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DUALITY BETWEEN COALESCENCE TIMES AND EXIT POINTS
IN LAST-PASSAGE PERCOLATION MODELS

BY LEANDRO P. R. PIMENTEL1

Universidade Federal do Rio de Janeiro

In this article, we prove a duality relation between coalescence times and
exit points in last-passage percolation models with exponential weights. As
a consequence, we get lower bounds for coalescence times, with scaling ex-
ponent 3/2, and we relate its distribution with variational problems involving
the Brownian motion process and the Airy2 process. The proof relies on the
relation between Busemann functions and the Burke property for stationary
versions of the last-passage percolation model with boundary.

1. Introduction and main results.

1.1. Introduction. This article develops and studies the scaling behavior of
coalescence times of directional geodesics in the two-dimensional last-passage
(site) percolation model with exponential passage times. In this context, geodesics
are paths which locally maximize the passage time, and a directional geodesic is
a semi-infinite (oriented) geodesic that has an asymptotic direction. Uniqueness
and coalescence of directional geodesics initially appeared in the scene of (first-
passage) percolation in the work of Newmann and coauthors [18]. These semi-
infinite paths are the building blocks of Busemann functions and have become a
key notion in the study of the geometry of percolation and equilibrium measures
of related particle systems [3, 5, 9, 10].

A fundamental question concerns the exact scaling behavior of coalescence
times. This random variable is conjectured to have scaling exponent 3/2 and, un-
der this scaling, it is also expected to converge to an universal limiting distribu-
tion. This conjecture is motivated by universality aspects of last-passage percola-
tion models [16], which are known to lie in the Kardar–Parisi–Zhang universality
class [14]. Although this question is of great interest, in the last two decades, the
only available result in the literature was due to Wütrich [22], where it was proved
that the scaling exponent is greater than 3/2 − ε for all small ε > 0.

The main contribution of this article resides in bringing new rigorous results
on the subject, and also to shed new lights on the scaling scenario of coalescence
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times. We extend Wütrich’s result up to the m3/2 scale, where m denotes the dis-
tance between the starting points of the geodesics, by proving that the probability
for coalescence after time rm3/2 is of order 1−cr2, for small enough r > 0 (Theo-
rem 2). And we also prove that, for large enough r > 0, this tail probability scales
as fast as r−2/3, which shows that the limiting coalescence time has heavy tail
behavior (Theorem 3). In particular, one gets a nonintegrable random variable.

The method of proof is based on a duality formula that relates the distribution
of the coalescence time, with the probability that the “exit point counting mea-
sure” of [−m,m] is zero (Theorem 1). This counting measure is composed by exit
points of a slightly different last-passage percolation model with stationary bound-
ary conditions. This formula allows us to prove results for coalescence times by
studying the respective problem in the dual context, where a considerable part of
the fluctuation theory for exit points is well developed [3, 15, 17]. Another inter-
esting aspect of duality is that it provides a description (1.4) of the conjectured
scaling scene for coalescence times in terms of variational problems involving the
Brownian motion and Airy2 processes, which have received considerable attention
recently [20] from a more analytical point of view.

On our way to duality we derive some other results. For example, we
prove (2.6), which states that the level set of a Busemann function is distributed
as a Palm version of the stationary totally asymmetric simple exclusion process
(TASEP) conditioned to have a jump at time zero. We also show self-duality of
the directional geodesic tree (Lemma 2), which is a central property to derive the
duality formula.

We expect that duality will lead us to sharp upper bounds for coalescence times
as well. However, there are still some technical obstacles for proving such bounds,
and we will leave it for a future work. It is also natural to expect that the direc-
tional geodesics tree has a continuum scaling limit. This limit will not be the usual
Brownian web, since they live in distinct universality classes. From physical mo-
tivation, and connections with polymer models, we call this conjectured limit the
(zero temperature) polymer web (3.3). Duality should also hold for the limiting
polymer web.

Overview. In Sections 1.2 and 1.3, we will formally introduce the LPP models
and state the main results. In Section 2, we will prove them. In Section 3, we will
make some more comments on the conjectured scaling scenario.

1.2. Duality between coalescence times and exit points. Consider a collection
of i.i.d. random variables ω = {Wx : x ∈ Z

2}, distributed according to an exponen-
tial distribution function of parameter one. In last-passage site percolation (LPP)
models, each number Wx represents the passage (or percolation) time through ver-
tex x = (x(1), x(2)). For Z

2 lattice vertices x ≤ y [i.e., x(i) ≤ y(i), i = 1,2],
denote �(x,y) the set of all up-right oriented paths γ = (x0,x1, . . . ,xk) from x
to y, that is, x0 = x, xk = y and xj+1 − xj ∈ {e1, e2}, for j = 0, . . . , k − 1, where
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e1 := (1,0) and e2 = (0,1). The passage time of γ = (x0,x1, . . . ,xk) ∈ �(x,y) is
defined as

W(γ ) :=
k∑

j=1

Wxi
.

The last-passage time between x and y is defined as

L(x,y) = Lω(x,y) := max
γ∈�(x,y)

W(γ ).

(The lower index indicates the dependence with the environment ω.) The geodesic
from x to y is the a.s. unique maximizing path γ (x,y) = γω(x,y) ∈ �(x,y) such
that

L(x,y) = W
(
γ (x,y)

)
.

The study of semi-infinite geodesics in last-passage percolation models with
exponential weights was done in [9, 11]. We summarize below the properties that
we will use in this paper. The semi-infinite geodesic starting at x and along direc-
tion d := (1,1) is the almost surely unique up-right oriented path γ (x) = (xn)n≥0
which satisfies:

(i) x0 = x and, for any m < n,

γ (xm,xn) = (xm, . . . ,xn).

(ii) For any sequence of lattice points (yn)n≥1 such that

yn = (
yn(1), yn(2)

) ≥ 0 = (0,0) and lim
n→∞

yn(2)

yn(1)
= 1,

we have

lim
n→∞γ (x,x + yn) = γ (x).

Convergence of a sequence of finite paths (γn)n≥0 to a semi-infinite path γ means
that, for every finite set K ⊆ Z

2, γn and γ will coincide inside K , eventually.
Another important property of semi-infinite geodesics with the same direction is
coalescence. The symbol ++ below stands for the concatenation of two paths.

(iii) For any x,y ∈ Z
2 there exists c ∈ Z

2 such that

γ (x) = γ (x, c) ++γ (c) and γ (y) = γ (y, c) ++γ (c).

We could have consider directional geodesics in a arbitrary fixed direction da =
(1, a), for a ∈ (0,∞) but, for the sake of simplicity, we will restrict our attention
to a = 1.

We note that if c satisfies (iii), and c′ ∈ γ (c), then c′ also satisfies (iii). From
now on, we denote c(x,y) the first (in the up-right orientation) coalescence point,
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in the sense that c′ ≥ c(x,y) for every other geodesic point c′ that satisfies (iii). For
m ≥ 1, denote mh := (m,0) and mv := (0,m) and let

Tm := the second coordinate of c
(
mh,mv

)
.

By symmetry, it is clear that the first coordinate of cm has the same distribution
as Tm. We call Tm the coalescence time.

Now consider a slightly different LPP model, where we introduce boundary
conditions as follows. Denote Exp(ρ) an exponential random variable with pa-
rameter ρ. Take an environment ω̄ = {W̄z : z ≥ 0} mutually independent with the
following distribution:

W̄z
dist.:=

⎧⎪⎨
⎪⎩

0, if z = 0;
Exp(1), if z > 0;
Exp(1/2), otherwise.

In other words, we put i.i.d. exponentials random variables of parameter 1/2 along
the horizontal and vertical axes of the first quadrant, and leave its interior with the
same distribution as before. We denote

L̄(x) := Lω̄(0,x)

the last-passage time from 0 to x, with respect to the ω̄ environment. This LPP
model can be seen as a stationary version of the classical LPP model previously
introduced. As an effect of the boundary condition, we have that

L̄(y, n) − L̄(x, n)
dist.= L̄(y,0) − L̄(x,0)

dist.=
y∑

z=x+1

W̄(z,0),

for all n ≥ 0 and x < y.
We call the exit point of the geodesic γω̄(0,x) (with respect to the environment

ω̄) the last boundary point of the path (following the up-right orientation). To dis-
tinguish between exit via the horizontal or the vertical axis, we introduce a nonzero
integer-valued random variable Z(x) = Zω̄(x) such that if Z(x) > 0 then the exit
point is (Z(x),0), while if Z(x) < 0 then the exit point is (0,−Z(x)). The exit
point counting measure process is defined as

Zn := (
ζn(z), z ∈ Z

) ∈ {0,1}Z,

where, for fixed n ≥ 1,

ζn(z) :=
{

1, if z = Z(x,n) for some x ∈ [1,∞),

0, otherwise.

The associated counting measure is defined as

Zn(A) := ∑
z∈A

ζn(z) for A ⊆ Z.

The key result of this article is the following duality formula.
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THEOREM 1. For n > m > 0, we have that

P(Tm < n) = P
(
Zn

([−m,m]) = 0
)
.(1.1)

A few words about the proof. The coalescence property (iii) of semi-infinite
geodesics allows us to introduce Busemann functions in the LPP model, which are
defined as

B(x,y) := L(y, c) − L(x, c) for x,y ∈ Z
2,

where c = c(x,y). Busemann functions provide an alternative construction of sta-
tionary LPP models with boundary [5]. These models enjoy a very special prop-
erty, named, the Burke property. This property, formulated in terms of Busemann
functions, will lead us to self-duality of the directional geodesic tree, composed
by semi-infinite coalescent directional geodesics, and finally to the duality for-
mula (1.1).

1.3. Lower bounds for the tail distribution. The tail distribution of the coales-
cence time is defined as2

G(r) := lim inf
m→∞ P

(
Tm

2−5/2m3/2 > r

)
.

We combine (1.1) with scaling of exit points [3] to study the behavior of G close
to 0.

THEOREM 2. There exist constants c0, r0 > 0 such that for all r ∈ [0, r0] we
have

G(r) ≥ 1 − c0r
2.(1.2)

In particular,

lim
r→0

G(r) = 1.

The fluctuations of last-passage times are related to variational problems in-
volving the Brownian motion and the Airy2 process [20]. The Airy2 process is
a one-dimensional stationary process with continuous paths, whose finite dimen-
sional distributions are describe by Fredholm determinants. Duality allows us to
link coalescence times with these processes as well. Let

U := arg max
u∈R

{√
2B(u) +A(u) − u2}

,

2The reason to put the additional scaling factor 2−5/2 will became clear in the sequel, and it is
related to universality of the expected limiting distribution.
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where (B(u), u ∈ R) is a standard two-sided Brownian motion, and (A(u), u ∈ R)

is an independent Airy2 process, and denote

F(s) := P(U ≤ s).

The random variable U is well defined (the location is a.s. unique [19]), and it
describes the limit in distribution of the rescaled exit point (Lemma 4):

lim
n→∞

Z(n,n)

25/3n2/3
dist.= U.

Together with duality, this leads to the following.

THEOREM 3. For r > 0, we have that

G(r) ≥ F
(
r−2/3) − F

(−r−2/3)
.(1.3)

A straightforward consequence of Theorem 3 is that

lim inf
r→∞ r2/3

G(r) ≥ 2f (0),

where f is the density of F. Although, as far as the author knows, there is no
analytical description of f . We do expect that f is bell shaped around 0, as in the
case of a Brownian motion minus a parabola [12], as well as in the case of an Airy2

process minus a parabola [17]. In particular, we also expect that f (0) > 0, which
would imply nonintegrability of G.

We conjecture that3

G(r) = P
(
U

(−r−2/3, r−2/3] ≥ 1
)
,(1.4)

where U is a counting process composed by Dirac measures located at U(v), for
v ∈ R, which is defined as

U(v) := sup arg max
u∈R

{√
2B(u) +A(u, v) − (u − v)2}

.

The process (A(u, v), u, v ∈ R) is the so-called Airy2 sheet [8]. If this conjecture
is true, then

lim
r→∞ r2/3

G(r) = lim
δ→0

δ−1
P

(
U(−δ, δ] ≥ 1

)
.(1.5)

3See Section 3 for further discussions on the conjectured picture for the scaling limit of coalescence
times.
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2. Burke’s property, level sets, self-duality and scaling of coalescence times.

2.1. The last-passage percolation model and the exclusion process. The LPP
model can be seen as a function of the motion of particles in the one-dimensional
totally asymmetric simple exclusion process (TASEP). This process is a Markov
process (ηt , t ≥ 0) in the state space {0,1}Z whose elements are particle config-
urations: ηt (x) = 1 indicates a particle at site x at time t ; otherwise ηt (x) = 0
(a hole is at site j at time t). With rate 1, if there is a particle at site x, it attempts
to jump to site x + 1; if there is a hole at x + 1 the jump occurs, otherwise nothing
happens. The generator of the process is given by

Gf (η) = ∑
x∈Z

η(x)
(
1 − η(x + 1)

)[
f

(
ηx,x+1) − f (η)

]
,

where ηx,y(x) = η(z) ∀z /∈ {x, y}, ηx,y(x) = η(y) and ηx,y(y) = η(x). For p ∈
(0,1), let νp denote the product measure on Z with density p. Then νp is invariant
for G. The reverse process with respect to νp has generator G∗ which is also a
TASEP with reversed jumps:

G∗f (η) = ∑
x∈Z

η(x)
(
1 − η(x − 1)

)[
f

(
ηx,x−1) − f (η)

]
.

This property is called reversibility (or Burke’s property) of the TASEP.
A construction of the (time) stationary process η = (ηt )t∈R with the marginal

distribution νp can be done by choosing a configuration η according to νp and
then running the process with generator L forward in time and the process with
generator L∗ backward in time. The reversed process η∗ is given by η∗

t = η−t− .
The particle jumps of η induce a stationary point process S in Z×R. Let Sx ⊆ R

be the (discrete and random) set of times for which a particle of η jumps from x to
x + 1, and S = (Sx, x ∈ Z). The map η �→ S associates alternate point processes
to each trajectory. The law of the process S is space and time translation invariant.
Let S0 be the Palm version of S, that is, the process with the law of S conditioned
to have a point at (x, t) = (0,0). In the corresponding process η0 = (η0

t )t∈R, there
is a particle jumping from 0 to 1 at time zero. In the reverse process η∗0, there is a
particle jumping from 1 to 0 at time zero.

We now construct a random function G = G(η0) as follows [21]: first label
the particles of η0

0 in decreasing order, giving label 0 to the particle at site 1. We
note that, for η0, at time zero the particle already has jumped from site 0 to 1.
Call Pj (0) the position of the j th particle at time zero; we have P0(0) = 1 and
Pj+1(0) < Pj (0) for all j ∈ Z. Label the holes of η0

0 in increasing order, giving
the label 0 to the hole at site 0: H0(0) = 0 and Hi+1(0) > Hi(0) for all i ∈ Z.
The position of the j th particle and the ith hole at time t are denoted, respectively,
Pj (t) and Hi(t). The order is preserved at later and earlier times: Pj (t) > Pj+1(t)
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and Hi(t) < Hi+1(t), for all t ∈ R, i, j ∈ Z. Let G(i, j) denote the time the ith
hole and the j th particle of η0 interchange positions; in particular G(0,0) = 0. Let

G = G
(
η0) := {

G(z) : z ∈ Z
2}

.

The LPP model with boundary condition and the TASEP are related by (we take
p = 1/2) {

L̄(z) : z ∈ Z
2+

} dist.= {
G(z) : z ∈ Z

2+
}
.

For a proof of this distributional equality we refer to (4.21), (4.22) and Lemma 4.2
in Section 4.2 of [10].

To construct the analog object for the reversed process, we set η̂∗0
t (j ) :=

η∗
t (−j). By reversibility, η̂

∗0 is also a stationary TASEP, but now with jumps in
the same orientation as before. For this process, there is a particle jumping from
−1 to 0 at time zero. At this time, we give label 0 to the particle at 0 and label 0 to
hole at −1, and construct the interchanging times G∗(i, j) as before, so that

G∗ := {
G∗(z) : z ∈ Z

2} = {−G(−z) : z ∈ Z
2}

.

As a consequence of reversibility G∗ dist.= G and, therefore,{−G(−z) : z ∈ Z
2} dist.= {

G(z) : z ∈ Z
2}

.(2.1)

2.2. Burke’s property for Busemann functions. In Cator and Pimentel [5], a
connection was developed between the LPP model with boundary and Busemann
functions. Almost sure existence and coalescence of semi-infinite geodesics along
the negative diagonal direction are also true. Let γ ↓(x) = (xn)n≥0 denote the
down-left oriented semi-infinite geodesic starting at x and along the negative di-
agonal direction. Thus, γ ↓(x) satisfies (i), (ii) and (iii), but now in the down-left
orientation. For x,y ∈ Z

2, let c↓(x,y) denote the coalescence point between γ ↓(x)

and γ ↓(y), and set

B↓(x,y) := L
(
c↓,y

) − L
(
c↓,x

)
.

The main result in [5] states that{
L̄(z) : z ∈ Z

2+
} dist.= {

B↓(z) : z ∈ Z
2+

}
,

where B↓(z) := B↓(0, z). It also follows from the results in [5] that{
G(z) : z ∈ Z

2} dist.= {
B↓(z) : z ∈ Z

2}
.(2.2)

We call (2.3) below the Burke property of Busemann functions.

LEMMA 1. For the Busemman functions, we have that{
B↓(z) : z ∈ Z

2} dist.= {−B↓(−z) : z ∈ Z
2}

.(2.3)

PROOF. It follows directly from (2.1) and (2.2). �
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2.3. A remark on level sets of Busemann functions. Equation (2.2), which re-
lates Busemann functions with the stationary TASEP conditioned to have a particle
jumping from 0 to 1 at time zero, can be used to study level sets of Busemann func-
tions (also called horospheres). Indeed, it is expected that the lattice boundary of
the region composed by z such that B↓(z) ≤ 0 should have Gaussian fluctuations.
This is related to the scaling relation 2χ = ξ , where χ and ξ are the longitu-
dinal and transversal fluctuation exponents, respectively, which is conjectured to
be universal (see, for instance, page 2089 in [16] and page 589 in [13]). For our
exponential LPP model, it is known that χ = 1/3 and ξ = 2/3. Next, we will
use (2.2) to prove the Gaussian fluctuations of the level sets of Busemann func-
tions.

Define

H(t) = {
z ∈ Z

2 : B↓(z) ≤ t and B↓(z + d) > t
}
,

where d = (1,1). We represent H(t) as a down-right oriented bi-infinite path σt =
(σt (x))x∈Z in Z

2, where we set σt (0) to be the last point we have before passing
through the diagonal. For instance, since B(0) = 0, we have that σ0(0) = −e1,
σ0(1) = 0 and σ0(2) = −e2. More generally, we have the recursive relation:

σt (x + 1) =
{

σt (x) + e1, if B↓(
σt (x) + e1

) ≤ t,

σt (x) − e2, if B↓(
σt (x) + e1

)
> t.

(2.4)

The process σt can be encoded as a particle process ζt = (ζt (x))x∈Z as follows:

ζt (x) =
{

0, if σt (x + 1) − σt (x) = e1,

1, if σt (x + 1) − σt (x) = −e2.
(2.5)

We can think of ζt as a configuration of particles, where ζt (x) = 1 means that there
is a particle at site x at time t , whereas ζt (x) = 0 means that there is no particle
at site x at time t . This map between level sets and particle configuration is the
so-called Rost’s correspondence [21]. As a consequence of (2.2), we get that

(ζt )t∈R
dist.= (

η0
t

)
t∈R,(2.6)

where we recall that (η0
t )t∈R denotes the Palm version of the stationary totally

asymmetric exclusion process with density p = 1/2, conditioned to have a particle
jumping from 0 to 1 at time zero. A straightforward consequence of (2.6) is that,
after centering and rescaling in the standard way, the level set of the Busemann
function will converge to a two-sided Brownian motion.

PROOF OF (2.6). Denote R(B↓) the deterministic map which associates the
collection

B↓ := {
B↓(z) : z ∈ Z

2}
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to the particle process (ζt )t∈R. It is straightforward to check that the map R applied
to G yields (η0

t )t∈R:

R(G) = (
η0

t

)
t∈R.

Thus, by (2.2), we have that (ζt )t∈R
dist.= (η0

t )t∈R. �

2.4. Self-duality of the geodesic tree. By the coalescence property (iii), the
collection of paths

L := {
γ (x) : x ∈ Z

2}
is a.s. an up-right oriented tree, called the directional geodesic tree. We also con-
sider the collection of down-left oriented semi-infinite geodesics defined as

L↓ := {
γ ↓(x) : x ∈ Z

2}
.

It is clear that L and L↓ have the same law, up to a rotation of 180 degrees.
Let Z2∗ denote the dual of Z2. We take as vertices the set {z∗ = z + 1

2d : z ∈ Z
2}

[recall that d = (1,1)], and we join two such neighboring (distance 1) vertices by
a dual edge. Thus, each edge of Z2 is bisected by a dual edge of Z2∗, and vice
versa, which establishes a bijection (isomorphism) between edges and dual edges.
Consider the last-passage percolation tree L. The dual system L∗ is defined as
follows: in the case that an edge is in L then its dual is not in L∗; in the case
that an edge is not in L, then its dual is in L∗. Self-duality states that L and L∗
have the same law, up to a rotation of 180 degrees. The proof parallels the ideas in
Section 4.2 of [10], where duality between geodesics and equilibrium competition
interfaces was established, and relies on Lemma 1.

LEMMA 2. For the dual system, we have that

L∗ dist.= L↓.

In particular, the dual system L∗ is a.s. a tree and there is no bi-infinite maximizing
path in L.

PROOF. For notational convenience, we will prove the equivalent statement
that

L↓∗ dist.= L.

To prove that, we first notice that the tree L↓ is a deterministic function of the
Busemann function B↓. In order to see this, we use that

B↓(x) = max
{
B↓(x − e1),B

↓(x − e2)
} + Wx.

Hence, for any down-left semi-infinite geodesic γ ↓(x) = (xn)n≥0,

xn+1 = arg max
{
B↓(xn − e1),B

↓(xn − e2)
}
.(2.7)
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(Notice that a similar property holds for finite geodesics.) By (2.7), the tree L↓ can
be seen as the set composed of down-left oriented edges (x, ex) such that x ∈ Z

2

and

ex =
{

x − e1, if B↓(x − e1) > B↓(x − e2),

x − e2, if B↓(x − e2) > B↓(x − e1).
(2.8)

Therefore,

L↓ = ϒ
(
B↓)

is a deterministic function ϒ of B↓ = {B↓(x) : x ∈ Z
2}.

On the other hand, the dual system L↓∗ can be seen as the set composed of
up-right oriented edges (x∗, ex∗) such that

ex∗ =
{

x∗ + e1, if ex+d = (x + d) − e1,

x∗ + e2, if ex+d = (x + d) − e2.
(2.9)

In other words, the edge in L↓∗ starting at vertex x∗ = x+ 1
2d will point up or right

if the edge in L↓ starting at x + d points down or left, respectively. Now, by (2.8)
and (2.9),

ex∗ =
{

x∗ + e1, if B↓∗(
x∗ + e1

)
< B↓∗(

x∗ + e2
)
,

x∗ + e2, if B↓∗(
x∗ + e2

)
< B↓∗(

x∗ + e1
)
,

where B↓∗(x∗) := B↓(x). Let φ : x ∈ Z
2 �→ φ(x) := (−x)∗ ∈ Z

2∗ and set

B̃(x) := −B↓∗(
φ(x)

)
.

Then we have that φ−1(L↓∗) can be represented as the set composed of down-left
oriented edges (x, ex) such that

ex =
{

x − e1, if B̃(x − e1) > B̃(x − e2),

x − e2, if B̃(x − e2) > B̃(x − e1).

Or, equivalently,

φ−1(
L↓∗) = ϒ(B̃).

By Lemma 1, {
B̃(x) : x ∈ Z

2} dist.= {
B↓(x) : x ∈ Z

2}
.

Hence,

φ−1(
L↓∗) = ϒ(B̃)

dist.= ϒ
(
B↓) = L↓,

and the proof of self-duality is complete.
By self-duality, all almost sure statements for L also hold for L∗. Therefore, a.s.

L∗ is a tree. If, with positive probability, there were a bi-infinite path in L, then the
dual system L∗ would be split into two disjoint parts, which cannot happen since
L∗ is a.s. a tree. �
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2.5. Proof of the duality formula. The equivalence between the stationary LPP
model with boundary and Busemann functions allows us to interpret exit points
as crossing points of semi-infinite geodesics. For x,n ≥ 1, let Z↓(x, n) denote
the first point in γ ↓((x, n)) (following the down-left orientation) that intersects
[1, x] × {0} ∪ {0} × [1, n]. Notice that this intersection has to be transversal to
the axis. Again, to distinguish between crossings via the horizontal or the vertical
axis, we introduce a nonzero integer-valued random variable Z↓ such that if Z↓ >

0 then the crossing point is (Z↓,0), while if Z↓ < 0 then the crossing point is
(0,−Z↓). Define the crossing-point process as

Z↓
n := (

ζ↓
n (z), z ∈ [−n,∞)

) ∈ {0,1}[−n,∞),

where, for fixed n ≥ 1,

ζ↓
n (z) =

{
1, if z = Z↓(x, n) for some x ∈ [1,∞),

0, otherwise.

In [5], it was proved that

Z↓
n

dist.= Zn.(2.10)

A key observation is that the coalescence time T
↓∗
m := Tm(L↓∗) of the dual tree

and the crossing point process Z↓
n are related by{

T ↓∗
m < n

} = {
Z↓

n

([−m,m]) = 0
}
.(2.11)

This is a topological consequence of the fact that, by definition, L↓ and L↓∗ do
not cross each other. Hence, if T

↓∗
m < n, then the dual paths emanating from (mh)∗

and (mv)∗ prevent that Z↓(x, n) ∈ [−m,m] for any x ≥ 1, and vice versa (recall
that Z↓ is the transversal intersection point). Now we are able to prove the duality
formula.

PROOF OF (1.1). Recall that Tm = Tm(L) (it is a deterministic function of the
tree L). By Lemma 2, we have that

Tm(L)
dist.= Tm

(
L↓∗)

.(2.12)

Therefore, by (2.12), (2.11) and (2.10) (in this order),

P(Tm < n) = P
(
T ↓∗

m < n
)

= P
(
Z↓

n [−m,m] = 0
)

= P
(
Zn[−m,m] = 0

)
,

and the proof of (1.1) is complete. �
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2.6. Proof of the lower bounds.

PROOF OF (1.2). Denote Zn := Z(n,n). By Theorem 2.2 in [3],4 there exists
a constant c > 0 such that if

lim
m→∞n/m3/2 = r > 0

[where n = n(m)], then

lim sup
m→∞

P
(|Zn| ≥ m

) ≤ cr2.

On the other hand,

P
(
Zn+1[−m,m] ≥ 1

) ≥ P
(
Zn+1 ∈ [−m,m]).

Together with the duality formula, this yields

P(Tm > n) ≥ P
(
Zn+1 ∈ [−m,m]),

and hence

lim inf
m→∞ P(Tm > n) ≥ 1 − lim sup

m→∞
P

(|Zn+1| > m
) ≥ 1 − cr2

as soon as n/m3/2 → r . �

The last-passage time L̄ has a variational representation given by

L̄(x, n) = max
z∈[−n,x]

{
M(z) + Lz(x,n)

}
for x,n ≥ 1,(2.13)

where M(z) is the sum of the [i.i.d. Exp(1/2)] passage times along the boundary,

M(z) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, if z = 0;
z∑

k=1

W̄(k,0), if z > 0;
−z∑
k=1

W̄(0,k), if z < 0,

and

Lz(x,n) :=
⎧⎪⎨
⎪⎩

L
(
0, (x, n)

)
, if z = 0;

L
(
(z,0), (x, n)

)
, if z > 0;

L
(
(0,−z), (x, n)

)
, if z < 0.

Therefore,

L̄(x, n) = M(Z) + LZ(x,n),

4Notice that |Zn| = Zn+ + Zn− and that Zn+ dist.= Zn−.
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or, in other words, exit points of geodesics are locations of maxima:

Z(x,n) = arg max
z∈[−n,x]

{
M(z) + Lz(x,n)

}
.(2.14)

This variational representation for exit points, together with the scaling limit of
last-passage times, implies a limit theorem for Zn.

LEMMA 3. Let B be a two-sided standard Brownian motion and let A be an
independent Airy2 process. Then a.s. there is a unique location U ∈ R such that

U := arg max
u∈R

{√
2B(u) +A(u) − u2}

.

PROOF. We apply the method of proof developed in [19] to show unique-
ness of the location of maxima for a continuous process. There, it was proven that
uniqueness of the location of the maxima of a continuous process X is equivalent
to the existence of the derivative of the function

m(a) := E

(
max

u∈[0,t]
{
X(u) + au

})
for a ∈R,

at a = 0. This result was also generalized for X(u) = B(u) − u2 and X(u) =
A(u) − u2, where the maximisation was taken over u ∈ R. We use the same idea
of proof for X(u) = √

2B(u) +A(u) − u2. Indeed, by completing the square, we
get that

√
2B(u) +A(u) − u2 + au = √

2B(u) +A(u) −
(
u − a

2

)2

+ a2

4
.(2.15)

We note that

B(s + a/2) −B(a/2)
dist.= B(s)

(by shift invariance), and that

A(s + a/2)
dist.= A(s)

(by stationarity). Set s = u − a/2 and add and subtract
√

2B(a/2) to (2.15). Then
these distributional invariances imply that

m(a) = m(0) + a2

4
,

which shows differentiability at a = 0 and, as a consequence, a.s. uniqueness of
the location of the maxima. �

LEMMA 4. Define

Un := Zn

25/3n2/3 .
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Then

lim
n→∞Un

dist.= U.

PROOF. We present a sketch of the proof and leave further details to the reader.
It follows a similar structure as in the proof of convergence of the location of
maxima in the point to line LPP model developed in [15]. The first ingredient is
the following functional limit result:

lim
n→∞An(u)

dist.= A(u),(2.16)

where

An(u) := L25/3un2/3(n,n) − (4n − 28/3un2/3) + 24/3u2n1/3

24/3n1/3 .

For finite dimensional convergence, see [7], and for tightness, see [6]. By the func-
tional central limit theorem, we have that

lim
n→∞Bn(u)

dist.= √
2B(u),(2.17)

where

Bn(u) := M(25/3un2/3) − 28/3un2/3

24/3n1/3 .

Let

Cn := L̄(n,n) − 4n

24/3n1/3 .

By (2.13), we have that (for c = 2−5/3)

Cn = max
u≤cn1/3

{
Bn(u) +An(u) − u2}

,

and hence (notice that An and Bn are independent),

lim
n→∞Cn

dist.= max
u∈R

{√
2B(u) +A(u) − u2}

.(2.18)

See [2] for a description of the limit law of Cn, and [20] for more details on varia-
tional problems involving the Airy2 process and the Brownian motion.

By Theorem 2.2 in [3], (Un)n≥1 is tight and, by (2.14),

Un = arg max
u≤cn1/3

{
Bn(u) +An(u) − u2}

.(2.19)

Therefore, Theorem 4 will follow as soon as the location of maxima of the limit
process is a.s. unique (to have continuity of the arg max functional), which is given
by Lemma 3. �
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Now, we apply Lemma 4 to lower bound G.

PROOF OF (1.3). As we saw in the proof of the previous corollary,

P(Tm > n) ≥ P
(
Zn+1 ∈ (−m,m]),

and hence

P

(
Tm

2−5/2m3/2 >
n

2−5/2m3/2

)
≥ P

(
Un+1 ∈

(
− m

25/3n2/3 ,
m

25/3n2/3

])
.

If we take m,n such that n/2−5/2m3/2 → r , then m/25/3n2/3 → r−2/3. Thus, by
Lemma 4,

G(r) ≥ P
(
U ∈ (−r−2/3, r−2/3]) = F

(
r−2/3) − F

(−r−2/3)
. �

3. Final comments.

3.1. Upper bounds. To get sharp upper bounds for coalescence times, one
needs to show that

lim sup
n→∞

P
(
Zn

([−δn2/3, δn2/3]) ≥ 1
) ≤ cδ,(3.1)

for some fixed constant c > 0 and small enough δ > 0. One possible approach
is to parallel the arguments developed in [4] to bound the probability that Zn ∈
[0, δn2/3]. However, an extra (and nontrivial) effort will be necessary since one
will need uniform control over the whole exit point process (not only at single
location).

3.2. Duality in the scaling limit. Define the rescaled processes

An(u, v)

:= L25/3un2/3(n + 25/3vn2/3, n) − (4n + 28/3(v − u)n2/3) + 24/3(u − v)2n1/3

24/3n1/3

and

Cn(v) := L̄(n,n + 25/3vn2/3) − (4n + 28/3vn2/3)

24/3n1/3 .

By (2.13), we have that

Cn(v) = max
u≤n1/3

{
Bn(u) +An(u, v) − (u − v)2}

.

The process Cn(v) has a limit [2]

lim
n→∞Cn(v)

dist.= C(v),
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whose finite dimensional distributions are also expressed in terms of Fredholm
determinants. It is known that the sequence (An)n≥1 is tight (in the space of two
parameter continuous processes), although no rigorous result on the convergence
of finite dimensional distributions is available [6, 8]. For fixed u, it is not hard to
see that, for fixed v ∈ R,

lim
n→∞An(u, v)

dist.= A(u − v),

as a process in u ∈ R. It is conjectured that An(u, v) indeed converges to a two pa-
rameter process (A(u, v), (u, v) ∈R

2), called the Airy2 sheet [8]. The Airy2 sheet
is symmetric and stationary process with continuous paths. These limit processes
are related to each other by the variational relation

C(v) − C(0)
dist.= √

2B(v) for v ∈ R (as process),

where

C(v) := max
u∈R

{√
2B(u) +A(u, v) − (u − v)2}

.

Consider the jump process (U(v), v ∈ R) which runs through the (right-most)
locations of maxima:

U(v) := sup arg max
u∈R

{√
2B(u) +A(u, v) − (u − v)2}

.

By stationarity of the Airy2 sheet and shift invariance of the two-sided Brownian
motion, the process (U(v) − v, v ∈ R) will be stationary. [It is also known that
EU(0) = 0, and hence EU(v) = v.] Define the counting process U := (ζ(u), u ∈
R) induced by the locations of maxima:

ζ(u) =
{

1, if u = U(v) for some v ∈ R,

0, otherwise

and

U(A) := ∑
u∈A

ζ(u).

Based on the variational representation (2.14) of exit points, we conjecture that
the exit point counting process Zn, rescaled by 25/3n2/3, converges to U . By dual-
ity (1.1), if this conjecture is true, one gets the existence of the limiting distribution

T
dist.= lim

m→∞
Tm

2−5/2m3/2 ,

and that

P(T ≤ r) = P
(
U

((−r−2/3, r−2/3]) = 0
)
.(3.2)

We also expect that

lim
r→∞

G(r)

r2/3 = 2λ,
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where

λ := lim
δ→0+

P(U((0, δ]) ≥ 1)

δ
.

3.3. The polymer web. The Airy2 sheet can also be seen as a space–time pa-
rameter process A(s, u; t, v), where A(u, v) = A(0, u;1, v). This space–time pro-
cess is conjectured to be the space–time scaling limit of last-passage percolation
models, and also of solutions to the Kadar–Parisi–Zhang equation [8]. It induces a
random semi-group Ts,t , acting on functions f by the variational formula

Cs,t (f )(v) := max
u∈R

{
f (u) +A(s, u; t, v) − (u − v)2

(t − s)

}
.

The two-sided Brownian motion is a fixed point in the sense that

C0,t (B)(v) − C0,t (B)(0)
dist.= B(v) for all t ≥ 0.

In this context, one could consider the time process composed by counting mea-
sures (Ut , t ≥ 0) induced by Dirac deltas located at maxima of C0,t (B):

U(v, t) := sup arg max
u∈R

{√
2B(u) +A(0, u; t, v) − (u − v)2

t

}
.(3.3)

The parabolic term forces U(v, t) to be close to v, and its effect has a decreasing
influence as t → ∞, which implies that the locations will became more and more
sparse as t → ∞. Therefore, it is natural to think in terms of the trajectories of
the locations, and that these locations will coalesce as time passes. We conjectured
that this collection of coalescing trajectories, which we call the polymer web, is
the scaling limit of the directional geodesic tree.

3.4. Coalescence times and local equilibrium. The LPP model can be repre-
sented as a discrete time Markov interacting system (Mn : n ≥ 0) on [0,∞)Z [5].
(See also [1] for the Hammersley LPP model and its particle system interpreta-
tion.) At time zero, we start with a collection of nonnegative weights {Wi : i ∈ Z}.
We define the weight (or mass) of the interval (a, b] at time zero as

M(a,b] = M0(a, b] :=
b∑

i=a+1

Wi.

At time n ≥ 1, we define the weight of the interval (a, b] as

Mn(a, b] := L̄M(b,n) − L̄M(a,n),

where5

L̄M(x,n) := max
z≤x

{
M(z) + Lz(x,n)

}
,

5We assume that lim infk→∞
∑−k

i=−1 Wi

k
> 1 so that the maxima is indeed attained on a compact

set.
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and

M(z) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, if z = 0;
z∑

k=1

Wk, if z > 0;

−
−z∑
k=1

Wk, if z < 0.

The last-passage time L can be recovered by choosing an initial weight configu-
ration with infinite mass at negative sites, and with i.i.d. exponential weights of
parameter one at nonnegative sites.

Time stationary ergodic measures on [0,∞)Z for this Markov system are repre-
sented by i.i.d. collections of exponentials random weights of parameter ρ ∈ (0,1):
if {Wi : i ∈ Z} is distributed according to an i.i.d. collection of Exp(ρ) random
variables, then

Mn
dist.= M0 for all n ≥ 0.

Local equilibrium of the LPP interacting system is described by Busemann func-
tions [5]:

lim
n→∞L

(
0, (n + h,n)

) − L
(
0, (n, n)

) dist.= B↓(
0, (0, h)

) dist.= M0(0, h],
with ρ = 1/2. If one moves the origin to −n := −(n,n) (and starts the system at
time −n), then the convergence becomes a.s.

lim
n→∞L

(−n, (h,0)
) − L(−n,0)

a.s.= L
(
ch, (0, h)

) − L(ch,0) = B↓(
0, (0, h)

)
,

where c↓
h := c↓(0, (0, h)). Thus, the coalescence time also describes how far in the

past one needs to start the process to see local equilibrium in the present. In this
sense, it would be interesting to analyze coalescence times and duality (1.1) in the
framework of relaxation and mixing times for Markov processes.
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