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THE CUTOFF PROFILE FOR THE SIMPLE EXCLUSION
PROCESS ON THE CIRCLE

BY HUBERT LACOIN

IMPA—Instituto Nacional de Matemática Pura e Aplicada

In this paper, we give a very accurate description of the way the simple
exclusion process relaxes to equilibrium. Let Pt denote the semi-group as-
sociated the exclusion on the circle with 2N sites and N particles. For any

initial condition χ , and for any t ≥ 4N2

9π2 logN , we show that the probability
density Pt (χ, ·) is given by an exponential tilt of the equilibrium measure by

the main eigenfunction of the particle system. As 4N2

9π2 logN is smaller than

the mixing time which is N2

2π2 logN , this allows to give a sharp description

of the cutoff profile: if dN(t) denote the total-variation distance starting from
the worse initial condition we have

lim
N→∞dN

(
N2

2π2 logN + N2

π2 s

)
= erf

(√
2

π
e−s

)
,

where erf is the Gauss error function.

1. Introduction. The exclusion process is a lattice interacting particle sys-
tem where particles perform independent nearest-neighbor random walks with the
added constraint that each site can be occupied by at most one particle (see the
classic references [13] and [14] for a complete introduction to the subject). It is a
very simplified model for a gas of interacting particles. We consider in this Intro-
duction the case were the lattice is either a d-dimensional torus or hypercube of
side length N . The number of particle is chosen to be proportional to the number
of sites.

In this paper, we investigate how the particle system starting far away from
equilibrium, relaxes to its equilibrium state. This question can in fact be treated
with different point of views:

• One can describe the evolution of the system at the macroscopic level, giving
the evolution of the density of particle in space and time. This is the study of
hydrodynamic limits (see [7] for an introduction to the subject).

• One can adopt a microscopic point of view, and look at the evolution of the law
of the particle, and in particular, its total variation distance to the equilibrium
law. This is the study of the Markov chain’s mixing time (see [12]).
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With the first point of view, it is now well known that under diffusive rescaling
(space rescaled by N and time rescaled buy N2), the density of particle evolves
like the solution of the heat equation. The result is valid in any dimension (see [7]
for references).

Concerning the mixing-time approach, progresses are more recent. It has been
shown by Morris that in any dimension the time needed to come close to equilib-
rium in total variation was of order N2 logN [16]. In dimension 1, more refined
estimates have been obtained and gave the exact location of the mixing time either
for the segment [8] or the circle [9] with lower bounds proved earlier by Wilson
[19] (see also [17] for results in the case of arbitrary graph, and [6, 10]). A natural
question is then what does the law of the particle system look like when it is about
to reach equilibrium.

At equilibrium, the law of the distribution is uniform over all particle configura-
tions. Another way to see it is to say that the state of each site (occupied or vacant)
is given by a field of i.i.d. Bernoulli variables whose sum is conditioned to be equal
to the number of particle (which is a fixed parameter).

What would be natural to expect then, is that up to a small correction, before
equilibrium, the particle distribution still is a conditioned product measure, but
that the Bernoulli variables are no more identically distributed: there is a space
dependent bias which is given by the solution of the heat equation. This brings a
strong connection between the problem of the mixing time and that of the hydro-
dynamical limit. This connection was previously underlined by Lee and Yau when
studying the related issue of log-Sobolev constant for the simple exclusion [11].
Indeed in the case of small bias, with some minor efforts one can derive sharp es-
timates on the total-variation distance between the conditioned product of biased
Bernoulli and the equilibrium measure. This can be turned into a precise prediction
on how the total-variation distance drops from one to zero, the cutoff profile. The
present paper brings this heuristic picture on a rigorous ground in the case of the
exclusion on the circle.

2. Model and results.

2.1. The process. We consider Z2N := Z/(2NZ), the discrete circle with 2N

sites and we place N particles on it, with at most one particle per site. With a slight
abuse of notation, we will sometimes use elements of {1, . . . ,2N} ⊂ Z to refer to
elements of Z2N .

The exclusion process on Z2N is a dynamical evolution of the particle system
which can be described informally as follows: each particle tries to jump indepen-
dently on its neighbors with transition rates p(x, x + 1) = p(x, x − 1) = 1, but the
jumps are canceled if a particle tries to jump on a site which is already occupied.

Let us describe the chain more formally. We adopt the convention that 1 denotes
a particle and −1 denotes an empty site. This is not the most usual one (empty sites
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are more often denoted by 0) but it proves to be more practical in our computations.
Our state-space is defined by

�N =
{
η ∈ {−1,1}Z2N

∣∣∣ 2N∑
x=1

η(x) = 0

}
.(2.1)

Given η ∈ � define ηx the configuration obtained by exchanging the content of
site x and x + 1 ⎧⎨

⎩
ηx(x) := η(x + 1),

ηx(x + 1) := η(x),

ηx(y) = η(y) ∀y /∈ {x, x + 1}.
(2.2)

The exclusion process on Z2N with N particle is the continuous time Markov
process on �N whose generator is given by

(LNf )(η) := ∑
x∈Z2N

f
(
ηx)− f (η).(2.3)

The chain is irreducible and reversible, and the unique invariant probability mea-
sure is the uniform probability measure on �N which we denote by μN . Given
χ ∈ �N we let (η

χ
t )t≥0 denote the trajectory of the Markov chain starting from χ .

We write P[(ηχ
t )t≥0 ∈ ·] for the law of (η

χ
t )t≥0. We let Pt denote the Markov semi-

group and write P
χ
t for the probability measure Pt(χ, ·), χ ∈ �N .

We measure the distance to equilibrium in terms of total variation distance. If
α and β are two probability measures on �, the total variation distance between α

and β is defined to be

‖α − β‖TV := 1

2

∑
ω∈�

∣∣α(ω) − β(ω)
∣∣= ∑

ω∈�

(
α(ω) − β(ω)

)
+,(2.4)

where x+ = max(x,0) is the positive part of x. It measures how well one can
couple two variables with law α and β . We define the distance to equilibrium of
the Markov chain to be

dN(t) := max
χ∈�N

∥∥P χ
t − μ

∥∥
TV.(2.5)

In a previous paper [9], we described in detail the asymptotic behavior of dN(t).

We proved that around a time of order N2

2π2 logN the distance to equilibrium drops

from 1 to 0 in a time window of width N2,

lim
s→∞ lim sup

N→∞
dN

(
N2

2π2 logN + N2s

)
= 0,

(2.6)

lim
s→−∞ lim inf

N→∞ dN

(
N2

2π2 logN − N2s

)
= 1.
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The aim of this paper is to complete this picture by identifying, in an acute way,
the pattern of relaxation to equilibrium. In particular, we are interested in proving
the existence and finding an expression for limiting profile

lim
N→∞dN

(
N2

2π2 logN + N2s

)
.(2.7)

To reach this goal, we have to understand what the distribution P
χ
t looks like

much before the time N2

2π2 logN .

2.2. The mixing time profile. The main achievement of our paper is to deter-
mine the cutoff profile.

THEOREM 2.1. The total-variation distance to equilibrium from the worst ini-
tial condition has the following asymptotic profile: for any s ∈ R, we have

lim
N→∞dN

(
N2

2π2 logN + N2

π2 s

)
= erf

(√
2

π
e−s

)
,(2.8)

where erf is the Gauss error function

erf(t) := 2√
π

∫ t

0
e−u2

du.(2.9)

The method by which we obtain the result gives us in fact much more informa-
tion about the relaxation of the system: we are able to characterize fully how P

χ
t

looks like much before the mixing time, for all initial condition χ ∈ �N .

REMARK 2.2. The fact that the profile of the cutoff is given by a function
of the type erf(Ae−s) (the constant is not essential since it depends on the par-
ticular process and the choice for the normalization) is given by Wilson [19] as
a conjecture (supported by numerical evidences) for a process very much related
to the exclusion: the adjacent transposition shuffle. The reason why the function
erf appears is that the last statistic that comes to equilibrium for the process (here
the first Fourier coefficient of η, see below) is well approximated by a Gaussian;
the exponential terms are present because the mean of this Gaussian converges
exponentially to zero. This is a property which is believed to be shared by many
Markov chains and rigorously known, for example, the random walk on the hyper-
cube [5]. Let us mention that however there are the Markov chains which exhibit
cutoff and do not have this property. This is, for instance, the case of top to random
shuffle [4], and also of the transposition shuffle for which the important statistic,
the number of fixed point, behaves like a Poisson variable (see, e.g., [15]).
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2.3. The description of P
χ
t much before equilibrium. The main result of the

paper, from which we deduce Theorem 2.1 requires some notation to be intro-
duced. The time evolution of the density of particles is given by the discrete heat
equation on Z2N and for this reason, the eigenfunction of the discrete Laplacian
on the circle plays an important role in our analysis; in particular, those in the
eigenspace corresponding to the spectral gap: x 
→ cos(πx

N
), and x 
→ sin(πx

N
).

To describe the projection of χ ∈ �N on this eigenspace, it is more convenient
for us to have one positive coefficient than two real ones, and for this reason we
introduce θ(χ) which is the “phase” of χ in the first eigenspace. It is the unique
θ ∈ [0,2π) satisfying

∑
x∈Z2N

χ(x) cos
(

πx

N
+ θ

)
= 0,

(2.10) ∑
x∈Z2N

χ(x) sin
(

πx

N
+ θ

)
> 0,

or θ(χ) = 0 if the system has no solution. We denote by b(χ) the first Fourier
coefficient of χ

b(χ) := 1

N

∑
z∈Z2N

χ(x) sin
(

πx

N
+ θ

)
.(2.11)

Note that b(χ) = 0 in the case where (2.10) has no solution. In the case where
χ = +1 for x ∈ {1, . . . ,N} and −1 elsewhere, η(χ) = π

2N
.

If μ is a probability measure on a state-space � and that f is a function � →R,
we use the following notation for the expectation:

ν(f ) := ν
(
f (η)

) := ∑
η∈�

f (η)ν(η).(2.12)

We define given N , α > 0 and θ ∈ [0,2π). We define νN,α,θ to be the probability
measure on �N with the following Radon–Nikodym density:

dνN,α,θ

dμN

(η) := eαaθ (η)

μN(eαaθ (η))
,(2.13)

where

aθ (η) := ∑
x∈Z

η(x) sin
(

πx

N
+ θ

)
.(2.14)

Finally, let us set

λN := 2
(

1 − cos
(

π

N

))
.(2.15)
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We note that λN is the spectral gap of the simple random walk on Z2N (with jump
rate one in each direction), and hence from [3], Section 4.1.1, it is also the spectral
gap of the exclusion process on Z2N .

The main result of the paper tells us that much before the mixing time, P
χ
t is

close to νN,α,θ for an appropriate choice of α and θ .

PROPOSITION 2.3. For all N sufficiently large, for all χ ∈ �N for all t ≥ 4π2

9N2 ,
we have ∥∥P χ

t − νN,b(χ)e−λN t ,θ(χ)
∥∥

TV ≤ (log logN)−1.(2.16)

Theorem 2.1 follows from Proposition 2.3 by using the following lemma.

LEMMA 2.4. For all K > 0, for all N sufficiently large (depending on K),

lim
N→∞ sup

γ∈[0,K]
θ∈[0,2π)

∣∣∣∣∥∥νN,γN−1/2,θ − μN

∥∥
TV − erf

(
γ√

8

)∣∣∣∣= 0.(2.17)

2.4. Exclusion with an arbitrary number of particle. We have chosen to
present here the result only in the case where the number of particles is equal
to half of the number of sites. However, mutatis mutandis, the proof adapts to the
case of kN particle kN ≤ N on Z2N where kN tends to infinity with N (the case
k ≥ N can be treated by symmetry). Let us discuss here what the results are in that
case and how they can be obtained.

While the case of kN proportional to N can be derived directly from the proof
presented here, it turns out that some of the technical lemmas (e.g., Proposition 6.3)
breaks down if kN grows much slower, that is, like logN . However, adapting the
techniques developed specifically for the case of slowly growing kN in [9], all
technical obstacles can be overcome.

To close this discussion, let us mention what the cutoff profiles are in those
cases. When kN = �αN for some α = (0,1), we have

lim
N→∞dN

(
N2

2π2 logN + N2

π2 s

)
= erf

(
sin(απ/2)

π
√

α(1 − (α/2))
e−s

)
.(2.18)

When kN satisfies 1 � kN � N , we have

lim
N→∞dN

(
N2

2π2 log kN + N2

π2 s

)
= erf

(
1

2
e−s

)
.(2.19)

2.5. Organization of the paper. In Section 3, we prove Theorem 2.1 from
Proposition 2.3, and also give a proof of Lemma 2.4. In Section 4, we decom-
pose the proof of Proposition 2.3 into three key statements, whose proofs are,
respectively, given in Sections 5, 6 and 7.
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3. The cutoff profile.

3.1. Proof of Theorem 2.1. Let s ∈ R be fixed. It is straightforward to check
that for

ts,N := N2

2π2 logN + N2

π2 s

we have

sup
N

sup
χ∈�N

√
Nb(χ)e−λN ts,N < ∞.(3.1)

Hence, using the triangular inequalities, Proposition 2.3 and Lemma 2.4 we have
for all χ ∈ �N ,

lim
∣∣∣∣∥∥P χ

ts,N
− μN

∥∥
TV − erf

(
b(χ)

√
Ne−λN ts,N

√
8

)∣∣∣∣= 0.(3.2)

The asymptotic for dN(ts,N ) follows if one can identify χ which maximizes b(χ).
A few seconds of thoughts are enough to realize that χmax defined as follows is the
unique maximizer up to translation:

χmax(x) =
{+1, for x = 1, . . . ,N ,

−1, for x = N + 1, . . . ,2N .
(3.3)

The asymptotic behavior of b(χmax) is given by the following limit:

lim
N→∞

1

N

∑
x∈Z2N

χmax(x) sin
(

xπ

N
− π

2N

)
= 4

π
.(3.4)

As for any s ∈R, we have also

lim
N→∞

√
Ne−λN ts,N = e−s(3.5)

the result follows from the continuity of the error function.

3.2. Proof of Lemma 2.4. The underlying idea is quite simple: we want to
prove that asymptotically under μN , once rescaled

aθ (η) := ∑
x∈Z

η(x) sin
(

πx

N
+ θ

)
,

converges to a Gaussian.

LEMMA 3.1. The following statements hold true:

(i) For a fixed θ ∈ [0,2π). The quantity N−1/2aθ (η) converges in law to a
standard Gaussian. Moreover, the convergence is uniform in θ , in the sense that
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for any bounded continuous function F the convergence

lim
N→∞μN

[
F

(
aθ (η)√

N

)]
= 1√

2π

∫
F(u)e−u2/2 du,(3.6)

holds uniformly in θ .
(ii) Moreover, aθ (η) is exponentially concentrated in the sense that there exists

a constant c > 0 such that

μN

(∣∣aθ (η)
∣∣≥ √

Nu
)≤ 2e−cu2

.(3.7)

Let us explain how we deduce Lemma 2.4 from these facts. We note that

∥∥νN,γN−1/2,θ − μN

∥∥
TV = 1

2
μN

(∣∣∣∣ eγN−1/2aθ (η)

μN(eγN−1/2aθ (η))
− 1

∣∣∣∣
)
.(3.8)

Because of convergence in probability and exponential tightness, we have

lim
N→∞μN

(
eγN−1/2aθ (η))= eγ 2/2.(3.9)

Thus, ‖νN,γN−1/2,θ − μN‖TV converges uniformly in γ ∈ [0,K] and in θ , to

1√
8π

∫ ∣∣eγu−γ 2/2 − 1
∣∣e−u2/2 du.(3.10)

The conclusion then follows by performing a few changes of variables.

PROOF OF LEMMA 3.1. Statement (ii) follows from a more general statement
on concentration for Lipshitz functional on �N : Proposition B.1 is proved in the
Appendix.

To ensure that the convergence holds uniformly in θ , the reader can check that
all the bounds present in the proof do not depend on θ . In the remainder of the
paper, we will use the notation

sin(x) = sinθ (x) := sin
(

xπ

N
+ θ

)
.(3.11)

As most computations do not depend on the value of θ , we omit it from the notation
most of the time in the remainder of the paper. Note that a(η) satisfies trivially
μN(a(η)) = 0. Let us show that the variance is asymptotically equivalent to N .

μN

(
a(η)2)= ∑

x∈Z2N

sin(x)2 + ∑
(x,y)∈Z2N

x �=y

sin(x)sin(y)E
[
η(x)η(y)

]
.(3.12)

The first term is equal to N . As for the second term, as we have E[η(x)η(y)] =
−1/(2N + 1) it is equal to

1

(2N − 1)

∑
x∈Z2N

sin(x)2 = N

2N − 1
.(3.13)
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To show the convergence to a Gaussian variable, we will use the martingale central
limit theorem [2], Theorem 1. Let (MN

i )2N−1
i=0 be the martingale defined by

MN
i := μN

(
a(η)|(η(x)

)i
x=1

)
.(3.14)

It satisfies MN
0 = 0 and MN

2N−1 = a(η). Set

Mi := MN
i+1 − MN

i(3.15)

and

σ 2
i,N = μN

(
(Mi)

2|(η(x)
)i
x=1

)
.(3.16)

To apply the central limit theorem the martingale Mi , one must only check that

σ 2
N := 1

N

2N−2∑
i=0

σ 2
i,N ,(3.17)

converges to one, in probability (there are in fact other assumptions to check;
see [2] but in our case they are trivially satisfied).

For A ⊂ Z2N , we let η(A) denote the number of particles in the set A,

η(A) := ∑
x∈A

1{ηx=1}.(3.18)

Let us fix i and set k = k(η, i) := η([1, i]). A simple computation gives

Mi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N + k − i

2N − i

(
sin(i + 1) − 1

2N − i − 1

2N∑
x=i+2

sin(x)

)
,

if η(i + 1) = 1,

N − k

2N − i

(
sin(i + 1) − 1

2N − i − 1

2N∑
x=i+2

sin(x)

)
,

if η(i + 1) = −1.

(3.19)

As the first and second option in (3.18) have respective probability (N −k)/(2N −
i) and (N + k − i)/(2N − i), we have

σ 2
i,N = 2(N + k − i)(N − k)

(2N − i)2

(
sin(i + 1) − 1

2N − i − 1

2N∑
x=i+2

sin(x)

)2

.(3.20)

Once this is done, we just need to check the following facts to conclude:

(a) For all i, σ 2
i,N is almost surely smaller than 8.

(b) For all N sufficiently large, for all i ∈ [0,2N − √
N ] we have

μN

(∣∣∣∣∣σ 2
i,N − 1

2

(
sin(i + 1) − 1

2N − i − 1

2N∑
x=i+2

sin(x)

)2∣∣∣∣∣≥ N−1/20

)

(3.21)
≤ N−1/20.
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(c) We have the following convergence:

lim
N→∞

1

N

2N−1∑
i=1

(
sin(i + 1) − 1

2N − i − 1

2N∑
x=i+2

sin(x)

)2

= 2.(3.22)

From the these three claims, it is rather standard to show that σ 2
N converges to 1 in

probability and we leave it as an exercise to the reader. Item (a) is obvious, item (b)
follows from computing the mean and variance of k(η, i) [which are, resp., equal
to i/2 and i(2N − i)/4(2N − 1)] and applying the Markov inequality. As for (c),
it can be checked via a tedious but simple computation. �

4. Decomposing the proof of Proposition 2.3. We present in this section the
main steps of the proof of our main result and the heuristics behind it.

4.1. Why coupling with νN,α,θ ? First, let us try to understand why νN,α,θ

gives a good approximation of the P
χ
t , via an analysis of the particle density and

fluctuation. Let

uχ(x, t) := E
[
η

χ
t (x)

]
(4.1)

denote the expected particle density (with our convention it can be negative since
empty sites count for −1). It is standard to check that uχ is the solution of the
discrete heat-equation {

∂tu(x, t) := u(x, t),

u(x,0) := χ(x),
(4.2)

where  denotes the discrete Laplacian

u(x, t) := u(x + 1, t) + u(x − 1, t) − 2u(x, t).(4.3)

Here and in what follows if f is a function of Z2N (identified to a periodic function
of Z) such that ∑

x∈Z2N

f (x) = 0,(4.4)

and x and y are two elements of Z2N and x0 ≤ y0 two elements of Z which are,
respectively, equal to x and y modulo 2N . Then we use the notation

∑y
z=x f (z),

to denote the sum
∑y0

z=x0
f (z). It is straightforward that it does not depend on the

particular choice of x0 and y0 once x and y are fixed. Let us quickly investigate
the fluctuations of the integrated density of particle

ξ(η)(x) :=
x∑

z=1

η(z).(4.5)

At equilibrium, ξ(η) is a simple random-walk conditioned to return to zero after
2N steps. It is centered and has Gaussian fluctuations of order

√
N . In [9], we have
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proved that the fluctuation of ξ(η
χ
t )(x) around its mean [given by

∑x
z=1 uχ(z, t)]

are in fact always of order
√

N .
This gives the intuition that much before the mixing time, the law of η

χ
t might

approximately be that of 2N independent ±1 Bernoulli variables, each with bias
uχ(x, t), conditioned to

∑
x∈Z2N

η
χ
t (x) = 0.

For t ≥ N2

4π2 logN , uχ(x) is very well approximated by a sinusoid function (see
Lemma 5.3)

uχ(x, t) ≈ b(χ)e−λN t sin
(

πx

N
+ θ(χ)

)
,(4.6)

and the conditioned law of independent Bernoulli described above is very close in
total variation to νN,b(χ)e−λN t ,θ(χ).

4.2. How to do it. Let us first write here the rigorous result concerning the
fluctuation around the expected density of particle.

PROPOSITION 4.1. There exists a constant c > 0 such that for all N suffi-
ciently large, for all t ≥ 1

4(λN)−1 logN , we have

P
χ
t

[
∃x, y ∈ Z2N,

∣∣∣∣∣
y∑

z=x+1

[
η(z) − e−λN tb(χ) sin

(
πz

N
+ θ(χ)

)]∣∣∣∣∣≥ s
√

N

]

(4.7)
≤ 2e−cs2

In particular, we know that with high probability, η
χ
t lies in the set

GN
α,θ :=

{
η ∈ �N

∣∣∣ max
x,y∈Z2N

∣∣∣∣∣
y∑

z=x+1

(
η(z)

(4.8)

− α sin
(

πz

N
+ θ

))∣∣∣∣∣≤
√

N log logN

}

with α and θ being chosen, respectively, equal to e−λN tb(χ) and θ(χ).
To prove Proposition 2.3, it is sufficient to prove that:

• within a time N2(logN)1/2 (i.e., a shorter time-scale than the mixing time),
one can couple a dynamics with initial condition χ ∈ GN

α,θ , with one with initial
condition distributed like νN,α,θ .

• the family of measure (νN,α,θ ) is almost preserved by the dynamics in the sense
that applying the semi-group Pt to it only changes the value of α.

Both of these statements hold provided α is sufficiently small, and are stated as
two propositions below. More precisely Let ν

N,α,θ
t be the law of a system started
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with initial configuration νN,α,θ

ν
N,α,θ
t (η) := ∑

η′∈�N

ν
N,α,θ
t Pt

(
η′, η

)
.(4.9)

PROPOSITION 4.2. For all N sufficiently large, for all θ ∈ [0,2π), for all
α ≤ 2N−3/7, we have for all χ ∈ Gα,θ , for all t ≥ N2(logN)1/2

∥∥P χ
t − ν

N,α,θ
t

∥∥≤ 1

2 log logN
.(4.10)

PROPOSITION 4.3. There exists a constant C such that for all N and all
α > 0,

sup
t≥0

∥∥νN,α,θ
t − νN,αe−λN t ,θ

∥∥
TV ≤ Cα2

√
N.(4.11)

PROOF OF PROPOSITION 2.3. We have for any χ in β for t ≥ t0 :=
3/7(λN)−1 we have, using the triangular inequality∥∥P χ

t − νN,b(χ)e−λN t ,θ(χ)
∥∥

TV

≤ ∑
χ ′∈�N

Pt

(
χ,χ ′)∥∥P χ ′

t−t0
− νN,b(χ)e−λN t ,θ(χ)

∥∥
TV

(4.12)
≤ P

χ
t0

(
η /∈ GN

b(χ)N−3/7,θ(χ)

)
+ max

χ ′∈GN

b(χ)N−3/7,θ(χ)

∥∥P χ ′
t−t0

− νN,b(χ)e−λN t ,θ(χ)
∥∥

TV.

According to Proposition 4.1, we have

P
χ
t0

(
η /∈ GN

b(χ)N−3/7,θ(χ)

)≤ 1

logN
.(4.13)

We note that for χ ′ ∈ GN
b(χ)N−3/7,θ(χ)

we have

∥∥P χ ′
t−t0

− νN,b(χ)e−λN t ,θ(χ)
∥∥

TV

≤ ∥∥P χ ′
t−t0

− ν
N,b(χ)N−3/7,θ(χ)
t−t0

∥∥
TV(4.14)

+ ∥∥νN,b(χ)N−3/7,θ(χ)
t−t0

− νN,b(χ)e−λN t ,θ(χ)
∥∥

TV.

The first term is smaller than 1
2 log logN

according to Proposition 4.2 as soon as

t ≥ t0 + N2
√

logN.

Proposition 4.3 ensures that the second term is smaller than (logN)−1, hence we
can conclude. �
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5. Proof of Proposition 4.1. This statement is in fact mostly derived from the
statement about fluctuations proved in [9] which we state now.

PROPOSITION 5.1 ([9], Proposition 4.1). There exists a constant c > 0 such
that for all t ≥ 0, for all s ≥ 0, for all χ ∈ �N we have

P
χ
t

[
∃x, y ∈ Z2N,

∣∣∣∣∣
y∑

z=x+1

(
η(z) − uχ(z, t)

)∣∣∣∣∣≥ s
√

N

]
≤ 2e−cs2

.(5.1)

REMARK 5.2. Note that in [9], t ≥ 3N2 is required (that would be in fact
t ≥ 12N2 in our setup because we work on Z2N instead of ZN ), but this is only
to treat the case of an arbitrary number of particles. The reader can check from
the proof that this assumption is only needed to check [9], equation (4.4), which is
obviously valid for all t ≥ 0 when we have N particles on 2N sites.

With this result, Proposition 4.1 follows from a basic analysis of the Fourier
coefficients of the solution of (4.2).

LEMMA 5.3. For all t ≥ 1
4(λN)−1 logN , we have

max
x∈Z2N

∣∣∣∣uχ(x, t) − e−λN tb(χ) sin
(

πx

N
+ θ(χ)

)∣∣∣∣≤ 4N−1/2.(5.2)

PROOF. Let us decompose uχ along its Fourier modes for the heat-equation.
As in Section 2.3, we prefer to have only one coefficient per eigenspace, and

thus, for i = 2, . . . ,N − 1, introduce θi(χ) to be the phase of the projection. We
let θi(χ) be either the unique solution of∑

x∈Z2N

χ(x) cos
(

iπx

N
+ θ

)
= 0,

(5.3) ∑
x∈Z2N

χ(x) sin
(

iπx

N
+ θ

)
> 0

or 0 if all θ are solution, and let us set

bi(χ) := 1

N

∑
z∈Z2N

χ(x) sin
(

iπx

N
+ θi(χ)

)
,

(5.4)

bN(χ) := 1

2N

∑
z∈Z2N

(−1)|x|χ(x).

We have

χ(x) :=
N−1∑
i=1

bi(χ) sin
(

iπx

N
+ θi(χ)

)
+ bN(χ)(−1)|x|.(5.5)
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As the functions x 
→ sin( iπx
N

+ θi) are eigenfunctions of the discrete Laplacian
with respective eigenvalues,

−λi,N := 2
(

1 − cos
(

iπ

N

))
,(5.6)

we have for all t ≥ 0,

u(x, t) = e−λN tb(χ) sin
(

πx

N
+ θ(χ)

)
+ R(χ, t, x),(5.7)

where

R(χ, t, x) :=
N−1∑
i=2

e−λi,N tbi(χ) sin
(

iπx

N
+ θi(χ)

)
+ bN(χ)e−2t .(5.8)

Noticing that |bi(χ)| ≤ 2 and that for all N ≥ 2,

∀i ∈ {2, . . . ,N}, λi,N ≥ iλN,(5.9)

we have for all t ≥ (λN)−1

∣∣R(χ, t, x)
∣∣≤ 2

N∑
i=2

e−iλN t = 2e−2λN t

1 − e−λN t
≤ 4e−2λN t .(5.10)

Hence, we have the result. �

6. Proof of Proposition 4.2. We assume without loss of generality that α is
nonnegative, and write να and να

t for νN,α,0 and ν
N,α,0
t , and a(η) for a0(η).

6.1. Properties of να . In this section, we check several properties for να .
While the results are quite intuitive, their proof is quite technical and we have
decided to postpone them to Appendix A. First, we want to ensure that it has the
right density of the particle.

PROPOSITION 6.1. There exists a constant C such that for all α ≤ 1 we have

sup
x∈Z2N

∣∣να(η(x)
)− αsin(x)

∣∣≤ C
(
α2 + N−2).(6.1)

Then we have to check that the fluctuations are not larger than
√

N .

PROPOSITION 6.2. There exists constant c such that for all N > 0, for all
|α| ≤ N−1/4, and t ≥ 0

να
t

[
∃x, y ∈ Z2N,

∣∣∣∣∣
y∑

z=x+1

(
η(z) − αe−λN tsin(z)

)∣∣∣∣∣≥ s
√

N

]
≤ 2e−cs2

.(6.2)
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Finally, we want to check that if one starts from distribution να there is a positive
density of sites where η(z) �= η(z + 1), that is, of locations where jumps of the
particle can occur. The utility of such a statement will be become clear in the next
section when we construct the dynamical coupling. For a probability measure ν

defined on �N , we let Pν be the law of the Markov chain (ηt )t≥0 starting from η0
distributed like ν. Set

j (x, y, η) := {
z ∈ [x, y]|η(z) �= η(z + 1)

}
(6.3)

and

E := {
η ∈ �N |∀(x, y) ∈ Z

2
2N,#[x, y] ≥ N1/4 ⇒ j (x, y, η) ≥ 1

4#[x, y]}.(6.4)

PROPOSITION 6.3. There exist a constant c such that for N sufficiently large,
for all |α| ≤ cN−3/8

P
να [∃t ≤ N3, ηt /∈ E

]≤ e−cN1/4
.(6.5)

REMARK 6.4. The power exponents for N in Proposition 6.3 are rather arbi-
trary and other choices would also fit. The important result is that the probability
tends to zero.

6.2. The ξ dynamics. We introduce in this section an auxiliary dynamics (the
same as in [9]) which is used to couple P

χ
t with χ ∈ Gα (we use this notation

for GN
α,0) with να

t . The idea of using interface dynamics to study particle system
dates is not new and is already present in the seminal paper of Rost about the
asymmetric exclusion on the line [18] (for the use of this technique for mixing time
related issues, see [8, 9, 19]). In [8, 19], the height function is introduced mainly
to have a better intuition on an order which can be defined without the interface
representation. Let us stress that here, on the contrary, the interface dynamics is
used to perform a monotone coupling that could not be constructed by considering
only the original chain.

Let us consider the set of discrete height functions of the circle.

�′
N := {

ξ : Z2N → Z|ξ(0) ∈ 2Z,∀x ∈ Z2N,
∣∣ξ(x) − ξ(x + 1)

∣∣= 1
}
.(6.6)

Given ξ in �′
N , we define ξx as{

ξx(y) = ξ(y), ∀y �= x,
ξx(x) = ξ(x + 1) + ξ(x − 1) − 2ξ(x).

(6.7)

We let ξt be the irreducible Markov chain on �′
N whose transition rates p are given

by {
p
(
ξ, ξx

)= 1, ∀x ∈ ZN ,
p
(
ξ, ξ ′)= 0, if ξ ′ /∈ {

ξx |x ∈ ZN

}
.

(6.8)
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FIG. 1. The correspondence between the exclusion process and the corner-flip dynamics. A particle
jump and its corner-flip counterpart are indicated by arrows. Note that this is not a one-to-one
mapping as a particle configuration gives the height function only modulo translation.

We call this dynamics the corner-flip dynamics, as the transition ξ → ξx corre-
sponds to flipping either a local maximum of ξ (a “corner” for the graph of ξ ) to a
local minimum e vice versa. It is of course not positive recurrent, as the state space
is infinite and translation invariant for the dynamics, however, it is irreducible and
recurrent.

The reader can check that �′
N is mapped onto �N , by the transformation ξ 
→

∇ξ where

∇ξ(x) := ξ(x + 1) − ξ(x)(6.9)

and that the image of the corner-flip dynamics (∇ξt )t≥0 is the simple exclusion
process (see Figure 1).

There is a natural order on the set �′
N defined by

ξ ≥ ξ ′ ⇔ ∀x ∈ Z2N, ξ(x) ≥ ξ ′(x),(6.10)

and we can construct a grand coupling for the Markov chain which preserves this
order.

6.3. The graphical construction. We introduce in this section an order pre-
serving grand-coupling on �′

N . For ζ ∈ �′
N , (ξ

ζ
t )t≥0 denotes the Markov chain

with initial condition ζ . We want to construct all the (ξ
ζ
t )t≥0 on a same probability

space in a way that

∀ζ, ζ ′ ∈ �′
N,

(
ζ ≥ ζ ′)⇒ (∀t ≥ 0, ξ

ζ
t ≥ ξ

ζ ′
t

)
.(6.11)
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Of course, there are several options for such a grand coupling. We want to choose
one which is such that, eventually, the trajectories starting from different initial
conditions coalesce almost surely (at a random time)

∀ζ, ζ ′ ∈ �′
N,∃Tζ,ζ ′ < ∞,∀t ≥ Tζ,ζ ′, ξ

ζ
t = ξ

ζ ′
t .(6.12)

Of course, we want the coalescing time to be as short as possible. To reach this
aim, we make the different corner flips for different trajectories as independent as
can be while still satisfying (6.11).

Let us present the construction. The evolution of the (ξt )t≥0 is completely de-
termined by auxiliary Poisson processes which we call clock processes. Set

� := {
(x, z)|x ∈ ZN and z ∈ 2Z+ (−1)x

}
.

And set T ↑ and T ↓ to be two independent rate-one clock processes indexed
by � (T ↑

ω and T ↓
ω are two independent Poisson processes of intensity one of each

ω ∈ �). The trajectory of ξt given (T ↑,T ↓) is given by the following construction:

• ξt is a càdlàg, and does not jump until one of the clocks indexed by (x, ξt (x)),
x ∈ Z2N rings.

• If T ↓
(x,ξt− (x)) rings at time t and x is a local maximum for ξt− , then ξt = ξx

t− .

• If T ↑
(x,ξt− (x)) rings at time t and x is a local minimum for ξt− , then ξt = ξx

t− .

6.4. Construction the initial condition for ξ0, ξ1 and ξ2. Given χ ∈ Gα , we
let (ξ0

t ) the trajectory of the Markov chain with transitions rates (6.8) starting from
initial condition

ξ0
0 (x) :=

x∑
z=0

χ(x).(6.13)

Note that for all t ≥ 0 we have

P
[∇ξ0

t ∈ ·]= P
χ
t .(6.14)

Our idea is to construct another dynamic ξ1
t which starts with ∇ξ1

0 distributed
like να which coalesces with ξ0

t within time N2√logN . In fact, it turns out more
practical to define not one but two dynamics ξ1 and ξ2 to couple with ξ0. We let
P denote the law of (ξ0

t , ξ1
t , ξ2

t )t≥0, and we impose

P
[∇ξ1

0 ∈ ·]= P
[∇ξ2

0 ∈ ·]= να.(6.15)

Note that this implies for all t ≥ 0

P
[∇ξ1

t ∈ ·]= P
[∇ξ2

t ∈ ·]= να
t .(6.16)

We impose also the condition

ξ1
0 ≤ ξ0

0 ≤ ξ2
0 ,(6.17)
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and use the graphical coupling introduced in the previous section to construct the
trajectory of (ξ i

t )t≥0, i = 0,1,2. Hence, the order is conserved at all time

∀t ≥ 0, ξ1
t ≤ ξ0

t ≤ ξ2
t .(6.18)

Let us now explain our construction of the initial conditions. We start with η0
distributed like να and we will choose ξ1

0 and ξ2
0 such that

∇ξ1
0 = ∇ξ2

0 = η0.(6.19)

We set for arbitrary η ∈ �N , or ξ ∈ �′
N

Ht,α(η) := max
x,y∈ZN

∣∣∣∣∣
y∑

z=x+1

η(z) − e−λN tsin(t)

∣∣∣∣∣,
(6.20)

Ht,α(ξ) := Ht,α(∇ξ).

We also set

H0 := 2
⌈(

H0,α(η0) + √
N log logN

)
/2
⌉

(6.21)

and

ξ1
0 (x) :=

x∑
z=1

η0(z) −H0,

(6.22)

ξ2
0 (x) :=

x∑
z=1

η0(z) +H0.

The fact that (6.17) is satisfied follows from the definition of Gα and that of H0.
Note also that from Proposition 6.2 applied at t = 0, we have

P[H0 ≥ 2
√

N log logN ] ≤ (logN)−1.(6.23)

To prove Proposition 4.2, it is sufficient to prove that ξ1
t and ξ2

t typically coalesce
within a time N2√logN . More precisely, we have the following.

PROPOSITION 6.5. For sufficiently large N , for all α ≤ 2N−3/7 for (ξ1
t )t≤0,

(ξ2
t )t≥0, constructed as above, we have

P
[
ξ1
N2

√
logN

�= ξ2
N2

√
logN

]≤ 1

2 log logN
.(6.24)

Proposition 6.5 is proved in Sections 6.5 and 6.6.

PROOF OF PROPOSITION 4.2. Let χ in Gα be fixed and consider the dynamics
ξ i , i = 0,1,2 constructed as above. From (6.18), we have

ξ1
t = ξ2

t ⇒ ξ1
t = ξ0

t .(6.25)
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Recalling (6.14) and (6.16), we have for any t > 0∥∥P χ
t − να

t

∥∥
TV ≤ P

[∇ξ0
t �= ∇ξ1

t

]≤ P
[
ξ0
t �= ξ1

t

]≤ P
[
ξ1
t �= ξ2

t

]
.(6.26)

Hence, Proposition 6.5 implies the result. �

6.5. The randomly walking area. Let us set

A(t) = 1

2

∑
x∈Z2

ξ2
t (x) − ξ1

t (x).(6.27)

The reader can check that A(t) is an integer. Because of (6.18), we remark that
A(t) is always positive, and hence that ξ1 and ξ2 merge at time

τ := inf
{
t ≥ 0|A(t) = 0

}
.(6.28)

As A(t) is an integer valued martingale which only makes ±1 jumps, it is to be a
time changed symmetric nearest neighbor walk on Z+. In order to get a bound for

P[τ ≤ t],
we need to have a reasonable control over the time change, that is, the jump rate
of A(t). It depends on the particular configuration (ξ1

t , ξ2
t ) the system sits on: it is

given by the number of places where corners can flip independently for ξ1
t and ξ2

t .
More precisely, set

Ui(t) := {
x ∈ ZN |ξ i

t has a local extremum at x and
(6.29)

∃y ∈ {x − 1, x, x + 1}, ξ2
t (y) > ξ1

t (y)
}
.

The jump rate of A(t) is given by

u(t) := #U1(t) + #U2(t).(6.30)

For t ≤ ∫ τ
0 u(t)dt , let us define

J (t) := inf
{
s
∣∣∣ ∫ s

0
u(v)dv ≥ t

}
.(6.31)

By construction, the process (Xt)t≥0 defined by

Xt := A
(
J (t)

)
(6.32)

is a continuous time random walk on Z+ which jumps up and down with rate 1/2.
From the definition, we have

X0 = A(0) := NH0.(6.33)

Note that from Proposition 6.2, and the definition of H0 we have

P
[
A(0) ≥ 2N3/2 log logN

]≤ (logN)−1.(6.34)

To estimate τ , we have to control the evolution of Xt (using standard properties
of the random walk) and that of u(t) (using the properties of proved in Section 6.1).
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6.6. Multiscale analysis. To have the best possible control on u(t), we need to
perform a multi-scale analysis. We construct a sequence of intermediate stopping
time (τi)i≥0 as follows:

τi := inf
{
t ≥ 0|A(t) ≤ N3/22−i}.(6.35)

We set τ−1 := 0 for convenience. We are interested in τi for i ∈ {0, . . . , �(log2 N)/

2} where log2(·) := log(·)/ log(2) denotes the logarithm in base 2. To bound the
value of τ , we bound the value of each τi = τi − τi−1 for i ≤ �(log2 N)/2 and
that of τ − τ�(log2 N)/2. The way to do this is:

(i) First, we prove a bound for the analog of the τi for the process Xt defined
in (6.32).

(ii) Second, we prove a bound for u(t) which is valid in the interval [τi−1, τi).

For step (i), let us define

Ti :=
∫ τi

τi−1

u(t)dt,

(6.36)
T∞ :=

∫ τ

τ�(log2 N)/2
u(t)dt.

It follows from standard properties of the random walk and from (6.34) that we
have the following.

LEMMA 6.6. We have the following estimates:

P
[∃i ∈ {

0, . . . ,
⌈
(log2 N)/2

⌉}
,Ti ≥ 3−iN3(logN)1/4]≤ (logN)−1/10,

(6.37)
P
[
T∞ ≥ N2(logN)1/4]≤ (logN)−1/10.

For more details, we refer to the proof of [9], Lemma 6.1.
Step (ii) is more delicate, because we cannot get a good bound on u which is

uniform in time. For instance, we need to prove that most of the time u(t) is of
order N but we know that just before τ we have u(t) = 4. Hence, we will prove a
different bound for each value of i. The bound is valid most of the time, and we
will need to check that the small fraction of time during which it does not hold can
be dealt with in the computations. Recalling (6.20), we set

H(t) := max
(
Hα,t

(
ξ1
t

)+ Hα,t

(
ξ2
t

)
,
√

N
)
.(6.38)

We notice that from the definition

max
x∈Z

(
ξ2
t (x) − ξ1

t (x)
)≤ H(t).(6.39)

Using this information, we can get the following control on u [recall (6.4)]:
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LEMMA 6.7. If ξ1
t ∈ E , we have

u(t) ≥ 1

8
min

(
N,

A(t)

H(t)

)
.(6.40)

The proof is identical to the one of [9], Lemma 6.3. Note that thanks to Proposi-
tion (6.3) and our assumption α ≤ 2N−3/7, the inequality (6.40) is valid up to time
N3 (which is much more than what we need) with high probability. To make this
bound on u useful, we need to show that most of the time H(t) is not too large.

LEMMA 6.8. For any T ≥ 0,

P

[∫ T

0
1{H(t)≥√

N log logN} dt ≥ T (logN)−4
]

≤ (logN)−1.(6.41)

PROOF. It follows from (6.2) that for N sufficiently large, for any t ≥ 0

P
[
H(t) ≥ √

N log logN
]≤ (logN)−5.(6.42)

Then the result follows by using the Markov property for the integrated inequality.
�

PROOF OF PROPOSITION 6.5. Set

A := {∀t ≤ N3, ξ1
t ∈ E

}
,

B :=
{∫ T

0
1{H(t)≥√

N log logN} dt ≤ T (logN)−5
}
,(6.43)

C := {
Ti ≤ 3−iN3(logN)1/4}∩ {

T∞ ≤ N2(logN)1/4},
where

T := N2
√

logN.(6.44)

We assume also that N is large enough so that from Proposition 6.3 and Lem-
mas 6.6 and 6.8 we have

P[A∩B ∩ C] ≥ 1 − (2 log logN)−1.(6.45)

Hence, the results follows if we can prove that

{A∩B ∩ C} ⊂ {τ ≤ T }.(6.46)

We split the proof of (6.46) in two statements. We want to show first that on the
event A∩B ∩ C

τ − τ�log2 N/2 ≤ (logN)1/4N2,(6.47)

and then that

∀i ∈ {
0, . . . ,

⌈
(log2 N)/2

⌉}
, (τi − τi−1) ≤ (i + 1)−2N2(logN)1/3.(6.48)
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These inequalities combined give

τ ≤ (logN)1/4N2 +
K∑

i=0

(i + 1)−2N2(logN)1/3 ≤ N2
√

logN.(6.49)

Note that (6.47) is an immediate consequence of C as

T∞ =
∫ τ

τK

u(t)dt ≥ τ − τK.(6.50)

Let us turn to (6.48). Let us assume that the statement is false and set

i0 := min
{
i ∈ {

0, . . . ,
(6.51) ⌈

(log2 N)/2
⌉}|(τi − τi−1) > (i + 1)−2N2(logN)1/3}.

The definition of i0 implies that

τi0−1 + (i0 + 1)−2N2(logN)1/3 ≤ T .(6.52)

From B, we have [using (6.52) to obtain the second inequality]∫ τi0

τi0−1

1{H(t)≤√
N log logN}

≥
∫ τi0−1+(i0+1)−2N2(logN)1/3

τi0−1

1{H(t)≤√
N log logN} dt

= (i0 + 1)−2N2(logN)1/3

(6.53)

−
∫ τi0−1+(i0+1)−2N2(logN)1/3

τi0−1

1{H(t)>
√

N log logN} dt

≥ (i0 + 1)−2N2(logN)1/3 − N2(logN)−3

≥ 1

2
(i0 + 1)−2N2(logN)1/3.

For all t ≤ τi0 , we have A(t) ≥ N3/22−i0 , and thus using Lemma 6.7 and the as-
sumption that A holds,

u(t) ≥ 1

8
min

(
N,

A(t)

max(H(t),N1/2)

)
(6.54)

≥ N3/22−i0

8
√

N log logN
1{H(t)≤√

N log logN}.

From (6.53),

Ti0 =
∫ τi0

τi0−1

u(t)dt ≥ N2−i0

8(log logN)

∫ τi0

τi0−1

1{H(t)≤√
N log logN} dt

(6.55)

≥ (i0 + 1)−22−i0
N3(logN)1/3

16 log logN
> 3−i0N3(logN)1/4.
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This brings a contradiction to C (if N is large enough) and ends the proof of (6.46).
�

7. Proof of Proposition 4.3. To prove the result, we will try to control the
derivative in t of the total variation distance that we have to bound.

Note that ‖να
t − ναe−λN t ‖TV is always differentiable on the right. This comes

from the fact that for each η ∈ �N , both να
t (η) and ναe−λN t

are differentiable. With
a small abuse of notation, we use ∂t to denote the right derivative. Our method to
prove Proposition 4.3 relies on getting a bound on the derivative valid for all α ≤ 1.
More precisely, we want to prove

∂t

∥∥να
t − ναe−λN t ∥∥

TV ≤ C1α
3N−2e−3λN t + C2α

2N−3/2e−2λN t .(7.1)

Indeed, once integrated this gives

sup
t≥0

∥∥να
t − ναe−λN t ∥∥

TV ≤ C3
(
α3 + α2N1/2),(7.2)

which is equivalent to our result.
Let us first perform a simple computation to show that it is sufficient to prove

(7.1) in the case t = 0. Using the triangular inequality and the fact that the semi-
group shrinks the total-variation distance, we have for any positive ε,∥∥να

t+ε − ναe−λN (t+ε)∥∥
TV

≤ ∥∥να
t+ε − ναe−λN t

ε

∥∥
TV + ∥∥ναe−λN t

ε − ναe−λN (t+ε)∥∥
TV(7.3)

≤ ∥∥να
t − ναe−λN t ∥∥

TV + ∥∥ναe−λN t

ε − ναe−λN (t+ε)∥∥
TV.

Hence,

∂t

∥∥να
t − ναe−λN t∥∥

TV ≤ ∂ε

∥∥ναe−λN t

ε − ναe−λN (t+ε)∥∥
TV|ε=0.(7.4)

Note that the right-hand side is simply equal to

∂s

∥∥να′
s − να′e−λN s∥∥

TV|s=0

for α′ = αe−λt . Hence, to prove (7.1) it is sufficient to show that for all α ≤ 1

∂t

∥∥να
t − ναe−λN t∥∥

TV|t=0 ≤ C1α
3N−2 + C2α

2N−3/2.(7.5)

We let gα
t denote the density of να

t , and gα that of να . Recall that we have

gα(η) := eαa(η)

μN(eαa(η))
,(7.6)

where

a(η) := ∑
x∈Z2N

η(x)sin(x).(7.7)
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We have

∂t

∥∥να
t − ναe−λN t ∥∥

TV = μN

∣∣∂t

(
gα

t (η) − gαe−λN t

(η)
)|t=0

∣∣.(7.8)

We compute the derivatives of gα
t and gαe−λN t

(η) separately. We have

∂tg
αe−λN t

(η)|t=0 = αλNgα(η)
[−a(η) + να(a(η)

)]
.(7.9)

The other term requires more work, and we have

∂tg
α
t (η)|t=0 = Lg = ∑

x∈Z2N

gα(ηx)− gα(η).(7.10)

Recall (6.9). We have

gα(ηx)− gα(η) = gα(η)
[
exp

(−α∇sin(x)∇η(x)
)− 1

]
.(7.11)

Performing a Taylor expansion of the exponential, we have

Lg := gα(η)

[
−α

( ∑
x∈Z2N

∇sin(x)∇η(x)

)
+ α2

2
G(η,N) + R(η,N)

]
,(7.12)

where (α2/2)G(η,N) is the second term in the Taylor expansion

G(η,N) := ∑
x∈Z2N

(∇sin(x)
)2(∇η(x)

)2
,(7.13)

and R(η,N) is the Taylor rest

R(η,N) := ∑
x∈Z2N

(
e−α∇sin(x)∇η(x) − 1 + α∇sin(x)∇η(x)

(7.14)

− α2

2

(∇sin(x)
)2(∇η(x)

)2)
.

The first term in the RHS of (7.12) can be simplified using summation by part and
the fact that sin is an eigenfunction of . We have∑

x∈Z2N

∇sin(x)∇η(x) = − ∑
x∈Z2N

sin(x)η(x) = λNa(η).(7.15)

According to Taylor’s formula, one has for all α < 1, for an adequate choice of
constant C1

∣∣R(η,N)
∣∣≤ e2αα3

6

∑
x∈Z2N

∣∣∇sin(x)∇η(x)
∣∣3 ≤ C1α

3N−2,(7.16)

where in the last inequality we have used that |∇η(x)| ≤ 2 and that

∣∣∇sin(x)
∣∣= 2

∣∣∣∣sin
(

π

2N

)
cos

(
πx

N
+ π

2N

)∣∣∣∣≤ π

N
.(7.17)
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Combining (7.8) with (7.9) and (7.15), we obtain

∂t

∥∥να
t − ναe−λN t ∥∥

TV ≤ να

∣∣∣∣α
2

2
G(η,N) + R(η,N) − αλNνα(a(η)

)∣∣∣∣
≤ να

∣∣∣∣R(η,N) − αλNνα(a(η)
)+ α2

2
να

(
G(η,N)

)∣∣∣∣(7.18)

+ α2

2
να
∣∣G(η,N) − να(G(η,N)

)∣∣.
To estimate the first term, we note that as

μN

(
∂t

(
gα

t (η) − gαe−λN t

(η)
)|t=0

)= 0,(7.19)

we have

να

(
R(η,N) − αλNνα(a(η)

)+ α2

2
G(η,N)

)
= 0.(7.20)

Hence, from (7.16)

να

∣∣∣∣R(η,N) − αλNνα(a(η)
)+ α2

2
να

(
G(η,N)

)∣∣∣∣
(7.21)

= να

∣∣R(η,N) − να(R(η,N)
)∣∣≤ C1α

3N−2.

To estimate the second term, we use Proposition B.1. The reader can check that
the Lipshitz norm of G [cf. (B.1)] of G satisfies∥∥G(·,N)

∥∥
lip ≤ 8π2N−2(7.22)

and hence that for an adequate choice of C2 > 0

να
∣∣G(η,N) − να(G(η,N)

)∣∣≤ C2N
−3/2.(7.23)

This completes the proof of (7.5).

APPENDIX A: PROOF OF TECHNICAL STATEMENTS ON να .

A.1. Proof of Proposition 6.1. Note that if μN was replaced by the uniform
measure on {−1,1}Z2N (without the constraint of having N particles) then να

would be a product of independent Bernoulli, and the statement would be trivial to
prove.

What we have to control is that the constraint on the number of particles does
not affect the mean too much. To do so, we perform an expansion of the parti-
tion function according to the value of η(x) to show that the ratio of the partition
function restricted to the event η(x) = +1 and η(x) = −1, respectively, is close to
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exp(2αsin(x)). To this purpose, we introduce the quantity

Z(x) := μN(e
α
∑

y∈Z2N \{x} η(y)sin(y)|η(x) = +1)

μN(e
α
∑

y∈Z2N \{x} η(y)sin(y)|η(x) = −1)
.(A.1)

We have

να(η(x)
)

= να(η(x) = +1
)− να(η(x) = −1

)
(A.2)

= μN(e
α
∑

y∈Z2N
η(y)sin(y)|η(x) = +1) − μN(e

α
∑

y∈Z2N
η(y)sin(y)|η(x) = −1)

μN(e
α
∑

y∈Z2N
η(y)sin(y)|η(x) = +1) + μN(e

α
∑

y∈Z2N
η(y)sin(y)|η(x) = −1)

= e2αsin(x)Z(x) − 1

e2α sin(x)Z(x) + 1
.

Hence, what we must check to prove (6.1) is that Z(x) is very close to one. Now
note that we can obtain a coupling of μN(·|η(x) = −1) and μN(·|η(x) = +1) in
the following manner: take η1 with distribution μN(·|η(x) = −1), choose y uni-
formly at random (and independent of η1 in {z|η1(z) = +1} and let η2 be obtained
from η1 by exchanging the value at x and y (which are +1 and −1, resp.). A con-
sequence of this coupling is that

Z(x)

(A.3)

:= (1/N)μN(
∑

y∈{z|η(z)=+1} e
α
∑

w∈Z2N \{x} η(w)sin(w)−2αsin(y)|η(x) = −1)

μN(e
α
∑

w∈Z2N \{x} η(w)sin(w)|η(x) = −1)
,

and hence we can deduce from it

Z(x) = να

(
1

N

∑
y∈Z2N

1 + η(y)

2
e−2αsin(y)

∣∣∣η(x) = −1
)

(A.4)

= 1 + να

(
1

N

∑
y∈Z2N

1 + η(y)

2

(
e−2αsin(y) − 1

)∣∣∣η(x) = −1
)
.

Note that with this expression it is not hard to check that |Z(x) − 1| ≤
e2α − 1. However, to get a sharper estimate, we must have a good control on
να(η(y)|η(x) = −1). We obtain it by pushing the expansion one step further. We
set

Z′(x, y) = μN(e
α
∑

z∈Z2N \{x,y} sin(z)|η(x) = +1, η(y) = −1)

μN(e
α
∑

z∈Z2N \{x,y} sin(z)|η(x) = −1, η(y) = −1)
.(A.5)

Similar to (A.2), we obtain that

να(η(y)|η(x) = −1
)= N

N − 1

e2αsin(y)Z′(x, y) − 1

e2αsin(y)Z′(x, y) + 1
.(A.6)
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Like for (A.4), we have an alternative expression for Z′

Z′(x, y)

(A.7) = 1 + να

(
1

N

∑
z∈Z2N

1 + η(z)

2

(
e−2αsin(z) − 1

)∣∣∣η(x) = −1, η(y) = −1
)
.

Hence, we have ∣∣Z′(x, y) − 1
∣∣≤ e2α − 1,(A.8)

and from (A.6), we deduce that for some positive constant C1∣∣να(η(y)|η(x) = −1
)∣∣≤ C1

(
1

N
+ α

)
.(A.9)

Hence, we have

∣∣Z(x) − 1
∣∣≤ 1

2N

∣∣∣∣ ∑
y∈Z2N\{x}

(
e−2αsin(y) − 1

)∣∣∣∣
(A.10)

+ 1

2N

∑
y∈Z2N\{x}

∣∣να(η(y)|η(x) = −1
)(

e−2αsin(y) − 1
)∣∣.

Performing a Taylor expansion up to the second order in α we obtain (recall α ≤ 1)∣∣∣∣ ∑
y∈Z2N\{x}

(
e−2αsin(y) − 1

)∣∣∣∣≤ 2α
∣∣sin(x)

∣∣+ eNα2

2
.(A.11)

The second term in the RHS of (A.10) can be bounded by

C1

(
1

N
+ α

)(
eα − 1

)
.(A.12)

Hence, we obtain ∣∣Z(x) − 1
∣∣≤ C2

(
α2 + N−2).(A.13)

And then the result can easily be deduced from (A.2).

A.2. Proof of Proposition 6.2. The result follows from the combination of
Proposition 5.1 which controls the fluctuation around the mean value uη0(x, t)

given an initial condition η0 and the following statement, that the mean itself
uη0(x, t) does not fluctuate too much if η0 has distribution να .

LEMMA A.1. There exists a constant c such that for all N > 0, for all |α| ≤
N−1/4, and t ≥ 0

να

[
∃x, y ∈ Z2N,

∣∣∣∣∣
y∑

z=x+1

(
uη(x, t) − αe−λN tsin(z)

)∣∣∣∣∣≥ s
√

N

]
≤ 2e−cs2

.(A.14)
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PROOF. It is in fact sufficient to prove (A.14) for t = 0, because

max
x,y

y∑
z=x+1

(
uη(z, t) − αe−λN tsin(z)

)≤ max
x,y

y∑
z=x+1

(
η0(z) − αsin(z)

)
.(A.15)

Indeed, if one sets v(x, t) to be the solution of the discrete-heat equation on Z2N

with initial condition

v0(x) :=
x∑

z=1

η(z) − αsin(z),

then (A.15) can be reformulated as

max
x,y

[
v(t, y) − v(t, x)

]≤ max
x,y

[
v0(y) − v0(x)

]
(A.16)

which is obviously true by contractivity of the heat equation. Note that at the cost
of losing a factor in the constant c, we can restrict ourselves to proving that

να

[
∃y ∈ Z2N,

∣∣∣∣∣
y∑

z=1

[
η(z) − να(η(z)

)]∣∣∣∣∣≥ 4s
√

N

]
≤ 2e−cs2

.(A.17)

We have used Proposition 6.1 and the assumption on α to replace αsin(z) by
να(η(z)). Let us introduce notation for the sum

Sx,y :=
y∑

z=1

(
η(z) − να(η(z)

))
.(A.18)

We also set p := �log2 N� + 1. For s > 0, we set

J (s) := {∃q ∈ {1, . . . , p},∃y ∈ {
1, . . . ,

⌊
2N2−q⌋},

(A.19)
|S2q (y−1),2qy | ≥ (3

4

)p−q
s
√

N
}
.

By a simple dichotomy argument (see the proof of Proposition 4.1 in [9]), we have{
∃y ∈ Z2N,

∣∣∣∣∣
y∑

z=1

(
η(z) − 1/2 − αsin(z)

)∣∣∣∣∣≥ 4s
√

N

}
⊂ J (s).(A.20)

For y and p fixed, S2q (y−1),2qy(η) is a function which depends on 2q coordinates
and whose Lipshitz norm is smaller than 2. Hence, by Proposition B.1, we have

να(|S2q (y−1),2qy | ≥ (3
4

)p−q
s
√

N
)≤ 2 exp

(−C1
( 9

16

)p−q2−qs2N
)

(A.21)
≤ 2 exp

(−2C1
(9

8

)p−q
s2).

Hence, by a union bound, for an appropriate choice of constant C2 and for all
s > 0, we have

να(H(s)
)≤ 2

p∑
q=1

2p−q exp
(
−2C1

(
9

8

)p−q

s2
)

≤ 2 exp
(−C2s

2).(A.22)
�
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A.3. Proof of Proposition 6.3. Set

Ē := {
η ∈ �N |∃(x, y) ∈ Z

2
2N,#[x, y] ≥ N1/4 ⇒ j (x, y, η) ≥ 1

3#[x, y]}.(A.23)

First, we notice that from the proof of [8], Lemma 6.2, there exists a constant
C1 > 0 such that

μN(Ē) ≤ e−C1N
1/4

.(A.24)

Recall that να
t the law of ηt starting from distribution να . We have by the Cauchy–

Schwarz inequality

(
να
t (Ē)

)2 ≤ μN(Ē)μN

[(
dνα

t

dμN

)2]
.(A.25)

Note that the term μN [( dνα
t

dμN
)2] is decreasing in t , because the semi-group of the

Markov chain contracts the l2 norm. For t = 0, we have

μN

[(
dνα

dμN

)2]
≤ μN

(
e2αa(η)).(A.26)

Using Proposition B.1 to have Gaussian concentration for a(θ), we have for N

sufficiently large:

μN

[(
dνα

dμN

)2]
≤ exp

(
100Nα2).(A.27)

Hence, we can conclude that there exists constant C2 and C3 such that if α <

C2N
−3/8 for any t we have

να
t (Ē) = P

να [ηt ∈ Ē] ≤ e−C3N
1/4

.(A.28)

Now we have to move from this result to a result for all t ≤ N3. Note that starting
from η /∈ Ē , one needs at least 1

12N1/4 transitions in order to jump out of E . Hence,
using union bound

P
να [∃t ≤ N3, ηt /∈ E

]

≤
N5∑
i=0

P
να [ηi/N2 ∈ Ē] +

N5∑
i=1

P

[
(ηt )t∈[(i−1)/N2,i/N2](A.29)

performs more than
1

12
N1/4 transitions

]
.

The first term is smaller than e−C3N
1/4

; cf. (A.28). As for the second one, it is not
difficult to check that the rate at which transitions occur in the chain is bounded by
2N , and thus that for any i

P
[
(ηt )t∈[(i−1)/N2,i/N2] performs more than 1

12N1/4 transitions
]≤ e−N,(A.30)

provided N is large enough.
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APPENDIX B: CONCENTRATION FOR LIPSCHITZ FUNCTION OF
PARTICLE SYSTEMS.

Given f : {0,1}Z2N → R, one sets ‖f ‖lip to be the Lipschitz norm of f for the
Hamming distance

‖f ‖lip := max
η,η′∈{−1,1}Z2N

|f (η) − f (η′)|∑
x∈Z2N

1{η(x) �=η′(x)}
.(B.1)

PROPOSITION B.1. For any f {−1,1}Z2N →R we have

μN

(∣∣f − μN(f )
∣∣≥ s

)≤ 2 exp
(
− s2

8(2N − 1)‖f ‖2
lip

)
.(B.2)

If the function f only depends on (ηx)x∈A where A is fixed a subset of Z2N of
cardinal k we have

μN

(∣∣f − μN(f )
∣∣≥ s

)≤ 2 exp
(
− s2

8k‖f ‖2
lip

)
.(B.3)

The result remains valid if μN is replaced by a measure ν whose density with
respect to μN is of the form

dν

dμN

:= e
∑

x∈Z2N
g(x)η(x)

μN(e
∑

x∈Z2N
g(x)η(x)

)
,(B.4)

where g is an arbitrary function on Z2N .

PROOF. We can without loss of generality assume that ‖f ‖lip = 1. Now, we
introduce the martingale (Mi)

2N−1
i=0 defined by

Mi(η) := ν
(
f (η)|(η(x)

)i
x=1

)
.(B.5)

We are going to check that the increments of M are bounded, that is,

∀i ∈ {0, . . . ,2N − 2}, |Mi+1 − Mi | ≤ 2(B.6)

and the proposition is then simply a consequence of Azuma’s concentration in-
equality [1].

To check (B.6), we need to show that for any realization (η(x))ix=1 one can
couple η1 and η2 with law

ν1 := ν
(·|(η(x)

)i
x=1, η(i + 1) = 1

)
,

(B.7)
ν2 := ν

(·|(η(x)
)i
x=1, η(i + 1) = −1

)
in a way that (η1 − η2)(x) has only two discrepancies, one at i + 1 and another
one in where η1(x) = 1 − η2(x) = 0.
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Note that ν1 and ν2 can be considered as a measure on {−1,1} → {i +
2, . . . ,2N}, one which is concentrated on the set of configurations with k :=
N −∑i

x=1 η(x) − 1 particles, and the other on the set of configuration with k + 1
particles. What one can do is to first draw η1 according to ν1, and then add a 1 cho-
sen at random to the configuration to obtain η2. One η1 is given, and we choose at
random a site X in {x ∈ {i + 2, . . . ,2N}|η1(x) = −1} with distribution

eg(x)∑
{x∈{i+2,...,2N}|η1(x)=−1} eg(x)

.(B.8)

On can check that η2 defined by

η2(x) := η1(x) + 1{X=x} − 1{x=i+1},(B.9)

has distribution ν2.
For the case where f depends only on η|A, we can consider a k-step martingale

which unveils at each step the state η(x) of one x ∈ A. �
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suggested to him the question of cutoff profile, and pointed out that the relaxation
of the first Fourier coefficient of η should be similar to an Ornstein–Uhlenbeck
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