption that all the predictable covariations are determin-
istic. Because for m = 1 the previous inequality becomes

sup
t∈[0,T ]

∣∣H(αn
1 )

t,1 − H
(α1)
t,1

∣∣
≤ c

∥∥X(αn
1 ) − X(α1)

∥∥
H 2

∥∥X(αn
1 )
∥∥
H 2 + c

∥∥X(α1)
∥∥
H 2

∥∥X(αn
1 ) − X(α1)

∥∥
H 2,

and the right-hand side converges to zero as n → +∞, the uniform convergence
of (9) to zero follows by induction. �

Let Z be a subfamily of X . We denote by J X and J Z the spaces of iterated
integrals generated by X and Z , respectively.

THEOREM 3.9. If X ⊆ cl(Span(Z ))H 2 , then J Z = J X .

PROOF. Because of J Z = J Span(Z ), without loss of generality we can as-
sume that Z is a linear space. Then, for all X(α1), . . . ,X(αm) ∈ X , there ex-
ist X(αn

1 ), . . . ,X(αn
m) ∈ Z such that X(αn

k ) −→ X(αk) in H 2 as n → +∞, k =
1, . . . ,m. Let now F = F0 ⊗ · · · ⊗ Fm be an elementary function. We show that

J
(α1,...,αm)
m (F ) belongs to J Z . Let J

(αn
1 ,...,αn

m)
m (F ) be the elementary iterated inte-

gral of F with respect to (X(αn
1 ), . . . ,X(αn

m)). Because of (3), for all t ∈ [0, T ] we
have

E
[(

J (α1,...,αm)
m (F )t − J

(αn
1 ,...,αn

m)
m (F )t

)2]
= E

[(
J (α1,...,αm)

m (F )t
)2]
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+E
[(

J
(αn

1 ,...,αn
m)

m (F )t
)2]− 2E

[
J (α1,...,αm)

m (F )tJ
(αn

1 ,...,αn
m)

m (F )t
]

= E
[
F 2

0
](∫ t

0

∫ tm−
0

· · ·
∫ t2−

0

(
m⊗

k=1

Fk

)2

(t1, . . . , tm)d
〈
X(α1),X(α1)

〉
u

· · ·d
〈
X(αm),X(αm)〉

u

+
∫ t

0

∫ tm−
0

· · ·
∫ t2−

0

(
m⊗

k=1

Fk

)2

(t1, . . . , tm)d
〈
X(αn

1 ),X(αn
1 )〉

u

· · ·d
〈
X(αn

m),X(αn
m)〉

u

− 2
∫ t

0

∫ tm−
0

· · ·
∫ t2−

0

(
m⊗

k=1

Fk

)2

(t1, . . . , tm)d
〈
X(αn

1 ),X(α1)
〉
u

· · ·d
〈
X(αn

m),X(αm)〉
u

)
,

which converges to zero because of Lemma 3.8. Since the space J Z is closed
in H 2, we conclude that J

(α1,...,αm)
m (F ) ∈ J Z . The result can be easily extended

to arbitrary functions F in the Hilbert space L2(M
(m)

T ,m
(α1,...,αm)
P

) by linearity
and isometry of iterated integrals. Finally, using the definition of J X , we get
J X ⊆ J Z . The converse inclusion is clear because Z ⊆ X . �

Now we consider the case in which the martingales coming into play are orthog-
onal. We introduce the following notation: For every α1, . . . , αn;β1, . . . , βm ∈ 	

we write (α1, . . . , αn) �= (β1, . . . , βm) if n �= m or if n = m there exists 1 ≤ � ≤
n = m such that α� �= β�. The following proposition can be immediately deduced
from Proposition 3.4(ii).

PROPOSITION 3.10. Let n ≥ 1 and (α1, . . . , αn), (β1, . . . , βn) ∈ 	n. Suppose
that there exists some i ∈ {1, . . . , n} such that the martingales X(αi),X(βi) are
orthogonal, that is, X

(αi)
0 X

(βi)
0 = 0 and 〈X(αi),X(βi)〉 = 0. Then J

(α1,...,αn)
n (F )t

and J
(β1,...,βn)
n (G)t are orthogonal in L2(P), t ∈ [0, T ], for every F from the space

L2(M
(n)

T ,m
(α1,...,αn)
P

) and G from L2(M
(n)

T ,m
(β1,...,βn)
P

).

The following theorem will play an important role in the sequel.

THEOREM 3.11. Let X := {X(n), n ≥ 1} ⊆ H 2 be a family consisting of
countably many mutually orthogonal martingales such that 〈X(n),X(n)〉 is deter-



3978 P. DI TELLA AND H.-J. ENGELBERT

ministic for all n ≥ 1. Then the following identities hold:

J = J0 ⊕
∞⊕

n=1

⊕
(j1,...,jn)∈Nn

J (j1,...,jn)
n ,

(12)

JT = J0,T ⊕
∞⊕

n=1

⊕
(j1,...,jn)∈Nn

J
(j1,...,jn)
n,T .

PROOF. We only verify the second relation. The space J
(j1,...,jn)
n,T is closed in

L2(P) for every fixed (j1, . . . , jn) and n ≥ 1. Because of Proposition 3.10 and the
mutual orthogonality of the martingales in X , if (j1, . . . , jn) �= (i1, . . . , in), then
J

(j1,...,jn)
n,T and J (i1,...,in)

n,T are orthogonal in L2(P), n ≥ 1. For every fixed n ≥ 1,
we put

C (n) := ⊕
(j1,...,jn)∈Nn

J
(j1,...,jn)
n,T .

Then C (n) is closed because it is an orthogonal sum of countably many mutually
orthogonal closed subspaces of L2(P). Furthermore C (n) contains J

(j1,...,jn)
n,T for

every (j1, . . . , jn) ∈ N
n and hence also Jn,T (cf. Definition 3.5). Conversely, from

the definition of Jn,T it is evident that the inclusion C (n) ⊆ Jn,T holds and,
consequently, C (n) = Jn,T , n ≥ 1. The statement of the theorem follows now
from Proposition 3.7. �

As a consequence of Theorem 3.11 and Definition 3.6, if the family X :=
{X(n), n ≥ 1} consisting of countably many orthogonal martingales possesses the
CRP on L2(P), then the following orthogonal decompositions of H 2 and L2(P)

hold:

H 2 = J0 ⊕
∞⊕

n=1

⊕
(j1,...,jn)∈Nn

J (j1,...,jn)
n ,

(13)

L2(P) = J0,T ⊕
∞⊕

n=1

⊕
(j1,...,jn)∈Nn

J
(j1,...,jn)
n,T .

4. Compensated-covariation stable families and iterated integrals. As in
Section 3, we fix a time parameter T > 0, a complete probability space (�,F ,P),
a filtration F = (Ft )t∈[0,T ] satisfying the usual conditions and a family X :=
{X(α), α ∈ 	} contained in H 2(F) indexed on the set 	. We recall that we always
assume that 〈X(α),X(β)〉 is deterministic for all α,β ∈ 	 without explicit mention.
In this section, we study the properties of iterated integrals generated by X under
the further assumption that X is a compensated-covariation stable family of H 2.
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For α,β ∈ 	 we define the process

X(α,β) := [
X(α),X(β)]− 〈

X(α),X(β)〉(14)

which we call the compensated-covariation process of X(α) and X(β). The process
〈X(α),X(β)〉 being the compensator of [X(α),X(β)], X(α,β) is always a martingale
and X

(α,β)
0 = X

(α)
0 X

(β)
0 .

DEFINITION 4.1. (i) We say that the family X := {X(α), α ∈ 	} ⊆ H 2(F)

is compensated-covariation stable if for all α,β ∈ 	 the compensated-covariation
process X(α,β) belongs to X .

(ii) Let X be a compensated-covariation stable family and let α1, . . . , αm ∈ 	

with m ≥ 2. The process X(α1,...,αm) is defined recursively by

X(α1,...,αm) := [
X(α1,...,αm−1),X(αm)]− 〈

X(α1,...,αm−1),X(αm)〉.(15)

If X is compensated-covariation stable, the process X(α1,...,αm) belongs to X

for every α1, . . . , αm in 	 and X
(α1,...,αm)
0 =∏m

i=1 X
(αi)
0 , m ≥ 2.

We begin with the following proposition. For the notation, we refer to Section 3.
Let X := {X(α), α ∈ 	} be a compensated-covariation stable family of H 2. For
any α ∈ 	, we introduce the notation X̃(α) := X(α) − X

(α)
0 . Note that X̃(α) ∈ H 2

0 ,
α ∈ 	.

PROPOSITION 4.2. The stochastic integral X̃
(α)
− · M belongs to

⊕n+1
k=0 Jk,0,

for every α ∈ 	, M ∈ Jn,0 and n ≥ 0.

PROOF. The proof will be given by induction on the order n of the iterated
integral M ∈ Jn,0. If n = 0, that is, M ∈ J0,0, then X̃

(α)
− · M ≡ 0 ∈ J0,0 ⊆⊕1

k=0 Jk,0. Let now M ∈ J1,0. By linearity it suffices to take M = J
(α1)
1 (F )

where F = F0 ⊗ F1 is an elementary function of order 1. Obviously, we have
X̃(α) = J

(α)
1 (1 ⊗ 1) and M = F0(F1 · X(α1)) from which it follows

X̃
(α)
− · Mt =

∫ t

0
F0J

(α)
1 (1 ⊗ 1)u−F1(u)dX(α1)

u

= J
(α,α1)
2 (F0 ⊗ 1 ⊗ F1).

This shows that X̃
(α)
− · M ∈ J2,0 ⊆ ⊕2

k=0 Jk,0. We now fix n ≥ 2 and assume
that the statement is satisfied for all M ∈ Jn,0. For the induction step, it is

enough to prove that X̃
(α)
− · M ∈ ⊕n+2

k=0 Jk,0 for all M from J
(α1,...,αn+1)

n+1,0 and

α1, . . . , αn+1 ∈ 	. To this end, let M ∈ J
(α1,...,αn+1)

n+1,0 for some α1, . . . , αn+1 ∈ 	.
In view of the linearity of Jn+2,0 and of the iterated integral, without loss of gen-
erality, we can assume that M is an elementary iterated integral with respect to
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(X(α1),X(α2), . . . ,X(αn+1)), that is, M has the representation

Mt = J
(α1,...,αn+1)

n+1 (F0 ⊗ F1 ⊗ · · · ⊗ Fn+1)t
(16)

=
∫ t

0
Nu−Fn+1(u)dX

(αn+1)
u , t ∈ [0, T ],

where N ∈ J (α1,...,αn)
n,0 can be written in the form

Nt = J (α1,...,αn)
n (F0 ⊗ · · · ⊗ Fn)t =

∫ t

0
Ru−Fn(u)dX(αn)

u , t ∈ [0, T ],(17)

with R = J
(α1,...,αn−1)

n−1 (F0 ⊗ · · ·⊗Fn−1) ∈ J
(α1,...,αn−1)

n−1,0 and F = F0 ⊗ · · ·⊗Fn+1
is an elementary function of order n + 1. Using partial integration for the product
X̃(α)N and the identities N0 = N0− = 0, N− · X̃(α) = N− · X(α) and [X̃(α),N] =
[X(α),N] we get

X̃
(α)
− · Mt =

∫ t

0
X̃

(α)
u−Nu−Fn+1(u)dX

(αn+1)
u

=
∫ t

0

(∫ u−
0

Nv− dX(α)
v

)
Fn+1(u)dX

(αn+1)
u(18)

+
∫ t

0

(∫ u−
0

X̃
(α)
v− dNv

)
Fn+1(u)dX

(αn+1)
u(19)

+
∫ t

0

[
X(α),N

]
u−Fn+1(u)dX

(αn+1)
u .(20)

The term (18) is equal to J
(α1,...,αn,α,αn+1)

n+2 (F0 ⊗ · · · ⊗ Fn ⊗ 1 ⊗ Fn+1)t and hence

this process belongs to J
(α1,...,αn,α,αn+1)

n+2,0 ⊆ ⊕n+2
k=0 Jk,0. The second term (19)

belongs to
⊕n+2

k=0 Jk,0 because, in view of the induction hypothesis, the integrand

X̃
(α)
− · N belongs to

⊕n+1
k=0 Jk,0. Now we consider the third term (20). Using the

representation (17), we can write[
X(α),N

]
t =

∫ t

0
Ru−Fn(u)d

[
X(αn),X(α)]

u,

(21) 〈
X(α),N

〉
t =

∫ t

0
Ru−Fn(u)d

〈
X(αn),X(α)〉

u

and hence, using the linearity of the stochastic integral and (15), we get[
X(α),N

]
t − 〈

X(α),N
〉
t =

∫ t

0
Ru−Fn(u)dX(αn,α)

u .(22)

The third term (20) can be rewritten as

(20) =
∫ t

0

([
X(α),N

]
u− − 〈

X(α),N
〉
u−
)
Fn+1(u)dX

(αn+1)
u

+
∫ t

0

〈
X(α),N

〉
u−Fn+1(u)dX

(αn+1)
u
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and inserting (21) and (22) in the previous equality we get that (20) is equal to∫ t

0

∫ u−
0

Rv−Fn(v)dX(αn,α)
v Fn+1(u)dX

(αn+1)
u

(23)
+
∫ t

0

∫ u−
0

Rv−Fn(v)d
〈
X(αn),X(α)〉

vFn+1(u)dX
(αn+1)
u .

Since R ∈ Jn−1,0, Fn is bounded and, X being compensated-covariation stable,
X(αn,α) ∈ X , we can conclude that the right-hand side of (22) belongs to Jn,0

and hence the first term in (23) is an element of Jn+1,0 ⊆⊕n+2
k=0Jk,0. Finally, for

proving that the second term of (23) belongs to
⊕n+2

k=0 Jk,0 we calculate its inner
integral using partial integration:∫ t

0
Rv−Fn(v)d

〈
X(αn),X(α)〉

v

= Rt

∫ t

0
Fn(s)d

〈
X(αn),X(α)〉

s −
∫ t

0

∫ v−
0

Fn(s)d
〈
X(αn),X(α)〉

s dRv

−
[
R,

∫ ·
0

Fn(s)d
〈
X(αn),X(α)〉

s

]
t

= Rt

∫ t

0
Fn(s)d

〈
X(αn),X(α)〉

s −
∫ t

0

∫ v−
0

Fn(s)d
〈
X(αn),X(α)〉

s dRv

−
∫ t

0

(
�

∫ ·
0

Fn(s)d
〈
X(αn),X(α)〉

s

)
v

dRv

= Rt

∫ t

0
Fn(s)d

〈
X(αn),X(α)〉

s −
∫ t

0

∫ v

0
Fn(s)d

〈
X(αn),X(α)〉

s dRv,

where in the last but one equality we have used Jacod and Shiryaev [12], Proposi-
tion I.4.49b). Substituting this in the second term of (23), we get∫ t

0

∫ u−
0

Rv−Fn(v)d
〈
X(αn),X(α)〉

vFn+1(u)dX
(αn+1)
u

=
∫ t

0
Ru−

∫ u−
0

Fn(s)d
〈
X(αn),X(α)〉

sFn+1(u)dX
(αn+1)
u(24)

−
∫ t

0

∫ u−
0

∫ v

0
Fn(s)d

〈
X(αn),X(α)〉

s dRvFn+1(u)dX
(αn+1)
u .

The first summand on the right-hand side belongs to Jn,0 because R ∈ Jn−1,0
and the function F̃n+1 defined by F̃n+1(u) := ∫ u−

0 Fn(s)d〈X(αn),X(α)〉sFn+1(u)

is bounded. Similarly, we obtain from R = J
(α1,...,αn−1)

n−1 (F0 ⊗ · · · ⊗ Fn−1) and the
fact that the function F with F(v) := ∫ v

0 Fn(s)d〈X(αn),X(α)〉s is bounded∫ u

0

∫ v

0
Fn(s)d

〈
X(αn),X(α)〉

s dRv =
∫ u

0
F(v)dRv

= J
(α1,...,αn−1)

n−1

(
F0 ⊗ · · · ⊗ (FFn−1)

)
u
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and hence the second integral of the right-hand side of (24) is equal to∫ t

0
J

(α1,...,αn−1)

n−1

(
F0 ⊗ · · · ⊗ (FFn−1)

)
u−Fn+1(u)dX

(αn+1)
u

= J
(α1,...,αn−1,αn+1)
n

(
F0 ⊗ · · · ⊗ (FFn−1) ⊗ Fn+1

)
t

which belongs to Jn,0 ⊆⊕n+2
k=0 Jk,0. This proves the proposition. �

Now we come to the main result of this section. Recall that X̃(α) := X(α) −X
(α)
0 ,

α ∈ 	.

THEOREM 4.3. Let X := {X(α), α ∈ 	} ⊆ H 2(F) be a compensated-
covariation stable family. Then the stochastic integral (

∏m
i=1 X̃

(αi)− ) · M belongs
to
⊕n+m

k=0 Jk,0, for all m ≥ 0, α1, . . . , αm ∈ 	 and M ∈ ⊕n
k=0 Jk,0, for every

n ≥ 0.

PROOF. The proof will be given by induction on m. If m = 0, because∏0
i=1 X̃

(αi)− := 1 by convention, then the claim is evident because M = 1 · M .
We now assume that the statement of the theorem holds for m ≥ 1 and M ∈⊕n

k=0 Jk,0, for any n ≥ 0, and prove it for m + 1. Let α1, . . . , αm+1 be given.

Setting M̃ := X̃
(αm+1)− · M , we can calculate(

m+1∏
i=1

X̃
(αi)−

)
· M =

(
m∏

i=1

X̃
(αi)−

)
· (X̃(αm+1)− · M)= (

m∏
i=1

X̃
(αi)−

)
· M̃.

From Proposition 4.2, we obtain that M̃ ∈⊕n+1
k=0 Jk,0. The induction hypothesis

yields that the right-hand side belongs to
⊕(n+1)+m

k=0 Jk,0 =⊕n+(m+1)
k=0 Jk,0. This

proves the induction step and hence the proof of the theorem is complete. �

An immediate consequence of Theorem 4.3 is the following corollary.

COROLLARY 4.4. Let X := {X(α), α ∈ 	} ⊆ H 2(F) be a compensated-
covariation stable family. Then the process F0(

∏m
i=1 X̃

(αi)− ) · X(α) belongs to⊕n+1
k=0 Jk,0 for all bounded F0-measurable F0 and α,α1, . . . , αm ∈ 	, m ≥ 1.

PROOF. We have (F0
∏m

i=1 X̃
(αi)− ) ·X(α) = (

∏m
i=1 X̃

(αi)− ) · (F0X̃
(α)) and we can

apply Theorem 4.3 to M = J
(α)
1 (F0 ⊗ 1) = F0X̃

(α). �

We conclude this section with the next corollary which shows that if X =
{X(α), α ∈ 	} is a subfamily of H 2 satisfying the assumptions of Theorem 4.3
and another technical condition, then the random variable X̃

(α)
t has finite absolute

moments of every order for all α ∈ 	 and t ∈ [0, T ).
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COROLLARY 4.5. Let X = {X(α), α ∈ 	} ⊆ H 2 be a compensated-covaria-
tion stable family. If there exists β ∈ 	 such that 〈X(β),X(β)〉t < 〈X(β),X(β)〉T
for all t < T then, for every α ∈ 	 and t < T , X̃

(α)
t has finite absolute moments of

arbitrary order.

PROOF. From Corollary 4.4, we have X := (X̃
(α)
− )m ·X(β) ∈⊕m+1

k=0 Jk,0. This

implies that X belongs to H 2 and 〈X,X〉T = ∫ T
0 |X̃(α)

u−|2m d〈X(β),X(β)〉u, there-
fore ∫ T

0
E
[∣∣X̃(α)

u−
∣∣2m]d

〈
X(β),X(β)〉

u = E
[〈X,X〉T ]< +∞.

Using the martingale property of (X̃(α),F) and Jensen’s inequality for conditional
expectations, for every t < u, we can estimate∣∣X̃(α)

t

∣∣2m = ∣∣E[X̃(α)
u |Ft

]∣∣2m = ∣∣E[E[X̃(α)
u |Fu−

]|Ft

]∣∣2m

= ∣∣E[X̃(α)
u−|Ft

]∣∣2m ≤ E
[∣∣X̃(α)

u−
∣∣2m|Ft

]
which yields E[|X̃(α)

t |2m] ≤ E[|X̃(α)
u−|2m], 0 ≤ t < u. Hence, we obtain(〈

X(β),X(β)〉
T − 〈

X(β),X(β)〉
t

)
E
[∣∣X̃(α)

t

∣∣2m] ≤
∫
(t,T ]

E
[∣∣X̃(α)

u−
∣∣2m]d

〈
X(β),X(β)〉

u

< +∞.

Let β be chosen such that 〈X(β),X(β)〉t < 〈X(β),X(β)〉T for all t < T . Then the
above inequality yields E[|X̃(α)

t |2m] < +∞, t < T , which proves the claim. �

5. The chaotic representation property. In this section, we shall give suf-
ficient conditions for a subfamily X of H 2 to possess the CRP. For this pur-
pose, it will be useful to work with families of martingales in H 2 which are
stable under stopping with respect to deterministic stopping times. For a given
X := {X(α), α ∈ 	} ⊆ H 2 and a collection S of finite-valued stopping times,
we define the family X S by

X S := {
X(α)τ , τ ∈ S , α ∈ 	

}
,(25)

where the superscript τ denotes the operation of stopping at τ ∈ S . It is clear that
X S ⊆ H 2. The following lemma states a condition on S ensuring that X S is a
compensated-covariation stable family whenever X is one. We will be particularly
interested in the case S = R+. Using the properties of the brackets [·, ·] and 〈·, ·〉
the proof is straightforward and therefore omitted.

LEMMA 5.1. If S is a minimum-stable family of finite-valued stopping times
and X ⊆ H 2 is compensated-covariation stable, then X S is compensated-
covariation stable, too.
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Now we come to a useful representation formula for products of elements of
a compensated-covariation stable family X . Its proof is given by induction us-
ing integration by parts. See Di Tella and Engelbert [6], Proposition 3.3, where
X0 = 0 for every X ∈ X was additionally assumed. However, using our conven-
tion X0− = 0 and the definition (1) of the quadratic covariation [X,Y ] (including
the jump �X0�Y0 = X0Y0 at time zero), in case of a general compensated covari-
ation stable family X ⊆ H 2, the reader may notice that the formula and its proof
are completely the same.

PROPOSITION 5.2. Let X := {X(α), α ∈ 	} be a compensated-covariation
stable family of H 2. For every m ≥ 1 and α1, . . . , αm ∈ 	, we have

m∏
i=1

X(αi) =
m∑

i=1

∑
1≤j1<···<ji≤m

( m∏
k=1

k �=j1,...,ji

X
(αk)−

)
· X(αj1 ,...,αji

)

+
m−2∑
p=0

m∑
i=p+2

∑
1≤j1<···<ji≤m

(
m∏

k=1
k �=j1,...,ji

X
(αk)−

i∏
�=i−p+1

�X(αj�
)

)
(26)

· 〈X(αj1 ,...,αji−p−1 )
,X

(αji−p
)〉
.

Note that the initial value of the left-hand side of (26) is given by the initial
value of the first term on the right-hand side for i = m.

A simplification of formula (26) can be obtained by assuming that the fam-
ily X consists of quasi-left continuous martingales. Indeed, in this case one can
choose continuous versions of the processes 〈X(α),X(β)〉, α,β ∈ 	 (cf. Jacod and
Shiryaev [12], Theorem I.4.2), and so all the terms appearing in the second sum
on the right-hand side of (26) vanish for p �= 0.

Let X := {X(α), α ∈ 	} be a subfamily of H 2. The filtration F
X :=

(FX
t )t∈[0,T ] is defined as the smallest filtration satisfying the usual conditions

and with respect to which each process in X is adapted. In the remaining part
of the present paper, we shall consider X as a subfamily of H 2(FX ) on the
probability space (�,FX

T ,P).
We define the family K by

K :=
{

m∏
i=1

X
(αi)
ti

, αi ∈ 	, ti ∈ [0, T ], i = 1, . . . ,m;m ≥ 0

}
(27)

which is the family of monomials formed by products of elements of X at differ-
ent times. Obviously, σ(K ) augmented by the P-null sets of FX

T equals FX
T .

We make the following assumption:

ASSUMPTION 5.3. The family K defined in (27) is contained in the space
L2(�,FX

T ,P) and is total (i.e., its linear hull is dense) in L2(�,FX
T ,P).
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If X = {X(α), α ∈ 	} satisfies Assumption 5.3, then X
(α)
t admits finite mo-

ments of every order for all t ∈ [0, T ] and α ∈ 	, that is,

E
[∣∣X(α)

t

∣∣m]< +∞, t ∈ [0, T ], α ∈ 	,m ≥ 1.(28)

Sufficient conditions on the family X for K to fulfil Assumption 5.3 are exten-
sively studied in the literature. The following well-known result, being useful for
many applications, exploits the existence of finite exponential moments. For an
elementary proof cf. Di Tella and Engelbert [6], Theorem A.4.

THEOREM 5.4. If for every α ∈ 	 and t ≥ 0 there exists a constant cα(t) > 0
such that the expectation E[exp(cα(t)|X(α)

t |)] is finite, then K satisfies Assump-
tion 5.3.

Now we state two technical lemmas which will be needed in the proof of Propo-
sition 5.7 below.

LEMMA 5.5. Let A be a deterministic process of finite variation, X :=
{X(α), α ∈ 	} a family of martingales contained in H 2 satisfying (28) and
p,q ≥ 0. We define the processes K by

K :=
q∏

j=1

�X(βj )
p∏

i=1

X
(αi)− , αi, βj ∈ 	, i = 1, . . . , p; j = 1, . . . , q.(29)

Then the process K · A is of integrable variation.

PROOF. Obviously, |Var(K · AT )| ≤ sup0≤t≤T |Kt |Var(A)T . We will show
below that sup0≤t≤T |Kt | is integrable and, because Var(A)T is deterministic and
finite, this yields that Var(K · AT ) is integrable and hence the claim. For proving
that sup0≤t≤T |Kt | is integrable, we estimate

sup
0≤t≤T

|Kt | ≤
q∏

j=1

2 sup
0≤t≤T

∣∣X(βj )
t

∣∣ p∏
i=1

sup
0≤t≤T

∣∣X(αi)
t

∣∣
≤ 2q−1

( q∏
j=1

sup
0≤t≤T

∣∣X(βj )
t

∣∣2 +
p∏

i=1

sup
0≤t≤T

∣∣X(αi)
t

∣∣2)(30)

≤ 2q−1

(
q−1

q∑
j=1

sup
0≤t≤T

∣∣X(βj )
t

∣∣2q + p−1
p∑

i=1

sup
0≤t≤T

∣∣X(αi)
t

∣∣2p

)
,

where we have used the inequality
∏m

k=1 ak ≤ m−1∑m
k=1 am

k for all nonnegative
numbers a1, . . . , am and m ∈ N. Now from (28) it follows that |X(α)|m is a non-
negative submartingale for all α ∈ 	 and m ∈ N. Using Doob’s inequality, we can
conclude that the right-hand side of (30) is integrable which completes the proof.

�
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LEMMA 5.6. Let X = {X(α), α ∈ 	} ⊆ H 2 be a family of martingales
which satisfies (28); q, r ≥ 1 be fixed and ξ ∈ L2(P) be such that, for some
α1, . . . , αq+r ∈ 	, ξ is orthogonal in L2(P) to

∏q+r
k=1 X

(αk)
tk

for every t1, . . . , tq+r ∈
[0, T ]. Then ξ is orthogonal to

∏q
k=1 X

(αk)
t−

∏q+r
j=q+1 X

(αj )
t for every t ∈ [0, T ].

PROOF. Fixing t ∈ [0, T ], similar as in the proof of Lemma 5.5 above we can
show that

|ξ |
q∏

k=1

sup
0≤u≤T

∣∣X(αk)
u

∣∣ q+r∏
j=q+1

∣∣X(αj )
t

∣∣
is integrable. Choosing tn such that tn < t for all n ∈ N and tn → t as n → ∞, we

obtain, for all n ∈ N, E[ξ ∏q
k=1 X

(αk)
tn

∏q+r
j=q+1 X

(αj )
t ] = 0 in view of the assump-

tion and letting n → ∞ the claim follows from Lebesgue’s theorem on dominated
convergence. �

Let X := {X(α), α ∈ 	} be a compensated-covariation stable family of H 2

such that, for every α,β ∈ 	, the process 〈X(α),X(β)〉 is deterministic. We intro-
duce the following systems:

R :=
{
F0

(
m∏

i=1

X̃
(αi)−

)
· X(α), α,α1, . . . , αm ∈ 	,m ≥ 0,F0 ∈ J0,0

}
∪ J0,0 ,

(31)

RT :=
{
F0

(
m∏

i=1

X̃
(αi)−

)
· X(α)

T , α,α1, . . . , αm ∈ 	,m ≥ 0,F0 ∈ J0,0

}
∪ J0,0.

We stress that R is contained in H 2 and RT in L2(�,FX
T ,P) and that X ⊆

cl(Span(R))H 2 , hence X and R generate the same filtration.
The next elementary identity will be useful in the proof of Proposition 5.7 be-

low. For real numbers ar, br , r = 1, . . . ,m, we have:

m∏
r=1

(ar + br) =
m∑

r=0

∑
1≤q1<···<qr≤m

m∏
k=1

k �=q1,...,qr

ak

r∏
�=1

bq�
.(32)

The following proposition being used for the proof of Theorem 5.8, is of interest
in its own right.

PROPOSITION 5.7. Suppose that X is stable under stopping with respect to
deterministic stopping times and that Assumption 5.3 holds. Then R is total in
H 2 and RT is total in L2(�,FX

T ,P).
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PROOF. It is sufficient to verify the second claim. We are going to show that
any ξ ∈ L2(�,FX

T ,P) which is orthogonal to RT is orthogonal in

L2(�,FX
T ,P) to

∏m
i=1 X

(αi)
T for every α1, . . . , αm ∈ 	 and m ≥ 0. The stability

under stopping with respect to deterministic stopping times of the family X then
yields that ξ is also orthogonal to K , where K is given in (27). But by Assump-
tion 5.3 the system K is total in L2(�,FX

T ,P) and therefore ξ is evanescent.
This implies that RT ⊆ L2(�,FX

T ,P) is a total subset and therefore the claim of
the proposition.

Let ξ ∈ L2(�,FX
T ,P) be orthogonal to RT . For verifying that ξ is orthogonal

to
∏m

i=1 X
(αi)
T for every α1, . . . , αm ∈ 	 and m ∈ N ∪ {0}, we proceed by strong

induction on m. For m = 0, we notice that
∏0

i=1 X
(αi)
T = 1 ∈ RT and hence by

assumption ξ is orthogonal to
∏0

i=1 X
(αi)
T . Let us now assume that for some fixed

m ≥ 1

E

[
ξ

n∏
i=1

X
(αi)
T

]
= 0, α1, . . . , αn ∈ 	,n ≤ m.(33)

From (33) and the property that X is stable under stopping with respect to deter-
ministic stopping times, it easily follows that

E

[
ξ

n∏
i=1

X
(αi)
ti

]
= 0, t1, . . . , tn ∈ [0, T ], α1, . . . , αn ∈ 	,n ≤ m.(34)

We now show that E[ξ ∏m+1
i=1 X

(αi)
T ] = 0 for all α1, . . . , αm+1 ∈ 	. Representing∏m+1

i=1 X
(αi)
T by the product formula (26), we get

E

[
ξ

m+1∏
i=1

X
(αi)
T

]

=
m+1∑
i=1

∑
1≤j1<···<ji≤m+1

E

[
ξ

(( m+1∏
k=1

k �=j1,...,ji

X
(αk)−

)
· X(αj1 ,...,αji

)

T

)]
(35)

+
m−1∑
p=0

m+1∑
i=p+2

∑
1≤j1<···<ji≤m+1

E

[
ξ

((
m+1∏
k=1

k �=j1,...,ji

X
(αk)−

i∏
�=i−p+1

�X(αj�
)

)

· 〈X(αj1 ,...,αji−p−1 )
,X

(αji−p
)〉

T

)]
.

We now analyse the first summand on the right-hand side of (35). Using the de-
composition X(αk) = X̃(αk) + X

(αk)
0 and the identity (32) with ar = X̃

(αr )− and
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br = X
(αr)
0 , r = 1, . . . ,m + 1, from the definition of RT it can easily be verified

that it holds ( m+1∏
k=1

k �=j1,...,ji

X
(αk)−

)
· X(αj1 ,...,αji

)

T ∈ cl
(
Span(RT )

)
L2(P).

By assumption we have that ξ is orthogonal to RT and therefore also to
cl(Span(RT ))L2(P). (Note that X

(α)
t admits finite moments of every order for all

t ∈ [0, T ] and α ∈ 	, cf. (28).) Hence, the first summand in (35) vanishes and we
get

E

[
ξ

m+1∏
i=1

X
(αi)
T

]

=
m−1∑
p=0

m+1∑
i=p+2

∑
1≤j1<···<ji≤m+1

E

[
ξ

((
m+1∏
k=1

k �=j1,...,ji

X
(αk)−

i∏
�=i−p+1

�X(αj�
)

)

· 〈X(αj1 ,...,αji−p−1 )
,X

(αji−p
)〉

T

)]
.

The processes X
(αji−p

) and X
(αj1 ,...,αji−p−1 ) belong to X for every i and p,

because the family X is compensated-covariation stable. By assumption, the
processes 〈X(αj1 ,...,αji−p−1 )

,X
(αji−p

)〉 are deterministic. Lemma 5.5 implies that
(
∏m+1

k �=j1,...,ji
X

(αk)−
∏i

�=i−p+1 �X(αj�
)) · 〈X(αj1 ,...,αji−p−1 )

,X
(αji−p

)〉 are processes of
integrable variation. Thus, we can apply Fubini’s theorem and for every summand
we get

E

[
ξ

((
m+1∏
k=1

k �=j1,...,ji

X
(αk)−

i∏
�=i−p+1

�X(αj�
)

)
· 〈X(αj1 ,...,αji−p−1 )

,X
(αji−p

)〉
T

)]

(36)

= E

[
ξ

(
m+1∏
k=1

k �=j1,...,ji

X
(αk)−

i∏
�=i−p+1

�X(αj�
)

)
·

]
· 〈X(αj1 ,...,αji−p−1 )

,X
(αji−p

)〉
T .

We consider the generic element

K :=
m+1∏
k=1

k �=j1,...,ji

X
(αk)−

i∏
�=i−p+1

�X(αj�
).
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After expanding the product we observe that Kt is equal to a finite sum of terms
of type

q∏
k=1

X
(αik

)

t−
q+r∏

j=q+1

X
(αij

)

t ,

with 1 ≤ i1, . . . , iq+r ≤ m+1 pairwise different, q+r ≤ m−1. From the induction
hypothesis, (34) and Lemma 5.6 we now obtain E[ξKt ] = 0 for all t ∈ [0, T ]. Thus
every summand (36) vanishes, therefore E[ξ ∏m+1

i=1 X
(αi)
T ] = 0 and the proof of the

induction step is finished. Consequently, ξ is orthogonal to
∏m

i=1 X
(αi)
T for every

m ≥ 0 and the proof is complete. �

Now, from Proposition 5.7 and Theorem 4.3 we can deduce the main result of
this paper.

THEOREM 5.8. Let X := {X(α), α ∈ 	} ⊆ H 2(FX ) be a compensated-
covariation stable family such that 〈X(α),X(β)〉 is deterministic for all α,β ∈ 	.
Suppose moreover that Assumption 5.3 is satisfied. Then X possesses the CRP on
L2(�,FX

T ,P).

PROOF. We set S := R+ and introduce the family Z := X S as in (25). Be-
cause of Lemma 5.1, Z is a compensated-covariation stable family of H 2. Start-
ing from Z we define the family RT as in (31). Clearly Z satisfies all the assump-
tions of Proposition 5.7 and therefore RT is total in L2(�,FZ

T ,P). On the other
side, Corollary 4.4 yields that the family RT is contained in the closed linear space
J Z

T of the terminal variables of the iterated integrals generated by Z and hence
J Z

T = L2(�,FZ
T ,P). Furthermore, the identity F

Z = F
X holds. Therefore Z

possesses the CRP on L2(�,FX
T ,P). To show that X possesses the CRP on

L2(�,FX
T ,P), we only need to show that the space J X of the iterated integrals

generated by X contains the space J Z of those generated by Z . But this is ob-
vious because for every X ∈ Z there exist α ∈ 	 and u ∈ R+ such that X = X(α)u,
where the superscript u denotes the operation of stopping at the deterministic
time u. Clearly, the identities X = (X(α) − X

(α)
0 )

u +X
(α)
0 = J

(α)
1 (1⊗1[0,u])+X

(α)
0

hold. This means that Z ⊆ J X and hence J Z ⊆ J X implying the CRP
for X . �

Applications of Theorem 5.8 to Lévy processes will be given in Section 6 below.
Further applications and examples will be provided in the concluding Section 7.

6. The CRP for Lévy processes. In this section, given a Lévy Process L on a
fixed time horizon [0, T ], T > 0, we construct families of martingales possessing
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the CRP on L2(�,FL
T ,P). We start with a short introduction to Lévy processes

and Poisson random measures.
A càdlàg process L on a probability space (�,F ,P) such that L0 = 0 is called

a Lévy process if it is stochastically continuous and has homogeneous and inde-
pendent increments. Let L be a Lévy process. By F

L = (FL
t )t∈[0,T ] we denote the

natural filtration of L, that is, the smallest filtration satisfying the usual conditions
such that L is adapted. From now on, we restrict ourselves to the probability space
(�,FL

T ,P) and the filtration F
L. Because L0 = 0, FL

0 is trivial.
On (E,B(E)) := ([0, T ] × R,B([0, T ]) ⊗ B(R)), where B(·) denotes the

Borel σ -algebra, we introduce the random measure M (cf. Jacod and Shiryaev
[12], Definition II.1.3) by

M(ω,A) :=∑
s≥0

1{�Ls(ω) �=0}1A

(
s,�Ls(ω)

)
, ω ∈ �,A ∈ B(E).

We call M the jump measure of L. It is known that M is a homogeneous Pois-
son random measure relative to the filtration F

L, that is, an integer-valued random
measure (cf. Jacod and Shiryaev [12], Definition II.1.13) such that (i) E[M(A)] =
(λ+ ⊗ ν)(A) for every A ∈ B(E), where λ+ is the Lebesgue measure on [0, T ]
and ν is a σ -finite measure on R; (ii) for all s ≥ 0 and A ∈ B(E) such that
A ⊆ (s, T ] × R the random variable M(A) is independent of FL

s (cf. Jacod and
Shiryaev [12], Definition II.1.20). The σ -finite measure ν is the Lévy measure
of L, which satisfies ν({0}) = 0 and x2 ∧ 1 ∈ L1(ν). We put m := λ+ ⊗ ν. Now
we introduce the compensated Poisson random measure associated with the jump
measure of L. The system E := {A ∈ B(E) : m(A) < +∞} is a ring of Borel
subsets of E. For every A ∈ E we define M(A) := M(A) − m(A). The family
M := {M(A),A ∈ E } is an elementary orthogonal random measure (cf. Gihman
and Skorohod [8], IV, Section 4), that is, for every A,B ∈ E , M(A) belongs to the
space L2(P); E[M(A)M(B)] = m(A ∩ B) and if, moreover, A ∩ B = ∅, then it
follows M(A ∪ B) = M(A) + M(B). We call M the compensated Poisson random
measure (associated with M).

Next, we briefly recall the stochastic integral with respect to the jump mea-
sure M and the associated compensated Poisson random measure M for mea-
surable functions f on (E,B(E)). First, we set m(f ) := ∫

E f (t, x)m(dt,dx) if
the integral on the right-hand side exists. If f ≥ 0, m(f ) always exists. Analo-
gously, we can define the integral of f with respect to M ω-wise. In case that∫
E |f (t, x)|M(dt,dx) < +∞ a.s. holds, we put M(f ) := ∫

E f (t, x)M(dt,dx) a.s.
and call M(f ) the stochastic integral of f with respect to M. From Kallenberg
[14], Lemma 12.13, we know that M(f ) exists and is finite a.s. if and only if
m(|f | ∧ 1) < ∞. For f ∈ L1(m) we have E[M(f )] = m(f ).

The stochastic integral with respect to M for deterministic functions in L2(m)

is defined as in Gihman and Skorohod [8], IV, Section 4, for a general elementary
orthogonal random measure, and we do not repeat the definition in detail. We only
recall that in a first step the stochastic integral with respect to M is defined for
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simple functions in L2(m) and is then extended to arbitrary functions in L2(m)

by isometry using the denseness of the simple functions: There exists a unique
isometric mapping on L2(m) into L2(P), again denoted by M, such that M(1B) =
M(B), B ∈ E . If f ∈ L2(m), then M(f ) is called the stochastic integral of f with
respect to the compensated Poisson random measure M. The proof of the following
proposition is left to the reader.

PROPOSITION 6.1. If f ∈ L1(m) ∩ L2(m), then M(f ) = M(f ) − m(f ).

The Itô–Lévy decomposition of L asserts that there exists a Wiener process
relative to F with variance function σ 2(t) := σ 2t , say Wσ , such that the following
decomposition holds: For all t ∈ [0, T ], a.s.,

Lt = βt + Wσ
t + M(1[0,t]×{|x|>1}x) + M(1[0,t]×{|x|≤1}x),(37)

where β ∈ R, cf. Kallenberg [14], Theorem 15.4. We call the triplet (β, σ 2, ν) the
characteristics of L and the process Wσ the Gaussian part of L. For a Lévy process
L with Gaussian part Wσ and Lévy measure ν, we introduce the measure μ by

μ := σ 2δ0 + ν,(38)

where δ0 denotes the Dirac measure in the origin. Since ν({0}) = 0, without loss of
generality we can assume that f (0) = 0 for every f ∈ Lp(ν), p ∈ [1,+∞]. With
this convention, Lp(ν) is a subspace of Lp(μ). For any f ∈ L2(μ) we introduce
the martingale X(f ) = (X

(f )
t )t≥0 by

X
(f )
t = f (0)Wσ

t + M(1[0,t]1R\{0}f ), t ∈ [0, T ].(39)

We stress that for f = 1{0} we get X(f ) = Wσ as a special case.
For a measure �, we use the notation �(f ) := ∫

R
f (x)�(dx) if the integral on

the right exists.

THEOREM 6.2. For every f ∈ L2(μ) the process X(f ) defined by (39) has the
following properties:

(i) (X(f ),FL) is a Lévy process and E[(X(f )
t )2] = tμ(f 2) < +∞.

(ii) X(f ) ∈ H 2(FL) and 〈X(f ),X(g)〉t = tμ(fg), f,g ∈ L2(μ).
(iii) �X(f ) = f (�L)1{�L�=0} a.s. and X(f ) is locally bounded if f is bounded.
(iv) X(f ) = 0 a.s. if and only if f = 0 μ-a.e.
(v) X(f ) and X(g) are orthogonal if and only if f,g ∈ L2(μ) are orthogonal.

Compensated-covariation stable families. As a preliminary step, given a
Lévy process L with characteristics (β, σ 2, ν), our aim is to construct
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compensated-covariation stable families of F
L-martingales possessing the CRP

on the space L2(�,FL
T ,P).

Let (L,FL) be a Lévy process with Gaussian part Wσ and jump measure M;
F

Wσ = (F Wσ

t )t∈[0,T ] denotes the completion in FL
T of the filtration generated by

Wσ . For every t ∈ [0, T ], we introduce the σ -algebra

F M
t := σ

({
M(A),A ∈ B(E),A ⊆ [0, t] ×R

})∨ N (P),

where N (P) denotes the system of the P-null sets of FL
T , and put F

M =
(F M

t )t∈[0,T ]. It is easy to see that FL = F
Wσ ∨ F

M.
We shall consider systems C of real functions with the following properties:

ASSUMPTION 6.3. (i) C ⊆ L1(μ) ∩ L2(μ); (ii) C is total in L2(μ); (iii) C is
stable under multiplication and 1R\{0}f ∈ C whenever f ∈ C ; (iv) C is a system
of bounded functions.

We observe that a system C satisfying Assumption 6.3 always exists: Obvi-
ously, we can choose

C := {
f = c1{0} + 1(a,b], a, b ∈ R : a < b,0 /∈ [a, b]; c ∈R

}∪ {0}
as an example.

For a system C satisfying Assumption 6.3, we introduce the set C̃ of all f̃ :=
1R\{0}f , f ∈ C . Recalling the convention above, we observe that C̃ is a subset of
L1(ν) ∩ L2(ν), is total in L2(ν) and is stable under multiplication. We also define
the family

XC := {
X(f ), f ∈ C

}
,(40)

where the martingales X(f ) are introduced in (39). Then the following proposition
holds.

PROPOSITION 6.4. The family XC is a compensated-covariation stable fam-
ily of F

L-martingales in H 2(FL). Moreover XC generates the filtration F
L;

E[exp(λ|Xt |)] < +∞ for every X ∈ XC , λ > 0, t ∈ [0, T ], and 〈X,Y 〉 is deter-
ministic for every X,Y ∈ XC .

PROOF. It is clear that XC ⊆ H 2(FL). Now we show that F
XC
T = FL

T

(= F Wσ

T ∨ F M
T ). By assumption we have f ∈ L1(μ) ∩ L2(μ) for f ∈ C . From

this, it follows that f̃ := 1R\{0}f belongs to L1(ν) ∩ L2(ν) and an application

of Proposition 6.1 yields X
(f )
t = f (0)Wσ

t + M(1[0,t]f̃ ) − tν(f̃ ), t ≥ 0. We set
G := σ({M(1[0,t]f̃ ), t ∈ [0, T ], f ∈ C̃ }) ∨ N (P). Recall that C̃ is total in L2(ν).

It is evident that F
XC
T = F Wσ

T ∨ G and therefore it is enough to verify that
G = F M

T . Recalling the definition of F M
T we easily obtain that M(1[0,·]g) is
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F M
T -measurable for every nonnegative measurable function g. Since C̃ ⊆ L1(ν),

we can write M(1[0,t]f̃ ) = M(1[0,t]f̃ +) − M(1[0,t]f̃ −) a.s. for every f̃ ∈ C̃ and
t ≥ 0, which is F M

T -measurable. This yields the inclusion G ∨N (P) ⊆ F M
T . Con-

versely, let Bn ⊆ R be such that Bn ↑ R and ν(Bn) < +∞ for all n ≥ 1. Using the
monotone class theorem, we deduce that M(1[0,t]×Bng) is G ∨ N (P)-measurable
for every bounded measurable function g on E = [0, T ]×R and hence for g = 1A

with A ∈ B(E). Finally, letting n → ∞, we observe that M(([0, t] × R) ∩ A) is
G ∨N (P)-measurable for all A ∈ B(E), proving the inclusion F M

T ⊆ G ∨N (P).
Next, we show that the family K of monomials generated by XC is total in
L2(�,F

XC
T ,P) and hence, from the previous step, in L2(�,FL

T ,P). Indeed,

the Lévy measure of X(f ) is νf̃ , where νf̃ ({0}) := 0 and νf̃ (B) := ν ◦ f̃ −1(B),
B ∈ B(R \ {0}). Because each function f̃ in C̃ is bounded, νf̃ has bounded
support. From Sato [19], Lemmas 25.6 and 25.7, we can deduce that X

(f )
t has

finite exponential moments of every order for all t ∈ [0, T ] and f ∈ C . Now
the claim follows from Theorem 5.4. From Theorem 6.2, it is clear that for all
f,g ∈ C the brackets 〈X(f ),X(g)〉 are deterministic. It remains to show that XC

is compensated-covariation stable. Let f,g ∈ C and define h := fg1R\{0}. We no-
tice that h again belongs to C . Using (14), (1), Theorem 6.2(ii), (iii) and Proposi-
tion 6.1, we can compute

X
(f,g)
t := [

X(f ),X(g)]
t − 〈

X(f ),X(g)〉
t

= f (0)g(0)σ 2t + ∑
0≤s≤t

f̃ (�Ls)g̃(�Ls)1{�Ls �=0} − μ(fg)t

= ∑
0≤s≤t

h(�Ls)1{�Ls �=0} − ν(h)t

= M(1[0,t]h) = X
(h)
t , t ∈ [0, T ], a.s.

Hence, X(f,g) belongs to XC proving that XC is a compensated-covariation stable
family. �

As a consequence of Proposition 6.4 and of Theorem 5.8, we get the following
result.

PROPOSITION 6.5. Let (L,FL) be a Lévy process with characteristics
(β, σ 2, ν), μ be the measure defined in (38) and C ⊆ L2(μ) satisfy Assump-
tion 6.3. Then the family XC defined in (40) possesses the CRP on L2(�,FL

T ,P).

PROOF. From Proposition 6.4 and Theorem 5.4, it follows that the family XC

satisfies all the assumptions of Theorem 5.8 and therefore it possesses the CRP on
L2(�,FL

T ,P). �
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General families of martingales with the CRP. Let (L,FL) be a Lévy process
with characteristic triplet (β, σ 2, ν) and let μ be as in (38). With a system T ⊆
L2(μ), we associate the family XT by

XT := {
X(f ), f ∈ T

}
.(41)

In this subsection, we give necessary and sufficient conditions on T for XT to
possess the CRP on L2(�,FL

T ,P).
We stress that in general the family XT need not satisfy all the assumptions of

Theorem 5.8. In particular, the family XT need not be compensated-covariation
stable or possess exponential moments.

THEOREM 6.6. Let T be a system of functions in L2(μ), where μ is defined
in (38). The family XT defined in (41) possesses the CRP with respect to F

L if
and only if T is total in L2(μ).

PROOF. First, we assume that the family XT possesses the CRP and show
that T is total in L2(μ). We choose a function h ∈ L2(μ) which is orthogonal to
T in L2(μ). By Theorem 6.2(v), the martingale X(h) ∈ H 2 associated with h is
orthogonal to XT . For an elementary iterated integral

J (f1,...,fn)
n (F )t :=

∫ t

0
J

(f1,...,fn−1)

n−1 (F0 ⊗ · · · ⊗ Fn−1)u−Fn(u)dX(fn)
u ,

t ∈ [0, T ], n ≥ 1, with respect to (X(f1),X(f2), . . . ,X(fn)), fk ∈ T , k = 1, . . . , n,
where F = F0 ⊗ · · · ⊗ Fn is an elementary function (see Definition 3.1), for all
t ∈ [0, T ] we obtain〈

J (f1,...,fn)
n (F ),X(h)〉

t

=
∫ t

0
J

(f1,...,fn−1)

n−1 (F0 ⊗ · · · ⊗ Fn−1)u−Fn(u)d
〈
X(fn),X(h)〉

u = 0.

Hence, the martingales X(h) and J
(f1,...,fn)
n (F ) are orthogonal. It is clear that X(h)

is also orthogonal to J0. This implies that the terminal value X
(h)
T is orthogonal

to J
(f1,...,fn)
n (F )T and also orthogonal to J0,T in L2(�,FL

T ,P). Recalling the

construction of the space J
XT
T of the iterated integrals generated by XT [cf.

Definition 3.5 and Proposition 3.7(i)], we observe that the system of elementary
iterated integrals of order n (n ≥ 0) is total in J

XT
T . Consequently, X

(h)
T is or-

thogonal to J
XT
T . By definition of the CRP, J

XT
T = L2(�,FL

T ,P) and hence

X
(h)
T = 0. From this, we deduce that the martingale X(h) is indistinguishable from

the null-process and by Theorem 6.2(iv) it follows h = 0 μ-a.e. This proves that T
is total in L2(μ). Conversely, we now assume that T is total in L2(μ) and show
that XT has the CRP on L2(�,FL

T ,P). For this purpose, we consider a system C



THE CHAOTIC REPRESENTATION PROPERTY 3995

satisfying Assumption 6.3. From Proposition 6.5, we know that XC has the CRP
on L2(�,FL

T ,P). We denote by J XC the space of iterated integrals generated
by XC . It is enough to prove that J XC = J XT . Because T is total in L2(μ)

and the mapping f �→ X(f ) is linear and isometric from L2(T μ) into H 2 (see
Theorem 6.2), we immediately establish cl(Span(XT ))H 2 = XL2(μ) and hence
the inclusion XC ⊆ cl(Span(XT ))H 2 holds. Using Theorem 3.9 for Z = XT

we conclude J XC = J XT , proving the claim. This completes the proof of the
theorem. �

We remark that if L is a square integrable Lévy process, or equivalently the
function x belongs to L2(ν), we can choose the total system T ⊆ L2(μ) in such
a way that the function h := 1{0} + x belongs to T . In this case, we have that
X(h) = L, where Lt := Lt −E[Lt ], t ∈ [0, T ]. In other words, the Lévy process L

can be included in the family XT .
An important question is in which cases it is possible to choose a family XT

consisting of finitely many martingales and possessing the CRP. The next corollary
explains that this is possible only in a rather few cases.

COROLLARY 6.7. Let (L,FL) be a Lévy process with characteristics
(β, σ 2, ν). The following statements are equivalent: (i) There exists a finite family
XT possessing the CRP on L2(�,FL

T ,P); (ii) L2(μ) is finite-dimensional; (iii) ν

has finite support.

The situation discussed in Corollary 6.7 occurs if L is a simple Lévy process,
that is, it is of the form Lt := Wσ

t + α1N
1
t + · · · + αmNm

t , t ≥ 0, where (Wσ ,FL)

is a Brownian motion with variance function 〈Wσ ,Wσ 〉t = σ 2t ; (Nj ,FL) a homo-
geneous Poisson process with parameter γj > 0, j = 1, . . . ,m, and (N1, . . . ,Nm)

is an independent vector of processes; α1, . . . , αm are real numbers.
If T ⊆ L2(μ) is a complete orthogonal system, say T := {fn,n ≥ 1} [note

that L2(μ) is a separable Hilbert space], then the associated family XT con-
sists of countably many mutually orthogonal martingales [cf. Theorem 6.2(v)]
and Theorem 6.6, Theorem 3.11 and (13) yield the following theorem. Note that
J0 = J0,T = R because the σ -field F

XT
0 = FL

0 is P-trivial.

THEOREM 6.8. Let (L,FL) be a Lévy process with characteristics (β, σ 2, ν)

and T = {fn,n ≥ 1} be a complete orthogonal system in L2(μ) where μ is as
in (38). Then the associated family X = XT has the CRP on L2(�,FL

T ,P) and
the following decompositions hold:

H 2(
F

X )= R⊕
∞⊕

n=1

⊕
(j1,...,jn)∈Nn

J
(fj1 ,...,fjn )
n ,

(42)

L2(�,FX
T ,P

)= R⊕
∞⊕

n=1

⊕
(j1,...,jn)∈Nn

J
(fj1 ,...,fjn )

n,T ,
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where, for f1, . . . , fn ∈ T , J
(f1,...,fn)
n denotes the linear space of n-fold iterated

integrals with respect to (X(f1), . . . ,X(fn)); n ≥ 1.

Multiple Itô integrals and iterated integrals. The aim of this subsection is to
establish the relation between multiple Itô integrals introduced in Itô [10] and iter-
ated integrals introduced in Section 3.

Let L be a Lévy process with characteristics (β, σ 2, ν). The measure μ is de-
fined in (38) while the martingale X(f ) for f ∈ L2(μ) in (39) above.

We introduce the measures ζ and η by

ζ(B) :=
∫
B

x2ν(dx), B ∈ B(R); η = σ 2δ0 + ζ.

For any square integrable function G on ([0, T ]×R)n with respect to the measure
(λ+ ⊗ η)n (recall that λ+ denotes the Lebesgue measure on R+) the multiple Itô
integral In(G) of order n is defined as follows: For n = 1 and G1 ∈ L2(λ+ ⊗ η),
we put

I1(G1)t := G1(·,0) · Wσ
t + M(1[0,t]xG1), t ∈ [0, T ].

Now, if G = 1A1 ⊗ · · · ⊗ 1An with A1, . . . ,An ∈ B([0, T ] × R) pairwise disjoint
and (λ+ ⊗ η)(Ai) < +∞, i = 1, . . . , n, then we define

In(G)t := I1(1A1)t · · · I1(1An)t , t ∈ [0, T ].
The system of all these functions G is total in the L2-space over ([0, T ] × R)n

equipped with the measure (λ+ ⊗ η)n (cf. Itô [9], Theorem 2.1). The mapping
G �→ In(G)t can now be extended to L2(([0, T ] × R)n, (λ+ ⊗ η)n) by linearity
and continuity (see Itô [10] for more details).

Let f1, . . . , fn from L2(μ) be normalized. Note that then the measures m(fi) on
[0, T ] associated with 〈X(fi),X(fi)〉 are equal to λ+, i = 1, . . . , n, and therefore
the space L2(� × [0, T ]n,m(f1,...,fn)

P
) is just L2(� × [0, T ]n,P ⊗ λn+). For any

function F from L2([0, T ]n) := L2([0, T ]n, λn+) the function 1 ⊗F belongs to the
space L2(�×[0, T ]n,P⊗λn+) and above we have introduced the iterated integral

J
(f1,...,fn)
n (1 ⊗ F) = (J

(f1,...,fn)
n (1 ⊗ F)t )t∈[0,T ] with respect to the martingales

(X(f1), . . . ,X(fn)) (cf. Definition 3.3).
With a real function g defined on R, we associate the function ĝ defining

ĝ(x) =
{

xg(x), if x �= 0,
g(0), if x = 0.

(43)

If g ∈ L2(η), then the associated function ĝ belongs to L2(μ) and conversely.
Obviously, ‖g‖L2(η) = ‖ĝ‖L2(μ). Now we consider normalized g1, . . . , gn ∈ L2(η)

and put fi := ĝi , i = 1, . . . , n. Then the functions f1, . . . , fn ∈ L2(μ) are normal-
ized, too. Furthermore, we choose F ∈ L2([0, T ]n). It is clear that the function
G = Fg1 ⊗ · · · ⊗ gn belongs to L2((λ+ ⊗ η)n) and hence the multiple integral
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In(G) is well-defined. In the next proposition, we denote the set of all permuta-
tions of {1, . . . , n} by �n and its generic element by π = (i1, . . . , in). The mapping
σπ on [0, T ]n is defined as σπ(t1, . . . , tn) = (ti1, . . . , tin).

PROPOSITION 6.9. Let F ∈ L2([0, T ]n), g1, . . . , gn ∈ L2(η) be normalized
and define fi := ĝi , i = 1, . . . , n, as in (43). Then the following relation between
the multiple Itô integral and the iterated integral holds:

In(Fg1 ⊗ · · · ⊗ gn)t = ∑
π=(i1,...,in)∈�n

J
(fi1 ,...,fin )
n

(
1 ⊗ (F ◦ σπ)

)
t , t ∈ [0, T ].

In particular, recalling the notation M
(n)
t of (4),

In(F1
M

(n)
t

g1 ⊗ · · · ⊗ gn)t = J (f1,...,fn)
n (1 ⊗ F)t , t ∈ [0, T ].

PROOF. Let F = F1 ⊗ · · · ⊗ Fn be such that Fi = 1Bi
, i = 1, . . . , n;

B1, . . . ,Bn ∈ B([0, T ]) and pairwise disjoint. The normalized functions
g1, . . . , gn are chosen such that gi = ci1Ci

, Ci ∈ B(R), 0 < η(Ci) < +∞, ci > 0,
i = 1, . . . , n. Using the definition of Itô’s multiple integral and of X(fi) [cf. (39)]
with fi := ĝi we obtain

In(Fg1 ⊗ · · · ⊗ gn)t =
n∏

i=1

∫ t

0
Fi(u)dX(fi)

u , t ∈ [0, T ].

Because B1, . . . ,Bn are pairwise disjoint, setting Zi := ∫ ·
0 Fi(u)dX

(fi)
u , it follows

[Zi,Zj ] = 0, i �= j , i, j = 1, . . . , n. Therefore, an application of Itô’s formula
yields

n∏
i=1

∫ t

0
Fi(u)dX(fi)

u =
n∑

i=1

∫ t

0

n∏
k=1
k �=i

∫ u−
0

Fk(s)dX(fk)
s Fi(u)dX(fi)

u , t ∈ [0, T ].

By an induction argument, we can now derive

In(Fg1 ⊗ · · · ⊗ gn)t = ∑
π=(i1,...,in)∈�n

J
(fi1 ,...,fin )
n (F ◦ σπ)t , t ∈ [0, T ].(44)

The set of functions F considered in the previous step is total in L2([0, T ]n) (cf.,
e.g., Itô [9], Theorem 2.1). The right- and left-hand sides of identity (44) are linear
and continuous in F on L2([0, T ]n). Hence (44) is valid for all F ∈ L2([0, T ]n).
Now we fix F ∈ L2([0, T ]n). From the previous step, we know that (44) is valid
for all g1, . . . , gn chosen as in the first step of the proof. Clearly, the set of all
normalized g1 = c11C1 with C1 ∈ B(R) and 0 < η(C1) < +∞, c1 > 0, is total in
L2(η). The right- and left-hand sides of identity (44) being linear and continuous in
g1 on L2(η), identity (44) remains valid for all g1 ∈ L2(η). Repeating the argument
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for all i = 2, . . . , n yields that (44) is valid for all g1, . . . , gn ∈ L2(η). The proof of
the proposition is now complete. �

By Hn,T we denote the closed linear subspace of L2(P) := L2(�,FL
T ,P) con-

sisting of the terminal values In(G)T of all the multiple Itô integrals of order n.
Itô’s chaos expansion (see Itô [10], Theorem 2) states the following decomposition
of L2(P):

L2(P) =R⊕
∞⊕

n=1

Hn,T .(45)

The decomposition (45) can be deduced as a consequence of Theorem 6.6. Indeed,
the linear space JT of terminal values of all iterated integrals with respect to
XT := {X(f ) : f ∈ T }, where T ⊆ L2(μ) is a total set, is dense in L2(P). But
from Proposition 6.9, we deduce JT ⊆R⊕⊕∞

n=1 Hn(T ).
We conclude this subsection deriving Theorem 6.6 from the Itô chaos

decomposition. If (gk)k≥1 is a complete orthonormal system in the space L2(η),
(gk1,...,kn)(k1,...,kn)∈Nn := (gk1 ⊗ · · · ⊗ gkn)(k1,...,kn)∈Nn is a complete orthonormal
system in L2(Rn, ηn). For any function G ∈ L2(([0, T ] × R)n, (λ+ ⊗ η)n) and
(t1, . . . , tn) ∈ [0, T ]n we introduce the function Gt1,...,tn by Gt1,...,tn(x1, . . . , xn) =
G((t1, x1), . . . , (tn, xn)), where (x1, . . . , xn) ∈ R

n. Clearly, the set of all
(t1, . . . , tn) ∈ [0, T ]n such that Gt1,...,tn does not belong to L2(Rn, ηn) is mea-
surable and has zero λn+-measure. Hence, without loss of generality, we can
put Gt1,...,tn ≡ 0 for such points. Consequently, Gt1,...,tn belongs to L2(Rn, ηn)

for all (t1, . . . , tn) from [0, T ]n. Developing Gt1,...,tn as Fourier series gives
Gt1,...,tn = ∑

(k1,...,kn)∈Nn c(t1, . . . , tn;k1, . . . , kn)gk1,...,kn in L2(Rn, ηn) where the
function c(t1, . . . , tn;k1, . . . , kn) = (Gt1,...,tn, gk1,...,kn)L2(Rn,ηn) is measurable in
(t1, . . . , tn) ∈ [0, T ]n. Now we verify that

G = ∑
(k1,...,kn)∈Nn

c(·, k1, . . . , kn)gk1,...,kn(46)

(convergence in L2(([0, T ] × R)n, (λ+ ⊗ η)n)). We already know that the se-
ries converges to Gt1,...,tn in L2(Rn, ηn) and hence in ηn-measure for every
(t1, . . . , tn) ∈ [0, T ]n. Therefore, the series converges to G in (λ+ ⊗ η)n-measure.
We introduce the notation N

n
m := N

n \ {1, . . . ,m}n. For proving the claim we
show that

∑
(k1,...,kn)∈Nn

m
c(·, k1, . . . , kn)gk1,...,kn converges in the Hilbert space

L2(([0, T ] × R)n, (λ+ ⊗ η)n) to zero as m → ∞. From the orthonormality of
(gk1,...,kn)(k1,...,kn)∈Nn we have∥∥∥∥ ∑

(k1,...,kn)∈Nn
m

c(·, k1, . . . , kn)gk1,...,kn

∥∥∥∥2

L2((λ+⊗η)n)

=
∫
[0,T ]n

∑
(k1,...,kn)∈Nn

m

c2(t1, . . . , tn;k1, . . . , kn)dλn+(t1, . . . , tn),
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the right-hand side converging to zero as m → ∞ because∑
(k1,...,kn)∈Nn

m

c2(t1, . . . , tn;k1, . . . , kn) → 0 as m → ∞

for every (t1, . . . , tn) ∈ [0, T ]n [note that c(t1, . . . , tn;k1, . . . , kn) are Fourier coef-
ficients] and is bounded by

∑
(k1,...,kn)∈Nn c2(t1, . . . , tn;k1, . . . , kn) being an inte-

grable function:∫
[0,T ]

∑
(k1,...,kn)∈Nn

c2(t1, . . . , tn;k1, . . . , kn)dλn+(t1, . . . , tn) = ‖G‖2
L2((λ+⊗η)n)

.

Hence, the Fourier expansion (46) of G is verified. As a result, using the continuity
of In and Proposition 6.9 above, we get

In(G)t = ∑
(k1,...,kn)∈Nn

In

(
c(·, k1, . . . , kn)gk1,...,kn

)
t

= ∑
(k1,...,kn)∈Nn

∑
π=(i1,...,in)∈�n

J
(fki1

,...,fkin
)

n

(
c(·, k1, . . . , kn) ◦ σπ

)
t .

Applying Itô’s chaos expansion, from this we get L2(P) = R⊗⊕∞
n=1 Jn,T where

Jn,T is the closed linear space of iterated integrals of order n with respect to the
orthogonal family {X(fk) : k ∈ N} of martingales (cf. Definition 3.5) and fk :=
ĝk, k ∈ N [cf. (43)]. Clearly, (fk)k∈N is a complete orthonormal system of L2(μ).
Conversely, we can also start from a complete orthonormal system (fk)k∈N of
L2(μ) and construct the complete orthonormal system (gk)k∈N of L2(η) from it.

7. Applications. In this last section, we shall provide a few applications of
the main theorem of the present paper, Theorem 5.8 above. This will illustrate, in
particular, that several important results on the CRP which have been known be-
fore are an immediate consequence of Theorem 5.8. However, there will also be
discussed new examples which are beyond the scope of known results. We start
with families of continuous local martingales which are pairwise Gausssian and
state the result in a general form which to our knowledge has not been estab-
lished before. We proceed with families of compensated Poisson processes. Then
we pass on to concrete applications of Section 6 on the CRP of families of mar-
tingales related with Lévy processes: Teugels martingales, families of martingales
constructed from Hermite polynomials and from Haar systems.

Gaussian families. On a complete probability space (�,F ,P) and with re-
spect to a filtration F satisfying the usual conditions, we consider a family X :=
{X(α), α ∈ 	} of continuous local martingales. We shall assume that X is pair-
wise Gaussian, that is, that the pair (X(α),X(β)) of processes is Gausssian for
every α,β ∈ 	.



4000 P. DI TELLA AND H.-J. ENGELBERT

THEOREM 7.1. The family X possesses the CRP relative to F
X .

PROOF. First, we notice that E[X(α)
t ] is continuous and hence bounded in

t ∈ [0, T ] (use characteristic functions to verify this). Applying Fernique’s the-
orem to the centred Gaussian random variable (X

(α)
t − E[X(α)

t ])t∈[0,T ] with val-
ues in the space C([0, T ]) of continuous real functions on [0, T ], we see that
supt∈[0,T ] |X(α)

t − E[X(α)
t ]| and hence supt∈[0,T ] |X(α)

t | is integrable. From this,
we can conclude that every continuous Gaussian local martingale X(α) is actually
a Gaussian martingale and hence a process with independent increments.3 This
yields that 〈X(α),X(α)〉 is deterministic. Applying this observation to X(α) + X(β)

and X(α) − X(β) for α �= β , which are again Gaussian, by the polarization for-
mula we obtain that 〈X(α),X(β)〉 is deterministic. Obviously, X

(α)
t has finite ex-

ponential moments of arbitrary order for every t ≥ 0 and α ∈ 	. Finally, the
compensated-covariation process [X(α),X(β)] − 〈X(α),X(β)〉 equals 0 because
the martingales X(α) and X(β) are continuous [cf. (1)] for every α,β ∈ 	. Thus
X ∪ {0} is compensated-covariation stable. Now, upon using Theorem 5.4, Theo-
rem 5.8 yields that X ∪ {0}, and therefore also X , possesses the CRP. �

If moreover X is a countable family of orthogonal martingales, say X :=
{X(n), n ≥ 1}, then it possesses the CRP on L2(�,FX

T ,P) and (13) holds.
As a special case, we get that a Brownian motion W possesses the CRP relative

to its natural filtration F
W . This is the well-known result of Itô [9] about the CRP

of the Wiener process.

Poisson families. Let N := N − a(·) be a compensated Poisson process with
continuous intensity function a(·) (cf. Jacod and Shiryaev [12], Definition I.3.26).
Clearly, N is a square integrable martingale and we can calculate

[N,N] − 〈N,N〉 = ∑
0≤s≤·

(�Ns)
2 − a(·) = ∑

0≤s≤·
�Ns − a(·) = N.

This observation leads to the following theorem.

THEOREM 7.2. Let X := {X(α), α ∈ 	} be a family of compensated Poisson
processes on the probability space (�,FX

T ,P) and with respect to the filtration
F

X . If the family X is pairwise independent, then X possesses the CRP relative
to F

X .

PROOF. If α �= β , then X(α) is independent of X(β) which implies that
[X(α),X(β)] = 0 and hence also 〈X(α),X(β)〉 = 0. As shown above, we have

3The authors are indebted to M. Urusov for pointing out the proof of this fact using Fernique’s
theorem.
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[X(α),X(α)]−〈X(α),X(α)〉 = X(α) and hence X ∪{0} is compensated-covariation
stable. The predictable covariations 〈X(α),X(β)〉 are deterministic for all α and β

from 	. The exponential moments of X
(α)
t are finite for every t ≥ 0 and α ∈ 	.

Upon using Theorem 5.4, we see that Theorem 5.8 can be applied and we conclude
that X has the CRP on L2(�,FX

T ,P). �

If X is, moreover, a countable family, say X := {X(n), n ≥ 1}, then (13) holds.

REMARK 7.3. We notice that the case of Gaussian and Poisson families can
be unified in the following way. Let X = Y ∪ Z be a family of square integrable
martingales on the probability space (�,FX

T ,P) and with respect to the filtra-
tion F

X . Suppose that Y is a pairwise Gaussian family of continuous martingales
and Z a pairwise independent family of compensated Poisson processes. Then
X possesses the CRP. For the proof, upon recalling the arguments from above,
we have only to remark that [Y,Z] = 0 and hence 〈Y,Z〉 = 0 for all Y ∈ Y and
Z ∈ Z .

Teugels martingales. This example shows that under certain restrictions on
the Lévy measure ν, Teugels martingales can be introduced as a family possessing
the CRP on L2(�,FL

T ,P). Teugels martingales were considered in Nualart and
Schoutens [16] where it was proven that the orthogonalized Teugels martingales
possess the CRP. We are going to obtain the CRP for the orthogonalized Teugels
martingales as an application of the results of the present paper.

We fix a time horizon [0, T ], T > 0. Let (L,FL) be a Lévy process with char-
acteristic triplet (β, σ 2, ν). We require that there exist two constants ε,λ > 0 such
that the function x �→ e(λ/2)|x|1{|x|>ε} is in L2(ν). From this assumption, it follows
that the function x �→ xn belongs to L1(ν) ∩ L2(ν) for every n ≥ 2 and the iden-
tity x �→ x is in L2(ν). Moreover, the system {x �→ xn,n ≥ m} is total in L2(ν)

for every m ≥ 1. We set h1(x) = 1{0} + x and, for n ≥ 2, hn(x) = xn, x ∈ R. Be-
cause of hn ∈ L2(μ) with μ := σ 2δ0 + ν, n ≥ 1, we can introduce the martingales
X(hn) = (X

(hn)
t )t∈[0,T ] as in (39). With T := {hn,n ≥ 1} ⊆ L2(μ), we associate

XT := {X(hn), n ≥ 1} which turns out to be the family of Teugels martingales.
From Theorem 6.6, XT has the CRP on L2(�,FL

T ,P). We stress that, because
of the assumptions on the Lévy measure, the family of Teugels martingales is also
compensated-covariation stable and satisfies the assumptions of Theorem 5.8. Let
P be the system of polynomials obtained by the Gram–Schmidt orthogonaliza-
tion of T in L2(μ). The associated family XP of martingales is the one of the
orthogonalized Teugels martingales: It possesses the CRP on L2(�,FL

T ,P) and
the decomposition (42) of L2(�,FL

T ,P) holds.

Hermite polynomials. We consider a Lévy process (L,FL) with characteristic
triplet (β, σ 2, ν), where ν is of the form

dν(x) = h(x)dx, h(x) > 0, x ∈R.(47)
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An important class of Lévy processes with Lévy measure as in (47) is, for ex-
ample, the class of α-stable processes (see, e.g., Sato [19], Chapter 3). We begin
with the case of the Cauchy process. A Cauchy process (L,FL) is a purely non-
Gaussian Lévy process with characteristic triplet (0,0, ν) and dν(x) := x−2 dx.
For a Cauchy process no moment exists and therefore Teugels martingales cannot
be introduced. We choose the function g as g(x) := x exp(−x2/2), x ∈ R, and
define the finite measure dνg(x) := g2(x)dν(x) = exp(−x2)dx. Let (Hn)n=0,1,...

be the sequence of normalized Hermite polynomials. The sequence (Hn)n≥0 is
an orthonormal basis for L2(νg). Therefore T = {Cn,n ≥ 0} ⊆ L2(ν), where
Cn := gHn, n ≥ 0, is a complete orthonormal system in L2(ν). Moreover, each
Cn is a bounded function. In view of Theorem 6.2 and Theorem 6.8, the fam-
ily XT := {X(Cn), n ≥ 0} is a family of locally bounded orthogonal martin-
gales with the CRP on L2(�,FL

T ,P) for which the decomposition (42) of
L2(�,FL

T ,P) holds. Note that the system T is not stable under multiplica-
tion, because the system of Hermite polynomials is not. Therefore, the fam-
ily XT is not compensated-covariation stable. For the general case of a Lévy
process with characteristic triplet (β, σ 2, ν) where ν is as in (47), we define
g ∈ L2(ν) by g(x) := (h(x)−1/2) exp(−x2/2), x ∈ R, and introduce the system
T := {Pn,n ≥ 0}, where Pn := g(0)Hn(0)1{0} + 1R\{0}gHn, n ≥ 0, (Hn)n≥0 be-
ing the system of Hermite polynomials. The system T is an orthogonal basis for
L2(μ) and therefore the associated family XT := {X(Pn), n ≥ 0} is an orthog-
onal family of martingales possessing the CRP on L2(�,FL

T ,P) for which the
decomposition (42) of L2(�,FL

T ,P) holds. In the general case, we cannot ex-
pect that XT consists of locally bounded martingales. Furthermore, XT is not
compensated-covariation stable. Note that this variety of examples is beyond ear-
lier known results and techniques on the CRP.

Haar wavelet. We consider a Lévy process (L,FL) with characteristics
(β, σ 2, ν) and Lévy measure as in (47). Let λ be the Lebesgue measure on
(R,B(R)) and ψ ∈ L2(λ). The function ψ is called a wavelet if the sys-
tem of functions {ψjk : ψjk(x) = 2j/2ψ(2j x − k), x ∈ R, j, k ∈ Z} is a com-
plete orthonormal system of L2(λ). An example of a wavelet, known as Haar
wavelet, is the function defined by ψ(x) := 1, if x ∈ [0,1/2); ψ(x) := −1
if x ∈ [1/2,1) and ψ(x) := 0 otherwise. The system {ψjk, j, k ∈ Z} gener-
ated by ψ is the Haar basis (cf. Wojtaszczyk [23], 1). The system given by
T := {h−1/2(0)ψjk(0)1{0} + 1R\{0}h−1/2ψjk, j, k ∈ Z} is a complete orthogo-
nal system in L2(μ). The associated family XT := {X(f ), f ∈ T } of orthogonal
martingales possesses the CRP on L2(�,FL

T ,P) and the decomposition (42) of
L2(�,FL

T ,P) holds. This method, leading to interesting families of martingales
with the CRP not considered previously, can also be extended to Lévy processes
with arbitrary Lévy measure ν.
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Conclusions. We conclude with a short discussion concerning the relevance
of the approach and the results given in the present paper.

The first two examples about families of Gaussian continuous local martingales
and pairwise independent Poisson processes are general formulations of existing
results for Wiener and Poisson processes. Being immediate and straightforward
applications of Theorem 5.8, these examples demonstrate the power and flexibility
of our approach to the chaotic representation property.

The most innovative examples of the present paper are those about the construc-
tion of families of martingales associated with a Lévy process which do possess the
CRP. Beside the classical case of Brownian motion and compensated Poisson pro-
cess, only one example, the family of Teugels martingales, has been investigated
before by Nualart and Schoutens in [16]. However, this example requires the quite
strong assumption on the underlying Lévy process L that Lt (t > 0) possesses a
finite exponential moment of some order λ > 0.

As we have seen in Section 7, the case of Teugels martingales can be directly de-
duced from the general approach given in Section 5 and applied to Lévy processes
in Section 6. It should be emphasized that the family of Teugels martingales (if it
can be constructed) is only one example of a great variety of families of martin-
gales of a Lévy process possessing the CRP. In addition, Theorem 6.6 (as a conse-
quence of Theorem 5.8) allows us to construct families of martingales possessing
the CRP on F

L for an arbitrary Lévy process L, without any assumption on the
Lévy measure ν. This is outside the scope of other techniques and, in particular,
those of Nualart and Schoutens [16]. Applications are illustrated in the examples
Hermite Polynomials and Haar Wavelet, where we investigated Lévy processes for
which the Lévy measure ν only is equivalent to the Lebesgue measure on R. This
is a rather wide class of Lévy processes, containing also processes, as the Cauchy
process, which do not have any finite moments. For such cases it is impossible to
follow the techniques of Nualart and Schoutens [16].

The assumption of the equivalence of ν to the Lebesgue measure is not impor-
tant at all. As proved in Theorem 6.6, a necessary and sufficient condition for a
family XT to possess the CRP with respect to F

L is that the system T ⊆ L2(μ)

is total, μ := σ 2δ0 + ν, without further assumptions on ν. In particular, such a
family of martingales can be associated with any complete orthonormal system
T = {fn : n ≥ 1} of L2(μ). This result is probably one of the most important of
the present paper because it allows to construct numerous families of martingales
possessing the CRP starting from the characteristics (β, σ 2, ν) of a given Lévy
process L. We have only to look for adequate complete orthonormal systems T
in L2(μ). If moreover the Lévy measure possesses further properties, we can use
them to construct special families of martingales with the CRP as we have seen
above.

This large degree of freedom in the construction of families with the CRP can
play an important role in applications, for example, for the problem of the comple-
tion of financial markets driven by geometric Lévy processes. In Corcuera, Nualart
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and Schoutens [4], a Lévy market driven by a geometric Lévy process L has been
considered and, under the assumptions of [16] on the Lévy measure ν, the market
is completed involving compensated power-jump assets, that is, the Teugels mar-
tingales. In this context, the Teugels martingales have the interpretation of price
processes associated with certain contingent claims that, if included in the market,
make it complete, in the sense that any contingent claim of the market can be ap-
proximated (hedged) trading in the stock and the Teugels martingales. However,
by the results of the present paper it becomes clear that for any geometric Lévy
market there are many alternative systems of martingales which can serve for its
completion and the question arises which are the “most adequate” systems from a
theoretical and/or practical point of view.

In Sections 3, 4 and 5, one of the most important assumptions on the family
X is that 〈X,Y 〉 is deterministic, X,Y ∈ X . This hypothesis made possible the
definition of iterated integrals ensuring natural isometry properties. On the other
side, it is an important premise for the proof of Proposition 5.7 and hence Theo-
rem 5.8. A major extension of the approach would be to allow predictable covari-
ations which are random. To explore adequate conditions should be the subject of
future research.

Finally, we notice that the compensated-covariation stability is not a necessary
condition for the CRP as we have seen for Lévy processes in Section 6 (see Theo-
rem 6.6). However, in the general part of the paper (Sections 4 and 5) this property
plays an important role (see, e.g., Proposition 4.2 and Proposition 5.2). To further
exploit the relevance of the compensated-covariation, stability for the CRP remains
an open task for future research.
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