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CORRELATION STRUCTURE OF THE CORRECTOR IN
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Recently, the quantification of errors in the stochastic homogenization of
divergence-form operators has witnessed important progress. Our aim now is
to go beyond error bounds, and give precise descriptions of the effect of the
randomness, in the large-scale limit. This paper is a first step in this direction.
Our main result is to identify the correlation structure of the corrector, in
dimension 3 and higher. This correlation structure is similar to, but different
from that of a Gaussian free field.

1. Introduction. Consider the solution uε :Rd →R of the equation(
1 − ∇ · A

( ·
ε

)
∇

)
uε = f,

where f is a bounded smooth function, A is a random field of symmetric matrices
on R

d , and ε > 0. If A is uniformly elliptic and has a stationary ergodic law, then
uε is known to converge as ε → 0 to uh, the solution of

(1 − ∇ · Ah∇)uh = f,

where Ah is the (constant in space, deterministic) homogenized matrix. This
asymptotic result becomes more interesting if we can:

(1) devise (provably) efficient techniques to compute the homogenized matrix;
(2) estimate the error in the convergence of uε to uh.

Doing so requires to introduce some additional assumption on the type of correla-
tions displayed by the random coefficients; we assume from now on that they have
a finite range of dependence. These problems were discussed in several works [11,
12, 14–16, 31, 40] (see also [1, 13] for nondivergence form operators), but optimal
error bounds were worked out only recently in [20, 22–24] for (1), and in [21, 32]
for (2) (in the discrete-space setting).

While controlling the size of the errors in homogenization is useful, it would be
better (and it is our aim) to describe precisely what the errors look like when ε is
small. As an analogy, if the convergence of uε to uh is a law of large numbers, then
we are looking for a central limit theorem.
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The present paper is a first step toward this goal. In a discrete-space setting, it
was proved in [23] that stationary correctors exist for d ≥ 3 (recall that we assume
that the random coefficients have a finite range of dependence). In this case, let us
write φξ for the (stationary) corrector in the direction ξ [see (2.2)]. Under a minor
smoothness assumption on the random coefficients, we show that for large x, the
correlation 〈φξ (0)φξ (x)〉 becomes very close to

Kξ (x) :=
∫

∇Gh(y) · Q(ξ) ∇Gh(y − x)dy,(1.1)

where Gh is the Green function of the homogenized operator −∇ · Ah∇ , and Q(ξ)

is a d × d symmetric matrix that can be expressed in terms of correctors, see (2.4).
This result paves the way for the understanding of the full scaling limit of

ε−(d−2)/2φ(·/ε), seen as a random distribution. Indeed, the main missing ingre-
dient is now to show that for any bounded, smooth test function f , the properly
rescaled random variable

∑
x∈Zd φ(x)f (εx) converges in law to a Gaussian. This

will be done in [35].
This result on the corrector suggests (via a formal two-scale expansion) a scal-

ing limit for ε−d/2(uε(·) − 〈uε(·)〉) as well. This will be addressed in [34].

Related works. We now give a brief overview of related works. These can be
divided into three groups.

First, the questions that we consider here in dimension d ≥ 3 have been investi-
gated in dimension 1. One can benefit from this setting to gain a better understand-
ing of the effect of long-range correlations of the coefficients [6, 25].

Second, similar questions have been explored for the homogenization of op-
erators other than those considered here. Typically, one considers a deterministic
operator perturbed by the addition of a rapidly oscillating random potential [2–5,
8, 17, 26]. We refer to [7] for a review.

Third, there is a deep connection between the corrector studied in the present
paper and so-called ∇ϕ interface models [18]. At a heuristic level, one can think
of the corrector as the zero-temperature limit of such an interface model (with a
bond-dependent potential). The scaling limit of the interface model with convex,
homogeneous potential was shown to be the Gaussian free field [19, 30, 36]. In
view of this, one may expect (as was suggested in [9], Conjecture 5) the correla-
tions of the corrector to be described by a Gaussian free field as well. However, our
results show that such is not the case in general. One way to see this is to observe
that the Fourier transform of Kξ is

p · Q(ξ)p

(p · Ahp)2

(
p ∈ R

d)
,(1.2)

while it should be of the form
1

p · Bp

(
p ∈ R

d)
(1.3)
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for some symmetric, positive definite matrix B , if the correlations were those of
a Gaussian free field. By considering coefficients with small ellipticity ratio, one
can produce examples where (1.2) cannot be reduced to (1.3).

The proof given in [36] that the interface model rescales to the Gaussian free
field (and the proof of the dynamical version of this in [19]) uses a Helffer–
Sjöstrand representation of the correlations. We will also use this representation
here, but with an important difference. In the case of the interface model, the
Helffer–Sjöstrand representation readily enables to express the correlations of the
interface as the averaged Green function of some operator, and the crux is then to
show that this operator can be homogenized. In our case, the representation has
a less clear interpretation. But it has to be so, since otherwise this would lead to
Gaussian-free-field correlations.

Recently, a very interesting and direct connection was put forward in [10] be-
tween certain interface models with homogeneous but possibly nonconvex poten-
tials and the corrector considered here. The authors obtained the scaling limit of
interface models with such potentials and zero tilt. They point out that the under-
standing of models with nonzero tilt could be obtained from the understanding of
the scaling limit of the corrector. We refer to [10], Section 6, for more on this.

Organization of the paper. The precise setting and results of this paper are laid
down in the next section. The Helffer–Sjöstrand representation of correlations is
introduced in Section 3. Section 4 recalls several crucial estimates on the corrector
and the Green function. The goal of Section 5 is to justify, in a weak sense, the
two-scale expansion of the gradient of the Green function. The proof of the main
result is then completed in Section 6.

2. Precise setting and results. We consider the (nonoriented) graph (Zd,B)

with d ≥ 3, where B is the set of nearest-neighbor edges. Let (e1, . . . , ed) be the
canonical basis of Z

d . For every edge e ∈ B, there exists a unique pair (e, i) ∈
Z

d ×{1, . . . , d} such that e links e to e+ ei . Given such a pair, we write e = e+ ei .
We call e the base point of the edge e. For f : Zd →R, we let ∇f : B→R be the
gradient of f , defined by

∇f (e) = f (e) − f (e).

We write ∇∗ for the formal adjoint of ∇ , that is, for F : B→R, ∇∗F : Zd →R is
defined via

(∇∗F
)
(x) =

d∑
i=1

F
(
(x − ei , x)

) − F
(
(x, x + ei )

)
.

For such F , we define AF(e) = aeF (e), where (ae) are real numbers taking values
in a compact subset of (0,+∞). The operator of interest is ∇∗A∇ .

While a standard assumption for our purpose would be that (ae) are indepen-
dent and identically distributed, the technicalities of the proof will be reduced by
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assuming that they are also smooth in the following sense. We give ourselves a
family (ζe)e∈B of independent standard Gaussian random variables (we write P

for the law of this family on � = R
B, and 〈·〉 for the associated expectation). The

coefficients (ae)e∈B are then defined by ae = a(ζe), where a : R → R is a fixed
twice differentiable function with bounded first and second derivatives [and taking
values in a compact subset of (0,+∞)].

Under these conditions, it is well known that there exists a constant matrix Ah

such that ∇∗A∇ homogenizes over large scales to the continuous operator −∇ ·
Ah∇ .

Let ξ be a fixed vector of R
d . For μ > 0, let φξ,μ be the unique stationary

solution of

μφξ,μ + ∇∗A(ξ + ∇φξ,μ) = 0.(2.1)

It is proved in [23] that (recall that we assume d ≥ 3) φξ,μ converges in L2(�) to
the unique stationary solution φξ of

∇∗A(ξ + ∇φξ ) = 0.(2.2)

The function φξ is called the (stationary) corrector in the direction ξ . We use φi as
shorthand for φei

. In equations such as (2.2), ξ is to be understood as the function
from B to R such that ξ(e) = ξ · (e − e).

Let ∂e denote the weak derivative with respect to the random variable ζe, which
we may call a vertical derivative. The formal adjoint of ∂e is

∂∗
e = −∂e + ζe.

We write ∂f = (∂ef )e∈B. For F = (Fe)e∈B, we write ∂∗F = ∑
e ∂∗

e Fe, and we let

L = ∂∗ ∂.(2.3)

We write |x| for the L2-norm of x ∈ Z
d . In order to keep light notation, we let

|x|∗ = |x| + 2 (so that, e.g., log |x|∗ is bounded away from 0).
Here is our main result.

THEOREM 2.1 (Structure of correlations). Recall that we assume d ≥ 3.
Let E0 be the set of edges with base-point 0 ∈ Z

d , let Gh : Rd → R be the
Green function of the (continuous-space) homogenized operator −∇ · Ah∇ , let
Q(ξ) = (Q(ξ)

jk )1≤j,k≤d be the matrix defined by

Q(ξ)
jk = ∑

e∈E0

〈
(ej + ∇φj )(e)(ξ + ∇φξ )(e) ∂eae(L + 1)−1

(2.4)
× ∂eae(ek + ∇φk)(e)(ξ + ∇φξ )(e)

〉
,

and let Kξ (x) be defined by (1.1). There exists a constant C < ∞ such that for
every x ∈ Z

d \ {0},
∣∣〈φξ (0)φξ (x)

〉 − Kξ (x)
∣∣ ≤ C

log2 |x|∗
|x|d−1 .(2.5)
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REMARK 2.2. When ej is interpreted as a function over B as in (2.4), it is to
be understood as ξ is in (2.2), that is, ej (e) is 1 if the edge e is parallel to the basis
vector ej , and is 0 otherwise.

REMARK 2.3. The operator L is the infinitesimal generator of the Ornstein–
Uhlenbeck semigroup on R

B, and P is a reversible measure for the associated
dynamics. For more general distributions of coefficients, one may replace L by
the infinitesimal generator of the Glauber dynamics, that is, to keep the defini-
tion (2.3), but with ∂e changed for

∂ef = E
[
f |(ae′)e′ �=e

] − f

[in which case (L + 1)−1 must be replaced by L −1 in (2.4)]. The setting we have
chosen reduces the amount of technicality mostly by allowing us to use the chain
rule for derivation.

REMARK 2.4. We learn from Proposition 3.2 and Theorem 4.1 that the tensor
Q(ξ) is well defined. From the identity

ξ ′ · Q(ξ)ξ ′

= ∑
e∈E0

〈(
ξ ′ + ∇φξ ′

)
(e)(ξ + ∇φξ )(e)(2.6)

× ∂eae(L + 1)−1 ∂eae

(
ξ ′ + ∇φξ ′

)
(e)(ξ + ∇φξ )(e)

〉
,

which follows from the linearity of φξ in ξ , we learn that Q(ξ) is positive semi-
definite. In particular, the Fourier transform of Kξ is nonnegative.

Moreover, Q(ξ) is nondegenerate as soon as the derivative of the function a :
R →R is everywhere positive. Indeed, if the expression (2.6) vanishes for ξ ′ = ξ ,
the strict positivity of the operator implies that for any e ∈ E0, ∂eae(ξ + ∇φξ )

2(e)

and thus (ξ + ∇φξ )
2(e) vanishes almost surely. This in turn implies that∑

e∈E0

〈
(ξ + ∇φξ )(e)ae(ξ + ∇φξ )(e)

〉 = ξ · Ahξ

vanishes. By the nondegeneracy of the homogenized tensor Ah, this yields as de-
sired ξ = 0. The same argument also implies that the null space of Q(ξ) is contained
in the hyperplane orthogonal to Ahξ .

REMARK 2.5. There is no simple relation between the quartic form defined
by Q(ξ)

jk and the quadratic form Ah, besides that ξ ′Q(ξ)ξ ′ is bounded from below by

(ξ ′ · Ahξ)2 up to a multiplicative constant. As was noted in the Introduction, Kξ

is not the Green function of a second-order operator in general. While its Fourier
transform has the right sign and homogeneity, it is not the inverse of a quadratic
form.
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REMARK 2.6. By polarization of the quartic form Q(ξ)
jk in the ξ -variables, one

also obtains a result for covariances 〈φξ (0)φξ ′(x)〉 with ξ ′ �= ξ .

REMARK 2.7. We expect that at least if the environment is sufficiently mixing
(as, e.g., when its correlations are of finite range), then there exists a matrix Q(ξ)

[whose explicit expression may differ from that given in (2.4)] such that the large-
scale correlations of the correctors are described by (1.1) and (2.5).

3. Hellfer–Sjöstrand representation.

PROPOSITION 3.1 (Helffer–Sjöstrand representation of correlations, [27, 36,
39]). Let f,g : � → R be centered square-integrable functions such that for ev-
ery e ∈ B, ∂ef and ∂eg are in L2(�). We have

〈fg〉 = ∑
e∈B

〈
∂ef (L + 1)−1 ∂eg

〉
.

PROOF. The claim is similar to (and simpler than) that obtained in [36], Sec-
tion 2.1. We recall the proof briefly for the reader’s convenience. By density, we
can restrict our attention to functions f,g that depend only on a finite number of
(ζe)e∈B, and also by density, we may assume f and g to be smooth functions. Note
that the commutator [∂e, ∂

∗
e′ ] satisfies[

∂e, ∂
∗
e′

] = 1e=e′ .(3.1)

Let us first assume that there exists a function u ∈ L2(�) such that g = L u.
Writing G = ∂u, we observe that

∂eg = ∂e ∂∗G
= ∑

e′
∂e ∂∗

e′Ge′

= ∑
e′

([
∂e, ∂

∗
e′

] + ∂∗
e′ ∂e

)
Ge′

= Ge + ∑
e′

∂∗
e′ ∂e′Ge,

where we used (3.1) and the fact that ∂e′Ge = ∂e′ ∂eu = ∂eGe′ in the last step.
Recalling the definition of L in (2.3), we arrive at

∂eg = (L + 1)Ge = (L + 1) ∂eu.

In particular, ∂eu ∈ L2(�) and

〈fg〉 = 〈f L u〉 = ∑
e

〈∂ef ∂eu〉 = ∑
e

〈
∂ef (L + 1)−1 ∂eg

〉
.
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In order to conclude, it suffices to check that the range of the operator L is dense
in the set of centered square-integrable functions. If g ∈ L2(�) is smooth, depends
on a finite number of (ζe)e∈B and is in the orthogonal complement of Ran(L ),
then

〈gL g〉 = 0 = ∑
e

〈| ∂eg|2〉
,

so g is constant. It follows that the orthogonal complement of Ran(L ) is the set
of constant functions, and this completes the proof. �

The following additional information on (L + 1)−1 will turn out to be useful.

PROPOSITION 3.2 (Contraction of Lp). For every p ≥ 2, the operator (L +
1)−1 is a contraction from Lp(�) to itself.

PROOF. Let 	 be a finite subset of B, and let F	 the set of real functions of
(ζe)e∈	. We define H 1

	 as the completion of the set of smooth functions in F	 for
the scalar product

(u, v)H 1
	

= 〈uv〉 + ∑
e∈	

〈∂eu ∂ev〉.

For every f ∈ H 1
	, there exists a unique u ∈ H 1

	 such that

∀v ∈ H 1
	, (u, v)H 1

	
= 〈f v〉,(3.2)

and this is nothing but the weak formulation of the equation (L +1)u = f . For ev-
ery ε > 0, let ψε(x) = ε−1 arctan(εx) be a “nice” (in particular, bounded) approx-
imation of the function x �→ x. One can check that if v ∈ H 1

	, then ψε(v|v|p−2) ∈
H 1

	. Hence, for u ∈ H 1
	 satisfying (3.2),(
u,ψε

(
u|u|p−2))

H 1
	

= 〈
f ψε

(
u|u|p−2)〉

,

and we recall that(
u,ψε

(
u|u|p−2))

H 1
	

= 〈
uψε

(
u|u|p−2)〉 + ∑

e∈	

〈
∂eu ∂eψε

(
u|u|p−2)〉

.

Since u �→ ψε(u|u|p−2) is an increasing function, it follows that for every e,〈
∂eu ∂eψε

(
u|u|p−2)〉 ≥ 0,

and thus 〈
uψε

(
u|u|p−2)〉 ≤ 〈

f ψε

(
u|u|p−2)〉

.

By the monotone convergence theorem, the left-hand side converges to 〈|u|p〉 =
‖u‖p

p as ε tends to 0. The right-hand side is bounded by

‖f ‖p

〈∣∣ψε

(
u|u|p−2)∣∣p/(p−1)〉1−1/p ≤ ‖f ‖p‖u‖p−1

p ,
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where we have used |ψε(x)| ≤ |x|. We have thus shown

‖u‖p
p ≤ ‖f ‖p‖u‖p−1

p ,

that is, ‖u‖p ≤ ‖f ‖p , and this implies the theorem. �

Using the fact that (L + 1)−1 is a contraction on L2(�), we deduce the follow-
ing covariance estimate, which parallels those appearing in [36, 37] (Brascamp–
Lieb inequality), [22], Definition 1 and [24], Lemma 3.

COROLLARY 3.3 (Covariance estimate). For f and g as in Proposition 3.1,∣∣〈fg〉∣∣ ≤ ∑
e∈B

〈
(∂ef )2〉1/2〈

(∂eg)2〉1/2
.

4. Estimates on the corrector and the Green function. The aim of this sec-
tion is to gather several known estimates on the Green function and on the correc-
tor.

THEOREM 4.1 (Existence and integrability of the corrector [23]). Recall that
we assume d ≥ 3. For every μ > 0, there exists a unique stationary solution φξ,μ to
equation (2.1). Moreover, for every p ≥ 1, 〈|φξ,μ(0)|p〉 and 〈|∇φξ,μ(e)|p〉 (e ∈ B)
are uniformly bounded in μ > 0. The limit

φξ = lim
μ→0

φξ,μ

is well defined in Lp(�) and is the unique stationary solution to (2.2).

A direct consequence of this result is:

COROLLARY 4.2 (Almost-sure control of the corrector). Let Bn = {−n, . . . ,

n}d and let Bn be the set of edges whose base-point is in Bn. For every β > 0,
almost surely,

lim
n→+∞n−β max

x∈Bn

∣∣φξ (x)
∣∣ = 0

and

lim
n→+∞n−β max

e∈Bn

∣∣∇φξ (e)
∣∣ = 0.

PROOF. Let p ≥ 1. By Chebyshev’s inequality,

P
[∣∣φξ (0)

∣∣ ≥ x
] ≤ E[|φξ (0)|p]

xp
(x > 0),
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so for any ε > 0, by a union bound,

P

[
n−β max

x∈Bn

∣∣φξ (x)
∣∣ ≥ ε

]
≤ |Bn|E[|φξ (0)|p]

(εnβ)p
.

The first part of the corollary follows by taking p large enough and applying the
Borel–Cantelli lemma. The second part is obtained in the same way. �

We write G(x,y) for the Green function between points x and y in Z
d , that

is, G(x,y) = (∇∗A∇)−1(x, y) [the dependence on (ae)e∈B is kept implicit in the
notation]. For μ > 0, we also let Gμ(x, y) = (μ + ∇∗A∇)−1(x, y).

Regularity theory ensures the following decay properties of the Green function
(see, e.g., [33], Proposition 3.6, for a proof adapted to our context).

THEOREM 4.3 (Pointwise estimates on the Green function). There exist C <

∞, c > 0 and α > 0 such that for every μ ∈ [0,1/2] and ζ ∈ �,

Gμ(0, x) ≤ C

|x|d−2∗
e−c

√
μ|x| (

x ∈ Z
d)

,(4.1)

∣∣∇Gμ(0, e)
∣∣ ≤ C

|e|d−2+α∗
e−c

√
μ|e| (e ∈ B).(4.2)

It was recently shown in [29] that, after averaging over the environment, the rates
of decay of the gradient and mixed second gradient of the Green function behave as
in the homogeneous case (see also [33], Remark 11.2, for the fact that the estimates
hold uniformly over μ).

THEOREM 4.4 (Annealed estimates on the gradients of the Green function
[29]). For every 1 ≤ p < ∞, there exists C < ∞ such that for every μ ∈ [0,1/2]
and every e, e′ ∈ B,

〈∣∣∇Gμ(0, e)
∣∣p〉1/p ≤ C

|e|d−1∗
,

〈∣∣∇∇Gμ

(
e, e′)∣∣p〉1/p ≤ C

|e′ − e|d∗
.

REMARK 4.5. Notice that ∇G(x, e) (for x ∈ Z
d and e ∈ B) denotes the gradi-

ent of G(x, ·) evaluated at the edge e. Similarly, ∇∇G(e, e′) denotes the gradient
of ∇G(·, e′) evaluated at the edge e.

We conclude this section by recalling useful computations of vertical derivatives.
The following two propositions are borrowed from [23], Lemmas 2.4 and 2.5.
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PROPOSITION 4.6 (Derivatives of the corrector [23]). For every μ > 0, x ∈
Z

d and e ∈ B, the approximate corrector φξ,μ(x) is differentiable with respect to
ζe and

∂eφξ,μ(x) = −∂eae∇Gμ(x, e)(ξ + ∇φξ,μ)(e).

REMARK 4.7. Recalling that we assume ae to be of the form a(ζe) with a

differentiable, we can rewrite ∂eae as a′(ζe).

REMARK 4.8. Contrary to φξ,μ, the corrector φξ is not well defined for every
value of (ζe) ∈ �, but only on a set of full probability measure. In order to prove a
statement similar to Proposition 4.6 for φξ instead of φξ,μ, it is thus necessary to
show first that φξ is defined on a subset of � large enough that speaking of ∂eφξ

be meaningful. We will however not show this here, since for our purpose, it is
always possible to bypass this problem by approximating φξ by φξ,μ, computing
the derivatives, and then passing to the limit μ → 0.

PROPOSITION 4.9 (Derivatives of the Green function [23]). For every μ ≥ 0,
x, y ∈ Z

d and e ∈ B, the Green function Gμ(x, y) is differentiable with respect to
ζe and

∂eGμ(x, y) = −∂eae∇Gμ(x, e)∇Gμ(y, e).

These two propositions can be proved by differentiating the defining equation
of, respectively, the corrector and the Green function, namely

μφξ,μ + ∇∗A(ξ + ∇φξ,μ) = 0,(
μ + ∇∗A∇)

Gμ(x, ·) = 1x.

We refer to [23] for details.

5. Two-scale expansion of the Green function. Note that since we assume
the coefficients to be independent and identically distributed, the law of the coef-
ficients is invariant under the rotations that preserve the lattice, and Ah is thus a
multiple of the identity, say Ah = ahId. We define the discrete homogenized Green
function Gh as the unique bounded solution of the equation

∇∗Ah∇Gh = 10,

where Ah in the formula above acts as the multiplication by ah on every edge. For
f : Zd → R and x ∈ Z

d , we write ∇j f (x) to denote f (x + ej ) − f (x). If instead
we take e ∈ B, we understand ∇jf (e) to mean ∇jf (e), that is, the gradient of f

along the edge parallel to the vector ej having the same base-point as e.
The goal of this section is to prove the following quantitative two-scale expan-

sion of the gradient of the Green function.
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THEOREM 5.1 (Quantitative two-scale expansion of the Green function). For
every p > 2, there exists C < ∞ such that the following holds. If g : � → R is in
Lp(�) and is differentiable with respect to ζb with ∂bg ∈ Lp(�) for every b ∈ B,
then for every e ∈ B,∣∣∣∣∣〈g∇G(0, e)

〉 − d∑
j=1

∇jGh(e)
〈
g(ej + ∇φj )(e)

〉∣∣∣∣∣
(5.1)

≤ C

(
‖g‖p

log |e|∗
|e|d∗

+ ∑
y∈Zd

b∈B

‖∂bg‖p

1

|e − y|d−1∗ |b − y|d∗|y|d∗

)
.

REMARK 5.2. Applying Theorem 5.1 with g = 1, we obtain that

∣∣〈∇G(0, e)
〉 − ∇Gh(e)

∣∣ ≤ C
log |e|∗

|e|d∗
.

REMARK 5.3. By translation, under the assumptions of Theorem 5.1, we also
have∣∣∣∣∣〈g∇G(x, e)

〉 − d∑
j=1

∇jGh(e − x)
〈
g(ej + ∇φj )(e)

〉∣∣∣∣∣
≤ C

(
‖g‖p

log |e − x|∗
|e − x|d∗

+ ∑
y∈Zd

b∈B

‖∂bg‖p

1

|e − y|d−1∗ |b − y|d∗|y − x|d∗

)
,

where e − x denotes the translation of the edge e by the vector −x.

We define z : Zd →R by

z(x) = G(0, x) − Gh(x) −
d∑

j=1

φj (x)∇jGh(x).(5.2)

PROPOSITION 5.4 (Equation for z [21, 38]). Let Ai(x) stand for ax,x+ei
.

Write ∇2Gh for the matrix with entries ∇∗
i ∇jGh (1 ≤ i, j ≤ d). Let R be the

matrix with entries (Rij ) satisfying

(R − Ah)ij = −[
Ai

(
1i
j + ∇iφj

)]
(· − ei ) (1 ≤ i, j ≤ d),

where 1i
j = 1i=j . For e ∈ B in the direction of ei , let

h(e) = −
(
A

d∑
j=1

φj (· + ei )∇∇jGh

)
(e),
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and denote the R
d×d -scalar product of two matrices M and N by M : N (i.e., the

sum of all terms after entry-wise product). We have

∇∗A∇z = R : ∇2Gh + ∇∗h.(5.3)

REMARK 5.5. The crucial feature of the right-hand side of (5.3) is that it in-
volves only the second derivatives of Gh (this is precisely what one aims for when
defining z). Another aspect that will turn out to be important for our purpose is
that 〈R(x)〉 = 0. This follows from the fact [see, e.g., [28], (3.17)] that the (i, j)th
entry of the homogenized matrix Ah is equal to〈

Ai

(
1i
j + ∇iφj

)〉 = 〈
ei · A(ej + ∇φj )

〉
.

PROOF OF PROPOSITION 5.4. We follow the line of argument given in the
first step of the proof of [21], Theorem 1 (itself inspired by the first proof of [38],
Theorem 3). For f : Zd → R, we write ∇∗

i f (x) = f (x − ei ) − f (x). To begin
with, we observe that the following discrete Leibniz rules hold, for f,g : Zd →R:

∇i (fg) = (∇if )g + f (· + ei )∇ig,

∇∗
i (fg) = (∇∗

i f
)
g + f (· − ei )∇∗

i g.

Recall that by definition,

∇∗A∇G(0, ·) = 10 = ∇∗Ah∇Gh,

and thus,

∇∗A∇(
G(0, ·) − Gh

) = ∇∗(Ah − A)∇Gh.

Writing Ah,i for the ith diagonal coefficient of the (diagonal) matrix Ah, we can
express the right-hand side above as

d∑
i=1

∇∗
i (Ah,i − Ai)∇iGh.

We now need to compute

∇∗A∇(φj∇jGh).(5.4)

By the Leibniz rule,

∇i (φj∇jGh) = (∇iφj )∇jGh + φj (· + ei )∇i∇jGh.

Hence, the term in (5.4) is equal to

d∑
i=1

∇∗
i

[
Ai

(∇iφj∇jGh + φj (· + ei )∇i∇jGh
)]

.
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We can thus rewrite ∇∗A∇z as

d∑
i=1

{
∇∗

i (Ah,i − Ai)∇iGh −
d∑

j=1

∇∗
i

[
Ai

(∇iφj∇jGh + φj (· + ei )∇i∇jGh
)]}

=
d∑

i=1

{
Ah,i∇∗

i ∇iGh

−
d∑

j=1

∇∗
i

[
Ai

((
1i
j + ∇iφj

)∇jGh + φj (· + ei )∇i∇jGh
)]}

,

where we used the fact that Ah is constant. By the definition of the corrector, we
have

d∑
i=1

∇∗
i Ai

(
1i
j + ∇iφj

) = ∇∗A(ej + ∇φj ) = 0,

so by the Leibniz rule,

d∑
i,j=1

∇∗
i

[
Ai

(
1i
j + ∇iφj

)∇jGh
] =

d∑
i,j=1

[
Ai

(
1i
j + ∇iφj

)]
(· − ei )∇∗

i ∇jGh,

and the conclusion follows. �

As a consequence, we get the following representation for z.

PROPOSITION 5.6 (Representation for z). For every x ∈ Z
d ,

z(x) = ∑
y∈Zd

G(x, y)
(
R : ∇2Gh

)
(y) + ∑

b∈B
∇G(x,b)h(b).(5.5)

PROOF. Let z̃(x) denote the right-hand side of (5.5), which is well defined
by Corollary 4.2. Letting z = z − z̃, one can check thanks to Proposition 5.4 that
∇∗A∇z = 0. In particular, ∑

x∈Bn

z(x)∇∗A∇z(x) = 0.

This sum differs from ∑
e∈Bn

∇z(e) · A∇z(e)

by no more than a constant times∑
e∈Bn+1\Bn

(∣∣z(e)∣∣ + ∣∣z(e)∣∣)∣∣∇z(e)
∣∣.(5.6)
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This sum tends to 0 as n tends to infinity. To see this, we come back to the defi-
nitions of z and z̃, given, respectively, in (5.2) and in the right-hand side of (5.5).
Using Corollary 4.2, Theorem 4.3 and Proposition A.1 of the Appendix, we obtain
that for every β > 0, almost surely,

∣∣z(x)
∣∣ = o

(
1

|x|d−2−β

) (|x| → ∞)
,

∣∣∇z(e)
∣∣ = o

(
1

|e|d−2+α−β

) (|e| → ∞)
(where α comes from Theorem 4.3), and the same relations hold for z replaced
by z̃, and thus also for z replaced by z. Since d ≥ 3, we can take β > 0 sufficiently
small to ensure that 2(d −2)+α −2β > d −1, and we obtain that the sum in (5.6)
tends to 0 as n tends to infinity.

To sum up, we obtained that

lim
n→+∞

∑
e∈Bn

∇z(e) · A∇z(e) = 0.

Since A is positive definite, we conclude that z is a constant. Now, both z and z̃

tend to 0 at infinity, so in fact z = 0, and this completes the proof. �

PROOF OF THEOREM 5.1. Let us first see that it suffices to show that
∣∣〈g∇z(e)

〉∣∣ ≤ C

(
‖g‖p

log |e|∗
|e|d∗

+ ∑
y∈Zd

b∈B

‖∂bg‖p

1

|e − y|d−1∗ |y − b|d∗|y|d∗

)
.(5.7)

Note that, by the Leibniz rule,

∇iz(x) = ∇iG(0, x)−∇iGh(x)−
d∑

j=1

[∇iφj (x)∇jGh(x)+φj (x+ei )∇i∇jGh(x)
]
.

In order to prove that (5.7) implies (5.1), it is thus sufficient to show that

∣∣〈gφj (x + ei )∇i∇jGh(x)
〉∣∣ ≤ C‖g‖p

log |x|∗
|x|d∗

.(5.8)

This is true since |∇i∇jGh(x)| � |x|−d∗ ,∣∣〈gφj (x + ei )
〉∣∣ ≤ ‖g‖2‖φj‖2,

‖φj‖2 is finite by Theorem 4.1, and we assume p ≥ 2.
We now turn to the proof of (5.7). From Proposition 5.6, we learn that

∇z(e) = ∑
y∈Zd

∇G(e, y)
(
R : ∇2Gh

)
(y) + ∑

b∈B
∇∇G(e, b)h(b).
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We now proceed to show that each of the two terms∑
y∈Zd

∣∣〈g∇G(e, y)
(
R : ∇2Gh

)
(y)

〉∣∣,(5.9)

∑
b∈B

∣∣〈g∇∇G(e, b)h(b)
〉∣∣(5.10)

is bounded by the right-hand side of (5.7).

Step I.1. We begin with (5.9), which is the more delicate. As noted in Re-
mark 5.5, the random variable R is centered, so the expectation appearing within
the absolute value in (5.9) is in fact a correlation. We thus wish to apply Corol-
lary 3.3 and write∣∣〈g∇G(e, y)

(
R : ∇2Gh

)
(y)

〉∣∣
(5.11)

≤ ∑
b∈B

〈[
∂b

(
g∇G(e, y)

)]2〉1/2〈[
∂b

(
R : ∇2Gh

)
(y)

]2〉1/2
.

However, recalling that

(R − Ah)ij (y) = −[
Ai

(
1i
j + ∇iφj

)]
(y − ei ),

we see that a slight difficulty appears because we have not given a meaning to
∂bφj . As was anticipated in Remark 4.8, this need not bother us. If we formally
extend Proposition 4.6 to the case μ = 0, we arrive at the formal expression

∂b

(
Rij (y)

) = ∂bab

(−1b=(y−ei ,y)

(
1i
j + ∇iφj

)
(y − ei )

(5.12)
+ Ai(y − ei )∇∇G(y − ei , b)(ξ + ∇φj )(b)

)
.

The point now is that although we do not wish to discuss the sense of (5.12) as
a derivative, we can take it as a definition of the random variable ∂b(Rij (y)), and
observe that (5.11) holds. To see this, we approximate the left-hand side of (5.11)
by introducing a small mass μ > 0. We introduce(

A
μ
h

)
ij = 〈

Ai

(
1i
j + ∇iφj,μ

)〉
and Rμ by setting(

Rμ − A
μ
h

)
ij (y) = −[

Ai

(
1i
j + ∇iφj,μ

)]
(y − ei )

(where of course φj,μ = φej ,μ). We can now write the left-hand side of (5.11) as
the limit as μ tends to 0 of∣∣〈g∇G(e, y)

(
Rμ : ∇2Gh

)
(y)

〉∣∣.
Applying Proposition 3.1 on this term is now legitimate, and by Proposition 4.6,

∂b

(
R

μ
ij (y)

) = ∂bab

(−1b=(y−ei ,y)

(
1i
j + ∇iφj,μ

)
(y − ei )

(5.13)
+ Ai(y − ei )∇∇Gμ(y − ei , b)(ξ + ∇φj,μ)(b)

)
.

By taking the limit μ → 0, it follows that (5.11) holds with ∂bR defined by (5.12).
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Step I.2. By Hölder’s inequality, it follows from Theorems 4.1 and 4.4 that

〈(
∂bR : ∇2Gh

)2
(y)

〉1/2 � 1

|b − y|d∗|y|d∗
,

where � stands for ≤ up to a multiplicative constant that only depends on d and
the Lipschitz constant of a. On the other hand, using Proposition 4.9, we see that

∂b

(
g∇G(e, y)

) = (∂bg)∇G(e, y) + g ∂b∇G(e, y)

= (∂bg)∇G(e, y) − g(∂bab)∇∇G(e, b)∇G(y,b).

Using Hölder’s inequality (in conjunction with the strict inequality p > 2) and
Theorem 4.4, we are led to

〈[
∂b

(
g∇G(e, y)

)]2〉1/2 � ‖∂bg‖p

|e − y|d−1∗
+ ‖g‖p

|b − e|d∗|b − y|d−1∗
.

So we obtain from (5.11) the inequality∣∣〈g∇G(e, y)
(
R : ∇2Gh

)
(y)

〉∣∣
(5.14)

�
∑
b∈B

( ‖∂bg‖p

|e − y|d−1∗
+ ‖g‖p

|b − e|d∗|b − y|d−1∗

)
1

|b − y|d∗|y|d∗
,

and the term appearing in (5.9) is bounded (up to a constant) by∑
y∈Zd

b∈B

( ‖∂bg‖p

|e − y|d−1∗
+ ‖g‖p

|b − e|d∗|b − y|d−1∗

)
1

|b − y|d∗|y|d∗
.

To see that this is bounded by the right-hand side of (5.7), it suffices to observe
that ∑

y∈Zd

1

|b − y|2d−1∗ |y|d∗
� 1

|b|d∗
and ∑

b∈B

1

|b − e|d∗|b|d∗
� log |e|∗

|e|d∗
.(5.15)

These two facts are proved in Proposition A.1 of the Appendix.
Step II. We now turn to the analysis of (5.10). We note that∑

b∈B

∣∣〈g∇∇G(e, b)h(b)
〉∣∣ ≤ ∑

b∈B
‖g‖2

〈(∇∇G(e, b)h(b)
)2〉1/2

.

Using the explicit form of h given by Proposition 5.4 together with Theorems 4.1
and 4.4, we arrive at

〈(∇∇G(e, b)h(b)
)2〉1/2 � 1

|b − e|d∗|b|d∗
.
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In view of (5.15), we have shown that the term in (5.10) is bounded by a constant
times

‖g‖2
log |e|∗

|e|d∗
,

which is a better bound than needed. �

6. Proof of Theorem 2.1. Our starting point is the identity〈
φξ (0)φξ (x)

〉 = ∑
e∈B

〈
∂eφξ (0)(L + 1)−1 ∂eφξ (x)

〉
,(6.1)

with

∂eφξ (y) = −∂eae∇G(y, e)(ξ + ∇φξ )(e)
(
y ∈ Z

d)
.(6.2)

As in step I.1 of the proof of Theorem 5.1, we do not mean to discuss the meaning
of ∂eφξ (y) as a derivative of φξ (y). Rather, it suffices for our purpose to observe
that the identity in (6.1) holds with ∂eφξ (0) and ∂eφξ (x) defined by (6.2). This
follows easily by approximating φξ by φξ,μ, applying Propositions 3.1 and 4.6,
and letting μ tend to 0.

Replacing ∂eφξ (0) and ∂eφξ (x) by their definitions, the summand in the right-
hand side of (6.1) becomes〈

∂eae∇G(0, e)(ξ + ∇φξ )(e)(L + 1)−1 ∂eae∇G(x, e)(ξ + ∇φξ )(e)
〉
.(6.3)

We see that two ∇G terms appear in this expectation. We will “pull out of the
expectation” each of these ∇G terms using Theorem 5.1. These form the two first
steps of the proof. The last step discusses how to replace ∇Gh by its continuous-
space counterpart ∇Gh.

Step 1. Defining

ge(x) = ∂eae(ξ + ∇φξ )(e)(L + 1)−1 ∂eae∇G(x, e)(ξ + ∇φξ )(e),

we see that we can rewrite the term in (6.3) as〈
ge(x)∇G(0, e)

〉
,

and we wish to justify that

∑
e∈B

∣∣∣∣∣〈ge(x)∇G(0, e)
〉 − d∑

j=1

∇jGh(e)
〈
ge(x)(ej + ∇φj )(e)

〉∣∣∣∣∣ � log2 |x|∗
|x|d−1∗

.(6.4)

In order to apply Theorem 5.1 for this purpose, we need to compute ∂bge(x) for
every b ∈ B. From the commutation relation in (3.1), it follows that

∂bL = (L + 1) ∂b,
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and thus

∂b(L + 1)−1 = (L + 2)−1 ∂b.

From this observation, we get that

∂bge(x) = g
(1)
b,e(x) + g

(2)
b,e(x) + g

(3)
b,e(x) + g

(4)
b,e(x)(6.5)

with

g
(1)
b,e(x) = −∂eae ∂bab∇∇G(e, b)(ξ + ∇φξ )(b)(L + 1)−1

× ∂eae∇G(x, e)(ξ + ∇φξ )(e),

g
(2)
b,e(x) = −∂eae(ξ + ∇φξ )(e)(L + 2)−1∂eae ∂bab∇∇G(e, b)

× [∇G(x,b)(ξ + ∇φξ )(e) + ∇G(x, e)(ξ + ∇φξ )(b)
]
,

g
(3)
b,e(x) = 1e=b ∂2

e ae(ξ + ∇φξ )(e)(L + 1)−1 ∂eae∇G(x, e)(ξ + ∇φξ )(e)

and

g
(4)
b,e(x) = 1e=b ∂eae(ξ + ∇φξ )(e)(L + 2)−1 ∂2

e ae∇G(x, e)(ξ + ∇φξ )(e).

As before, we do not wish to discuss the meaning of (6.5) as a derivative, but rather
use the fact that if ∂bge(x) is defined in this way, then by the usual approximation
argument,∣∣∣∣∣〈ge(x)∇G(0, e)

〉 − d∑
j=1

∇jGh(e)
〈
ge(x)(ej + ∇φj )(e)

〉∣∣∣∣∣
�

∥∥ge(x)
∥∥
p

log |e|∗
|e|d∗

+ ∑
y∈Zd

b∈B

∥∥∂bge(x)
∥∥
p

1

|e − y|d−1∗ |b − y|d∗|y|d∗
.

From Proposition 3.2 and Theorems 4.1 and 4.4, we learn that∥∥ge(x)
∥∥
p � 1

|e − x|d−1∗
and ∥∥∂bge(x)

∥∥
p � 1

|b − e|d∗
(

1

|e − x|d−1∗
+ 1

|b − x|d−1∗

)
.

Hence, up to a multiplicative constant, the left-hand side of (6.4) is smaller than
the sum of the following two terms:∑

e∈B

log |e|∗
|e − x|d−1∗ |e|d∗

,(6.6)

∑
e,b∈B
y∈Zd

1

|b − e|d∗
(

1

|e − x|d−1∗
+ 1

|b − x|d−1∗

)
1

|e − y|d−1∗ |b − y|d∗|y|d∗
.(6.7)
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By Remark A.2 of the Appendix, the sum in (6.6) is dominated by a constant times
the right-hand side of (6.4). As for the sum in (6.7), we can further split it into the
sum of ∑

e,b∈B
y∈Zd

1

|b − e|d∗|e − x|d−1∗ |e − y|d−1∗ |b − y|d∗|y|d∗
(6.8)

and ∑
e,b∈B
y∈Zd

1

|b − e|d∗|b − x|d−1∗ |e − y|d−1∗ |b − y|d∗|y|d∗
.(6.9)

By repeatedly applying Proposition A.1 of the Appendix, we can bound the sum
in (6.8) by∑

e∈B
y∈Zd

log |e − y|∗
|e − y|2d−1∗ |e − x|d−1∗ |y|d∗

�
∑
e∈B

1

|e − x|d−1∗ |e|d∗
� log |x|∗

|x|d−1∗
,

and similarly, bound the sum in (6.9) by∑
b∈B
y∈Zd

log |b − y|∗
|b − y|2d−1∗ |b − x|d−1∗ |y|d∗

�
∑
b∈B

1

|b|d∗|b − x|d−1∗
� log |x|∗

|x|d−1∗
,

and the proof of (6.4) is complete.
Step 2. Recall that we have written 〈φξ (0)φξ (x)〉 as∑

e∈B

〈
ge(x)∇G(0, e)

〉
,

so we proved in step 1 that∣∣∣∣∣〈φξ (0)φξ (x)
〉 − ∑

e∈B

d∑
j=1

∇jGh(e)
〈
ge(x)(ej + ∇φj )(e)

〉∣∣∣∣∣ � log2 |x|∗
|x|d−1∗

.(6.10)

We now aim to show that

∑
e∈B

d∑
j=1

∣∣∣∣∣∇jGh(e)
〈
ge(x)(ej + ∇φj )(e)

〉 − d∑
k=1

∇jGh(e)Q
(ξ,e)
jk ∇kGh(e − x)

∣∣∣∣∣
(6.11)

� log2 |x|∗
|x|d−1∗

,

where Q(ξ,e)
jk is defined by

Q(ξ,e)
jk = 〈

∂eae(ej + ∇φj )(e)(ξ + ∇φξ )(e)
(6.12)

× (L + 1)−1 ∂eae(ek + ∇φk)(e)(ξ + ∇φξ )(e)
〉
.
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For j ∈ {1, . . . , d}, we let

g̃e,j = ∂eae(ξ + ∇φξ )(e)(L + 1)−1 ∂eae(ej + ∇φj )(e)(ξ + ∇φξ )(e),

and observe that since (L + 1)−1 is symmetric,〈
ge(x)(ej + ∇φj )(e)

〉 = 〈
g̃e,j∇G(x, e)

〉
.(6.13)

We let

∂bg̃e,j = g̃
(1)
b,e,j + g̃

(1)
b,e,j + g̃

(3)
b,e,j + g̃

(4)
b,e,j ,

where

g̃
(1)
b,e,j = −∂eae ∂bab∇∇G(e, b)(ξ + ∇φξ )(b)(L + 1)−1

× ∂eae(ej + ∇φj )(e)(ξ + ∇φξ )(e),

g̃
(2)
b,e,j = −∂eae(ξ + ∇φξ )(e)(L + 2)−1

× ∂eae ∂bab∇∇G(e, b)

× [
(ej + ∇φj )(b)(ξ + ∇φξ )(e) + (ej + ∇φj )(e)(ξ + ∇φξ )(b)

]
,

g̃
(3)
b,e,j = 1e=b ∂2

e ae(ξ + ∇φξ )(e)(L + 1)−1 ∂eae(ej + ∇φj )(e)(ξ + ∇φξ )(e)

and

g̃
(4)
b,e,j = 1e=b ∂eae(ξ + ∇φξ )(e)(L + 2)−1 ∂2

e ae(ej + ∇φj )(e)(ξ + ∇φξ )(e).

As before (and because of Remark 5.3), this definition ensures that∣∣∣∣∣〈g̃e,j∇G(x, e)
〉 − d∑

k=1

∇kGh(e − x)
〈
g̃e,j (ek + ∇φk)(e)

〉∣∣∣∣∣
� ‖g̃e,j‖p

log |e − x|∗
|e − x|d∗

+ ∑
y∈Zd

b∈B

‖∂bg̃e,j‖p

1

|e − y|d−1∗ |b − y|d∗|y − x|d∗
.

Moreover, we infer from Proposition 3.2 and Theorems 4.1 and 4.4 that for any
1 ≤ p < ∞ (and thus in particular the p > 2 needed above)

‖g̃e,j‖p � 1

and

‖∂bg̃e,j‖p � 1

|b − e|d∗
.

Since 〈
g̃e,j (ek + ∇φk)(e)

〉 = Q(ξ,e)
jk ,
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we obtain that∣∣∣∣∣〈g̃e,j∇G(x, e)
〉 − d∑

k=1

Q(ξ,e)
jk ∇kGh(e − x)

∣∣∣∣∣
� log |e − x|∗

|e − x|d∗
+ ∑

y∈Zd

b∈B

1

|b − e|d∗|e − y|d−1∗ |b − y|d∗|y − x|d∗
,

and thus by (6.13), up to a multiplicative constant, the left-hand side of (6.11) is
smaller than∑

e∈B

1

|e|d−1∗

(
log |e − x|∗

|e − x|d∗
+ ∑

y∈Zd

b∈B

1

|b − e|d∗|e − y|d−1∗ |b − y|d∗|y − x|d∗

)
.(6.14)

From Remark A.2 of the Appendix, we have

∑
e∈B

1

|e|d−1∗
log |e − x|∗

|e − x|d∗
� log2 |x|∗

|x|d−1∗
.

The remaining sum from (6.14) can be bounded, using Proposition A.1 repeatedly,
by

∑
y∈Zd

e∈B

log |e − y|∗
|e|d−1∗ |e − y|2d−1∗ |y − x|d∗

�
∑

y∈Zd

1

|y|d−1∗ |y − x|d∗
� log |x|∗

|x|d−1∗
,

and this finishes the proof of (6.11).
Step 3. Note that by the stationarity of the environment, the matrix Q(ξ,e) de-

pends on the edge e only through its orientation. On the other hand, the quantities
∇jGh(e) and ∇jGh(e − x) depend on the edge e only through its base point. We
also observe that the matrix Q(ξ) introduced in (2.4) is by definition

∑
e∈E0

Q(ξ,e).
Hence, the previous steps of the proof have led us [see (6.10) and (6.11)] to∣∣∣∣∣〈φξ (0)φξ (x)

〉 − ∑
y∈Zd

d∑
j,k=1

∇jGh(y)Q(ξ)
jk ∇kGh(y − x)

∣∣∣∣∣ � log2 |x|∗
|x|d−1∗

.(6.15)

In order to complete the proof of Theorem 2.1, it thus suffices to show that∣∣∣∣∣
∑

y∈Zd

d∑
j,k=1

∇jGh(y)Q(ξ)
jk ∇kGh(y − x) − Kξ (x)

∣∣∣∣∣ � log |x|∗
|x|d−1∗

,

where Kξ was introduced in (1.1). We learn from Proposition A.3 of the Appendix
that ∣∣∣∣∇jGh(y) − ∂Gh

∂yj

(y)

∣∣∣∣ � 1

|y|d .
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As a consequence,

∑
y∈Zd\{0}
1≤j,k≤d

∣∣∣∣∇jGh(y)Q(ξ)
jk ∇kGh(y − x) − ∂Gh

∂yj

(y)Q(ξ)
jk ∇kGh(y − x)

∣∣∣∣

�
∑

y∈Zd\{0}

1

|y|d |y − x|d−1∗
� log |x|∗

|x|d−1∗
,

where we used Proposition A.1 of the Appendix in the last step. Similarly,

∑
y∈Zd\{0,x}

1≤j,k≤d

∣∣∣∣∂Gh

∂yj

(y)Q(ξ)
jk ∇kGh(y − x) − ∂Gh

∂yj

(y)Q(ξ)
jk

∂Gh

∂yk

(y − x)

∣∣∣∣ � log |x|∗
|x|d−1∗

.

Moreover, one can check that
∑

y∈Zd\{0,x}
1≤j,k≤d

∣∣∣∣∂Gh

∂yj

(y)Q(ξ)
jk

∂Gh

∂yk

(y − x) −
∫
y+[0,1]d

∂Gh

∂yj

(
y′)Q(ξ)

jk

∂Gh

∂yk

(
y′ − x

)
dy′

∣∣∣∣

� log |x|∗
|x|d−1∗

.

In these computations, we have been forced to drop some terms indexed by y ∈
{0, x}. But it is easy to check that these terms are negligible, for example,

∑
y∈{0,x}

1≤j,k≤d

∣∣∣∣
∫
y+[0,1]d

∂Gh

∂yj

(u)Q(ξ)
jk

∂Gh

∂yk

(u − x)du

∣∣∣∣ � 1

|x|d−1∗
(
x ∈ Z

d \ {0}),

so the proof is complete.

APPENDIX: BASIC ESTIMATES ON DISCRETE CONVOLUTIONS AND
GREEN FUNCTIONS

PROPOSITION A.1. For every α > d and β ∈ (0, α],
∑

y∈Zd

1

|y|α∗ |y − x|β∗
� 1

|x|β∗
,

while for β ∈ (0, d],
∑

y∈Zd

1

|y|d∗|y − x|β∗
� log |x|∗

|x|β∗
.

(In both statements, the sign � hides a multiplicative constant that does not depend
on x ∈ Z

d .)
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PROOF. We give a unified proof of these two results, although it will be ap-
parent that the proof of the first statement alone can be slightly simplified. We thus
assume α ≥ d and β ∈ (0, α]. We decompose the sum over y ∈ Z

d according to
whether |y| ≥ 2|x| or not. If |y| ≥ 2|x|, then |y − x| ≥ |y|/2, and thus

∑
|y|≥2|x|

1

|y|α∗ |y − x|β∗
�

∑
|y|≥2|x|

1

|y|α+β∗
� 1

|x|α+β−d∗
≤ 1

|x|β∗
(here and below, we understand that y is the variable of summation). We split the
rest of the sum into two parts along the condition |y − x| ≥ |x|/2. This gives us
two contributions, the first of which is

∑
|y|≤2|x|

|y−x|≥|x|/2

1

|y|α∗ |y − x|β∗
� 1

|x|β∗
∑

|y|≤2|x|

1

|y|α∗
.

This last sum is uniformly bounded if α > d , while it is bounded by log |x|∗ if
α = d . For the second contribution to be considered, note that |y − x| ≤ |x|/2
implies that |y| ≥ |x|/2, and thus

∑
|y|≤2|x|

|y−x|≤|x|/2

1

|y|α∗ |y − x|β∗
� 1

|x|α∗
∑

|y−x|≤|x|/2

1

|y − x|β∗
.

Up to a constant, this last sum is bounded by∣∣∣∣∣∣∣∣
1, if β > d,

log |x|∗, if β = d,

|x|d−β∗ , if β < d.

Thus, this second contribution is always at most of the order of the first, and this
completes the proof. �

REMARK A.2. The proof of Proposition A.1 can be adapted to yield, for every
β ∈ (0, d],

∑
y∈Zd

log |y|∗
|y|d∗|y − x|β∗

� log2 |x|∗
|x|β∗

.

PROPOSITION A.3. For every k ∈ {1, . . . , d},∣∣∣∣∇kGh(x) − ∂

∂xk

Gh(x)

∣∣∣∣ � 1

|x|d .
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PROOF. Recall that Ah is a diagonal matrix, the diagonal entries of which we
denote by Ah,1, . . . ,Ah,d . For p ∈ [−π,π]d , let

s(p) = 2
d∑

j=1

Ah,j

(
1 − cos(pj )

)
.

Using Fourier transforms, one can represent the Green function Gh as

Gh(x) = 1

(2π)d

∫
T

e−ip·x

s(p)
dp,

where T = [−π,π]d . Similarly,

∇jGh(x) = 1

(2π)d

∫
T

(e−ipj − 1)

s(p)
e−ip·x dp.

Let η(x) = (2π)−d/2e−|x|2/2. We note that∣∣∣∣∂Gh

∂xk

(x) −
(

∂Gh

∂xk

∗ η

)
(x)

∣∣∣∣ � 1

|x|d ,

where ∗ denotes the convolution. This can be seen, for instance, using the explicit
formula for the Green function,

Gh(x) = 1

(d − 2)γd |det(Ah)|(x · A−1
h x)(d−2)/2

,

where γd denotes the area measure of the unit sphere. The regularization by con-
volution permits us to write down the Fourier representation(

∂Gh

∂xk

∗ η

)
(x) = 1

(2π)d

∫
Rd

− ipj

p · Ahp
e−|p|2/2e−ip·x dp.

In order to prove the proposition, it thus suffices to show that∣∣∣∣
∫
T

(e−ipj − 1)

s(p)
e−ip·x dp −

∫
Rd

− ipj

p · Ahp
e−|p|2/2e−ip·x dp

∣∣∣∣ � 1

|x|d .

We select a smooth cut-off function χ(p) that is equal to one near p = 0 and is
compactly supported in T. We use it to split the left-hand side into

∫
T

(1 − χ)(p)
(e−ipj − 1)

s(p)
e−ip·x dp and

∫
Rd

f (p)e−ip·x dp,

where

f (p) = χ(p)
(e−ipj − 1)

s(p)
+ ipj

p · Ahp
e−|p|2/2
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can be considered to be defined on all R
d . By the properties of χ , (1 −

χ)(p)(e
−ipj −1)
s(p)

is a smooth periodic function on T, so that we obtain by inte-
grations by parts that ∫

T

(1 − χ)(p)
(e−ipj − 1)

s(p)
e−ip·x dp

decays faster than any negative power of |x|. Hence, it suffices to show that∣∣∣∣
∫
Rd

f (p)e−ip·x dp

∣∣∣∣ � 1

|x|d .(A.1)

One can decompose f as

f (p) = − p2
j

2p · Ahp
+ f̃ (p),

so that f̃ is “more regular” than f close to the origin. One can then show by
integration by parts that

∣∣∣∣
∫
Rd

− p2
j

2p · Ahp
e−ip·x dp −

(
∂2Gh

∂x2
j

∗ η

)
(x)

∣∣∣∣ � 1

|x|d
and ∣∣∣∣

∫
Rd

f̃ (p)e−ip·x dp

∣∣∣∣ � 1

|x|d
for any x ∈R

d . Since (∂2Gh/∂x2
j ∗ η)(x) � |x|−d , the proof is complete. �
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