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SPATIAL ASYMPTOTICS FOR THE PARABOLIC ANDERSON
MODELS WITH GENERALIZED TIME–SPACE GAUSSIAN NOISE1

BY XIA CHEN

University of Tennessee

Partially motivated by the recent papers of Conus, Joseph and Khosh-
nevisan [Ann. Probab. 41 (2013) 2225–2260] and Conus et al. [Probab. The-
ory Related Fields 156 (2013) 483–533], this work is concerned with the
precise spatial asymptotic behavior for the parabolic Anderson equation⎧⎨⎩

∂u

∂t
(t, x) = 1

2
�u(t, x) + V (t, x)u(t, x),

u(0, x) = u0(x),

where the homogeneous generalized Gaussian noise V (t, x) is, among other
forms, white or fractional white in time and space. Associated with the Cole–
Hopf solution to the KPZ equation, in particular, the precise asymptotic form

lim
R→∞(logR)−2/3 log max|x|≤R

u(t, x) = 3

4
3

√
2t

3
a.s.

is obtained for the parabolic Anderson model ∂tu = 1
2∂2

xxu + Ẇu with the
(1 + 1)-white noise Ẇ (t, x). In addition, some links between time and space
asymptotics for the parabolic Anderson equation are also pursued.

1. Introduction. This work is devoted to the analysis of the spatial asymp-
totics for the parabolic Anderson model⎧⎨⎩

∂u

∂t
(t, x) = 1

2
�u(t, x) + θV (t, x)u(t, x),

u(0, x) = u0(x),

(1.1)

where V (t, x) is a centered generalized homogeneous Gaussian field with the co-
variance function formally given as

Cov
(
V (s, x),V (t, y)

) = γ0(s − t)γ (x − y), s, t ∈ R
+, x, y ∈ R

d,(1.2)

and θ > 0 is a constant playing a role as coefficient. Some remarkable progress
in this direction has been made in recent papers by Conus, Joseph and Khosh-
nevisan [9] and Conus et al. [10] in the case when the time is white, that is, when

Received January 2014; revised January 2015.
1Supported in part by the Simons Foundation #244767.
MSC2010 subject classifications. 60J65, 60K37, 60K40, 60G55, 60F10.
Key words and phrases. Generalized Gaussian field, white noise, fractional noise, Brownian mo-

tion, parabolic Anderson model, Feynman–Kac representation.

1535

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/15-AOP1006
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


1536 X. CHEN

γ0(·) = δ0(·) (Dirac function) and γ (x) takes a variety of forms. Here we specifi-
cally mention the case when d = 1, γ0(u) = δ0(u) and γ (x) = δ0(x) in which (1.1)
is formally written as⎧⎨⎩

∂u

∂t
(t, x) = 1

2
∂2
xxu(t, x) + θẆ (t, x)u(t, x),

u(0, x) = u0(x)

(1.3)

with V = Ẇ being a space–time white noise, where {W(t, x); t ∈ R
+, x ∈ R} is

a time–space Brownian sheet. Under the bounded initial condition [given in (1.8)
below], Conus, Joseph and Khoshnevisan prove (Theorem 1.3, [9]) in this case that

C−1 ≤ lim inf
R→∞ (logR)−2/3 log max|x|≤R

u(t, x)

(1.4)
≤ lim sup

R→∞
(logR)−2/3 log max|x|≤R

u(t, x) ≤ C a.s.

The importance of this result partially lies in the connection (see [15]) between
(1.3) and the Kardar–Parisi–Zhang (KPZ) equation (see [19] and [20] for its back-
ground in the study of interface)

∂h

∂t
(t, x) = 1

2

∂2h

∂x2 (t, x) + 1

2

(
∂h

∂x
(t, x)

)2

+ θẆ (t, x),

(1.5)
(t, x) ∈R

+ ×R,

through the Hopf–Cole transform

u(t, x) = exp
{
h(t, x)

}
.(1.6)

In particular, (1.4) leads to that max|x|≤R h(t, x) � (logR)2/3 (R → ∞).
The objectives of this work are set up as follows:
First, we shall install the limits for the asymptotics given in (1.4) and in some

other cases considered in [9] and [10]. Further, we shall identify or compute the
values of these limits.

Second, we shall consider a wider class of Gaussian potentials where V (t, x)

can be white or colored in time. Our first theorem (Theorem 1.1) considers the
case of a general γ0(·) matching with a “nice” γ (·). In this paper, however, we
are mainly interested in the cases listed in Table 1 where V (t, x) is fractional
(colored)/white in time and space. In the setting labeled (1) × (II), the Gaussian
field V (t, x) is formally given as

V (t, x) = c
∂d+1WH(t, x)

∂t ∂x1 · · · ∂xd

, (t, x1, . . . , xd) ∈ R
+ ×R

d(1.7)

and is known as the fractional noise, where WH(t, x) is a (d + 1)-parameter
fractional Brownian sheet with the Hurst parameter H = (H0,H1, . . . ,Hd). The
settings (1) × (III), (2) × (II) and (2) × (III) are also interpreted by (1.7) with
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TABLE 1
Fractional/white potentials considered in this paper

Time/space (I) γ (x) = |x|−α (II) γ (x) = ∏d
j=1 |xj |2Hj −2 (III) γ (x) = δ0(x)

(1) γ0(·) = | · |−α0 α0 ≥ 0, 1/2 < H0 ≤ 1, d = 1
(α0 = 2 − 2H0) 0 < α < d, 1/2 < Hj < 1 (1 ≤ j ≤ d),

2α0 + α < 2 2H0 +∑d
j=1 Hj > d + 1

(2) γ0(·) = δ0(·) 0 < α < 2 ∧ d 1/2 < Hj < 1 (j = 1, . . . , d) d = 1

H = (H0,1/2), H = (1/2,H1, . . . ,Hd) and H = (1/2,1/2), respectively. The
case of Riesz potential γ (x) = |x|−α can be interpreted as a fractional noise with
a radially symmetric fractional spatial component and has close ties to some clas-
sical laws in physics, such as Newton’s gravity law and Coulomb’s electrostatics
law.

There are some major differences between regime (1) and regime (2) that lead
to difference in treatment between these two regimes. In regime (1) the solutions
u(t, x) have a Feynman–Kac representation [see (1.9) below] and the solutions in
regime (2) do not. On the other hand, the solutions in regime (1) do not possess
the martingale structure that is related to the mild representation given in (1.33)
below.

Similar to [9] and [10], we assume in (1.1) that u0(·) is deterministic with

0 < inf
x∈Rd

u0(x) ≤ sup
x∈Rd

u0(x) < ∞.(1.8)

The major development of this paper involves two independent random systems:
one is a d-dimensional Brownian motion B(t) and the other is a centered gener-
alized homogeneous Gaussian field V (t, x). Throughout the paper, by Ex and Px ,
we mean that, respectively, the expectation and probability law with respect to the
Brownian motion with B(0) = x. E and P are introduced for the expectation and
probability law with respect to the Gaussian field.

1.1. Results under Feynman–Kac representation. Solving equation (1.1) may
mean different things under different definitions of stochastic integrals. The cases
considered in this subsection yield the Feynman–Kac representation

u(t, x) = Ex

[
exp

{
θ

∫ t

0
V
(
t − s,B(s)

)
ds

}
u0
(
B(t)

)]
, x ∈R

d(1.9)

for the solution of equation (1.1). When V (t, x) has sufficiently nice trajectories,
(1.9) is a well-known fact. This is not a trivial matter in our context, as the Gaussian
field V (t, x) is not even (necessarily) point-wise defined. Mathematically speak-
ing, a generalized centered time–space Gaussian field V can be defined as a ran-
dom linear operator on a Schwartz space S(R+ ×R

d) of rapidly decreasing (at ∞)
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and infinitely smooth functions ϕ(t, x) on R
+ ×R

d with limt→0+ ∂
(n)
t ϕ(t, x) = 0

for all n = 0,1, . . . such that for each ϕ ∈ S(R+ ×R
d), 〈V,ϕ〉 is a centered normal

random variable. In the settings considered in this paper, there are (probably gener-
alized) functions γ0(·) on R and γ (·) on R

d such that for any ϕ,ψ ∈ S(R+ ×R
d)

Cov
(〈V,ϕ〉, 〈V,ψ〉)

(1.10)
=

∫
(R+×Rd )2

γ0(s − t)γ (x − y)ϕ(s, x)ψ(t, y) ds dt dx dy.

This relation is formally written as in the form given in (1.2). Given a probabil-
ity density h ∈ S(R+ × R

d), write hε(s, x) = ε−(d+1)h(ε−1s, ε−1x). Notice that
Vε(t, x) ≡ 〈V,hε(t − ·, x − ·)〉 is a point-wise defined Gaussian field on R

+ ×R
d

and has a sufficient regularity if h(t, x) is smooth enough. The time integral in (1.9)
is defined as the L2-limit∫ t

0
V
(
t − s,B(s)

)
ds

(1.11)
def= lim

ε→0+

∫ t

0
Vε

(
t − s,B(s)

)
ds −L2(�,A,P⊗ Px),

provided that the right-hand side converges in L2(�,A,P⊗ Px).
Conditioning on the Brownian motion, this integral is a centered Gaussian pro-

cess (in t) with the conditional variance∫ t

0

∫ t

0
γ0(r − s)γ

(
B(r) − B(s)

)
dr ds (t ≥ 0).(1.12)

The exponential integrability required by the construction of Feynman–Kac rep-
resentation in (1.9) can be established by the conditional Gaussian property, given
the exponential integrability of the Hamiltonian in (1.12). An interested reader is
referred to [17] for details.

Under the usual conditions (satisfied by the theorems in this subsection), the
Feynman–Kac representation given in (1.9) is a weak solution (Theorem 4.3, [17])
to (1.1) in the sense that∫

Rd
u(t, x)ϕ(x) dx =

∫
Rd

u0(x)ϕ(x) dx + 1

2

∫ t

0

∫
Rd

u(s, x)�ϕ(x) dx ds

+
∫ t

0

∫
Rd

u(s, x)V (s, x)ϕ(x) dx ds

for any C∞ and compactly supported function ϕ(x) on R
d , where the last term is

a Stratonovich stochastic integral (Definition 4.1, [17]).
One such case is when γ0(·) satisfies some local integrability and γ (·) satisfies∫

Rd

(
1 + |λ|δ)γ̂ (λ) dλ < ∞ for some δ > 0,(1.13)
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where γ̂ represents the Fourier transform (which is non-negative, and exists possi-
bly in the distributional sense).

γ̂ (λ) =
∫
Rd

γ (x)eiλ·x dx, λ ∈ R
d .(1.14)

By Fourier inversion

γ (x) − γ (y) = (2π)−d
∫
Rd

(
e−iλ·x − e−iλ·y)γ̂ (λ) dλ.

Therefore, under (1.13) γ (·) is Hölder continuous with the exponent δ given
in (1.13).

THEOREM 1.1. Assume that γ (·) satisfies (1.13) and γ0(·) ≥ 0 satisfies∫ t

0

∫ t

0
γ0(r − s) dr ds < ∞ (t > 0).(1.15)

Then for any t > 0 the weak solution in (1.9) obeys the asymptotic law

lim
R→∞(logR)−1/2 log max|x|≤R

u(t, x)

(1.16)

= θ

(
2dγ (0)

∫ t

0

∫ t

0
γ0(r − s) dr ds

)1/2
a.s.

Theorem 1.1 here is comparable to Theorem 2.5 in [10] under a different as-
sumption that appears to be not so comparable to (1.13).

The other cases are those labeled as (1) in Table 1 where the Gaussian potential
is fractional in time. The legitimacy of the Feynman–Kac representation (1.9) is
secured for (1) × (II) by Theorem 4.3, [17], for (1) × (III) by Theorem 6.2, [17]
and for (1) × (I) by an obvious modification of the approach used in [17].

Let W 1,2(Rd) be the Sobolev space of all functions g on R
d such that g,∇g ∈

L2(Rd). Denote

Ad =
{
g(s, x);g(s, ·) ∈ W 1,2(

R
d),∫

Rd
g2(s, x) dx = 1

∀0 ≤ s ≤ 1 and
∫ 1

0

∫
Rd

∣∣∇xg(s, x)
∣∣2 dx ds < ∞

}
,

(1.17)

E(α0, d, γ ) = sup
g∈Ad

{∫ 1

0

∫ 1

0

∫
Rd×Rd

γ (x − y)

|r − s|α0
g2(s, x)g2(r, y) dx dy dr ds

− 1

2

∫ 1

0

∫
Rd

∣∣∇xg(s, x)
∣∣2 dx ds

}
.

By Lemma 7.2, [6], E(α0, d, γ ) is finite under the assumptions in any of the cases
listed in Table 1 with the label (1).
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Consistently with the parameter α in setting (I), we set

α = 2d − 2
d∑

j=1

Hj(1.18)

in the setting labeled (II). A common property shared by (I) and (II) is the spatial
scaling

γ (cx) = c−αγ (x), x ∈ R
d, c > 0,(1.19)

which plays a major role in the formulation of the following theorem.

THEOREM 1.2. In settings (1) × (I) and (1) × (II) listed in Table 1, we have
that for any t > 0, the weak solution in (1.9) satisfies

lim
R→∞(logR)−2/(4−α) log max|x|≤R

u(t, x)

= 4 − α

4

(
4E(α0, d, γ )

2 − α

)(2−α)/(4−α)

(1.20)

× θ4/(4−α)d2/(4−α)t(4−α−2α0)/(4−α) a.s.

Relation (1.19) remains valid for the setting of γ (·) = δ0(·) and d = 1 with
α = 1. Consistently with (1.17), set

E(α0,1, δ0) = sup
g∈A1

{∫ 1

0

∫ 1

0

∫ ∞
−∞

g2(s, x)g2(r, x)

|r − s|α0
dx dr ds

− 1

2

∫ 1

0

∫ ∞
−∞

∣∣∇xg(s, x)
∣∣2 dx ds

}
.

THEOREM 1.3. In setting (1) × (III), listed in Table 1, we have that for any
t > 0, the weak solution in (1.9) satisfies

lim
R→∞(logR)−2/3 log max|x|≤R

u(t, x)

(1.21)

= 3

4
θ4/3t (3−2α0)/3 3

√
4E(α0,1, δ0) a.s.

For any t > 0, let S([0, t] × R
d) be the sub-class of S(R+ × R

d) consisting
of ϕ supported on [0, t] such that lims→t− ∂

(n)
s ϕ(s, x) = 0 for n = 0,1, . . . . By

comparing the covariance functions one can see that{〈
V,ϕ(t − ·, ·)〉;ϕ ∈ S

([0, t] ×R
d)} d= {〈V,ϕ〉;ϕ ∈ S

([0, t] ×R
d)}.
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Therefore, {
Ex exp

{
θ

∫ t

0
V
(
s,B(s)

)
ds

}
;x ∈R

d

}
(1.22)

d=
{
Ex exp

{
θ

∫ t

0
V
(
t − s,B(s)

)
ds

}
;x ∈R

d

}
.

Together, (1.9), Theorems 1.1 and 1.2 (with u0 ≡ 1) lead to the following spatial
asymptotics for the models of directed polymers.

COROLLARY 1.4. Under the assumption of Theorem 1.1,

lim
R→∞(logR)−1/2 log max|x|≤R

Ex exp
{
θ

∫ t

0
V
(
s,B(s)

)
ds

}
(1.23)

= θ

(
2dγ (0)

∫ t

0

∫ t

0
γ0(r − s) dr ds

)1/2

a.s.

Under the assumption of Theorem 1.2,

lim
R→∞(logR)−2/(4−α) log max|x|≤R

Ex exp
{
θ

∫ t

0
V
(
s,B(s)

)
ds

}

= 4 − α

4

(
4E(α0, d, γ )

2 − α

)(2−α)/(4−α)

(1.24)

× θ4/(4−α)d2/(4−α)t(4−α−2α0)/(4−α) a.s.

Under the assumption of Theorem 1.3,

lim
R→∞(logR)−2/3 log max|x|≤R

Ex exp
{
θ

∫ t

0
V
(
s,B(s)

)
ds

}
(1.25)

= 3

4
θ4/3t (3−2α0)/3 3

√
4E(α0,1, δ0) a.s.

We now consider the special case when α0 = 0 (equivalently, H0 = 1) in The-
orems 1.2 and 1.3. The Gaussian potential V is time-independent. Corresponding
to (1) × (II), for example,

V (x) = c
∂dWH

∂x1 · · · ∂xd

(x1, . . . , xd), x = (x1, . . . , xd) ∈ R
d,

where WH(x1, . . . , xd) is a spatial fractional Brownian sheet with the Hurst index
H = (H1, . . . ,Hd) satisfying 1/2 < H1, . . . ,Hd < 1. As for (1)×(III) with α0 = 0
in Table 1, V (x) = Ẇ (x), a spatial white noise on R.

Write

Fd =
{
g ∈ W 1,2(

R
d);∫

Rd
g2(x) dx = 1

}
.
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By Lemma A.5 in the Appendix, when α0 = 0, E(0, d, γ ) becomes

E(d, γ ) ≡ sup
g∈Fd

{∫
Rd×Rd

γ (x − y)g2(x)g2(y) dx dy

(1.26)

− 1

2

∫
Rd

∣∣∇g(x)
∣∣2 dx

}
.

In the special case when d = 1 and γ (·) = δ0(·),
E(1, δ0) = sup

g∈F1

{∫ ∞
−∞

g4(x) dx − 1

2

∫ ∞
−∞

∣∣g′(x)
∣∣2 dx

}
= 1

6
.(1.27)

Indeed, the original version (page 291, [11]) of the above identity is

sup
g∈F1

{
2
∫ ∞
−∞

g4(x) dx − 1

2

∫ ∞
−∞

∣∣g′(x)
∣∣2 dx

}
= 2

3
.

Replacing g(x) by
√

2g(2x) on the left-hand side, we have that

sup
g∈F1

{
2
∫ ∞
−∞

g4(x) dx − 1

2

∫ ∞
−∞

∣∣g′(x)
∣∣2 dx

}

= 4 sup
g∈F1

{∫ ∞
−∞

g4(x) dx − 1

2

∫ ∞
−∞

∣∣g′(x)
∣∣2 dx

}
.

So we have (1.27).

COROLLARY 1.5. When γ (·) satisfies the assumptions given in Theorem 1.1,

lim
R→∞(logR)−1/2 log max|x|≤R

Ex exp
{
θ

∫ t

0
V
(
B(s)

)
ds

}
(1.28)

= tθ
(
2dγ (0)

)1/2 a.s.

When γ (·) is given in (I) or (II) with 0 < α < 2 ∧ d ,

lim
R→∞(logR)−2/(4−α) log max|x|≤R

Ex exp
{
θ

∫ t

0
V
(
B(s)

)
ds

}
(1.29)

= 4 − α

4
t

(
4E(d, γ )

2 − α

)(2−α)/(4−α)

θ4/(4−α)d2/(4−α) a.s.

When d = 1 and γ (x) = δ0(x),

lim
R→∞(logR)−2/3 log max|x|≤R

Ex exp
{
θ

∫ t

0
Ẇ

(
B(s)

)
ds

}
(1.30)

= 3t

4
θ4/3 3

√
2

3
a.s.,

where Ẇ (x) (−∞ < x < ∞) is an 1-dimensional spatial white noise.
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1.2. Results for mild solutions. We now consider the cases labeled by (2) in
Table 1, in which the Gaussian noise V (t, x) is white in time. The Feynman–Kac
representation (1.9) is no longer available as γ (0) = ∞. Indeed, one can easily
see that the Hamiltonian in (1.12) [given as the conditional variance of the time
integral (1.11) that would be conditionally Gaussian if defined] diverges in this
case. In spite of this, the parabolic Anderson equation (1.1) can be solvable in a
slightly different sense which is briefly described below; we refer to [12, 18] and
[23] for details.

The spatial covariance functions considered here have the representation

γ (x) =
∫
Rd

K(x − y)K(y)dy, x ∈ R
d,

where K(x) is symmetric and nonnegative; see (2.11) below. Assume that the spa-
tial covariance function γ (·) satisfies γ (·) ≥ 0 and the Dalang condition∫

Rd

γ̂ (λ)

1 + |λ|2 dλ < ∞,(1.31)

where γ̂ (·) is the Fourier transform of γ (·); see (1.14). Notice that γ̂ (·) ≥ 0 as γ (·)
is nonnegative definite.

Let W(t, x) be a (d + 1)-parameter Brownian sheet, and consider the Gaussian
field

Mt(ϕ) =
∫ t

0

∫
Rd

[∫
Rd

ϕ(y − x)K(y)dy

]
W(ds dx), ϕ ∈ S

(
R

d),(1.32)

where S(Rd) is the Schwartz space of the infinitely smooth and rapidly decaying
functions on R

d .
By the theory of Walsh (Chapter 2, [23]) and Dalang [12], this field can be

extended into a martingale measure M(t,A) = Mt(1A) such that up to the distri-
butional equivalence

〈V,ϕ〉 =
∫
R+×Rd

ϕ(s, x)M(ds dx), ϕ ∈ S
(
R

+ ×R
d).

By the Dalang–Walsh theory, (1.31) ensures the existence and uniqueness (with
a.s. equivalence) of the solution to the parabolic Anderson equation in the sense
that

u(t, x) = (pt ∗ u0) + θ

∫ t

0

∫
Rd

pt−s(y − x)u(s, y)M(ds, dy),(1.33)

where pt is the density function of the d-dimensional Brownian motion B(t),
and the stochastic integral on the right-hand side is taken in the sense of Itô–
Skorokhod. We point out that u(t, x) ≥ 0 in regime (2), labeled as u(t, x) ≥ 0
in Table 1. Indeed, our claim follows from the following facts: (1) the unique-
ness of solution, which implies that u(t, x) ≡ 0 if u0(0) ≡ 0; (2) the monotonicity
in initial condition. In comparison to the zero solution, we conclude the solution
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u(t, x) ≥ 0 if u0(x) > 0. The monotonicity in initial condition was established in
[21] and [22] in the setting of (2)× (III). See (1.41) below for its generalization to
whole regime (2).

An alternative but equivalent view is to interpret the product in (1.1) between
V (t, x) and u(t, x) as the Wick product; see [18] for an over view of the Wick
product. When γ (·) is bounded and continuous, the solution has a “renormalized”
Feynman–Kac representation,

u(t, x) = e−(θ2t/2)γ (0)
Ex exp

[
exp

{
θ

∫ t

0
V
(
t − s,B(s)

)
ds

}
u0
(
B(t)

)]
.(1.34)

We refer to the argument used in the proof of Theorem 7.2, [17] for a proof
of (1.34). This representation is no longer valid whenever γ (0) = ∞. In the cases
labeled (2) in Table 1, however, the solution u(t, x) can be obtained as the L2-limit
limε→0+ uε(t, x) of uε(t, x), represented in (1.34), that appears as the solution
of (1.1), with V (t, x) being replaced by the Gaussian potential Vε(t, x) of the
modified spatial covariance; see, for example, [16] for details.

By comparing (1.9) and (1.34), we observe some obvious differences between
solutions in the Stratonovich sense (1.9) and in the Skorokhod sense (1.34). On
the other hand, the solutions given in (1.9) and (1.34) follow the same limiting
behavior as that stated in Theorem 1.1 for the case γ0(·) = δ0(·) in which (1.16)
becomes

lim
R→∞(logR)−1/2 log max|x|≤R

u(t, x) = θ
(
2dtγ (0)

)1/2 a.s.,(1.35)

which is the precise form of the limit law stated in Theorem 2.5, [10].

THEOREM 1.6. In settings (2) × (I) and (2) × (II) listed in Table 1,

lim
R→∞(logR)−2/(4−α) log max|x|≤R

u(t, x)

(1.36)

= 4 − α

4

(
4tE(d, γ )

2 − α

)(2−α)/(4−α)

θ4/(4−α)d2/(4−α) a.s.,

where E(d, γ ) is the variation given in (1.26).

THEOREM 1.7. When d = 1, γ0(·) = δ0(·) and γ (·) = δ0(·) [i.e., (2)× (III) in
Table 1],

lim
R→∞(logR)−2/3 log max|x|≤R

u(t, x) = 3

4
θ4/3 3

√
2t

3
a.s.(1.37)

In the context of Theorem 1.7, the parabolic Anderson equation (1.1) becomes
(1.3), which connects the KPZ equation given in (1.5) through the Hopf–Cole
transform (1.6) in some proper sense.
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COROLLARY 1.8. Under the deterministic initial condition

−∞ < inf
x∈Rh0(x) ≤ sup

x∈R
h0(x) < ∞,

the Hopf–Cole solution h(t, x) to the KPZ equation in (1.5) satisfies

lim
R→∞(logR)−2/3 max|x|≤R

h(t, x) = 3

4
θ4/3 3

√
2t

3
a.s.(1.38)

1.3. Discussion and comment. As expected, the spatial asymptotics given in
the main theorems are mainly determined by the spatial covariance function γ (·),
and more specifically, by the scaling rate α of γ (·) [see (1.19)] when it comes to
the settings in Table 1. On the other hand, cases (1) and (2) (labeled in Table 1) re-
quire different approaches, as we shall see in Sections 2 and 3. The tail probability
asymptotics (Theorems 5.1–5.5) that support the theorems listed above have their
independent values, so we treat them as a part of major theorems of this paper and
list them in Section 5.

The case of time-independence and the case of white time are two extremes:
the least singular and the most singular, respectively. As we have seen, the former
is associated to α0 = 0. Because the Fourier transform of γ0 = |u|−α0 is γ̂0(λ) =
c(α0)|λ|−(1−α0) (λ ∈ R

d ) and δ̂0(λ) = 1, the function γ0(·) = δ0(·) is naturally
classified as the extension of γ0(·) = | · |−α0 (0 ≤ α0 < 1) to α0 = 1. A big surprise
is that these two extreme settings share the same variation E(d, γ ) while the cases
with 0 < α0 < 1 are formulated by the different variation E(α0, d, γ ). In view of
the moment representation (3.10) below, and knowing that the difference between
two independent Brownian motions is a Brownian motion, one would bet on

sup
g∈Fd

{∫
Rd

γ (x)g2(x) dx − 1

2

∫
Rd

∣∣∇g(x)
∣∣2 dx

}
rather than E(d, γ ), as the variation relevant to Theorem 1.6 and Theorem 1.7. See
Remark 3.8 for the discussion.

A central piece of the approach that allows us to compute the limit values is the
precise high moment asymptotics

logEu(t,0)m (m → ∞)

given in Section 3. For the cases labeled (1) in Table 1, our treatment starts at
the moment representation (3.1). The problem can be essentially reduced to the
long-term asymptotics for the annealed moment, to which some results and ideas
developed in the recent work [6] apply. Perhaps the hardest part of this paper is
the computation of the high moment, when V (t, x) is white in time [i.e., (2) in
Table 1]. Unlike the cases labeled (1) in Table 1, the high moment asymptotics
in (2) do not agree with the long-term asymptotics such as logEu(t,0)2 (t → ∞)
at the constant level; see Remark 3.8 below for details. Under a proper time scaling,
the problem becomes a combination of high moment and large time with the ratio
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tm � m2/(2−α). The package of methodology includes the Feynman–Kac type large
deviations for time-dependent additive functionals, newly developed in [6], some
ideas along the line of probability in Banach spaces and smooth approximation at
the exponential scale.

Another novelty of the paper comes from the proof of the lower bounds re-
quested by the major theorems listed above, even with the large deviation esti-
mates given in Theorems 5.1–5.5 below. The relevant idea is clear and simple in
principle: when the space points x1, . . . , xn are sufficiently spread out, the ran-
dom variables u(t, x1), . . . , u(t, xn) are close to being independent. In practice,
carrying this idea out is not easy at all, as indicated by the delicate steps taken in
[9] and [10]. We adopt this idea and the estimate of localization developed in [9]
and [10], and use them in our proof (given in Section 2.2) in the setting of Theo-
rems 1.6 and 1.7. This treatment does not apply to Theorems 1.1, 1.2 and 1.3 due
to its heavy dependence on the martingale structure associated to equation (1.33)
that defines the mild solution. The proof (given in Section 2.1) of the lower bounds
for Theorems 1.1, 1.2 and 1.3 relies on Gaussian property in a substantial way and
appears to be new in methodology.

In comparing their estimates of the high moment to the literature on intermit-
tency, Conus et al. (Remark 9.2, [10]) raise the issue of the link between the time
and spatial asymptotics. In this paper, we pursue this link on two fronts: the first
is the connection between the long term asymptotics for the annealed moments
of u(t,0) and the high moment asymptotics for u(t,0). Indeed, the main devel-
opment of our argument in Section 3 is to utilize the link between annealed in-
termittency and high moment asymptotics. We observe a “perfect match” when it
comes to the Feynman–Kac solution given by (1.9) and a small but interesting gap
when V (t, x) is white in time. We refer the reader to Remark 3.8 below. Our sec-
ond concern is the connection between the quenched spatial asymptotics and the
quenched time asymptotics. In Section 6 we demonstrate our finding in the setting
of time-independence.

We now comment on the relation between the current paper and [9] and [10].
Whenever possible, we adopt the results and ideas in [9] and [10] to our setting.
The list includes the localization (Section 2.2) and estimate for modulus conti-
nuity (Lemma 4.1) in the case when V (t, x) is white in time. Estimation by the
martingale bound, a substantial idea in [9] and [10], does not apply to the setting
labeled (1) in Table 1. The use of the moment representations (3.1) and (3.10), to-
gether with some newly developed ideas in large deviations for time–space Hamil-
tonians, allow us to obtain a form of high moment asymptotics sharper than those
achieved in [9] and [10]. On the other hand, the dependence on the moment repre-
sentations (3.1) and (3.10) makes our method unsuitable to the nonlinear stochastic
heat equations labeled (SHE) in [9] and [10].

In view of the assumption (1.8) on the initial condition and the Feynman–Kac
representation (1.9), we have

u0Ex exp
{∫ t

0
V
(
t − s,B(s)

)
ds

}
≤ u(t, x) ≤ u0Ex exp

{∫ t

0
V
(
t − s,B(s)

)
ds

}



PARABOLIC ANDERSON MODELS 1547

in the context of Theorems 1.1, 1.2 and 1.3 where u0 = infx∈Rd u0(x) and u0 =
supx∈Rd u0(x). Or,

u0ũ(t, x) ≤ u(t, x) ≤ u0ũ(t, x) a.s.,(1.39)

where ũ(t, x) is the solution of⎧⎨⎩
∂u

∂t
(t, x) = 1

2
�u(t, x) + V (t, x)u(t, x),

u(0, x) = 1.

(1.40)

Relation (1.39) remains in the setting of Theorems 1.6 and 1.7. Indeed, the
monotonicity of the solution of (1.1) in the initial value u0 was established by
Mueller [21] in the special setting γ (x) = δ0(x). This should be true in a more
general setting. More precisely, let ũ(t, x) be the solution of (1.1) in the sense
of (1.33) with u0(x) being replaced by ũ0(x). We claim that

ũ0(x) ≤ u0(x)
(∀x ∈ R

d)
(1.41)

�⇒ ũ(t, x) ≤ u(t, x) a.s. ∀(t, x) ∈ R
+ ×R

d .

In fact, this becomes obvious in the case when γ (x) is well bounded, in view
of (1.34). For the cases labeled (2) in Table 1, it is well known [16] that u(t, x) can
be obtained as the L2-limit

u(t, x) ≡ lim
ε→0+ uε(t, x),

where uε(t, x) is the solution of (1.1) with the modified Gaussian potential
Vε(t, x) replacing V (t, x) that justifies the renormalized Feynman–Kac represen-
tation (1.34). Consequently, the monotonicity in u0(x) stated in (1.41) passes to
u(t, x) through the limit.

Let u(t, x) and u(t, x) be the solutions of (1.1), corresponding to the initial
conditions u0(x) = u0 and u0(x) = u0, respectively. By (1.41), u(t, x) ≤ u(t, x) ≤
u(t, x) a.s. for every (t, x) ∈ R

+ ×R
d . By the linearity of (1.1), u(t, x) = u0ũ(t, x)

and u(t, x) = u0ũ(t, x). This leads to (1.39).
By (1.39), it is sufficient to establish our theorems for ũ(t, x). Equivalently,

we replace (1.1) by (1.40) in the rest of the paper. This reduction results in the
stationarity of u(t, x) in x which substantially simplifies our argument.

In the following proof, we often treat Theorems 1.2 and 1.3 together; likewise,
we treat Theorems 1.6 and 1.7 together. In view of (1.27), Theorems 1.3 and 1.7
can be viewed as, respectively, Theorems 1.2 and 1.6 in the special case when
d = 1 and α = 1. This agreement will be reinforced throughout our argument in
order to have a more uniform treatment.

The rest of the paper is organized as follows: Section 2 is devoted to the lower
bounds for Theorems 1.1, 1.2, 1.3, 1.6 and 1.7. Section 3 is concerned with the
high moment asymptotics logu(t,0)m as m → ∞, which appears to be most crit-
ical to the main development of this work. In Section 4, the modulus continuity
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of u(t, x) in x is established. With the high moment asymptotics and the modulus
continuity, we are able to compute the exact tail asymptotics for logu(t,0) and
log maxx∈D u(t, x) (with bounded D ⊂ R

d ) in Section 5, where the upper bounds
requested by Theorems 1.1, 1.2, 1.3, 1.6 and 1.7 are established as a direct con-
sequence of these tail estimates. In Section 6, we compare the quenched spatial
asymptotics to existing quenched time asymptotics in the case of time-independent
Gaussian potential. Finally, we prove some auxiliary lemmas needed for this paper
in the Appendix.

2. Lower bounds. The proof of the lower bound for a limit law usually ap-
pears to be the most revealing side. In this section we establish the lower bounds
requested by Theorems 1.1, 1.2, 1.3, 1.6 and 1.7.

2.1. The setting of Theorems 1.1, 1.2 and 1.3. Let m = m(R) ≥ 1 be an integer
valued function satisfying

m �
⎧⎨⎩
√

logR, in the context of Theorem 1.1,

(logR)(2−α)/(4−α), in the context of Theorems 1.2 and 1.3
(2.1)

as R → ∞. Let {Bk(t)}k≥1 be an i.i.d. sequence of d-dimensional Brownian mo-
tions with Bk(0) = 0 (k = 1,2, . . .). The notation E0 is extended to the expectation
with respect to {Bk(t)}k≥1. Write τk for the exit time of Bk(s),

τk = inf
{
s ≥ 0; ∣∣Bk(s)

∣∣ ≥ 1
}
, k = 1,2, . . . .

In view of (1.9), for any x ∈R
d ,

u(t, x)m = E0 exp

{
θ

m∑
k=1

∫ t

0
V
(
t − s, x + Bk(s)

)
ds

}

≥ E0

[
exp

{
θ

m∑
k=1

∫ t

0
V
(
t − s, x + Bk(s)

)
ds

}
;min
k≤m

τk ≥ t

]

≥ E0

[
exp

{
λθ

√
logRSm(t)

}; ξm(t, x) ≥ λ
√

logRSm(t),min
k≤m

τk ≥ t
]
,

where λ > 0 is a constant less than but close to
√

2d ,

ξm(t, x) =
m∑

k=1

∫ t

0
V
(
t − s, x + Bk(s)

)
ds,

Sm(t) =
(

m∑
j,k=1

∫ t

0

∫ t

0
γ0(r − s)γ

(
Bj(r) − Bk(s)

)
dr ds

)1/2

.



PARABOLIC ANDERSON MODELS 1549

Set NR = NZ
d ∩ B(0,R), where B(0,R) = {x ∈ R

d; |x| ≤ R} and N > 0 is
large but fixed. We have

max|x|≤R
u(t, x)m

≥ max
z∈NR

u(t, z)m ≥ #(NR)−1
∑

z∈NR

u(t, z)m

≥ #(NR)−1
E0

[
exp

{
λθ

√
logRSm(t)

};
max
z∈NR

ξm(t, z) ≥ λ
√

logRSm(t),min
k≤m

τk ≥ t
]

= #(NR)−1
E0

(
Zm(R)1

{
max
z∈NR

ξm(t, z) ≥ λ
√

logRSm(t)
})

,

where

Zm(R) = exp
{
λθ

√
logRSm(t)

}
1{mink≤m τk≥t}.

The big power m is set to undo the price #(NR)−1 paid for pushing maxz into
the expectation. Indeed,

max|x|≤R
u(t, x)

(2.2)

≥ #(NR)−1/m
{
E0

(
Zm(R)1

{
max
z∈NR

ξm(t, z) ≥ λ
√

logRSm(t)
})}1/m

.

Given that #(NR) ≤ CRd for a universal C > 0, (2.1) implies the bounds

#(NR)−1/m =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

{−o(
√

logR)
}
,

in the context of Theorem 1.1,

exp
{−o

(
(logR)2/(4−α))},

in the context of Theorems 1.2 and 1.3,

(2.3)

which are negligible in comparison to the asymptotic order we try to establish.
Write

ηR = (
E0Zm(R)

)−1
E0

(
Zm(R)1

{
max
z∈NR

ξm(t, z) < λ
√

logRSm(t)
})

.

We have

E0

(
Zm(R)1

{
max
z∈NR

ξm(t, z) ≥ λ
√

logRSm(t)
})

= (
E0Zm(R)

)
(1 − ηR).(2.4)

An important step is to establish

lim
n→∞η2n = 0 a.s.(2.5)
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For any ε > 0,

P{ηR ≥ ε} ≤ ε−1
EηR

= (
εE0Zm(R)

)−1
E0 ⊗E

(
Zm(R)1

{
max
z∈NR

ξm(t, z) < λ
√

logRSm(t)
})

(2.6)

= (
εE0Zm(R)

)−1
E0

(
Zm(R)P

{
max
z∈NR

ξm(t, z) < λ
√

logRSm(t)|B
})

,

where B is the σ -algebra generated by the Brownian motions {Bk(s)}k≥1.
Conditioning on the Brownian motions, {ξm(t, z); z ∈ NR} is a mean zero, and

identically distributed Gaussian family with the common (conditional) variance
S2

m(t). Further, for any z, z′ ∈ NR ,

Cov
(
ξm(t, z), ξm

(
t, z′)|B)

=
m∑

j,k=1

∫ t

0

∫ t

0
γ0(r − s)γ

((
z − z′)+ (

Bj(r) − Bk(s)
))

dr ds.

We now claim that for any 0 < ρ < 1, one can take N > 0 sufficiently large so that
on the event {mink≤m τk ≥ t},

γ
((

z − z′)+ (
Bj(r) − Bk(s)

)) ≤ ργ
(
Bj(r) − Bk(s)

)
,

(2.7)
z, z′ ∈ NR, z �= z′, j, k = 1, . . . ,m.

Regarding this claim, the setting associated to (II), labeled in Table 1, is the
most delicate case among all due to the un-boundedness of γ (·) on each coordinate
super plane, so we treat it in detail. Let the independent 1-dimensional Brownian
motions B1

j (s), . . . ,Bd
j (s) be the components of Bj(s), and write z = (z1, . . . , zd)

for z ∈ NR . Set αj = 2 − 2Hj (j = 1, . . . , d). By assumption we have that αj > 0
(j = 1, . . . , d). Write

J
(
z, z′) = {

1 ≤ i ≤ d; zi = z′
i

}
, z, z′ ∈ NR.

For i /∈ J (z′, z),∣∣(zi − z′
i

)+ Bi
j (r) − Bi

k(s)
∣∣ ≥ N − 2 ≥ N − 2

2

∣∣Bi
j (r) − Bi

k(s)
∣∣.

Consequently,

γ
((

z − z′)+ (
Bj(r) − Bk(s)

))
=

d∏
i=1

∣∣(zi − z′
i

)+ Bi
j (r) − Bi

k(s)
∣∣−αi

≤
(

2

N − 2

)α′ d∏
i=1

∣∣Bi
j (r) − Bi

k(s)
∣∣−αi

≤
(

2

N − 2

)min1≤i≤d αi

γ
(
Bj(r) − Bk(s)

)
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for every pair z, z′ ∈ Nd with z �= z′, where the last step follows from

α′ ≡ ∑
i /∈J (z,z′)

αi ≥ min
1≤i≤d

αi.

Thus, our assertion (2.7) holds in setting (II).
The proof of (2.7) in other cases is similar, but easier, due to the fact that

lim|x|→∞ γ (x) = 0 which is automatic for the type-(I) and type-(III) γ (·) and a
consequence of assumption (1.13) and the Fourier inversion

γ (x) = (2π)−d
∫
Rd

γ̂ (λ)e−iλ·x dλ

in the setting of Theorem 1.1, according to Riemann’s lemma.
By (2.7),

Cov
(
ξm(t, z), ξm

(
t, z′)|B) ≤ ρS2

m(t).(2.8)

Recall that λ <
√

2d . Take u,ρ > 0 sufficiently small so

(1 + 2ρ)(λ + u)2

2
< d and

u2

4ρ
> d + 1.

Recall (Lemma 4.2, [5]) that for a mean-zero n-dimensional Gaussian vector
(ξ1, . . . , ξn) with identically distributed components,

ρ ≡ max
i �=j

∣∣Cov(ξi, ξj )
∣∣/Var(ξ1) ≤ 1

2
,

and for any A,B > 0,

P

{
max
k≤n

ξk ≤ A
}

≤ (
P
{
ξ1 ≤ √

1 + 2ρ(A + B)
})n + P

{
U ≥ B/

√
2ρ Var(ξ1)

}
,

where U is a standard normal random variable. Applying this inequality condi-
tionally with A = λSm(t)

√
logR and B = uSm(t)

√
logR and noticing S2

m(t) =
Var(ξm(t,0)|B), we have

P

{
max
z∈NR

ξm(t, z) < λ
√

logRSm(t)|B
}

≤ (
P
{
U ≤ √

1 + 2ρ(λ + u)
√

logR
})#(NR) + P

{
U ≥ (u/

√
2ρ)

√
logR

}
≤ (

1 − exp
{−(d − v) logR

})C−1Rd + exp
{−(d + 1) logR

}
= exp

{−(
1 + o(1)

)
C−1Rv}+ R−(d+1) ≤ CR−(d+1)

for large R > 0, where v > 0 is independent of R. Bringing this to (2.6) we have
that P{ηR ≥ ε} ≤ Cε−1R−(d+1) for large R. In particular, (2.5) holds by the Borel–
Cantelli lemma.
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By the monotonicity of max|x|≤R u(t, x) in R and by (2.2), (2.3) and (2.4),
the limit along R = 2n established in (2.5) is sufficient for the lower bounds for
Theorems 1.1, 1.2 and 1.3 if we can show that [recall that m = m(R) → ∞ as
R → ∞]

lim inf
λ→(

√
2d)−

lim inf
R→∞ m−1(logR)−1/2 logE0Zm(R)

(2.9)

≥ θ

(
2dγ (0)

∫ t

0

∫ t

0
γ0(r − s) dr ds

)1/2

in the context of Theorem 1.1 and that

lim inf
λ→(

√
2d)−

lim inf
R→∞ m−1(logR)−2/(4−α) logE0Zm(R)

≥ 4 − α

4

(
4E(α0, d, γ )

2 − α

)(2−α)/(4−α)

(2.10)

× θ4/(4−α)d2/(4−α)t(4−α−2α0)/(4−α)

in the context of Theorems 1.2 and 1.3. By now, the problem of the almost sure
limits has been reduced to pursuing the deterministic limits. Unlike setting (2),
the discussion here does not rely on, but contributes to the development in later
sections.

We now prove (2.9). By the continuity of γ (x) at x = 0, given ε > 0 one can
take 0 < δ < 1 sufficiently small so that γ (x) ≥ γ (0) − ε as long as |x| ≤ 2δ. Set

τk(δ) = inf
{
s ≥ 0; ∣∣Bk(s)

∣∣ ≥ δ
}
.

By the definition of Zm(R),

Zm(R) ≥ exp
{
λθm

√
logR

((
γ (0) − ε

) ∫ t

0

∫ t

0
γ0(r − s) dr ds

)1/2}
× P0

{
min
k≤m

τk(δ) ≥ t
}
.

Therefore, (2.9) follows from the bound given by the following relation:

P0

{
min
k≤m

τk(δ) ≥ t
}

=
(
P0

{
max
s≤t

∣∣B(s)
∣∣ ≤ δ

})m
.

It remains to prove (2.10). First, by the Brownian scaling

E0Zm(R) = E0

[
exp

{
θλ

√
logR

(
m∑

j,k=1

∫ t

0

∫ t

0

γ (Bj (r) − Bk(s))

|r − s|α0
dr ds

)1/2}
;

min
k≤m

τk ≥ t

]
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= E0

[
exp

{
θλt

α0/2
R

(
m∑

j,k=1

∫ tR

0

∫ tR

0

γ (Bj (r) − Bk(s))

|r − s|α0
dr ds

)1/2}
;

min
k≤m

τ̃k ≥ tR

]
,

where

tR = t (4−α−2α0)/(4−α)(logR)2/(4−α)

and

τ̃k = inf
{
s ≥ 0; ∣∣Bk(s)

∣∣ ≥ t−α0/(4−α)(logR)1/(4−α)}.
Notice the representations

|u|−α0 = C0

∫
R

|v|−(1+α0)/2|v − u|−(1+α0)/2 dv and
(2.11)

γ (x) =
∫
Rd

K(y)K(y − x)dy,

where C0 > 0 is a constant independent of u and the function K(x) ≥ 0 is a posi-
tive constant multiple of

|x|−(d+α)/2,

d∏
i=1

|xi |−(1+αi)/2 and δ0(x),

in connection to, respectively, the space covariances γ (·) of type-(I), type-(II) and
type-(III) (labeled in Table 1). This leads to

t
α0/2
R

(
m∑

j,k=1

∫ tR

0

∫ tR

0

γ (Bj (r) − Bk(s))

|r − s|α0
dr ds

)1/2

=
(

m∑
j,k=1

∫ tR

0

∫ tR

0

γ (Bj (r) − Bk(s))

|t−1
R (r − s)|α0

dr ds

)1/2

=
(
C0

∫
R×Rd

[
m∑

j=1

∫ tR

0

∣∣u − t−1
R s

∣∣−(1+α0)/2
K
(
x − Bj(s)

)
ds

]2

dudx

)1/2

.

Let f (u, x) be a bounded, continuous and locally supported function on R × R
d

with ‖f ‖2 = 1. By the Cauchy–Schwarz inequality, the right-hand side of the
above equation is no less than√

C0

∫
R×Rd

f (u, x)

[
m∑

j=1

∫ tR

0

∣∣u − t−1
R s

∣∣−(1+α0)/2
K
(
x − Bj(s)

)
ds

]
dudx

= √
C0

m∑
j=1

∫ tR

0
f̄

(
s

tR
,Bj (s)

)
ds,
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where

f̄ (s, x) =
∫
R×Rd

f (u, y)|u − s|−(1+α0)/2K(y − x)dudy.

Summarizing our computation and by independence we have

E0Zm(R) ≥
(
E0

[
exp

{
θλ

√
C0

∫ tR

0
f̄

(
s

tR
,B(s)

)
ds

}
; τ̃ ≥ tR

])m

.(2.12)

According to Proposition 3.1 and (3.18) in [6], for a bounded open domain
D ⊂ R

d containing 0, and for a bounded function h(s, x) defined on [0,1] × R
d

that is continuous in x and equicontinuous (over x ∈ R
d ) in s,

lim
t→∞

1

t
logE0

[
exp

{∫ t

0
h

(
s

t
,B(s)

)
ds

}
; τD ≥ t

]
(2.13)

= sup
g∈Ad (D)

{∫ 1

0

∫
D

h(s, x)g2(s, x) dx ds − 1

2

∫ 1

0

∫
D

∣∣∇xg(x)
∣∣2 dx ds

}
,

where τD = inf{s ≥ 0;B(s) /∈ D} and Ad(D) is the subspace of Ad consisting of
the functions g(s, x) vanishing for x /∈ D. Applying this to (2.12) we can get

lim inf
R→∞

1

mtR
logE0Zm(R)

≥ sup
g∈Ad

{
θλ

√
C0

∫ 1

0

∫
Rd

f̄ (s, x)g2(s, x) dx ds(2.14)

− 1

2

∫ 1

0

∫
Rd

∣∣∇xg(s, x)
∣∣2 dx ds

}
.

By Fubini’s theorem∫ 1

0

∫
Rd

f̄ (s, x)g2(s, x) dx ds

=
∫
R×Rd

f (u, y)

[∫ 1

0

∫
Rd

|u − s|−(1+α0)/2K(y − x)g2(s, x) dx ds

]
dudy.

We now take the supremum over f on the right-hand side of (2.14). Notice that
the supremums over g and over f are commutative and that for any dense subset
set S of the unit sphere of L2(R×R

d), by the Hahn–Banach theorem,

sup
f ∈S

∫
R×Rd

f (u, x)h(u, x) dx =
(∫

R×Rd

∣∣h(u, x)
∣∣2 dx du

)1/2

,

h ∈ L2(
R×R

d
)
.
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Therefore, the right-hand side of (2.14) becomes

sup
g∈Ad

{
θλ

(
C0

∫
R×Rd

[∫ 1

0

∫
Rd

|u − s|−(1+α0)/2

× K(y − x)g2(s, x) dx ds

]2

dudy

)1/2

− 1

2

∫ 1

0

∫
Rd

∣∣∇xg(x)
∣∣2 dx ds

}

= sup
g∈Ad

{
θλ

(∫ 1

0

∫ 1

0

∫
Rd×Rd

γ (x − y)

|r − s|α0
g2(r, x)g2(s, y) dx dy

)1/2

− 1

2

∫ 1

0

∫
Rd

∣∣∇xg(x)
∣∣2 dx ds

}
,

where the equality follows from Fubini’s theorem and the relations in (2.11). By
rescaling the space variable (Lemma 4.1, [6]) this variation is further equal to

(θλ)4/(4−α) sup
g∈Ad

{(∫ 1

0

∫ 1

0

∫
Rd×Rd

γ (x − y)

|r − s|α0
g2(r, x)g2(s, y) dx dy

)1/2

− 1

2

∫ 1

0

∫
Rd

∣∣∇xg(x)
∣∣2 dx ds

}

= (θλ)4/(4−α) 4 − α

4
2−α/(4−α)

(
2E(α0, d, γ )

2 − α

)(2−α)/(4−α)

,

where the equality follows from Lemma 7.2, [6].
Summarizing our computation since (2.14),

lim inf
R→∞

1

mtR
logE0Zm(R)

(2.15)

≥ (θλ)4/(4−α) 4 − α

4
2−α/(4−α)

(
2E(α0, d, γ )

2 − α

)(2−α)/(4−α)

.

This clearly leads to (2.10).

2.2. The setting of Theorems 1.6 and 1.7. Our approach is based on the
method of localization developed in [9] and [10]. The construction is specifically
designed for the scheme (2) × (I) in [10] and for (2) × (III) in [9]. This method
also works for (2) × (II) with minor modification. In the following we carry out
this approach.

Given β > 0 set

lβ(x) =
d∏

j=1

(
1 − |xj |

β

)+
and Kβ(x) = K(x)lβ(x),
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where K(x) is given in (2.11). Let Mβ(t,A) be the martingale measure con-
structed through (1.32) with K(x) being replaced by Kβ(x). For each n ≥ 1, define
U(β,n)(t, x) as the nth Picard iteration given in the following integral equation:
U(β,0) = 1 and

U(β,n+1)(t, x) = 1 + θ

∫ t

0

∫
[x−β

√
t,x+β

√
t]d

pt−s(y − x)U(β,n)(s, y)Mβ(ds dy)

n = 1,2, . . . .

In [9] and [10], the process Uβ(t, x) ≡ U(β,[logβ]+1)(t, x) is used to proximate
u(t, x), where β = β(R) increases in R with a suitable speed. By [10], Lemma 9.8,
for any {x(k)} ⊂ R

d with |x(j) − x(k)| ≥ 2β([logβ] + 1)(1 + √
t), {Uβ(t, x(k))} is

an i.i.d. sequence. By [10], Lemma 9.7, for every η ∈ (0,1 ∧ α) there are finite
and positive constants li = li(d,α, η) (i = 1,2) such that uniformly for β > 0 and
m ≥ 2

E
∣∣u(t,0) − Uβ(t,0)

∣∣m ≤
(

l2m

βη

)m/2

exp
{
l1m

(4−α)/(2−α)}.(2.16)

Let η be fixed, and set β = exp{M(logR)2/(4−α)} where M > 0 is large but
fixed (will be specified later). Let N = β([logβ] + 1)(1 + √

t) and NR = NZ
d ∩

B(0,R − N). By the fact that α < 2, #(NR) = CRd+o(1) (R → ∞) where the
constant C > 0 does not depend on R.

Given ε > 0

P

{
log max

z∈NR

∣∣u(t, z) − Uβ(t, z)
∣∣ ≥ ε(logR)2/(4−α)

}
≤ #(NR)P

{
log

∣∣u(t,0) − Uβ(t,0)
∣∣ ≥ ε(logR)2/(4−α)}.

By Chebyshev’s inequality and the moment bound given in (2.16),

P
{
log

∣∣u(t,0) − Uβ(t,0)
∣∣ ≥ ε(logR)2/(4−α)}

≤ exp{−ε logR}E∣∣u(t,0) − Uβ(t,0)
∣∣(logR)(2−α)/(4−α)

≤ exp{−ε logR} exp
{−1

2

(
ηM − l1 − o(1)

)
logR

}
when R is large. Make M sufficiently large, and we have

P
{
log

∣∣u(t,0) − Uβ(t,0)
∣∣ ≥ ε(logR)2/(4−α)} ≤ R−(d+2)(2.17)

for large R. Consequently,

P

{
log max

z∈NR

∣∣u(t, z) − Uβ(t, z)
∣∣ ≥ ε(logR)2/(4−α)

}
≤ R−2(2.18)

for large R. By the Borel–Cantelli lemma

lim sup
n→∞

(
log 2n)−2/(4−α) log max

z∈N2n

∣∣u(t, z) − Uβ(2n)(t, z)
∣∣ = 0 a.s.(2.19)
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On the other hand

max
z∈NR

∣∣Uβ(t, z)
∣∣ ≤ max

z∈NR

u(t, z) + max
z∈NR

∣∣u(t, z) − Uβ(t, z)
∣∣.

Consequently,

log max
z∈NR

∣∣Uβ(t, z)
∣∣

(2.20)
≤ log 2 + max

{
log max

z∈NR

u(t, z), log max
z∈NR

∣∣u(t, z) − Uβ(t, z)
∣∣}.

For any λ > 0 satisfying

λ + ε <
4 − α

4

(
4tE(d, γ )

2 − α

)(2−α)/(4−α)

θ4/(4−α)d2/(4−α),

by independence

P

{
log max

z∈NR

∣∣Uβ(t, z)
∣∣ ≤ λ(logR)2/(4−α)

}
= (

1 − P
{
log

∣∣Uβ(t,0)
∣∣ > λ(logR)2/(4−α)})#(NR)

.

By (2.17)

P
{
log

∣∣Uβ(t,0)
∣∣ > λ(logR)2/(4−α)}

≥ P
{
logu(t,0) > (λ + ε)(logR)2/(4−α)}− R−(d+2).

By the large deviation result given in (5.7), Theorem 5.4 below,

P
{
logu(t,0) > (λ + ε)(logR)2/(4−α)} ≥ exp

{−(d − δ) logR
}

for sufficiently large R. Thus we have established the bound

P

{
log max

z∈NR

∣∣Uβ(t, z)
∣∣ ≤ λ(logR)2/(4−α)

}
≤ exp

{−Rv}
for some v > 0. By the Borel–Cantelli lemma,

lim inf
n→∞

(
log 2n)−2/(4−α) log max

z∈N2n

∣∣Uβ(2n)(t, z)
∣∣ ≥ λ a.s.(2.21)

Combining (2.19), (2.20) and (2.21),

lim inf
n→∞

(
log 2n)−2/(4−α) log max

z∈N2n
u(t, z) ≥ λ a.s.

By the fact that

max
z∈NR

u(t, z) ≤ max|x|≤R
u(t, x)

and by the monotonicity of max|x|≤R u(t, x) in R,

lim inf
R→∞ (logR)−2/(4−α) log max|x|≤R

u(t, x) ≥ λ a.s.
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This leads to the lower bound for (1.36) as λ can be made arbitrarily close to the
limit value appearing in the right-hand side of (1.36).

According to the agreement made at the end of Section 1, the lower bound
requested by (1.37) can be viewed as the special case of the lower bound for (1.36)
under the identification α = 1 and d = 1.

3. High moment asymptotics. Associated to the main theorems are the tail
behaviors of logu(t,0), which are relevant to the high moment asymptotics for
Eu(t,0)m as m → ∞, in light of the Gärtner–Ellis theorem. The objective of this
section is to find the exact high moment asymptotics required by our main theo-
rems.

3.1. The setting of Theorems 1.1, 1.2 and 1.3. Recall our extra assumption
u0(x) ≡ 1. We begin with the moment representations (Corollary 4.5 and Re-
mark 4.6, [6])

Eu(t, x)m = E0 exp

{
1

2
θ2

m∑
j,k=1

∫ t

0

∫ t

0
γ0(r − s)γ

(
Bj(r) − Bk(s)

)
dr ds

}
(3.1)

for each integer m ≥ 1, where {Bk(s)}k≥1 is an i.i.d. sequence of Brownian mo-
tions.

PROPOSITION 3.1. Under the assumption of Theorem 1.1,

lim
m→∞m−2 logEu(t,0)m = 1

2
θ2γ (0)

∫ t

0

∫ t

0
γ0(r − s) dr ds.(3.2)

PROOF. We first notice that γ (x) reaches its maximum at x = 0. Indeed, for a
infinitely smooth and rapidly decreasing (at ∞) function ϕ0(·) ≥ 0 on R

+, ε > 0
and x ∈ R

d ,

Cov
(〈V,ϕ0pε〉, 〈V,ϕ0pε(· − x)

〉)
=

(∫
R+×R+

γ0(r − s)ϕ0(r)ϕ0(s) dr ds

)
×
∫
Rd×Rd

γ (y − z)pε(y)pε(z − x)dy dz.

Here we recall our notation ps(x) for d-dimensional Brownian density.
On the other hand, by homogeneity

Cov
(〈V,ϕ0pε〉, 〈V,ϕ0pε(· − x)

〉)
≤ Var

(〈V,ϕ0pε〉)
=

(∫
R+×R+

γ0(r − s)ϕ0(r)ϕ0(s) dr ds

)∫
Rd×Rd

γ (y − z)pε(y)pε(z) dy dz.
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Consequently ∫
Rd×Rd

γ (y − z)pε(y)pε(z − x)dy dz

≤
∫
Rd×Rd

γ (y − z)pε(y)pε(z) dy dz.

Letting ε → 0+, by continuity of γ (·) we have γ (x) ≤ γ (0).
Therefore, the requested upper bound follows from (3.1).
As for the lower bound, we essentially follow the strategy used in the previous

section: by continuity, for any ε > 0 there is δ > 0 such that γ (x) ≥ γ (0) − ε as
long as |x| ≤ 2δ. Thus

E0 exp

{
1

2

m∑
j,k=1

∫ t

0

∫ t

0
γ0(r − s)γ

(
Bj(r) − Bk(s)

)
dr ds

}

≥ E0

[
exp

{
1

2

m∑
j,k=1

∫ t

0

∫ t

0
γ0(r − s)γ

(
Bj(r) − Bk(s)

)
dr ds

}
;min
k≤m

τk(δ) ≥ t

]

≥ exp
{
m2

2

(
γ (0) − ε

) ∫ t

0

∫ t

0
γ0(r − s) dr ds

}
P0

{
min
k≤m

τk(δ) ≥ t
}
,

where τk(δ) is the time for Bk(s) to exit from the δ-ball. Therefore, the requested
lower bound follows from the facts that ε > 0 can be arbitrarily small and that the
probability

P0

{
min
k≤m

τk(δ) ≥ t
}

=
(
P

{
max
s≤t

∣∣B(s)
∣∣ ≤ δ

})m

decays at a speed no faster than exponential rate. �

PROPOSITION 3.2. Under the assumptions of Theorem 1.2

lim
m→∞m−(4−α)/(2−α) logEu(t,0)m

(3.3)

=
(

θ2

2

)2/(2−α)

t(4−α−2α0)/(2−α)E(α0, d, γ ).

Under the assumptions of Theorem 1.3

lim
m→∞m−3/2 logEu(t,0)m = θ4

4
t3−2α0E(α0,1, δ0).(3.4)

PROOF. We need only to prove (3.3) as (3.4) can be viewed as a special case
under the identification d = α = 1. Recall that γ0(u) = |u|−α0 in this setting. For



1560 X. CHEN

any 1 ≤ j, k ≤ m, by (2.11)∫ t

0

∫ t

0

γ (Bj (r) − Bk(s))

|r − s|α0
dr ds

= C0

∫
R×Rd

[∫ t

0
|u − s|−(1+α0)/2K

(
x − Bj(s)

)
ds

]
(3.5)

×
[∫ t

0
|u − s|−(1+α0)/2K

(
x − Bk(s)

)
ds

]
dudx.

Applying the Cauchy–Schwarz inequality∫ t

0

∫ t

0

γ (Bj (r) − Bk(s))

|r − s|α0
dr ds

≤
(∫ t

0

∫ t

0

γ (Bj (r) − Bj(s))

|r − s|α0
dr ds

)1/2(∫ t

0

∫ t

0

γ (Bk(r) − Bk(s))

|r − s|α0
dr ds

)1/2

.

Consequently,
m∑

j,k=1

∫ t

0

∫ t

0

γ (Bj (r) − Bk(s))

|r − s|α0
dr ds

≤
{

m∑
k=1

(∫ t

0

∫ t

0

γ (Bk(r) − Bk(s))

|r − s|α0
dr ds

)1/2
}2

≤ m

m∑
k=1

∫ t

0

∫ t

0

γ (Bk(r) − Bk(s))

|r − s|α0
dr ds.

Write

Xm(t) =
m∑

j,k=1

∫ t

0

∫ t

0

γ (Bj (r) − Bk(s))

|r − s|α0
dr ds.

By independence, for any β > 0

E0 exp
{
βXm(t)

} ≤
(
E0 exp

{
mβ

∫ t

0

∫ t

0

γ (B(r) − B(s))

|r − s|α0
dr ds

})m

=
(
E0 exp

{
β

∫ tm

0

∫ tm

0

γ (B(r) − B(s))

|r − s|α0
dr ds

})m

,

where tm = tm2/(4−α−2α0), and the equality follows from the Brownian scaling.
Recall (Theorem 1.1, [6]) that

lim
m→∞ t−(4−α−2α0)/(2−α)

m logE0 exp
{
β

∫ tm

0

∫ tm

0

γ (B(r) − B(s))

|r − s|α0
dr ds

}
= β2/(2−α)E(α0, d, γ ).
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We conclude that

lim sup
m→∞

m−(4−α)/(2−α) logE0 exp
{
βXm(t)

}
(3.6)

≤ β2/(2−α)t(4−α−2α0)/(2−α)E(α0, d, γ )

for any β > 0.
On the other hand, let t̃m = tm2/(2−α). An obvious modification of the argument

for (2.15) [with (logR)2/(2−α) being replaced by t̃m] shows that for any λ > 0,

lim inf
m→∞

1

mt̃m
logE0 exp

{
λt̃α0/2

m Xm(t̃m)1/2}
≥ λ4/(4−α) 4 − α

4
2−α/(4−α)

(
2E(α0, d, γ )

2 − α

)(2−α)/(4−α)

.

Let λ = βt−α0/2. By Brownian scaling, the above limiting bound can be re-
written as

lim inf
m→∞ m−(4−α)/(2−α) logE0 exp

{
βm(4−α)/(2(2−α))Xm(t)1/2}

≥ t (4−α−2α0)/(4−α)β4/(4−α) 4 − α

4
2−α/(4−α)

(
2E(α0, d, γ )

2 − α

)(2−α)/(4−α)

(3.7)

(β > 0).

By the first half of Lemma A.2 in the Appendix, (3.6) and (3.7),

lim
m→∞m−(4−α)/(2−α) logE0 exp

{
βXm(t)

} = β2/(2−α)t(4−α−2α0)/(2−α)E(α0, d, γ ).

Let β = θ2/2. Proposition 3.2 follows from (3.1). �

3.2. The setting of Theorems 1.6 and 1.7. The goal here is to establish the
following:

PROPOSITION 3.3. Under the assumptions given in Theorem 1.6,

lim
m→∞m−(4−α)/(2−α) logEu(t,0)m = t

(
θ2

2

)2/(2−α)

E(d, γ ).(3.8)

Under the assumptions given in Theorem 1.7,

lim
m→∞m−3 logEu(t,0)m = t

θ4

24
.(3.9)

In view of (1.27), we need only to prove (3.8), as (3.9) can be viewed as a spe-
cial case under a proper identification. Our starting point is the following moment
representation (see Theorem 5.3 in [16] and Theorem 3.1 in [8]):

Eu(t,0)m = E0 exp
{
θ2

∑
1≤j<k≤m

∫ t

0
γ
(
Bj(s) − Bk(s)

)
ds

}
.(3.10)
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The approach here is much more delicate due to the absence of the diagonal
terms in the (j, k)-summation in (3.10) and the fact that the missing diagonal terms
blow up. The proof consists of several steps.

Let tm = tm2/(2−α) and ε > 0 be small but fixed. Set

γε(x) =
∫
Rd

p2ε(x − y)γ (y) dy, x ∈R
d .

Here we recall that pt(x) represents the density function of a d-dimensional Brow-
nian motion B(t) starting at 0. Let the kernel K(x) be defined in (2.11). Clearly,

γε(x) =
∫
Rd

Kε(y)Kε(y − x)dy, x ∈ R
d,(3.11)

where

Kε(x) =
∫
Rd

pε(x − y)K(y)dy, x ∈ R
d .(3.12)

Our first step is to prove the following:

LEMMA 3.4. For any β > 0

lim
m→∞m−(4−α)/(2−α)

× logE0 exp

{
β

(
tm

∫ tm

0

∫
Rd

[
m∑

j=1

Kε

(
x − Bj(s)

)]2

dx ds

)1/2}
(3.13)

= tMε(β),

where

Mε(β) = sup
g∈Ad

{
β

(∫ 1

0

∫
Rd

[∫
Rd

Kε(y − x)g2(s, y) dy

]2

dx ds

)1/2

− 1

2

∫ 1

0

∫
Rd

∣∣∇xg(s, x)
∣∣2 dx dy

}
.

PROOF. Indeed,(
tm

∫ tm

0

∫
Rd

[
m∑

j=1

Kε

(
x − Bj(s)

)]2

dx ds

)1/2

= tm

(∫ 1

0

∫
Rd

[
m∑

j=1

Kε

(
x − Bj(tms)

)]2

dx ds

)1/2

≥ tm

∫ 1

0

∫
Rd

f (s, x)

[
m∑

j=1

Kε

(
x − Bj(tms)

)]
dx ds

=
m∑

j=1

∫ tm

0
f̄

(
s

tm
,Bj (s)

)
ds,
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where f (s, x) ≥ 0 is a compactly supported and continuous function on [0,1]×R
d

with ∫ 1

0

∫
Rd

f 2(s, x) dx ds = 1,

f̄ (s, x) =
∫
Rd

f (s, y)Kε(y − x)dy, x ∈ R
d,

and the second step follows from the Cauchy–Schwarz inequality. By indepen-
dence,

E0 exp

{
β

(
tm

∫ tm

0

∫
Rd

[
m∑

j=1

Kε

(
x − Bj(s)

)]2

dx ds

)1/2}

≥
(
E0 exp

{
β

∫ tm

0
f̄

(
s

tm
,B(s)

)
ds

})m

.

Applying Proposition 3.1, [6] or (2.13) to the right-hand side,

lim
m→∞m−(4−α)/(2−α) logE0 exp

{
β

(
tm

∫ tm

0

∫
Rd

[
m∑

j=1

Kε

(
x − Bj(s)

)]2

dx ds

)1/2}

≥ t sup
g∈Ad

{
β

∫ 1

0

∫
Rd

f̄ (s, x)g2(s, x) dx ds − 1

2

∫ 1

0

∫
Rd

∣∣∇xg(s, x)
∣∣2 dx ds

}

= t sup
g∈Ad

{
β

∫ 1

0

∫
Rd

f (s, y)

[∫
Rd

Kε(y − x)g2(s, x) dx

]
dy ds

− 1

2

∫ 1

0

∫
Rd

∣∣∇xg(s, x)
∣∣2 dx ds

}
.

Taking supremum over f on the right-hand side leads to the lower bound requested
by (3.13).

The proof of the upper bound is harder. First, we perform the following smooth
truncation: let l: R+ −→ [0,1] be a smooth function satisfying the following prop-
erties: l(u) = 1 for u ∈ [0,1], l(u) = 0 for u ≥ 3 and −1 ≤ l′(u) ≤ 0 for all u > 0.
Let M > 0 be a large number, and write

Q(x) = Kε(x)l
(
M−1|x|).

One can easily see that Q(x) is supported on B(0,3M) = {x ∈ R
d; |x| ≤ 3M} and

that ∫
Rd

[
Kε(x) − Q(x)

]2
dx −→ 0 (M → ∞).
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By the triangle inequality,(
tm

∫ tm

0

∫
Rd

[
m∑

j=1

(
Kε

(
x − Bj(s)

)− Q
(
x − Bj(s)

))]2

dx ds

)1/2

≤ t1/2
m

m∑
j=1

(∫ tm

0

∫
Rd

[
Kε

(
x − Bj(s)

)− Q
(
x − Bj(s)

)]2
dx ds

)1/2

= mtm

(∫
Rd

[
Kε(x) − Q(x)

]2
dx

)1/2

= tm(4−α)/(2−α)

(∫
Rd

[
Kε(x) − Q(x)

]2
dx

)1/2

.

This estimate shows that it suffices to establish the upper bound with Kε(x) being
replaced by Q(x) for an arbitrarily large M .

Let M > 0 be fixed. For N > 3M , we have∫
Rd

[
m∑

j=1

Q
(
x − Bj(s)

)]2

dx

= ∑
z∈Zd

∫
[−N,N]d

[
m∑

j=1

Q
(
2zN + x − Bj(s)

)]2

dx

≤
∫
[−N,N]d

[
m∑

j=1

QN

(
x − Bj(s)

)]2

dx

= m2
∫
[−N,N]d

η2
m(s, x) dx,

where

QN(x) = ∑
z∈Zd

Q(2zN + x) and

(3.14)

ηm(s, x) = 1

m

m∑
j=1

QN

(
x − Bj(s)

)
.

Notice in the z-summation that defines QN(·), there is at most one nonzero term
for any x ∈ R

d by the assumption that N > 3M . Consequently, QN(x) is a contin-
uous periodic extension (with the period 2N ) of Q(x).

Further, by integration substitution∫ tm

0

∫
[−N,N]d

η2
m(s, x) dx ds = tm

∫ 1

0

∫
[−N,N]d

η2
m(tms, x) dx ds.
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To establish the upper bound requested by (3.13), therefore, all we need is to
show that for any M > 0,

lim sup
N→∞

lim sup
m→∞

m−(4−α)/(2−α)

(3.15)

× logE0 exp
{
βmtm

(∫ 1

0

∫
Rd

η2
m(tms, x) dx ds

)1/2}
≤ tMε(β).

We let N > 3M be fixed for a while and concentrate on the m-lim sup. Unfor-
tunately, ηm(tm(·), ·) is not exponentially tight when embedded into L2([0,1] ×
[−N,N]d). In the following we prove that with overwhelming probability, for
any δ > 0 there is a C > 0 such that the range of the L2([0,1] × [−N,N]d)-
valued random variable ηm(tm(·), ·) is covered by at most exp(Ctm) δ-balls in
L2([0,1] × [−N,N]d).

Let υ > 0 be a small number, and define [s]υ = υ[υ−1s]. By Jensen inequality,∫ tm

0

∫
[−N,N]d

[
ηm(s, x) − ηm

([s]υ, x
)]2

dx ds

≤ 1

m

m∑
j=1

∫ tm

0

∫
[−N,N]d

[
QN

(
x − Bj(s)

)− QN

(
x − Bj

([s]υ))]2 dx ds.

By independence,

E0 exp
{
βm

∫ tm

0

∫
[−N,N]d

[
ηm(s, x) − ηm

([s]υ, x
)]2

dx ds

}

≤
(
E0 exp

{
β

∫ tm

0

∫
[−N,N]d

[
QN

(
x − B(s)

)− QN

(
x − B

([s]υ))]2 dx ds

})m

.

Notice that∫ tm

0

∫
[−N,N]d

[
QN

(
x − B(s)

)− QN

(
x − B

([s]υ))]2 dx ds

≤ ∑
k

∫ kυ

(k−1)υ

∫
[−N,N]d

[
QN

(
x − B(s)

)− QN

(
x − B

(
(k − 1)υ

))]2
dx ds

= ∑
k

∫ kυ

(k−1)υ

∫
[−N,N]d

[
QN(x) − QN

(
x + B(s) − B

(
(k − 1)υ

))]2
dx ds,

where the summation over k runs from k = 1 until k = [υ−1tm] + 1, and the
second step follows from the periodicity of the function QN(·). By increment-
independence of the Brownian motion,

E0 exp
{
βm

∫ tm

0

∫
[−N,N]d

[
ηm(s, x) − ηm

([s]υ, x
)]2

dx ds

}

≤
(
E0 exp

{
β

∫ v

0

∫
[−N,N]d

[
QN(x) − QN

(
x + B(s)

)]2
dx ds

})m([υ−1tm]+1)

.
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By the continuity of QN(·) one can easily see that

E0 exp
{
β

∫ v

0

∫
[−N,N]d

[
QN(x) − QN

(
x + B(s)

)]2
dx ds

}
= exp

{
o(υ)

}
(
υ → 0+).

Thus we have proved that for any β > 0,

lim
υ→0+ lim sup

m→∞
m−(4−α)/(2−α)

× logE0 exp
{
βm

∫ tm

0

∫
[−N,N]d

[
ηm(s, x) − ηm

([s]υ, x
)]2

dx ds

}
= 0.

Write

�(υ, δ,m) =
{∫ 1

0

∫
[−N,N]d

[
ηm(tms, x) − ηm

([tms]υ, x
)]2

dx ds ≤ δ2

4

}
.

By variable substitution and Chebyshev’s inequality, for any L > 0 one can take υ

sufficiently small so that

P0
(
�(υ, δ,m)c

) ≤ exp
{−Lm(4−α)/(2−α)}

for large m. Define

τj (H) = inf
{
s ≥ 0; ∣∣Bj(s)

∣∣ ≥ Hm(6−α)/(2(2−α))} and τ∗(H) = min
j≤m

τj (H),

where H > 0 is a large but fixed constant. By Gaussian tail,

P0
{
τ∗(H) < tm

} ≤ mP0

{
max
s≤tm

∣∣B(s)
∣∣ ≥ Hm(6−α)/(2(2−α))

}
≤ m exp

{−CH 2m(4−α)/(2−α)},
where C > 0 is a universal constant.

By the fact that ηm(tms, x) is bounded by a deterministic constant CN indepen-
dent of m, for sufficiently small υ and sufficiently large H > 0,

E0 exp
{
βmtm

(∫ 1

0

∫
Rd

η2
m(tms, x) dx ds

)1/2}

=
[
E0 exp

{
βmtm

(∫ 1

0

∫
Rd

η2
m(tms, x) dx ds

)1/2}
1�(υ,δ,m); τ∗ ≥ tm

]
(3.16)

+ exp
{−(L − βCN)m(4−α)/(2−α)}

+ m exp
{−(

H 2C − βCN

)
m(4−α)/(2−α)}.

The second and the third terms on the right-hand side are negligible for sufficiently
large L and H .
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We view ηm(s, ·) (s ≥ 0) as a process (in s) taking values in L2([−N,N]d). No-
tice that the function Q(x) is bounded and Lipschitz continuous. These properties
are inherited by QN(x) as a continuous periodic extension of Q(x). Consequently,
QN(· − Bj(s)) is bounded and Lipschitz continuous on [−N,N]d uniformly in
s ≥ 0 and j ≥ 1 with a deterministic bound and a deterministic Lipschitz constant.
Hence there is a deterministic and convex compact set K ⊂ L2([−N,N]d) such
that QN(· − Bj(s)) ∈ K a.s. for every s ≥ 0 and j = 1,2, . . . . As a convex linear
combination of QN(· − Bj(s)) (j = 1, . . . ,m), ηm(s, ·) ∈ K a.s. for any s ≥ 0 and
m = 1,2, . . . . Let g1, . . . , gl ∈ K be a (2−1δ)-net of K. On the set �(υ, δ,m) the
functions of the form

g(s, x) = gik (x) as s ∈
[
(k − 1)υ

tm
,
kυ

tm

)
, k = 1,2, . . . ,

[
υ−1tm

]+ 1

make a δ-net (denoted as N δ
m) of the range of the L2([0,1] × [−N,N]d)-valued

random variable ηm(tm(·), ·). Indeed, for any k ≥ 1 there is gik (x) = gik (ω, x) out
of {g1, . . . , gl} such that∫

[−N,N]d

∣∣∣∣ηm

(
(k − 1)v

tm
, x

)
− gik (x)

∣∣∣∣2 dx <
δ2

4
.

Here the notation gik (ω, x) indicates the randomness of picking gik .
Consequently,∫ 1

0

∫
[−N,N]d

∣∣ηm

([tms]υ, x
)− g(s, x)

∣∣2 dx ds

≤ υ

tm

∑
k

∫
[−N,N]d

∣∣∣∣ηm

(
(k − 1)v

tm
, x

)
− gik (x)

∣∣∣∣2 dx <
δ2

4
.

So our assertion follows from the restriction by the set �(υ, δ,m).
In addition, we can see that #(N δ

m) ≤ l[υ−1tm]+1. Further, by our construction of
g ∈ N δ

m, ∫ 1

0

∫
[−N,N]d

∣∣g(s, x)
∣∣2 dx ds

≤ υ

tm

∑
k

∫
[−N,N]d

∣∣gik (x)
∣∣2 dx(3.17)

≤ 2 sup
h∈K

∫
[−N,N]d

∣∣h(x)
∣∣2 dx < ∞, g ∈ N δ

m,

and similarly, for any 0 < u < 1,∫ u

0

∫
[−N,N]d

∣∣g(s, x)
∣∣2 dx ds ≤ u sup

h∈K

∫
[−N,N]d

∣∣h(x)
∣∣2 dx, g ∈N δ

m.(3.18)

We emphasize the fact that the bounds in (3.17) and (3.18) do not depends on δ.
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By the Hahn–Banach theorem, for each g ∈ N δ
m there is f ∈ L2([0,1] ×

[−N,N]d) such that∫ 1

0

∫
[−N,N]d

∣∣f (s, x)
∣∣2 dx ds = 1,

∫ 1

0

∫
[−N,N]d

f (s, x)g(s, x) dx ds =
(∫ 1

0

∫
[−N,N]d

∣∣g(s, x)
∣∣2 dx ds

)1/2

.

In view of the uniform bound (3.17) on g ∈ N δ
m, for any given σ > 0 one can take

δ > 0 sufficiently small so that∫ 1

0

∫
[−N,N]d

f (s, x)h(s, x) dx ds

> (1 − σ)

(∫ 1

0

∫
[−N,N]d

∣∣h(s, x)
∣∣2 dx ds

)1/2

for every h ∈ B(g, δ) and g ∈ N δ
m. By bound (3.18), we may make u > 0 suf-

ficiently small (but independent of f ) so that |f (s, x)| ≤ 1 for 0 ≤ s ≤ u and
x ∈ [−N,N]d , due to the fact that one can change the definition of f (s, x)

on [0, u] × [−N,N]d without drastically changing the value of the integral on
[0,1] × [−N,N]d . Finally, we may make each f (s, x) continuous and bounded
on [0,1]× [−N,N]d by (3.17) and the fact that these kinds of functions are dense
in L2([0,1] × [−N,N]d). Denote the collection of such f by (N δ

m)∗. Our way of
using the Hahn–Banach theorem defines a surjective map from N δ

m to (N δ
m)∗. Con-

sequently, #((N δ
m)∗) ≤ #(N δ

m) = l[v−1tm]+1 ≤ exp(Ctm), where the constant C > 0
is independent of m (but dependent on l and v).

On the set �(υ, δ,m), in particular,(∫ 1

0

∫
[−N,N]d

η2
m(tms, x) dx ds

)1/2

≤ (1 − σ)−1 max
f ∈(N δ

m)∗

∫ 1

0

∫
[−N,N]d

f (s, x)ηm(tms, x) dx ds.

Therefore,

E0

[
exp

{
βmtm

(∫ 1

0

∫
[−N,N]d

η2
m(tms, x) dx ds

)1/2}
1�(υ,δ,m); τ∗(H) ≥ tm

]

≤ exp(Ctm) max
f ∈(N δ

m)∗
E0

[
exp

{
βmtm

1 − σ

∫ 1

0

∫
[−N,N]d

f (s, x)ηm(tms, x) dx ds

}
;

τ∗(H) ≥ tm

]
.
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Notice that∫ 1

0

∫
[−N,N]d

f (s, x)ηm(tms, x) dx ds

= 1

m

m∑
j=1

∫ 1

0

[∫
[−N,N]d

f (s, x)QN

(
x − Bj(tms)

)
dx

]
ds(3.19)

= 1

mtm

m∑
j=1

∫ tm

0
f̃

(
s

tm
,Bj (s)

)
ds,

where

f̃ (s, x) =
∫
[−N,N]d

f (s, y)QN(y − x)dy.

Summarizing our argument since (3.16), we conclude that

lim sup
m→∞

m−(4−α)/(2−α) logE0 exp
{
βmtm

(∫ 1

0

∫
Rd

η2
m(tms, x) dx ds

)1/2}

≤ t lim sup
m→∞

1

tm
log max

f ∈(N δ
m)∗

E0

[
exp

{
β

1 − σ

∫ tm

0
f̃

(
s

tm
,B(s)

)
ds

}
;(3.20)

τ(H) ≥ tm

]
.

Here we recall our notation

τ(H) = inf
{
s ≥ 0; ∣∣B(s)

∣∣ ≥ Hm(6−α)/(2(2−α))}.
Let f ∈ (N δ

m)∗. For large m

E0

[
exp

{
β

1 − σ

∫ tm

0
f̃

(
s

tm
,B(s)

)
ds

}
; τ(H) ≥ tm

]

≤ exp
{

β

1 − σ

}
E0

[
exp

{
β

1 − σ

∫ tm

1
f̃

(
s

tm
,B(s)

)
ds

}
; τ(H) ≥ tm

]

= exp
{

β

1 − σ

}
×
∫
B(0,Hm(6−α)/(2(2−α)))

p1(x)Ex

[
exp

{
β

1 − σ

×
∫ tm−1

0
f̃

(
s + 1

tm
,B(s)

)
ds

}
;

τ(H) ≥ tm

]
dx,
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where p1(x) is the density function of B(1) and the second step follows from
Markov’s property. Here and elsewhere, we adopt the notation B(0, r) for the
d-dimensional ball with the center 0 and the radius r > 0.

By the bound p1(x) ≤ (2π)−d/2, the right-hand side is bounded by a constant
multiple of∫

B(0,Hm(6−α)/(2(2−α)))
Ex

[
exp

{
β

1 − σ

∫ tm−1

0
f̃

(
s + 1

tm
,B(s)

)
ds

}
; τ(H) ≥ tm

]
≤ ∣∣B(

0,Hm(6−α)/(2(2−α)))∣∣
× exp

{∫ tm−1

0
sup
g∈Fd

(
β

1 − σ

∫
Rd

f̃

(
s + 1

tm
, x

)
g2(x) dx

− 1

2

∫
Rd

∣∣∇g(x)
∣∣2 dx

)
ds

}
,

where the inequality follows from (A.4) in Lemma A.1 in the Appendix. By vari-
able substitution,∫ tm−1

0
sup
g∈Fd

(
β

1 − σ

∫
Rd

f̃

(
s + 1

tm
, x

)
g2(x) dx − 1

2

∫
Rd

∣∣∇g(x)
∣∣2 dx

)
ds

= tm

∫ 1

t−1
m

sup
g∈Fd

(
β

1 − σ

∫
Rd

f̃ (s, x)g2(x) dx

− 1

2

∫
Rd

∣∣∇g(x)
∣∣2 dx

)
ds

≤ tm

∫ 1

0
sup
g∈Fd

(
β

1 − σ

∫
Rd

f̃ (s, x)g2(x) dx − 1

2

∫
Rd

∣∣∇g(x)
∣∣2 dx

)
ds

= tm sup
g∈Ad

(
β

1 − σ

∫ 1

0

∫
Rd

f̃ (s, x)g2(s, x) dx ds

− 1

2

∫ 1

0

∫
Rd

∣∣∇xg(s, x)
∣∣2 dx ds

)
.

Further, ∫ 1

0

∫
Rd

f̃ (s, x)g2(s, x) dx ds

=
∫ 1

0

∫
[−N,N]d

f (s, x)

[∫
Rd

QN(y − x)g2(s, y) dy

]
dx

≤
(∫ 1

0

∫
[−N,N]d

[∫
Rd

QN(y − x)g2(s, y) dy

]2

dx

)1/2

.
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Summarizing our estimate,

max
f ∈(N δ

m)∗
E0

[
exp

{
β

1 − σ

∫ tm

0
f̃

(
s

tm
,B(s)

)
ds

}
; τ(H) ≥ tm

]

≤ Cm(6−α)d/(2(2−α)) exp
{
Mε,N

(
β

1 − σ

)
tm

}
.

Here we introduce the notation

Mε,N(β) = sup
g∈Ad

{(∫ 1

0

∫
[−N,N]d

[∫
Rd

QN(y − x)g2(s, y) dy

]2

dx

)1/2

− 1

2

∫ 1

0

∫
Rd

∣∣∇xg(s, x)
∣∣2 dx ds

}
.

By (3.20), therefore,

lim sup
m→∞

m−(4−α)/(2−α) logE0 exp
{
βmtm

(∫ 1

0

∫
Rd

η2
m(tms, x) dx ds

)1/2}
(3.21)

≤ tMε,N

(
β

1 − σ

)
.

By Lemma A.3 in the Appendix,

lim sup
N→∞

Mε,N

(
β

1 − σ

)
≤ Mε

(
β

1 − σ

)
.

Finally, the requested (3.15) follows from the obvious fact that the right-hand side
of the above inequality tends to Mε(β) as σ → 0+. �

By (3.11),∫ tm

0

∫
Rd

[
m∑

j=1

Kε

(
x − Bj(s)

)]2

dx ds

= mtmγε(0) + 2
∑

1≤j<k≤m

∫ tm

0
γε

(
Bj(s) − Bk(s)

)
ds.

The first term on the right-hand side is deterministic and negligible. Thus
Lemma 3.4 (with β replaced by β/

√
2) can be restated as

lim
m→∞m−(4−α)/(2−α)

× logE0 exp
{
β

(
tm

∑
1≤j<k≤m

∫ tm

0
γε

(
Bj(s) − Bk(s)

)
ds

)1/2}
(3.22)

= tMε

(
β√
2

)
.

The next step is to squash ε to zero.
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LEMMA 3.5. For any integer n ≥ 1,

E0

[ ∑
1≤j<k≤m

∫ tm

0
γε

(
Bj(s) − Bk(s)

)
ds

]n

≤ E0

[ ∑
1≤j<k≤m

∫ tm

0
γ
(
Bj(s) − Bk(s)

)
ds

]n

.

PROOF. By Fourier transform∑
1≤j<k≤m

∫ tm

0
γε

(
Bj(s) − Bk(s)

)
ds

= (2π)−d

×
∫
Rd

exp
{−ε|λ|2}γ̂ (λ)

[∫ tm

0

∑
1≤j<k≤m

exp
{−iλ · (Bj(s) − Bk(s)

)}
ds

]
dλ,

where γ̂ (λ) is the Fourier transform of γ (x); see (1.14). Here we shall use the fact
that γ̂ (λ) > 0 in our setting. Hence

E0

[ ∑
1≤j<k≤m

∫ tm

0
γε

(
Bj(s) − Bk(s)

)
ds

]n

= (2π)−nd
∫
(Rd )n

dλ1 · · · dλn exp

{
−ε

n∑
l=1

|λl|2
}(

n∏
l=1

γ̂ (λl)

)

×
∫
[0,tm]n

E0

n∏
l=1

∑
1≤j<k≤m

exp
{−iλl · (Bj(s) − Bk(s)

)}
ds1 · · · dsn.

Notice that

E0

n∏
l=1

∑
1≤j<k≤m

exp
{−iλl · (Bj(s) − Bk(s)

)}
> 0.

The right-hand side is less than or equal to

(2π)−nd
∫
(Rd )n

dλ1 · · · dλn

(
n∏

l=1

γ̂ (λl)

)

×
∫
[0,tm]n

E0

n∏
l=1

∑
1≤j<k≤m

exp
{−iλl · (Bj(s) − Bk(s)

)}
ds1 · · · dsn

= E0

[ ∑
1≤j<k≤m

∫ tm

0
γ
(
Bj(s) − Bk(s)

)
ds

]n

.
�
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By using [4], Lemma 1.2.6, page 13, twice with p = 2, Lemma 3.5 and (3.22)
lead to

lim
m→∞m−(4−α)/(2−α) logE0 exp

{
β

(
tm

∑
1≤j<k≤m

∫ tm

0
γ
(
Bj(s) − Bk(s)

)
ds

)1/2}

≥ tMε

(
β√
2

)
for every ε > 0. Notice that

lim inf
ε→0+ Mε

(
β√
2

)
≥ M

(
β√
2

)
=

(
β√
2

)4/(4−α)

M(1),

where

M(β) = sup
g∈Ad

{
β

(∫ 1

0

∫
Rd

[∫
Rd

K(y − x)g2(s, y) dy

]2

dx

)1/2

− 1

2

∫ 1

0

∫
Rd

∣∣∇xg(s, x)
∣∣2 dx dy

}
and the second step comes from the fact that M(β) = β4/(4−α)M(1) resulted from
replacing g(s, x) by βd/(4−α)g(s, β2/(4−α)x) in the variation M(β).

Hence we reach the lower bound

lim inf
m→∞ m−(4−α)/(2−α)

× logE0 exp
{
β

(
tm

∑
1≤j<k≤m

∫ tm

0
γ
(
Bj(s) − Bk(s)

)
ds

)1/2}
(3.23)

≥ t

(
β√
2

)4/(4−α)

M(1).

Write ζε(x) = γ (x) − γε(x). To have the correspondent upper bound, we prove
the following:

LEMMA 3.6. For every β > 0,

lim
ε→0+ lim sup

m→∞
m−(4−α)/(2−α) logE0 exp

{
β

m

∑
1≤j<k≤m

∫ tm

0
ζε

(
Bj(s) − Bk(s)

)
ds

}
= 0.

PROOF. By Jensen’s inequality

E0 exp
{

β

m

∑
1≤j<k≤m

∫ tm

0
ζε

(
Bj(s) − Bk(s)

)
ds

}

≥ exp
{

β

m
E0

∑
1≤j<k≤m

∫ tm

0
ζε

(
Bj(s) − Bk(s)

)
ds

}
≥ 1,
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where the second inequality follows from Lemma 3.5 with n = 1. Thus we only
need to prove the upper bound estimate.

Write∑
1≤j<k≤m

∫ tm

0
ζε

(
Bj(s) − Bk(s)

)
ds = 1

2

m∑
j=1

∑
k : k �=j

∫ tm

0
ζε

(
Bj(s) − Bk(s)

)
ds.

By Hölder’s inequality

E0 exp
{

β

m

∑
1≤j<k≤m

∫ tm

0
ζε

(
Bj(s) − Bk(s)

)
ds

}

≤
m∏

j=1

(
E0 exp

{
β

2

∑
k : k �=j

∫ tm

0
ζε

(
Bj(s) − Bk(s)

)
ds

})1/m

= E0 exp

{
β

2

m∑
k=2

∫ tm

0
ζε

(
B1(s) − Bk(s)

)
ds

}
.

We now make use of Fourier transform again. Notice that ζ̂ε(λ) = (1 −
e−ε|λ|2)γ̂ (λ) ≥ 0. By Fourier inversion

m∑
k=2

∫ tm

0
ζε

(
B1(s) − Bk(s)

)
ds

= (2π)−d
∫
Rd

ζ̂ε(λ)

[∫ tm

0

m∑
k=2

exp
{−iλ · (B1(s) − Bk(s)

)}
ds

]
dλ.

For any integer n ≥ 1, by the independence between B1(s) and {B2(s), . . . ,Bm(s)},

E0

[
m∑

k=2

∫ tm

0
ζε

(
B1(s) − Bk(s)

)
ds

]n

= (2π)−nd
∫
(Rd )n

dλ1 · · · dλm

(
n∏

l=1

ζ̂ε(λl)

)

×
∫
[0,tm]n

E0 exp

{
−i

n∑
l=1

λl · B1(sl)

}

×E0

(
n∏

l=1

m∑
k=2

exp
{
iλl · Bk(sl)

})
ds1 · · · dsn.

By the fact that

0 < E0 exp

{
−i

n∑
l=1

λl · B1(sl)

}
≤ 1 and E0

(
n∏

l=1

m∑
k=2

exp
{
iλl · Bk(sl)

})
> 0,
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the right-hand side is less than or equal to

(2π)−nd
∫
(Rd )n

dλ1 · · · dλm

(
n∏

l=1

ζ̂ε(λl)

)

×
∫
[0,tm]n

E0

(
n∏

l=1

m∑
k=2

exp
{
iλl · Bk(sl)

})
ds1 · · · dsn

= E0

[
m∑

k=2

∫ tm

0
ζε

(
Bk(s)

)
ds

]n

.

Therefore, for any n = 1,2, . . .

E0

[
m∑

k=2

∫ tm

0
ζε

(
B1(s) − Bk(s)

)
ds

]n

≤ E0

[
m∑

k=2

∫ tm

0
ζε

(
Bk(s)

)
ds

]n

.

By Taylor expansion we conclude that

E0 exp

{
β

2

m∑
k=2

∫ tm

0
ζε

(
B1(s) − Bk(s)

)
ds

}

≤ E0 exp

{
β

2

m∑
k=2

∫ tm

0
ζε

(
Bk(s)

)
ds

}
=

(
E0 exp

{
β

2

∫ tm

0
ζε

(
B(s)

)
ds

})m−1

.

Summarizing our argument, we have reduced the problem to the proof of

lim sup
ε→0+

lim
m→∞

1

tm
logE0 exp

{
β

∫ tm

0
ζε

(
B(s)

)
ds

}
≤ 0(3.24)

for any β > 0.
For the sake of simplicity we consider the case when tm goes to infinity along

the integer times. Notice that ζ̂ε(λ) > 0 for all λ ∈ R
d . Using the same argument

as that used in the proof of Lemma 3.5, one can show that for any x ∈ R
d ,

Ex

[∫ 1

0
ζε

(
B(s)

)
ds

]n

≤ E0

[∫ 1

0
ζε

(
B(s)

)
ds

]n

, n = 1,2, . . . .

By Taylor expansion

Ex exp
{
β

∫ 1

0
ζε

(
B(s)

)
ds

}
≤ E0 exp

{
β

∫ 1

0
ζε

(
B(s)

)
ds

}
, x ∈ R

d .

By Markov’s property,

E0 exp
{
β

∫ tm

0
ζε

(
B(s)

)
ds

}

= E0

[
exp

{
β

∫ tm−1

0
ζε

(
B(s)

)
ds

}
EB(tm−1) exp

{
β

∫ 1

0
ζε

(
B(s)

)
ds

}]

≤ E0 exp
{
β

∫ tm−1

0
ζε

(
B(s)

)
ds

}
E0 exp

{
β

∫ 1

0
ζε

(
B(s)

)
ds

}
.
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Continuing this procedure we have

E0 exp
{
β

∫ tm

0
ζε

(
B(s)

)
ds

}
≤
(
E0 exp

{
β

∫ 1

0
ζε

(
B(s)

)
ds

})tm

.

Finally, the requested (3.24) follows from the obvious fact that

lim
ε→0+ E0 exp

{
β

∫ 1

0
ζε

(
B(s)

)
ds

}
= 1. �

Write

Zm = ∑
1≤j<k≤m

∫ tm

0
ζε

(
Bj(s) − Bk(s)

)
ds

and Z+
m = max{0,Zm}. Given δ > 0 and β > 0

E0 exp
{
β

√
tmZ+

m

}
≤ exp{βmtmδ} +E0 exp

[{β√tmZm};Zm ≥ δ2m2tm
]

≤ exp{βmtmδ} +E0 exp
{

β

δm
Zm

}
.

By Lemma 3.6,

lim sup
ε→0+

lim sup
m→∞

m−(4−α)/(2−α) logE0 exp
{
β

√
tmZ+

m

}
≤ βtδ.

Since δ > 0 can be arbitrarily small,

lim
ε→0+ lim sup

m→∞
m−(4−α)/(2−α) logE0 exp

{
β

√
tmZ+

m

}
= 0.(3.25)

We now return to the variation Mε(β) introduced at the beginning of this sub-
section. By Jensen’s inequality for any g ∈ Ad ,∫

Rd

[∫
Rd

Kε(y − x)g2(s, y) dy

]2

dx ≤
∫
Rd

[∫
Rd

K(y − x)g2(s, y) dy

]2

dx.

Consequently, Mε(β) ≤ M(β) for any β > 0.
In view of (3.22) and (3.25), a standard argument of exponential approximation

via Hölder inequality leads to

lim sup
m→∞

m−(4−α)/(2−α)

× logE0 exp
{
β

(
tm

∑
1≤j<k≤m

∫ tm

0
γ
(
Bj(s) − Bk(s)

)
ds

)1/2}
(3.26)

≤ tM

(
β√
2

)
= t

(
β√
2

)4/(4−α)

M(1).
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Combining (3.23) and (3.26)

lim
m→∞m−(4−α)/(2−α) logE0 exp

{
β

(
tm

∑
1≤j<k≤m

∫ tm

0
γ
(
Bj(s) − Bk(s)

)
ds

)1/2}

= t

(
β√
2

)4/(4−α)

M(1).

Replacing β by t−1/2β leads to

lim
m→∞m−(4−α)/(2−α)

× logE0 exp
{
βm(4−α)/(2(2−α))

(3.27)

×
(

1

m

∑
1≤j<k≤m

∫ tm

0
γ
(
Bj(s) − Bk(s)

)
ds

)1/2}

= t (2−α)/(4−α)

(
β√
2

)4/(4−α)

M(1).

In addition, notice that for any ε > 0 there is a constant Cε > 0 such that γε(x) ≤
Cε for all x ∈ R

d . Thus

1

m

∑
1≤j<k≤m

∫ tm

0
γε

(
Bj(s) − Bk(s)

)
ds ≤ Cεmtm = Cεtm

(4−α)/(2−α).

Together with Lemma 3.6, this implies that for every β > 0

lim sup
m→∞

m−(4−α)/(2−α) logE0 exp
{

β

m

∑
1≤j<k≤m

∫ tm

0
γ
(
Bj(s) − Bk(s)

)
ds

}
< ∞.

Using the second half of Lemma A.2 in the Appendix with

bm = m(4−α)/(2−α), p = 2

2 − α
, C0 = t

2 − α

4

(
4M(1)

4 − α

)(4−α)/(2−α)

and

Xm = 1

m

∑
1≤j<k≤m

∫ tm

0
γ
(
Bj(s) − Bk(s)

)
ds,

we obtain

lim
m→∞m−(4−α)/(2−α) logE0 exp

{
β

m

∑
1≤j<k≤m

∫ tm

0
γ
(
Bj(s) − Bk(s)

)
ds

}

= t
2 − α

4

(
4M(1)

4 − α

)(4−α)/(2−α)

β2/(2−α) = tE(d, γ )

(
β

2

)2/(2−α)

,
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where the last equality follows from Lemma A.4 in the Appendix. By the identity
in the law

1

m

∑
1≤j<k≤m

∫ tm

0
γ
(
Bj(s) − Bk(s)

)
ds

d= ∑
1≤j<k≤m

∫ t

0
γ
(
Bj(s) − Bk(s)

)
ds,

we have

lim
m→∞m−(4−α)/(2−α) logE0 exp

{
β

∑
1≤j<k≤m

∫ t

0
γ
(
Bj(s) − Bk(s)

)
ds

}
(3.28)

= tE(d, γ )

(
β

2

)2/(2−α)

.

Proposition 3.3 follows from representations (3.10) and (3.28) (with β = θ2).

REMARK 3.7. Bertini and Cancrini (Theorem 2.6, [1]) claimed a precise for-
mula for Eu(t,0)m in the setting of Theorem 1.7. Unfortunately, their result is false
due to incorrectly using the Skorokhod lemma. On the other hand, (3.9) shows that
the relation in Bertini–Cancrini’s formulation is asymptotically sound.

REMARK 3.8. By Theorem 6.1 in [6], under the assumptions of Theorem 1.2,

lim
t→∞ t−(4−α−2α0)/(2−α) logEu(t,0)m

(3.29)

= m(4−α)/(2−α)

(
θ2

2

)2/(2−α)

E(α0, d, γ )

for every integer m ≥ 1. Comparing this to (3.3), we find the m-limit and the t-limit
are completely consistent. The same can be claimed in the context of Theorem 1.3.
The situation is slightly different when it comes to the cases labeled (2) in Table 1
where V (t, x) is white in time. Take the setting of Theorem 1.7, for example. Let
m = 2 in (3.10),

Eu(t,0)2 = E0 exp
{
θ2

∫ t

0
δ0
(
B1(s) − B2(s)

)
ds

}
(3.30)

= E0 exp
{

θ2
√

2

∫ t

0
δ0
(
B(s)

)
ds

}
= E0 exp

{
θ2
√

2

∣∣B(t)
∣∣},

where the last equation follows the well-known identity in law between the Brow-
nian local time and the reflected Brownian motion. Thus

lim
t→∞

1

t
logEu(t,0)2 = θ4

4
= 23 θ4

32
.(3.31)

In comparison to (3.9) [keep in mind that m = 2 in (3.31)], we witness a small but
interesting gene mutation occurring during the course m → ∞.
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4. Modulus continuity. The main goal of this section is to measure the degree
of the continuity of u(t, x) in the space variable x by estimating the difference
u(t, x) − u(t, y). In the settings of Theorems 1.6 and 1.7 we use the bound(

E
∣∣u(t, x) − u(t, y)

∣∣2m)1/(2m)

≤ C|x − y| +
(

8m

∫ t

0

(
Eu(s,0)2m)1/mIs ds

)1/2

≤ C|x − y| + (
Eu(t,0)2m)1/(2m)

(
8m

∫ t

0
It−s ds

)1/2

established by Conus et al. ((9.49), [10]), where

Is =
∫
Rd×Rd

γ (z1 − z2)hs(z1)hs(z2) dz1 dz2,

hs(z) = ∣∣ps(z − x) − ps(z − y)
∣∣, z ∈ R

d

and C > 0 represents, here and else where in this section, a constant independent of
m and x, y that takes possibly different values when appearing in different places.

By (9.51) in [10],

Is ≤ C(t − s)−α/2 ·
( |x − y|

(t − s)1/2 ∧ 1
)
.

Thus, for |x − y| ≤ √
t ,∫ t

0
It−s ds ≤ C

{∫ |x−y|2

0
s−α/2 ds + |x − y|

∫ t

|x−y|2
s−(α+1)/2 ds

}
≤ C|x − y|.

This estimate gives the bound

E
∣∣u(t, x) − u(t, y)

∣∣2m ≤ Cmm!|x − y|mEu(t,0)2m

or

E
∣∣u(t, x) − u(t, y)

∣∣m ≤ Cm(m!)1/2|x − y|m/2
Eu(t,0)m.(4.1)

By the classic theory on chaining method (see, e.g., Lemma 9, [7]), (4.1) leads to:

LEMMA 4.1. In the settings of Theorems 1.6 and 1.7, u(t, x) yields a continu-
ous modification. Moreover, for any 0 < δ < 1 and bounded domain D ⊂R

d there
is a Cδ(D) > 0 such that for mδ > 2d ,

E sup
x �=y

x,y∈D

∣∣∣∣u(t, x) − u(t, y)

|x − y|δ/2

∣∣∣∣m ≤ Cδ(D)(m!)1/2
Eu(t,0)m.(4.2)
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We now consider the setting of Theorems 1.1, 1.2 and 1.3 where the solution
u(t, x) yields the Feynman–Kac representation (1.9) [with u0(x) ≡ 1 according to
our agreement]. For any p > 1, write

up(t, x) = Ex exp
{
pθ

∫ t

0
V
(
t − s,B(s)

)
ds

}
.

LEMMA 4.2. In the setting of Theorems 1.1, 1.2 and 1.3, u(t, x) yields a con-
tinuous modification. Moreover, for any p > 1 such that q ≡ p(p − 1)−1 is an
even number and for any bounded domain D ⊂ R

d , there is a Cp(D) > 0 and
δ > 0 such that for mδ > 2d:

(1) in the setting of Theorem 1.1,

E sup
x �=y

x,y∈D

∣∣∣∣u(t, x) − u(t, y)

|x − y|δ/2

∣∣∣∣m ≤ (m!)1/2Cp(D)m
{
Eup(t,0)m

}1/p;(4.3)

(2) in the settings of Theorems 1.2 and 1.3,

E sup
x �=y

x,y∈D

∣∣∣∣u(t, x) − u(t, y)

|x − y|δ/2

∣∣∣∣m ≤ m!Cp(D)m
{
Eup(t,0)m

}1/p
.(4.4)

PROOF. The main part of the proof is to establish a bound similar to (4.1). By
the mean-value theorem,∣∣eξ − eη

∣∣ ≤ |ξ − η|max
{
eξ , eη}.

By the Feynman–Kac representation (1.9) and Hölder’s inequality, for any y ∈ R
d∣∣u(t,0) − u(t, y)

∣∣
≤ E0

∣∣∣∣exp
{
θ

∫ t

0
V
(
t − s,B(s)

)
ds

}
− exp

{
θ

∫ t

0
V
(
t − s, y + B(s)

)
ds

}∣∣∣∣
≤ θE0

(∣∣∣∣∫ t

0
V
(
t − s,B(s)

)
ds −

∫ t

0
V
(
t − s, y + B(s)

)
ds

∣∣∣∣
× max

{
exp

{
θ

∫ t

0
V
(
t − s,B(s)

)
ds

}
,

exp
{
θ

∫ t

0
V
(
t − s, y + B(s)

)
ds

}})

≤ 2θ

(
E0

∣∣∣∣∫ t

0
V
(
t − s,B(s)

)
ds −

∫ t

0
V
(
s, y + B(s)

)
ds

∣∣∣∣q)1/q

× {
up(t,0) + up(t, y)

}1/p
.
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By Hölder’s inequality again,

E
∣∣u(t,0) − u(t, y)

∣∣m
≤ (2θ)m

{
E

(
E0

∣∣∣∣∫ t

0
V
(
t − s,B(s)

)
ds −

∫ t

0
V
(
t − s, y + B(s)

)
ds

∣∣∣∣q)m}1/q

× {
E
(
up(t,0) + up(t, y)

)m}1/p
.

Notice that

E

(
E0

∣∣∣∣∫ t

0
V
(
t − s,B(s)

)
ds −

∫ t

0
V
(
t − s, y + B(s)

)
ds

∣∣∣∣q)m

≤ E⊗E0

∣∣∣∣∫ t

0
V
(
t − s,B(s)

)
ds −

∫ t

0
V
(
t − s, y + B(s)

)
ds

∣∣∣∣qm

.

By the triangle inequality and by the stationarity of up(t, x) in x,{
E
(
up(t,0) + up(t, y)

)m}1/p ≤ 2(p+1)/pm(
Eup(t,0)m

)1/p
.

Set

St (y) =
{∫ t

0

∫ t

0
γ0(r − s)

(
γ
(
B(r) − B(s)

)− γ
(
y + B(r) − B(s)

))
dr ds

}1/2

.

Notice the fact that the difference∫ t

0
V
(
t − s,B(s)

)
ds −

∫ t

0
V
(
t − s, y + B(s)

)
ds

is a Gaussian conditioning on the Brownian motion with conditional variance
2St (y)2. By the (conditional) Gaussian property,

E0 ⊗E

[∫ t

0
V (t − s,Bs) ds −

∫ t

0
V (t − s, y + Bs)ds

]qm

= (qm − 1)!!(√2)qm
E0St (y)qm.

So we have

E
∣∣u(t,0) − u(t, y)

∣∣m
(4.5)

≤ 2(p+1)/pm(
√

2θ)m
(
(qm − 1)!!E0St (y)qm)1/q(

Eup(t,0)m
)1/p

.

Let γ̂ (λ) be the Fourier transform [see (1.14)] of γ (x). By Fourier inversion

St (y)2 = (2π)−d
∫
Rd

γ̂ (λ)
[
1 − e−iλ·y]

×
[∫ t

0

∫ t

0
γ0(r − s) exp

{
iλ · (B(s) − B(r)

)}
dr ds

]
dλ.
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In the setting of Theorem 1.1

S2
t ≤ Cδ|y|δ

∫
Rd

|λ|δ∣∣γ̂ (λ)
∣∣∣∣∣∣∫ t

0

∫ t

0
γ0(r − s) exp

{
iλ · (B(s) − B(r)

)}
dr ds

∣∣∣∣dλ

≤ Cδ|y|δ
(∫

Rd
|λ|δ∣∣γ̂ (λ)

∣∣dλ

)∫ t

0

∫ t

0
γ0(r − s) dr ds,

where δ > 0 is chosen according to the assumption (1.13). By (4.5), by Stirling’s
formula and by the stationary of u(t, x) in x, we reach the bound

E
∣∣u(t,0) − u(t, y)

∣∣m ≤ C(D)m(m!)1/2|y|mδ/2(
Eup(t,0)m

)1/p
,

which leads to (4.3) with possibly smaller δ and larger C(D).
We now come to the setting of Theorems 1.2 and 1.3. Notice that γ̂ (λ) is equal

to a positive constant multiple of |λ|−(d−α),
∏d

i=1 |λi |−(1−αi) [in the notation of
λ = (λ1, . . . , λd)] and 1 in connection to (1)×(I), (1)×(II) and (1)×(III) (labeled
in Table 1), respectively. By the first relation in (2.11) and the representation of
St (y) given above,

S2
t (y) = C

∫
R×Rd

[
1 − e−iλ·y]γ̂ (λ)

∣∣∣∣ ∫ t

0
|u − s|−(1+α0)/2 exp

{
iλ · B(s)

}
ds

∣∣∣∣2 dudλ

≤ Cδ|y|δ
∫
R×Rd

�δ(λ)

∣∣∣∣∫ t

0
|u − s|−(1+α0)/2 exp

{
iλ · B(s)

}
ds

∣∣∣∣2 dudλ,

where �δ(λ) = |λ|δγ̂ (λ) and δ > 0 is a small number. We claim that for sufficiently
small δ the process

ZT =
(∫

R×Rd
�δ(λ)

∣∣∣∣∫ T

0
|u − s|−(1+α0)/2 exp

{
iλ · B(s)

}
ds

∣∣∣∣2 dudλ

)1/2

,

T ≥ 0

takes finite values almost surely. For the sake of simplicity we show this by con-
trolling EZ2

T through a “usual” computation without justification, which is easy to
be installed.

By the first relation in (2.11) Z2
T is a constant multiple of∫

Rd
�δ(λ)

[∫ T

0

∫ T

0
|r − s|−α0 exp

{
iλ · (B(r) − B(s)

)}
dr ds

]
dλ

whose expectation is equal to∫
Rd

�δ(λ)

[∫ T

0

∫ T

0
|r − s|−α0E0 exp

{
iλ · (B(r) − B(s)

)}
dr ds

]
dλ

=
∫
Rd

�δ(λ)

[∫ T

0

∫ T

0
|r − s|−α0 exp

{
−|r − s|

2
|λ|2

}
dr ds

]
dλ
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=
∫ T

0

∫ T

0
|r − s|−d/2|r − s|−α0

×
[∫

Rd
�δ

(
λ√|r − s|

)
exp

{
−1

2
|λ|2

}
dλ

]
dr ds

=
(∫

Rd
�δ(λ) exp

{
−1

2
|λ|2

}
dλ

)∫ T

0

∫ T

0
|r − s|−α0−(1/2)(α+δ) dr ds,

where the second equality follows from the Fubini theorem and integration substi-
tution, and the third equality follows from the fact that �δ(Cλ) = C−(d−α−δ)�δ(λ)

for C > 0 and λ ∈ R
d . It is easy to see that the λ-integral on the right-hand side

is finite. We mention the fact that α0 + 1
2α < 1 under our assumptions. Conse-

quently, one can make the time-integral finite by making δ > 0 sufficiently small
so α0 + 1

2(α + δ) < 1.
Clearly, ZT is a continuous and nonnegative process in this case. By the triangle

inequality, for any S,T > 0 ZS+T ≤ ZS + Z′
T where

Z′
T =

(∫
R×Rd

�δ(λ)

∣∣∣∣∫ S+T

S
|u − s|−(1+α0)/2 exp

{
iλ · B(s)

}
ds

∣∣∣∣2 dudλ

)1/2

=
(∫

R×Rd
�δ(λ)

∣∣∣∣∫ T

0
|u − s|−(1+α0)/2

× exp
{
iλ · (B(T + s) − B(T )

)}
ds

∣∣∣∣2 dudλ

)1/2

.

Consequently, Z′
T is independent of {B(s);0 ≤ s ≤ T } and Z′

T

d= ZT . By [4],
Theorem 1.3.5, page 21, ZT is exponential integrable, and the limit

L ≡ lim
T →∞

1

T
logE0 exp{ZT }

exists.
By Brownian scaling, on the other hand,

ZT =
(

T

t

)(4−α−δ−2α0)/4

Zt .

Applying a suitable variable substitution, we conclude

lim
a→∞a−4/(α+δ+2α0) logE0 exp

{
βa(4−α−δ−2α0)/(α+δ+2α0)Zt

}
= Ltβ4/(4−α−δ−2α0)

for any β > 0. By Gärtner–Ellis theorem (Theorem 1.2.4, page 11, [4])

lim
a→∞a−4/(α+δ+2α0) logP0{Zt ≥ a} = −C
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for some C > 0. Consequently,

E0Z
qm
t = qm

∫ ∞
0

aqm−1
P0{Zt ≥ a}da ≤ Cm(m!)q(α+δ+2α0)/4,

m = 1,2, . . . .

In view of (4.5), by the stationary of u(t, x) in x, we obtain the bound

E0
∣∣u(t, x) − u(t, y)

∣∣m ≤ Cm|x − y|mδ/2(m!)(2+α+δ+2α0)/4(
Eup(t,0)m

)1/p
,

m = 1,2, . . .

uniformly for all x, y ∈ R
d . Notice that 2+α+δ+2α0

4 < 1. This bound leads to (4.4).
�

5. Tail probability and proof of the upper bounds. A central piece of our
approach relies on the precise large deviations for u(t, x). These kinds of results
certainly have their independent values. We list them as part of the major theorems.
Recall our assumption that u0(x) = 1.

THEOREM 5.1. Under the assumption of Theorem 1.1,

lim
a→∞a−2 logP

{
logu(t,0) ≥ λa

}
(5.1)

= − λ2

2θ2

(
γ (0)

∫ t

0

∫ t

0
γ0(r − s) dr ds

)−1

,

lim
a→∞a−2 logP

{
log max

x∈D
u(t, x) ≥ λa

}
(5.2)

= − λ2

2θ2

(
γ (0)

∫ t

0

∫ t

0
γ0(r − s) dr ds

)−1

for any t > 0, λ > 0 and bounded domain D ⊂ R
d .

THEOREM 5.2. Under the assumption of Theorem 1.2,

lim
a→∞a−(4−α)/2 logP

{
logu(t,0) ≥ λa

}
(5.3)

= − 4

θ2

(
2 − α

E(α0, d, γ )

)(2−α)/2( λ

4 − α

)(4−α)/2

t−(4−α−2α0)/2,

lim
a→∞a−(4−α)/2 logP

{
log max

x∈D
u(t, x) ≥ λa

}
(5.4)

= − 4

θ2

(
2 − α

E(α0, d, γ )

)(2−α)/2( λ

4 − α

)(4−α)/2

t−(4−α−2α0)/2

for any t > 0, λ > 0 and bounded domain D ⊂ R
d , where E(α0, d, γ ) is the vari-

ation given in (1.17).
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THEOREM 5.3. Under the assumption of Theorem 1.3,

lim
a→∞a−3/2 logP

{
logu(t,0) ≥ λa

}
(5.5)

= − 4

θ2

√
1

E(α0,1, δ0)

(
λ

3

)3/2

t−(3−2α0)/2,

lim
a→∞a−3/2 logP

{
log max

x∈D
u(t, x) ≥ λa

}
(5.6)

= − 4

θ2

√
1

E(α0,1, δ0)

(
λ

3

)3/2
t−(3−2α0)/2

for any t > 0, λ > 0 and bounded domain D ⊂R
d .

THEOREM 5.4. Under the assumption of Theorem 1.6,

lim
a→∞a−(4−α)/2 logP

{
logu(t,0) ≥ λa

}
(5.7)

= − 4

θ2

(
2 − α

tE(d, γ )

)(2−α)/2( λ

4 − α

)(4−α)/2

,

lim
a→∞a−(4−α)/2 logP

{
log max

x∈D
u(t, x) ≥ λa

}
(5.8)

= − 4

θ2

(
2 − α

tE(d, γ )

)(2−α)/2( λ

4 − α

)(4−α)/2

for any t > 0, λ > 0 and bounded domain D ⊂ R
d , where E(d, γ ) is the variation

given in (1.26).

THEOREM 5.5. When γ0(·) = δ0(·), γ (·) = δ0(·) and α = d = 1,

lim
a→∞a−3/2 logP

{
logu(t,0) ≥ λa

} = − 4

θ2

(
6

t

)1/2(λ

3

)3/2

,(5.9)

lim
a→∞a−3/2 logP

{
log max

x∈D
u(t, x) ≥ λa

}
= − 4

θ2

(
6

t

)1/2(λ

3

)3/2

.(5.10)

Due to similarity we only prove Theorem 5.2. By Hölder’s inequality, for any
b > 1, (

Eu(t,0)[b])1/[b] ≤ (
Eu(t,0)b

)1/b ≤ (
Eu(t,0)[b]+1)1/([b]+1)

.

Thus the limit in (3.3) (Proposition 3.2) can be extended to noninteger m. So (3.3)
can be re-written as

lim
a→∞a−(4−α)/2 logE exp

{
βa(2−α)/2 logu(t,0)

}
= β(4−α)/(2−α)

(
θ2

2

)2/(2−α)

t(4−α−2α0)/(2−α)E(α0, d, γ )
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for every β > 0.
We now face a problem in using the Gärtner–Ellis theorem: the exponential mo-

ment asymptotics is established only for β > 0, and the random variable logu(t,0)

takes negative values with positive probability. To resolve this problem, we notice
that P{u(t,0) ≥ 1} > 0 and

E exp
{
βa(2−α)/2 logu(t,0)

}
= E

[
exp

{
βa(2−α)/2 logu(t,0)

};u(t,0) < 1
]

+E
[
exp

{
βa(2−α)/2 logu(t,0)

};u(t,0) ≥ 1
]

≤ 1 +E
[
exp

{
βa(2−α)/2 logu(t,0)

};u(t,0) ≥ 1
]
.

We have that for any β > 0

lim inf
a→∞ a−(4−α)/2 logE

[
exp

{
βa(2−α)/2 logu(t,0)

}|u(t,0) ≥ 1
]

≥ β(4−α)/(2−α)

(
θ2

2

)2/(2−α)

t(4−α−2α0)/(2−α)E(α0, d, γ ).

On the other hand, by the bound

E
[
exp

{
βa(2−α)/2 logu(t,0)

}|u(t,0) ≥ 1
]

≤ (
P
{
u(t,0) ≥ 1

})−1
E exp

{
βa(2−α)/2 logu(t,0)

}
,

we have that for any β > 0

lim sup
a→∞

a−(4−α)/2 logE
[
exp

{
βa(2−α)/2 logu(t,0)

}|u(t,0) ≥ 1
]

≤ β(4−α)/(2−α)

(
θ2

2

)2/(2−α)

t(4−α−2α0)/(2−α)E(α0, d, γ ).

Thus

lim
a→∞a−(4−α)/2 logE

[
exp

{
βa(2−α)/2 logu(t,0)

}|u(t,0) ≥ 1
]

= β(4−α)/(2−α)

(
θ2

2

)2/(2−α)

t(4−α−2α0)/(2−α)E(α0, d, γ ).

By the Gärtner–Ellis theorem for nonnegative random variables (Theorem 1.2.4,
page 11, [4]),

lim
a→∞a−(4−α)/2 logP

{
logu(t,0) ≥ λa|u(t,0) ≥ 1

}
= − sup

β>0

{
βλ − β(4−α)/(2−α)

(
θ2

2

)2/(2−α)

t(4−α−2α0)/(2−α)E(α0, d, γ )

}

= − 4

θ2

(
2 − α

E(α0, d, γ )

)(2−α)/2( λ

4 − α

)(4−α)/2

t−(4−α−2α0)/2.
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Therefore, (5.3) follows from the fact that

P
{
logu(t,0) ≥ λa

} = P
{
u(t,0) ≥ 1

} · P{logu(t,0) ≥ λa|u(t,0) ≥ 1
}
.

It remains to prove (5.4). By (5.3) and the stationary of u(t, x) in x, we only
need to prove the upper bound. Without loss of generality, we may assume that
0 ∈ D. Notice that

sup
x∈D

∣∣u(t, x) − u(t,0)
∣∣m ≤ diam(D)mδ/2 sup

x∈D

∣∣∣∣u(t, x) − u(t,0)

|x|δ/2

∣∣∣∣m,

where δ > 0 is determined by (4.4) in Lemma 4.2. By (4.4)

lim sup
m→∞

m−(4−α)/(2−α) logE sup
x∈D

∣∣u(t, x) − u(t,0)
∣∣m

≤ 1

p
lim sup
m→∞

m−(4−α)/(2−α) logEup(t,0)m

for any p > 1 with q ≡ p(p − 1)−1 being an even number. Here we point out
that up(t, x) is the solution of the parabolic Anderson equation (1.1) satisfying the
assumption given in Theorem 1.2 with θ being replaced by θp. By Proposition 3.2,
the lim sup on the right-hand side is equal to(

(pθ)2

2

)2/(2−α)

t(4−α−2α0)/(2−α)E(α0, d, γ ).

Since p > 1 can be made arbitrarily close to 1, we conclude that

lim sup
m→∞

m−(4−α)/(2−α) logE sup
x∈D

∣∣u(t, x) − u(t,0)
∣∣m

≤
(

θ2

2

)2/(2−α)

t(4−α−2α0)/(2−α)E(α0, d, γ ).

Using Chebyshev’s inequality instead of the Gärtner–Ellis theorem,

lim sup
a→∞

a−(4−α)/2 logP
{
log sup

x∈D

∣∣u(t, x) − u(t,0)
∣∣ ≥ λa

}

≤ − sup
β>0

{
βλ − β(4−α)/(2−α)

(
θ2

2

)2/(2−α)

t(4−α−2α0)/(2−α)E(α0, d, γ )

}
(5.11)

= − 4

θ2

(
2 − α

E(α0, d, γ )

)(2−α)/2( λ

4 − α

)(4−α)/2

t−(4−α−2α0)/2.

By the triangle inequality,

sup
x∈D

u(t, x) ≤ u(t,0) + sup
x∈D

∣∣u(t, x) − u(t,0)
∣∣.
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Hence,

log sup
x∈D

u(t, x) ≤ log
(
u(t,0) + sup

x∈D

∣∣u(t, x) − u(t,0)
∣∣)

≤ log 2 + max
{
logu(t,0), log sup

x∈D

∣∣u(t, x) − u(t,0)
∣∣}.

For any 0 < λ′ < λ, therefore,

P

{
log max

x∈D
u(t, x) ≥ λa

}
≤ P

{
logu(t,0) ≥ λ′a

}+ P

{
log max

x∈D

∣∣u(t, x) − u(t,0)
∣∣ ≥ λ′a

}
for large a. Thus

lim sup
a→∞

a−(4−α)/2 logP
{
log max

x∈D
u(t, x) ≥ λa

}
≤ max

{
lim sup
a→∞

a−(4−α)/2 logP
{
logu(t,0) ≥ λ′a

}
,

lim sup
a→∞

a−(4−α)/2 logP
{
log max

x∈D

∣∣u(t, x) − u(t,0)
∣∣ ≥ λ′a

}}
≤ − 4

θ2

(
2 − α

E(α0, d, γ )

)(2−α)/2( λ′

4 − α

)(4−α)/2

t−(4−α−2α0)/2,

where the last step follows from (5.7) and (5.11). Since λ′ can be arbitrarily close
to λ, we have finally established the upper bound requested by (5.4).

Having Theorems 5.1–5.5 installed, we are ready to prove the upper bounds in
Theorems 1.1, 1.2, 1.3, 1.6 and 1.7. Again, due to similarity we only prove the
upper bound requested by Theorem 1.6. That is,

lim sup
R→∞

(logR)−2/(4−α) log max|x|≤R
u(t, x)

(5.12)

≤ 4 − α

4

(
4tE(d, γ )

2 − α

)(2−α)/(4−α)

θ4/(4−α)d2/(4−α) a.s.

To this end, we set NR = Z
d ∩ B(0,R) and write Q = [−1,1]d . Notice that

max|x|≤R
u(t, x) ≤ max

z∈NR

max
x∈z+Q

u(t, x).

For any λ > 0 satisfying

λ >
4 − α

4

(
4tE(d, γ )

2 − α

)(2−α)/(4−α)

θ4/(4−α)d2/(4−α),

by stationarity of u(t, x) in x

P

{
log max|x|≤R

u(t, x) ≥ λ(logR)2/(4−α)
}

≤ #(NR)P
{
log max

x∈Q
u(t, x) ≥ λ(logR)2/(4−α)

}
.



PARABOLIC ANDERSON MODELS 1589

By (5.8) in Theorem 5.4 there is a δ > 0 such that

P

{
log max

x∈Q
u(t, x) ≥ λ(logR)2/(4−α)

}
≤ exp

{−(d + δ) logR
}

as R is sufficiently large. Consequently,

P

{
log max|x|≤R

u(t, x) ≥ λ(logR)2/(4−α)
}

≤ CR−δ

with the constant C > 0 independent of R. With this bound

∞∑
n=1

P

{
log max|x|≤2n

u(t, x) ≥ λ
(
log 2n)2/(4−α)

}
< ∞.

By the Borel–Cantelli lemma

lim sup
n→∞

(
log 2n)−2/(4−α) log max|x|≤2n

u(t, x) ≤ λ a.s.

The lim sup can be extended from the sequence 2n to R due to the monotonicity of
the quantity log max|x|≤R u(t, x) in R. Finally, (5.12) follows from the fact that λ

can be arbitrarily close to the limit value appearing on the right-hand side of (5.12).

6. Link to the long-term asymptotics: The case of time independence.
A classic quenched law (Theorem 5.1, [2]) by Carmona and Molchanov stated
that for a homogeneous and time-independent Gaussian potential V (x) whose co-
variance function γ (x) satisfies the conditions comparable to the ones assumed in
Theorem 1.1,

lim
t→∞

1

t
√

log t
logE0 exp

{
θ

∫ t

0
V
(
B(s)

)
ds

}
= θ

√
2dγ (0) a.s.(6.1)

In his recent work, Chen [5] considers the case of the time independent Gaussian
field V (x) with the covariance function γ (·) in the forms given in Table 1. More
specifically, under the assumption 0 < α < 2 ∧ d , and for the γ (·) of types (I) and
(II) (labeled in Table 1) (Corollary 1.2 and Theorem 1.3, [5]),

lim
t→∞ t−1(log t)−2/(4−α) logE0 exp

{
θ

∫ t

0
V
(
B(s)

)
ds

}
(6.2)

= 4 − α

4

(
4E(d, γ )

2 − α

)(2−α)/(4−α)

θ4/(4−α)d2/(4−α) a.s.

When d = 1 and γ (·) = δ0(·) (Theorem 1.4, [5]),

lim
t→∞ t−1(log t)−2/3 logE0 exp

{
θ

∫ t

0
V
(
B(s)

)
ds

}
= 3

4
3

√
2

3
a.s.(6.3)
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We mention that the right-hand side of (6.2) was initially given in terms of the best
constant κ(γ, d) of the Soblev-type inequality∫

Rd×Rd
γ (x − y)f 2(x)f 2(y) dx dy ≤ C‖f ‖4−α

2 ‖∇f ‖α
2 f ∈ W 1,2(

R
d)

and can be switched into the current form, thanks to the identity

E(d, γ ) = 2 − α

2
αα/(2−α)κ(γ, d)2/(2−α)

which can be derived in the same way as (7.3) in [6].
The striking resemblance of the pairs (1.28) versus (6.1), (1.29) versus (6.2)

and (1.30) versus (6.3) suggests a possible link between the time asymptotics and
the spatial asymptotics. In this section we explore this problem by providing an
alternative treatment to the long-term asymptotics. For similarity, we only con-
sider (6.2).

For the sake of simplicity we assume that t goes ∞ along the integer points.
Given R > 0, define τ(R) = inf{s ≥ 0; |B(s)| ≥ R}. For any function R(t) ↑ ∞
(t → ∞), by Markov’s property

E0

[
exp

{
θ

∫ t

0
V
(
B(s)

)
ds

}
; τ (R(t)

) ≥ t

]
(6.4)

≤
(

max|x|≤R(t)
Ex exp

{
θ

∫ 1

0
V
(
B(s)

)
ds

})t

.

Applying (1.29) we have

lim sup
t→∞

t−1(logR(t)
)−2/(4−α) logE0

[
exp

{
θ

∫ t

0
V
(
B(s)

)
ds

}
; τ (R(t)

) ≥ t

]
(6.5)

≤ 4 − α

4

(
4E(d, γ )

2 − α

)(2−α)/(4−α)

θ4/(4−α)d2/(4−α) a.s.

Further, let Rk(t) = t (log t)k+1 (k = 0,1,2, . . .).

E0 exp
{
θ

∫ t

0
V
(
B(s)

)
ds

}
= E0

[
exp

{
θ

∫ t

0
V
(
B(s)

)
ds

}
; τ (R0(t)

) ≥ t

]

+
∞∑

k=1

E0

[
exp

{
θ

∫ t

0
V
(
B(s)

)
ds

}
; τ (Rk−1(t)

)
< t ≤ τ

(
Rk(t)

)]

≤ E0

[
exp

{
θ

∫ t

0
V
(
B(s)

)
ds

}
; τ (R0(t)

) ≥ t

]

+
∞∑

k=1

(
E0

[
exp

{
2θ

∫ t

0
V
(
B(s)

)
ds

}
; τ (Rk(t)

) ≥ t

])1/2

× (
P0

{
τ
(
Rk−1(t)

)
< t

})1/2
.
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By Gaussian tail

P0
{
τ
(
Rk−1(t)

)
< t

} ≤ exp
{
−C

Rk−1(t)
2

t

}
= exp

{−Ct(log t)2k},
k = 1,2, . . . .

Together with (6.5), this shows that the infinite series on the right-hand side of the
decomposition is negligible. Applying (6.5) to the first term [with R(t) = R0(t)]
on the right-hand side of the decomposition leads to the upper bound requested
by (6.2).

Relation (6.4) is reversible with some nonsubstantial but technically involved
modification, so (1.29) also applies to the lower bound for (6.2). We skip this part
of the argument.

REMARK 6.1. An asymptotic bound similar to (6.5) can be extended to the
setting of time-dependence with some obvious modification. However, it is un-
likely to be sharp in the settings given in Table 1 (with α0 > 0, of course). Com-
pared with the case of time independence, much less is known about the quenched
long-term asymptotics in the setting of time-dependence.

APPENDIX

A.1. Feynman–Kac bounds. For any open domain D ∈ R
d , define Fd(D) as

the class of the functions g supported in D such that ‖g‖2 = 1 and ‖∇g‖2 < ∞.
Write

τD = inf
{
s ≥ 0;B(s) /∈ D

}
.(A.1)

For a function f defined on D, set

λD(f ) = sup
g∈Fd (D)

{∫
D

f (x)g2(x) dx − 1

2

∫
D

∣∣∇g(x)
∣∣2 dx

}
.(A.2)

LEMMA A.1. Let t > 0, and let the function f (s, x) be continuous and
bounded on [0, t] × cl(D). Then for any t > 0,∫

D
Ex

[
exp

{∫ t

0
f
(
t − s,B(s)

)
ds

}
; τD ≥ t

]
dx

(A.3)

≤ |D| exp
{∫ t

0
λD

(
f (s, ·))ds

}
,∫

D
Ex

[
exp

{∫ t

0
f
(
s,B(s)

)
ds

}
; τD ≥ t

]
dx

(A.4)

≤ |D| exp
{∫ t

0
λD

(
f (s, ·))ds

}
.
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PROOF. By the Feynman–Kac formula (e.g., Theorem 2.3, page 133, [14] with
g(s, x) = 0), the function

u(s, x) = Ex

[
exp

{∫ s

0
f
(
s − u,B(u)

)
du

}
; τD ≥ s

]
, x ∈ D

solves the initial-boundary problem⎧⎪⎨⎪⎩
∂su(s, x) = 1

2�u(s, x) + f (s, x)u(s, x), (s, x) ∈ (0, t] × D,

u(s, x) = 0, x ∈ ∂D,

u(0, x) = 1, x ∈ D.

Hence

d

ds

∫
D

u2(s, x) dx = 2
∫
D

u(s, x)∂su(s, x) dx

= 2
{∫

D
f (s, x)u2(s, x) dx − 1

2

∫
D

∣∣∇xu(s, x)
∣∣2 dx

}
≤ 2λD

(
f (s, ·)) ∫

D
u2(s, x) dx.

Notice that the function

U(s) =
∫
D

u2(s, x) dx

has the initial value U(0) = |D|. Thus by Gronwall’s inequality∫
D

u2(t, x) dx ≤ |D| exp
{

2
∫ t

0
λD

(
f (s, ·))ds

}
.

Therefore, (A.3) follows from the Cauchy–Schwarz inequality:∫
D

u(t, x) dx ≤ √|D|
{∫

D
u2(t, x) dx

}1/2

.

Replacing f (s, x) by ft (s, x) = f (t − s, x) in (A.3) leads to (A.4). �

A.2. A lemma on the large deviations. Let {Xm} be a sequence of nonnega-
tive random variables and bm be a sequence of positive numbers such that bm → ∞
as m → ∞.

LEMMA A.2. Assume that there is p > 1 and C0 > 0 such that for any β > 0,

lim sup
m→∞

1

bm

logE exp{βXm} ≤ C0β
p,(A.5)

lim inf
m→∞

1

bm

logE exp
{
βb1/2

m X1/2
m

} ≥ p + 1

p
(pC0)

1/(p+1)

(
β

2

)(2p)/(p+1)

.(A.6)
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Then we have

lim
m→∞

1

bm

logE exp{βXm} = C0β
p ∀β > 0.(A.7)

The same claim holds if we weaken the first assumption (A.5) to

lim sup
m→∞

1

bm

logE exp{βXm} < ∞ ∀β > 0(A.8)

and strengthen the second assumption (A.6) into

lim
m→∞

1

bm

logE exp
{
βb1/2

m X1/2
m

}
(A.9)

= p + 1

p
(pC0)

1/(p+1)

(
β

2

)(2p)/(p+1)

∀β > 0.

PROOF. Due to similarity, we only prove the first claim. By (A.5) and by a
standard way of using Chebyshev’s inequality, for any λ > 0,

lim sup
m→∞

1

bm

logP{Xm ≥ λbm} ≤ − sup
β>0

{
λβ − C0β

p}
= −p − 1

p
(C0p)−1/(p−1)λp/(p−1),

and for any β > 0,

lim sup
m→∞

1

bm

logE exp
{
βb1/2

m X1/2
m

}
< ∞.

By Varadhan’s integral lemma (Lemma 4.3.6, [13]),

lim sup
m→∞

1

bm

logE exp
{
βb1/2

m X1/2
m

}
≤ sup

λ>0

{
βλ1/2 − p − 1

p
(C0p)−1/(p−1)λp/(p−1)

}

= p + 1

p
(pC0)

1/(p+1)

(
β

2

)(2p)/(p+1)

.

Together with (A.6) and the Gärtner–Ellis theorem (Theorem 1.2.4, page 11, [4]),
we have

lim
m→∞

1

bm

logP{Xm ≥ λbm}

= − sup
β>0

{
β
√

λ − p + 1

p
(pC0)

1/(p+1)

(
β

2

)(2p)/(p+1)}

= −p − 1

p
(C0p)−1/(p−1)λp/(p−1).
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Finally, by Varadhan’s integral lemma (Lemma 4.3.6, [13])

lim
m→∞

1

bm

logE exp{βXm} = sup
λ>0

{
βλ − p − 1

p
(C0p)−1/(p−1)λp/(p−1)

}
= C0β

p. �

A.3. Variations. Recall that for any ε > 0 and β > 0,

Mε(β) = sup
g∈Ad

{
β

(∫ 1

0

∫
Rd

[∫
Rd

Kε(y − x)g2(s, y) dy

]2

dx ds

)1/2

− 1

2

∫ 1

0

∫
Rd

∣∣∇xg(s, x)
∣∣2 dx dy

}
,

Mε,N(β) = sup
g∈Ad

{
β

(∫ 1

0

∫
[−N,N]d

[∫
Rd

QN(y − x)g2(s, y) dy

]2

dx

)1/2

− 1

2

∫ 1

0

∫
Rd

∣∣∇xg(s, x)
∣∣2 dx ds

}
,

where Kε(x) and QN(x) are defined in (3.12) and (3.14), respectively.

LEMMA A.3. In the settings marked (2) in Table 1, for any ε > 0 and β > 0,

lim sup
N→∞

Mε,N(β) ≤ Mε(β).

PROOF. Notice that for any 0 ≤ s ≤ 1,∫
Rd

QN(y − x)g2(s, y) dy =
∫
Rd

Q(y − x)g̃2(s, y) dy,

where

g̃(x) =
√ ∑

k∈Zd

g2(2kN + x), x ∈R
d .

Here we recall

Q(x) = Kε(x)l
(
M−1|x|),

where l: R+ −→ [0,1] is a smooth function satisfying the following properties:
l(u) = 1 for u ∈ [0,1], l(u) = 0 for u ≥ 3 and −1 ≤ l′(u) ≤ 0 for all u > 0. By the
fact that Q(·) is supported on [−3M,3M]d ,

Mε,N(β) = sup
g∈Ad

{(∫ 1

0

∫
[−N,N]d

[∫
[−Ñ,Ñ ]d

Q(y − x)g̃2(s, y) dy

]2

dx

)1/2

− 1

2

∫ 1

0

∫
Rd

∣∣∇xg(s, x)
∣∣2 dx ds

}
,
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where Ñ = N + 3M . We omit the rest of the proof as it follows from the construc-
tive argument used in [3], Lemma A.1, with some minor modification. �

We also use the following notation:

M(β) = sup
g∈Ad

{
β

(∫ 1

0

∫
Rd

[∫
Rd

K(y − x)g2(s, y) dy

]2

dx ds

)1/2

− 1

2

∫ 1

0

∫
Rd

∣∣∇xg(s, x)
∣∣2 dx dy

}
,

E(d, γ ) ≡ sup
g∈Fd

{∫
Rd×Rd

γ (x − y)g2(x)g2(y) dx dy

− 1

2

∫
Rd

∣∣∇g(x)
∣∣2 dx

}
.

LEMMA A.4. Under the assumptions of Theorems 1.6 and 1.7,

E(d, γ ) = 2 − α

2
2α/(2−α)

(
4M(1)

4 − α

)(4−α)/(2−α)

.

PROOF. By (2.11), M(1) can be rewritten as

M(1) = sup
g∈Ad

{(∫ 1

0

∫
Rd×Rd

γ (x − y)g2(s, x)g2(s, y) dx dy

)1/2

− 1

2

∫ 1

0

∫
Rd

∣∣∇xg(s, x)
∣∣2 dx dy

}
.

Define

E ′(d, γ ) = sup
g∈Ad

{∫ 1

0

∫
Rd×Rd

γ (x − y)g2(s, x)g2(s, y) dx dy ds

− 1

2

∫ 1

0

∫
Rd

∣∣∇xg(s, x)
∣∣2 dx ds

}
.

Replacing γ0(s) = |s|−α0 by γ0(s) = δ0(s) in (7.4), [6], we have

E ′(d, γ ) = 2 − α

2
2α/(2−α)

(
4M(1)

4 − α

)(4−α)/(2−α)

.

Therefore, it remains to show that

E ′(d, γ ) = E(d, γ ).
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Indeed, taking g(s, ·) = g(·) ∈ Fd leads to E ′(d, γ ) ≥ E(d, γ ). On the other
hand, by the relation Ad = {g(·, ·);g(s, ·) ∈ Fd ∀0 ≤ s ≤ 1},

E ′(d, γ ) ≤
∫ 1

0
sup

g∈Ad

{∫
Rd×Rd

γ (x − y)g2(s, x)g2(s, y) dx dy

− 1

2

∫
Rd

∣∣∇xg(s, x)
∣∣2 dx dy

}
ds

= E(d, γ ). �

In connection to the variation E(α0, d, γ ) given in (1.17), write

E(0, d, γ ) = sup
g∈Ad

{∫ 1

0

∫ 1

0

∫
Rd×Rd

γ (x − y)g2(s, x)g2(r, y) dx dy dr ds

− 1

2

∫ 1

0

∫
Rd

∣∣∇xg(s, x)
∣∣2 dx ds

}
.

LEMMA A.5. Under the assumptions of Corollary 1.5, E(0, d, γ ) = E(d, γ ).

PROOF. The direction of ≥ is obvious. We now consider opposite direction.
Let g ∈ Ad , and write

g̃(x) =
(∫ 1

0
g2(s, x) ds

)1/2

.

Then g̃ ∈ Fd and∫ 1

0

∫ 1

0

∫
Rd×Rd

γ (x − y)g2(s, x)g2(r, y) dx dy dr ds

=
∫
Rd×Rd

γ (x − y)g̃2(x)g̃2(y) dx dy

and

∇g̃(x) =
(∫ 1

0
g2(s, x) ds

)−1/2 ∫ 1

0
g(s, x)∇xg(s, x) ds.

Hence ∣∣∇g̃(x)
∣∣ ≤ (∫ 1

0
g2(s, x) ds

)−1/2 ∫ 1

0

∣∣g(s, x)
∣∣ · ∣∣∇xg(s, x)

∣∣ds

≤
(∫ 1

0

∣∣∇xg(s, x)
∣∣2 ds

)1/2

.

Thus ∫
Rd

∣∣∇g̃(x)
∣∣2 dx ≤

∫ 1

0

∫
Rd

∣∣∇xg(s, x)
∣∣2 dx ds.
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Summarizing our estimate,∫ 1

0

∫ 1

0

∫
Rd×Rd

γ (x − y)g2(s, x)g2(r, y) dx dy dr ds

− 1

2

∫ 1

0

∫
Rd

∣∣∇xg(s, x)
∣∣2 dx ds

≤
∫
Rd×Rd

γ (x − y)g̃2(x)g̃2(y) dx dy − 1

2

∫
Rd

∣∣∇g̃(x)
∣∣2 dx ≤ E(d, γ ).

Taking supremum over g ∈ Ad on the left-hand side completes the proof. �
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