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A STOCHASTIC TARGET APPROACH TO RICCI FLOW
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“Simion Stoilow” Institute of Mathematics of Romanian Academy‡

We develop a stochastic target representation for Ricci flow and normal-
ized Ricci flow on smooth, compact surfaces, analogous to Soner and Touzi’s
representation of mean curvature flow. We prove a verification/uniqueness
theorem, and then consider geometric consequences of this stochastic repre-
sentation.

Based on this stochastic approach, we give a proof that, for surfaces of
nonpositive Euler characteristic, the normalized Ricci flow converges to a
constant curvature metric exponentially quickly in every Ck-norm. In the case
of C0 and C1-convergence, we achieve this by coupling two particles. To get
C2-convergence (in particular, convergence of the curvature), we use a cou-
pling of three particles. This triple coupling is developed here only for the
case of constant curvature metrics on surfaces, though we suspect that some
variants of this idea are applicable in other situations and therefore be of in-
dependent interest. Finally, for k ≥ 3, the Ck-convergence follows relatively
easily using induction and coupling of two particles.

None of these techniques appear in the Ricci flow literature and thus pro-
vide an alternative approach to the field.

1. Introduction. In [43], Soner and Touzi give a characterization of various
extrinsic geometric flows (with ambient space Rn), including mean curvature flow,
as stochastic target problems. More specifically, they introduce the relevant tar-
get problems and then prove associated verification theorems, namely theorems
showing that if the curvature flow has a smooth solution for an interval of time
t ∈ [0, T ), then the solution agrees with the solution to the stochastic target prob-
lem on this interval. In the first part of this paper, we develop a similar character-
ization of Ricci flow (and normalized Ricci flow) on compact surfaces, including
the relevant verification theorems (see Theorem 3). We then briefly discuss time-
dependent bounds on the solution to both normalized and un-normalized Ricci
flow and estimates on the blow-ups of solutions to Ricci flow in the cases of
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nonzero Euler characteristic, all obtained from the stochastic formulation of the
flow. In the remainder of the paper, we use this stochastic representation to prove
that, for a smooth, compact surface of nonpositive Euler characteristic, given that
a smooth solution to the normalized Ricci flow exists for all time (which is well
known from the literature), it converges to a constant curvature metric exponen-
tially fast in C∞ (see Theorem 22 for a precise statement).

Ricci flow on smooth, compact surfaces is essentially completely understood as,
for instance, [13, 14, 24]. Nonetheless, one feature of our approach is that prob-
ability often provides an appealing intuition, as in the case of Brownian motion
and heat flow. Thus, if Ricci flow is thought of as a kind of “heat equation for
curvature,” it is natural to want to extend the analogy to include a diffusion in-
terpretation. For example, it is nice to see the convergence of a manifold under
normalized Ricci flow to a constant curvature limit as the equi-distribution of the
metric, and as a result of the curvature, from a probabilistic perspective.

More generally, one might ask about the potential merits of developing stochas-
tic techniques for Ricci flow (or other curvature flows). One obvious point to be
made here is that one gets a representation of the solution and, at least in the the-
ory of linear second-order PDEs, this has turned out to be extremely versatile in
extracting properties of the solutions. As we will see, the stochastic tools we em-
ploy are good enough to give a different proof of a main result in the theory of
Ricci flow on surfaces with the bonus that we see the “averaging property of the
curvature” as a consequence of coupling, which is a probabilistic manifestation of
ergodicity. Another motivation for such an endeavor is that the stochastic target
formulation is fairly insensitive to regularity, and thus potentially useful in formu-
lating notions of weak solutions. Indeed, in a second paper, Soner and Touzi [42]
show that generalized solutions to various extrinsic curvature flows can also be un-
derstood in terms of stochastic target problems. Also stemming from these ideas,
we note that stochastic approaches to PDEs can lend themselves to the develop-
ment of probabilistic numerical schemes (as in [21]), but we do not touch this
subject here.

Our framework is not the most general one. We presumably could have worked
in a little more generality, but to keep the ideas as appealing and clear as possible,
we decided to study surfaces, which are the traditional starting point for studying
Ricci flow.

We point out that, as noted in [12], stochastic target problems of certain kind
are equivalent to second-order backward stochastic differential equations. As dis-
cussed there, second-order backward SDEs are natural stochastic objects to asso-
ciate with fully nonlinear PDEs. Thus, one could presumably recast the results of
this paper in those terms. Nonetheless, we have chosen to adopt the stochastic tar-
get approach because it seems more geometrically intuitive and visually appealing,
and because it puts Ricci flow and mean curvature flow in a similar framework.

There are few papers on stochastic analysis and Ricci flow, for instance,
[1, 2, 15, 32–34]. The ones that are somewhat closer to our work are [1] and [15].
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These papers investigate the Brownian motion (and the associated parallel trans-
port) with respect to a time changing metric on a manifold of any dimension, not
only on surfaces. Using stochastic analysis, they also develop a Bismut-like for-
mula to represent the gradient of solutions to heat-type flows with respect to the
time-dependent metric. In particular, this leads to gradient estimates for the corre-
sponding solutions.

We use in this paper a different tool, namely couplings. Coupling is a very useful
thing and has been successfully used in a variety of situations. There is a large body
of research on this and we will point out only some selections without any claim of
completeness on the subject. One of the most useful on is the mirror coupling of
Brownian motions introduced by Lindvall and Rogers in [36] in the Euclidean
setting and by Cranston [16] and Kendall in [27] on manifolds. Different types
of couplings, as, for instance, the synchronous coupling appearing in [9, 18, 19]
and shy coupling which is treated in [7, 8, 30] or even fixed-distance couplings on
manifolds in [37]. There are lots of applications of the coupling in geometric and
analytic problems as it can be seen from an excerpt of the literature in [3–6, 27–30,
38–40].

One of the main techniques in the present work is the mirror coupling applied
to time changed Brownian motions. It turns out to be an extremely fruitful tool for
proving estimates in the context of Ricci flow. Though the coupling and the Bismut
formula produce in several cases similar estimates, particularly when it comes to
gradient estimates, we do not know how to get a nice and useful version of the
Bismut formula for the second-order derivatives. This is one of the reasons we
prefer to deal with the coupling techniques which reveals its full power. The idea
of dealing with the second-order derivatives comes from [17], where a coupling of
three particles is used to estimate second-order derivatives of harmonic functions
on Euclidean domains. This triple coupling indicated by Cranston uses a certain
symmetry to get a key cancellation in the estimation of the Hessian. This symmetry
is not surprising in the flat case. However, there are immediate technical challenges
for a similar construction on manifolds, and the way it works in the flat case does
not seem to work on arbitrary manifolds for the time changed Brownian motions.
Nevertheless, it turns out that we can construct such a triple coupling which has
enough good properties in the case of surfaces of constant curvature.

We continue with a few more observations about the present work. We do not
prove the existence of solutions to the target problem directly; rather, the verifica-
tion theorems proceed from the assumption that the Ricci flow admits a smooth
solution. In the case of normalized Ricci flow, we have long-time existence as
proved in [10] and [24]. However, an immediate consequence of such a verifica-
tion theorem is that the solution (to the flow) is unique.

In contrast to the standard proof of the convergence to constant curvature, we
deal directly with the metric itself (and its derivatives), rather than introducing an
auxiliary PDE satisfied by the curvature. We use uniformization to work with an
underlying metric which has constant curvature and is in the same conformal class
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as the initial metric. One might hope to extend these arguments to more general
situations, but for a first paper on this approach uniformization makes the analysis
cleaner and reveals the power of the coupling in a nice way.

The outline of the paper is as follows. We first describe the stochastic target
problem in Section 2 giving a fair amount of detail, since it is a somewhat non-
standard control problem. Then, in Section 3 we prove the verification/uniqueness
theorem, namely that, if there is a smooth solution to the Ricci flow (or normal-
ized Ricci flow) on some interval of time, then it agrees with the solution to the
stochastic target problem.

Section 4 is a short section showing how one can use the representation to prove
that the unnormalized Ricci flow develops singularities (in certain cases) either in
finite time or in infinite time. In Section 5, we develop the a priori bounds for the
stochastic target problem. As a consequence, we obtain the exponential conver-
gence in the C0-norm of the normalized flow in the case of χ(M) < 0 [as usual,
χ(M) denotes the Euler characteristic of M]. We also include a short discussion of
the blow up of the unnormalized Ricci flow in the cases χ(M) > 0 and χ(M) < 0,
which is in tune with the previous section’s findings, although this time assuming
uniformization.

Section 6 introduces and proves the main result on mirror coupling for the time
changed Brownian motions associated to the target problems. This coupling is well
defined for short times, but the main challenge is to show that the coupling extends
beyond the cut locus. This is done using the geometric structure of the cut locus on
surfaces of Euler characteristic less than or equal to 0. We should also point out that
there is a coupling of Brownian motions constructed with respect to time-varying
metrics (such as Ricci flow) in [32], but it differs from our situation here.

In Section 7, we start the main analysis of the convergence of normalized Ricci
flow. We prove the nontrivial fact that in Euler characteristic zero, the normalized
flow converges exponentially fast in the C0-topology. This uses the result from
the previous section combined with the comparison of the distance process with
a Bessel process in order to estimate the coupling time. This is a fundamentally
probabilistic idea. Combining this result with those coming from the a priori es-
timates proves that, for nonpositive Euler characteristic, the flow converges in the
C0-topology exponentially fast.

The next task is to prove that the convergence takes place also in C1, or in other
words that the gradient of the metric converges exponentially fast. This is done in
Section 8, again using coupling. However, the point here is a little different. We
use the coupling for particles started close to one another and estimate the coupling
time in terms of the gradient of the metric (more precisely the conformal factor of
the metric) and the initial distance. This in turn yields a functional inequality sat-
isfied by the C0-norm of the gradient which is contained in Lemma 12. It turns out
that this functional inequality is strong enough to produce the exponential conver-
gence.
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Going forward, Section 9 is dedicated to the triple coupling used in a crucial way
for the Hessian estimates. We exploit in an essential way the constant curvature
properties of the underlying metric. We have two mirror coupled particles x and
y and another middle particle z which is moving on the geodesic between them
which is described by the distance ρ1 from z to x, or alternatively, the distance ρ2
from z to y. One of the main interests is the symmetry with respect to swapping ρ1
and ρ2. The other thing thrust of the investigation is as follows. Assuming that x

and y are time changed Brownian motions, we study the conditions under which z

is a time changed Brownian motion with a drift. This is a key point in the Hessian
estimates.

Section 10 covers the Hessian estimates. Here, we use the results from the pre-
vious sections, for instance, the exponential decay of the flow in the C1-topology
and the triple coupling. As in the case of the gradient, we end up with a functional
inequality for the C0-norm of the Hessian as in Lemma 21. It turns out that this
suffices to conclude the exponential convergence.

The last section proves the Ck-convergence of the flow. This is done essentially
using the Ricci flow equation and induction. It is important to mention here that in
the flat case, we still use couplings.

A few words about the sphere case, which requires some finer analysis. There
are several obstacles we have to overcome. On one hand, the a priori estimates
give bounds which blow up in finite or infinite time. However, these estimates are
simply bounds of a stochastic differential equation in terms of the ODE in which
the martingale is killed off, and eventually can likely be refined. Further, in the
case of nonpositive Euler characteristic, there is a unique stationary solution to
the normalized Ricci flow with a given volume (in a given conformal class), and
thus one has to prove that the flow converges to this uniquely determined solution.
In the case of the sphere, this is not the case, and thus convergence is harder to
establish, because we do not know beforehand toward which stationary solution
the flow wants to converge (this is related to the issue of Ricci solitons). Therefore,
the strategy we used in this paper for χ(M) ≤ 0 needs some refinements if it’s to
address the case of positive Euler characteristic.

2. Stochastic target formulation.

2.1. Ricci flow. Consider a smooth, compact Riemannian surface (M,h), that
is, M is a smooth, compact manifold without boundary of dimension two and h a
smooth Riemannian metric on M . Any other smooth metric in the same conformal
class as h can be written as g = ūh for some smooth, positive function ū. The
Ricci curvature of any metric metric g is given by

2 Ricg = Rgg = 2Kgg,(1)

where Rg is the scalar curvature and Kg is the Gauss curvature. The Ricci flow is
defined as the evolution of the metric gt according to

∂tgij = −2 Ricij ,(2)
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where Ric is the Ricci tensor. From this, it is easy to see that the Ricci flow pre-
serves the conformal class in two dimensions, and thus it becomes an evolution
equation for the conformal factor ūt . In particular, the Ricci flow corresponds to ū

evolving by

∂t ūt = �h log ūt − 2Kh,(3)

where Kh is the Gauss curvature of (M,h). In passing from (2) to (3), we have
already used the fact that if g = uh, for two metrics, g and h, then (see [14],
Exercise 2.8)

Rg = 1

u
(Rh − �h logu),(4)

where the �h is the Laplacian with respect to the metric h.
This is a nonlinear parabolic equation, and thus the usual probabilistic methods

of solution (diffusions, Feynman–Kac, etc.) do not apply. Instead, we will adopt
a stochastic target approach modeled on the approach of [43] to mean curvature
flow, as mentioned above.

To be more concrete, we assume that the initial metric on M can be written as
g0 = ū0h for some smooth, positive ū and some metric h. There are two natural
choices for h. Of course, we can let h = g0 and ū0 ≡ 1. Alternatively, the uni-
formization theorem, for instance, [23], Chapter 3, implies that there is a metric in
the same conformal class as g0 which has constant curvature of −1, 0, or 1. Then
we can take h to be this metric, in which case ū0 is determined by the condition
that g0 = ū0h. We will find the flexibility of this set-up to be useful.

As usual, we also wish to introduce the normalized Ricci flow, which is defined
as

∂tgij = −2 Ricij +2rgij ,(5)

where r is the average of the Gauss curvature on M with respect to the metric g.
Written in terms of the conformal factor, this is

∂t ūt = �h log ū − 2Kh + 2rt ūt .

Under this flow, the surface is continually rescaled to preserve the area. Indeed,
the Gauss–Bonnet theorem tells us that the integral of the scalar curvature is∫

Kg dAg = 2πχ(M),

where χ(M) is the Euler characteristic of M and Ag is the area element of the
metric g. Consequently, if rt is the average of the Gauss curvature for gt , then

rt = 2πχ(M)

area(M,gt )
,
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where area(M,g) stands for the area of M with the metric g. From here, a straight-
forward calculation gives that

∂t area(M,gt ) = ∂t

∫
ūt dAh =

∫
∂t ūt dAh = −2

∫
Kh dAh + 2rt

∫
ūt dAh = 0,

which shows that the area is preserved under this evolution and, in particular, rt
does not depend on t . Therefore, the flow (5) preserves the area and

r = 2πχ(M)

area(M,g0)
.(6)

We can now translate (5) into an equation satisfied by the conformal change ūt as
(recall that gt = ūth)

∂t ūt = �h log ū − 2Kh + 2rūt(7)

with r the constant from (6).
As is implicit in the above, we see that the set of all smooth metrics (on M)

in a given conformal class corresponds to the set of smooth sections of a one-
dimensional bundle over M . More concretely, fixing a “reference metric” h and
writing any other (smooth) metric (in the same conformal class) as ūh induces a
global coordinate u on fibers of this bundle making the total space E diffeomorphic
to M × (0,∞). Further, ū is given as the composition of the lift from M to E

(corresponding to the section) with u. This helps to explain the notation: u is a
coordinate on the fibers, and ū is the expression of a section in this coordinate.
Because our bundle admits natural global coordinates, we will almost always work
in these coordinates, and thus we will not have much occasion to consider sections
in a coordinate-free notation.

Viewed in this light, it is natural to introduce a new coordinate on the fibers.
Let p = (1/2) logu. Then any other metric in the same conformal class as h can
be written as g = e2p̄h for some smooth function p̄ :M → R, which is given by
the composition of the lift M → E (corresponding to the section) with p. This
coordinate makes the bundle into a real line bundle. In particular, the metric h

corresponds to the zero section, and fiberwise addition corresponds to composition
of conformal changes. However, we will not need the vector space structure on
fibers in what follows; we really just view the fibers as having a smooth structure.
In terms of the coordinate p, the Ricci flow equation becomes

∂t p̄t = e−2p̄t (�hp̄t − Kh),(8)

and the normalized Ricci flow equation becomes [see also [35], equation (1.3.1)]

∂t p̄t = e−2p̄t (�hp̄t − Kh) + r,(9)

with r the constant defined in (6), and thus depending only on the area of M with
respect to the initial metric g0.
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At this point, we see that there is a one-to-one correspondence between metrics
in the same conformal class as h, sections of E over M , and functions p̄ (where
all of these objects are assumed to be smooth). Further, there is a one-to-one corre-
spondence between smooth sections and smooth hypersurfaces of E that intersect
each fiber once and do so transversely; under composition with p this is the same
as the correspondence between smooth functions on M and their graphs in M ×R.
Viewing metrics as hypersurfaces in the total space E provides a framework for
studying Ricci flow which is fairly similar to that of mean curvature flow and well
suited for the stochastic target approach. Our next task is to define the appropriate
target problem.

2.2. The target problem. Let �(0) be the hypersurface corresponding to the
initial metric g0. In spite of our previous efforts to distinguish between sections
over M from their description in a particular coordinate, in what follows we will fix
the global coordinate p on fibers, thus identifying the fibers with R, and formulate
everything in those terms. In particular, �(0) corresponds to the graph of p̄0. The
stochastic target problem is, for any time t , the problem of determining the set of
points such that the controlled process, starting from such a point, can be made to
hit �(0) (the “target”) in time t almost surely. Obviously, this requires specifying
the allowed controls and the processes they give rise to. We will generally explain
things for the Ricci flow and then indicate the analogous results for the normalized
Ricci flow in situations where there are no additional complications.

We start with the infinitesimal picture in normal coordinates. We choose any
point (q, p̂) ∈ M × R and let (x1, x2) be normal coordinates around q . Thus,
(x1, x2,p) are coordinates on a neighborhood of {q} × R. We assume that the
controlled process is currently at (q, p̂), say at time τ . The (x1, x2)-marginal of
the controlled process will be (infinitesimally) Brownian motion on M (with fixed
reference metric h), time-changed by 2e−2p̂ . The control consists of choosing a lift
of the tangent plane to M at q into the tangent space to E at (q, p̂). The controlled
process has its martingale part diffusing (infinitesimally) along this lifted plane
in the unique way that gives the right (x1, x2)-marginal, and has its drift along the
fiber at rate e−2p̂Kh [plus an additional −2πχ(M)/ area(M,h) for the normalized
Ricci flow]. More precisely, the control consists of a choice of (a1, a2) ∈ R

2, for
which the processes evolves [infinitesimally, assuming the process is at (q, p̂) at
time τ ] according to⎡

⎢⎣
dx1,τ

dx2,τ

dpτ

⎤
⎥⎦=

⎡
⎢⎣

e−p̂ 0

0 e−p̂

e−p̂a1 e−p̂a2

⎤
⎥⎦
[√

2dW 1
τ√

2dW 2
τ

]
+
⎡
⎢⎣

0

0

e−2p̂Kh(q)

⎤
⎥⎦ ,

where W 1 and W 2 are one-dimensional Brownian motions. Here, we have writ-
ten Kh(q) to emphasize that the curvature depends on the point in M . The

√
2

factors (in front of the Brownian differentials) are needed because the Ricci flow
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is defined using the Laplacian, instead of half the Laplacian, and rather than use a
nonstandard normalization for the Ricci flow, we choose to speed up our Brownian
motions (this is analogous to the usual discrepancy between the analyst’s and the
probabilist’s versions of the heat equation). This is the controlled process, at least
infinitesimally, corresponding to the Ricci flow. For the normalized Ricci flow, the
set of controls is the same, but the process evolves according to⎡

⎢⎣
dx1,τ

dx2,τ

dpτ

⎤
⎥⎦=

⎡
⎢⎣

e−p̂ 0

0 e−p̂

e−p̂a1 e−p̂a2

⎤
⎥⎦
[√

2dW 1
τ√

2dW 2
τ

]
+
⎡
⎢⎣

0

0

e−2p̂Kh(q) − r

⎤
⎥⎦ .

We point out that, for both the Ricci flow and the normalized Ricci flow, the
(infinitesimal) diffusion matrix is⎡

⎢⎣
2e−2pτ 0 2e−2pτ a1

0 2e−2pτ 2e−2pτ a2

2e−2pτ a1 2e−2pτ a2 2e−2pτ
(
a2

1 + a2
2

)
⎤
⎥⎦

in (x1, x2,p) coordinates at (q, p̂), of course.
Having given the infinitesimal picture, we now extend this to a global descrip-

tion. While it is tempting to simply assert that this follows immediately from the
local description, we prefer to give a more explicit formulation. There is more
than one way to do this, but we choose to use the bundle of orthonormal frames
on (M,h). The immediate difficulty with extending the above local picture is that,
except in special cases (more on which below), we cannot find coordinates which
are normal at more than one point at a time, or even a global orthonormal frame.
The solution we have in mind is to use the bundle of orthonormal frames to supply
each point along the evolving process with an orthonormal frame and its associated
normal coordinates. In particular, let O(M) be the bundle of orthonormal frames
over (M,h), consisting of points (q, e(q)) where q ∈ M and e(q) is an orthonor-
mal basis for TqM with metric h. We identify e(q) with the corresponding linear
isometry from R

2 to TqM . Let e1 and e2 be the standard basis for R2 and let E(ei)

be the corresponding canonical vector fields. Further, we let π :O(M) → M be
the usual projection and π∗ :TO(M) → T M be the induced push-forward map on
tangent spaces.

The connection with the previous infinitesimal picture comes from the following
relationship between the canonical vector fields and normal coordinates. Choose
a point q ∈ M and a frame e(q) over q , and let (x1, x2) be normal coordinates
[for (M,h)] in a neighborhood of q such that ∂xi

= e(q)(ei) at q . Obviously,
π∗[E(ei)|(q,e(q))] = ∂xi

|q . Moreover, let s be a smooth section of O(M) in a neigh-
borhood of q which is equal to e(q) at q and horizontal at q , meaning that ∂xi

s are
horizontal vectors at q . Then π∗[E(ei) ◦ s] agrees with ∂xi

to first-order around q .
(Indeed, to show that such a section s exists, start with normal coordinates and
apply the Gram–Schmidt process to {∂x1, ∂x2} at every point in a neighborhood
of q .)
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We also recall the connection between the bundle of orthonormal frames and
Brownian motion on (M,h). We have that (E(e1)

2 + E(e2)
2)/2 is Bochner’s

Laplacian on O(M), and the corresponding martingale problem is well posed (in
the sense of Stroock and Varadhan, namely that there is a unique solution for any
initial point). We use B̃τ to denote such a process. Projecting B̃τ to M gives Brow-
nian motion on M , which we denote Bτ . This is the well-known Eells–Elworthy–
Malliavin construction of Brownian motion on M , and we refer the reader to [26]
or [44] for a detailed account on the subject. Moreover, the process B̃τ on O(M)

should be thought of as the horizontal lift of Bτ on M , and thus as giving Brownian
motion equipped with parallel transport. In particular, this is how we will typically
understand B̃τ , as Brownian motion on M endowed with parallel transport. Fi-
nally, we note that the solution to the martingale problem for Bochner’s Laplacian
can be realized as the (unique) strong solution to the natural SDE driven by a stan-
dard Brownian motion on R

2, or equivalently, two independent, one-dimensional
Brownian motions. That is, B̃τ can be realized as the solution to

dB̃τ = E(e1) ◦ dW 1
τ +E(e2) ◦ dW 2

τ ,

where ◦dW indicates that the differential is to be understood in the Stratonovich
sense.

We now have the necessary background to give the global formulation of the
stochastic target problem for Ricci flow (and the related target problem for nor-
malized Ricci flow). We write points in E as (x,p) ∈ M × R and the controlled
process (for the Ricci flow) as Yτ = (xτ ,pτ ). As suggested above, the M-marginal
xτ will be Brownian motion on M , time-changed by p, and thus we know from
the above that we have parallel transport of frames (for TxM) along the paths xt

(note that the frame is always orthonormal relative to the metric h). In particular, if
we choose a frame e(x0) at the starting point, then we let e(xτ ) denote the parallel
transport of this frame along xτ . Abstractly, the control consists in choosing a lift of
Txτ M to T(xτ ,pτ )E. In terms of our evolving frame, such lifts can be identified with
points of R2. This is the time to formally introduce the control process. In what
follows, (	,F,P) is a probability space where the Brownian motion (W 1,W 2) is
defined and the reference filtration involved here is Fτ , the one generated by the
Brownian motion.

DEFINITION 1. For a fixed time t > 0, an admissible control process A is
a bounded map A : [0, t] × M × 	 → R

2 which is continuous in the first two
coordinates, and such that for each (x, τ ) ∈ M × [0, t], A(τ, x) :	 → R

2 is Fτ -
measurable. We write this in components A = (a1, a2).

We will explain below in the first remark of this section why we require the
control to be bounded.
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If we start our process from a point Y0 = (x0, p̄0) equipped with a frame e(x0)

of Tx0M , then it evolves according to the SDE (note that we are using both Itô and
Stratonovich differentials)

dxτ = e−pτ

[[ 2∑
i=1

e(xτ )(ei)
√

2 ◦ dWi
τ

]]
,

(10)

dpτ = e−pτ

[ 2∑
i=1

ai

√
2dWi

τ

]
+ e−2pτ Kh(xτ ) dτ.

This equation comes with the following convention.

CONVENTION 1. Whenever we have a bracket A[[M ◦ dN ]], the order of op-
erations is that we first write M ◦ dN = M dN + 1

2 d〈M,N〉 in Itô form and then
multiply everything by A. Thus, we have

A[[M ◦ dN ]] = (AM)dN + 1
2Ad〈M,N〉

as opposed to the common writing

A[M ◦ dN ] = AM dN + 1
2 d〈AM,N〉,

where 〈M,N〉 is the quadratic variation of M and N . For the standard Itô differ-
entials, the meaning is the standard one, namely

A[M dN ] = (AM)dN.

Though we can rewrite in a more conventional way

A[[M ◦ dN ]] = M ◦ (AdN),

we prefer the notation A[[M ◦ dN ]] because it is more suggestive in our context
that A is the time change of the process M ◦ dN . This becomes even better in the
context of equation (10) that xτ is simply a time changed Brownian motion on M .

Here, we see that e(xτ )(ei) is just the projection onto M of E(ei) and to ease the
notation we will also use the shortcut e(xτ )(ei) = ei (xτ ), or even more simply ei ,
if there is no confusion generated by dropping xτ . In particular, the horizontal lift
of xτ , which we write x̃τ = (xτ , e(xτ )) evolves according to

dx̃τ = e−pτ

[[ 2∑
i=1

E(ei)
√

2 ◦ dWi
τ

]]
on O(M),

and the first line of (10) is just the projection of this onto M . We choose to write
(10) in this way in order to emphasize that we are ultimately only interested in
the evolution of the surface in E and not in the frame; the frame is only used as
a convenience in order to express the control and the corresponding SDE. We do
this despite the fact that (10) requires evolving the frame e(xτ ) as well.
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The mixing of Itô and Stratonovich differentials in (10) is a result of the fact
that horizontal Brownian motion (or just Brownian motion on M) is not easily
written globally in Itô form. To clarify this, we give the following equivalent char-
acterization, which is just a consequence of Itô’s formula but one of the important
properties of the above system. For any smooth function ϕ : [0, T ] × M ×R → R

(assuming that the process (xτ ,pτ ) exists for τ ∈ [0, T ]),
dϕ(τ, xτ ,pτ )

= e−pτ

2∑
i=1

(
ei (xτ )ϕ + aiϕ

′)√2dWi
τ

(11)

+
(
∂τϕ + e−2pτ Kh(xτ )ϕ

′ + e−2pτ �hϕ

+ e−2pτ

2∑
i=1

a2
i ϕ

′′ + 2e−2pτ

2∑
i=1

aiei(xτ )ϕ
′
)

dτ,

where all the “inside” functions are evaluated at (τ, xτ ,pτ ), ei (x)ϕ signifies the
derivative [along ei (x)] with respect to the second variable of ϕ, ∂τϕ is the deriva-
tive with respect to τ variable, and the prime is the partial derivative with respect
to p. Note that if we let (x1, x2) be appropriate normal coordinates at a point,
then applying this to x1, x2, and p shows that, at that point, this agrees with the
infinitesimal picture described above.

We now take a moment to discuss what we mean by asserting the controlled
process arises from the control via the SDEs just mentioned. We understand these
(systems of) SDEs in the weak sense, that is the choice of driving Brownian mo-
tions (W 1

τ ,W 2
τ ) is part of the solution, not prescribed in advance. Of course, for

an arbitrary choice of controls, a solution need not exist, and if it does, it may not
be unique in law. We will have more to say about this later, after we introduce the
target problem.

Now that we have specified the admissible controls Aτ and described the evo-
lution of controlled process Yτ (A) that a choice of control gives rise to, it is time
to explain how this gives rise to a subset of E.

DEFINITION 2. We define the reachable set at a given time t ∈ [0,∞), de-
noted V (t), to be the set of points in E for which there exists an admissible con-
trol such that the controlled process, started at this point and with this control, is
in �(0) at time t almost surely.

We follow Soner and Touzi [43] in calling this the reachable set, even though
it’s the set of points you can reach a fixed target from, not the set of points you
can reach from a fixed starting point. In order for this to be well defined, we need
to show that V (t) does not depend on the initial choice of frame. Suppose Aτ is
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a control such that Yτ (A), started from y ∈ E with initial frame e(y), hits �(0) at
time t almost surely [so that y ∈ V (t)]. If ẽ(y) is any other (orthonormal) frame at
y, then there is some r ∈ O(2) such that e(y) = r ẽ(y). It’s clear that Aτr is such
that Yτ (Ar), started from y ∈ E with initial frame ẽ(y), hits �(0) at time t almost
surely. Thus, a point of E is in the reachable set or not independent of what frame
we use to express the controlled process, and so the V (t) are well defined.

For a point in the reachable set, we will indicate the control in the definition
by Â, if necessary indicating the point in V (t) by writing Â(x0, p̄0) or Â(Y0), and
call it a successful control (this seems linguistically more appropriate than optimal
control). In light of the fact that this depends on the initial choice of frame, a
successful control should really be thought of as a family of controls indexed by
O(2). However, since the dependence on the initial frame is so simple and not our
primary focus, we will generally gloss over this. We will also write Yτ (Â) as Ŷτ .
Thus, the defining property of a point in V (t) and the associated successful control
is that if we start the process at this point in V (t), then Yt (Â) ∈ �(0) almost surely.
This necessarily requires that, for a successful control Â, there exists a solution to
equation (10), and thus a corresponding process Yτ (Â) for all time τ ∈ [0, t]. In
particular, one might imagine that some choice of control gives rise to a solution
under which pτ blows up prior to t (xτ cannot blow up since M is compact), but
such a control cannot be a successful control by definition. The definition does
not require that a successful control gives rise to a solution Yτ (Â) which is unique
in law, despite the fact that our notation makes it look as though Yτ is always
determined by A. (So it is conceivable that a successful control might give rise
to another solution Y ′

τ that does not almost surely hit the target.) Nonetheless, we
will see below that, as long as a smooth solution to the Ricci flow exists, there
is essentially only one choice of successful control starting from a given point of
V (t), that it is well behaved, and that this control uniquely determines Ŷτ .

Finally, we recall that the stochastic target problem is the determination of the
reachable sets V (t). We note that V (0) = �(0); understanding V (t) for positive t

and its relationship to Ricci flow is the topic of the next section. Looking ahead,
what we will prove is that, assuming the Ricci flow has a smooth solution for
some interval of time, that solution agrees with the solution to the stochastic target
problem in the sense that V (t) = �(t) at all times in this interval.

Naturally, we have an analogous set-up which we associate with the normalized
Ricci flow. The set of admissible controls remains the same, but now the controlled
process, which we denote Yn

τ (A) (the “n” in the superscript standing for “normal-
ized”) evolves according to

dxτ = e−pτ

[[ 2∑
i=1

e(xτ )(ei)
√

2 ◦ dWi
τ

]]
,

(12)

dpτ = e−pτ

[ 2∑
i=1

ai

√
2dWi

τ

]
+ (e−2pτ Kh(xτ ) − r

)
dτ.
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Note that the only difference from Yτ is that the drift of pτ has an extra term.
We denote the corresponding reachable sets by V n(t). We also have the analog

of equation (11) where e−2pτ Kh there is replaced by e−2pτ Kh − r :

dϕ(τ, xτ ,pτ )

= e−pτ

2∑
i=1

(
ei(xτ )ϕ + aiϕ

′)√2dWi
τ

(13)

+
(
∂τϕ + (e−2pτ Kh(xτ ) − r

)
ϕ′ + e−2pτ �hϕ

+ e−2pτ

2∑
i=1

a2
i ϕ

′′ + 2e−2pτ

2∑
i=1

aiei(xτ )ϕ
′
)

dτ.

REMARK 1. We want to discuss why we insist that our control (a1, a2) is
in L∞. We begin by describing a simpler situation which illustrates the essential
point. Suppose we consider a real-value controlled process given by

dxt = at dWt , x0 = 1,

where at is an adapted real-valued function which serves as the control. If we
consider the goal to be to make the process xt hit 0 in within time 1 (and we stop
the process when it hits 0), then we would like to assert that this is impossible,
because, for instance, it would violate the martingale property of xt . However,
without some additional restriction on at , this will not be the case. For example,
consider the following scheme for controlling the process. For t ∈ [0,1/2), we
let a be the constant such that the process has probability 1/2 of hitting 0 by
time t = 1/2. It is clear that this is possible, since letting a be constant means
that xt is simply a time-changed Brownian motion, and we know that Brownian
motion almost surely hits the origin in finite time, no matter where it is started
from. Then at t = 1/2, the process has hit 0 and been stopped with probability 1/2.
If it has not, then x1/2 is some positive value. Again, we can find some constant
value for a, depending only on x1/2, such that if we let at equal that constant for
t ∈ [1/2,3/4), then the process hits 0 in that interval of time with probability 1/2.
Thus, by time t = 3/4, the process has hit 0 with probability 3/4. Now we can
iterate this procedure, at each step using up half of the remaining time, in order to
get xt to hit 0 with probability 1 by time t = 1. If we do this, the resulting process
xt will no longer be a martingale on the interval t ∈ [0,1] but instead merely a
local martingale. Part of the point is that this is a simple trick. We can think of at

as determining a time-change so that xt is a time-changed Brownian motion, and
since we know Brownian motion hits the origin in finite time, if we are allowed
to speed up time as much as we would like we can simply compress the entire
lifetime of the Brownian motion prior to the first time it hits the origin into a finite
interval.
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We now return to the target problem we associate to Ricci flow. In light of the
above, if we assumed only that (a1, a2) was adapted, we could imagine a similar
procedure of choosing the control to be very large so that, from any starting point,
we could cause it to hit p̄t−τ (this is a moving target, but it varies in a smooth
fashion and stays bounded) by time t . Once it hits p̄t−τ , we could then “switch” to
the successful control described in the next section in order to hit p̄0 as time t . The
result would be that every point would be in V (t), which is obviously not what we
want. Of course, what we have just described uses a discontinuous control, but one
can imagine smoothing it to get a continuous analogue. At any rate, the underlying
logic of this “bad” control justifies our wish to avoid unbounded controls.

Requiring that (a1, a2) be bounded prevents this kind of easy trick and forces a
successful control to respect the geometry of the situation. Of course, one might
imagine that there might be other, less restrictive, ways to achieve this, such as re-
quiring the controls to be in some Lp-space for finite p or requiring some natural
coordinate to be a martingale, as opposed to merely a local martingale. Indeed, if
one were to extend this stochastic target formulation to include, say, noncompact
surfaces, it seems like some weaker assumption on the control would be appropri-
ate. However, for the present paper, we have no need to speculate on what other
conditions one might want in other circumstances.

REMARK 2. We close this section by noting that, in the case when (M,h) is
flat (and thus either a torus or a Klein bottle), the orthonormal frame bundle is
unnecessary. In particular, uniformization implies that (M,h) is isometric to R

2

modulo the action of the group of Deck transformations �. If we let x1 and x2 be
the usual Euclidean coordinates on R

2, then h = dx2
1 + dx2

2 (after identifying M

with R
2/�). Further, (W 1

τ ,W 2
τ ) is Brownian motion on (M,h), once we take it

modulo �. In this case, the set of controls are adapted, time-continuous, bounded
maps into {(a1, a2) :ai ∈ R}, and the controlled process simplifies, so that it is
given, for both Ricci and normalized Ricci flow, by the SDE⎡

⎢⎣
dx1,τ

dx2,τ

dpτ

⎤
⎥⎦=

⎡
⎢⎣

e−pτ 0

0 e−pτ

e−pτ a1 e−pτ a2

⎤
⎥⎦
[√

2dW 1
τ√

2dW 2
τ

]
.

CONVENTION 2. Throughout this paper, very often we will have a fixed time
t > 0 so that the stochastic target problem is defined on [0, t] or the (normalized)
Ricci flow is defined up to time t . Since the process time is always going to be in
[0, t], all the stopping times involved will always be minimized with t so that the
stopped process is well defined.

Also, the constants involved in the main estimates may change from line to line
in such a way that they do not depend on time t .
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3. Verification and the connection with Ricci flow. At this point, we have
described a pair of closely related stochastic target problems, namely the deter-
mination of V (t) and V n(t), which we associate with Ricci flow and normalized
Ricci flow, respectively. However, we have given no justification for these associa-
tions. In the present section, we prove that, under the assumption that a solution to
the Ricci flow exists, the solution is given by the reachable sets. This justifies the
Introduction of these particular stochastic target problems in the context of Ricci
flow.

Continuing with the notation of the previous section, we suppose that there is a
smooth solution p̄t to the Ricci flow, that is, to equation (8), with initial condition
p̄0 on the interval t ∈ [0, T ) (where we allow the possibility that T = ∞). At
each time t , we can associate the solution with a section of E over M and thus
with a sub-manifold of the total space E, which is smooth and intersects each
fiber once, transversely. We call the resulting sub-manifolds �(t) and note that
this extends our earlier definition of �(0). Of course, knowing the �(t) for t ∈
[0, T ) is equivalent to knowing p̄t . Similarly, suppose there is a smooth solution
p̄n

t to the normalized Ricci flow, that is, to equation (9), with initial condition
p̄n

0 = p̄0 on the interval t ∈ [0, T n) [where, for the same manifold (M,h) with
the same initial metric g0, it is not necessarily true that T and T n are equal].
Then we have the associated sub-manifolds �n(t) of E. The connection between
the Ricci flow and normalized Ricci flow (viewed in this way) and the stochastic
target problems introduced above is given by the following theorem. Note that both
this sort of result and the method of proof mirror that of [43]. The main additional
complication, besides the geometric formalism needed for the general statement
of the target problem, is that the controls are not restricted to a compact set.

THEOREM 3. Let (M,h) be a smooth, compact Riemannian surface with ini-
tial metric g0 = e2p̄0h, as above. Suppose that the Ricci flow has a smooth solution
p̄t on t ∈ [0, T ). Then �(t) = V (t) for all t ∈ [0, T ). Similarly, if the normalized
Ricci flow has a smooth solution p̄n

t on t ∈ [0, T n), then �n(t) = V n(t) for all
t ∈ [0, T n).

PROOF. We start with the Ricci flow. We fix some t ∈ (0, T ) and let τ be the
time parameter for the controlled process Yτ (A), τ ∈ [0, t] (as usual in probabilis-
tic approaches to PDEs, process time runs “backward” compared to PDE time).
We consider the square of the vertical distance between the controlled process Yτ

and �(t − τ). That is, we consider η(x,p, τ ) = (p − p̄t−τ (x))2 along the paths
of Yτ , so that ητ = (pτ − p̄t−τ (xτ ))

2.
Actually, we begin by considering a slightly more general quantity. Let

ξ(x,p, τ ) = p − p̄t−τ (x), and for the moment let ϕ :R → [0,∞) be any smooth
function. We wish to consider ϕ(ξ(x,p, τ )); clearly η is just the special case
ϕ(z) = z2.
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We now apply Itô’s formula (11) to (ϕ(ξ))τ . In the following, p̄ is always eval-
uated at time t − τ and position xτ , we write ei for e(xτ )(ei) and we suppress other
arguments (such as for the controls ai ) as desired to make things more readable.
Then we have

d
(
ϕ(ξ)

)
τ = √

2ϕ′e−pτ
[
(a1 − e1p̄) dW 1

τ + (a2 − e2p̄) dW 2
τ

]

+
2∑

i=1

e−2pτ
[
ϕ′′(−ei p̄)2 + ϕ′(−e2

i p̄
)]

dτ + ϕ′∂t p̄ dτ

(14)
+ e−2pτ

[
ϕ′Kh + ϕ′′(a2

1 + a2
2
)]

dτ

+ 2e−2pτ ϕ′′[−a1e1p̄ − a2e2p̄]dτ.

Recall that e2
1 + e2

2 is just �h. Then a little algebra and the fact that p̄ satisfies
equation (8) allows us to simplify this, yielding

d
(
ϕ(ξ)

)
τ = √

2ϕ′e−pτ
[
(a1 − e1p̄) dW 1

τ + (a2 − e2p̄) dW 2
τ

]
+ {e−2pτ ϕ′′[(a1 − e1p̄)2 + (a2 − e2p̄)2](15)

+ ϕ′(e−2p̄ − e−2pτ
)
(�hp̄ − Kh)

}
dτ.

We now return to considering η. In this case, this equation specializes to

dητ = 2
√

2(pτ − p̄)e−pτ
[
(a1 − e1p̄) dW 1

τ + (a2 − e2p̄) dW 2
τ

]
+ 2e−2pτ

[
(a1 − e1p̄)2 + (a2 − e2p̄)2]dτ(16)

+ 2(pτ − p̄)
(
e−2p̄ − e−2pτ

)
(�hp̄ − Kh)dτ.

First, we show that any point (x, p̄t (x)) in �(t) is in V (t). Obviously, this is
true for t = 0. Now choose t > 0. We choose our controls a1 and a2 as follows:
for τ ∈ [0, t], we let a1 be e1p̄t−τ (xτ ) and a2 be e2p̄t−τ (xτ ). Thus, our controls
are Markov with respect to the process’ position and the time (and the “current”
frame, although this is largely just a convention, as discussed above). Intuitively,
all we are doing is trying to cause the process to be tangent to the evolving solution
given by p̄. Our controls are not only Markov in space and time, but they are given
by evaluating smooth functions of space and time (and the lift of “space” into the
orthonormal frame bundle) along the controlled process, and thus we know that the
system of SDEs for Yτ has a unique strong solution. In particular, Yτ is uniquely
determined by these controls. Using these controls, equation (16) simplifies to

dητ = 2(pτ − p̄)
(
e−2p̄ − e−2pτ

)
(�hp̄ − Kh)dτ.

Because p̄ is smooth on M × [0, T ) and M is compact, we know that both
p̄t−τ (x) and �hp̄t−τ (x) − Kh are bounded on (x, τ ) ∈ M × [0, t]. Now choose
any δ > 0 and let θδ = inf{τ :ητ ≥ δ} be the first hitting time of δ. Also observe
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that both the controlled process Yτ = (xτ ,pτ ) and ητ have continuous paths. If
we stop our process at θδ , then pτ is also bounded (this follows from the fact that
p̄ is bounded and the definition of η). Combining the boundedness of both p̄ and
pτ with an easy estimate for the exponential function, we see that e−2p̄ − e−2pτ

is bounded above and below by a constant multiple of ±(pτ − p̄), respectively.
It follows that (for τ ≤ θδ), we have dητ ≤ Cητ dτ , for some positive constant C

depending on t , δ, and the bounds mentioned above. Recalling that η0 = 0, because
we start our controlled process on �(t), and integrating gives

ητ∧θδ ≤ C

∫ τ∧θδ

0
ηs ds for τ ∈ [0, t].

Then Gronwall’s lemma implies that ητ∧θδ = 0 for all τ ∈ [0, t]. Because ητ has
continuous paths, this means that θδ > t , and thus we have that ητ = 0 for all
τ ∈ [0, t]. In particular, ηt = 0, and so Yt ∈ �(0). Thus we have shown that �(t) ⊂
V (t).

Next, we need to show the opposite inclusion, V (t) ⊂ �(t). Again, this is clear
for t = 0, so we fix some t ∈ (0, T ). We have some starting point (α,β) ∈ M ×R,
and we assume that there exists a control (a1, a2) such that Yτ (a1, a2) almost surely
hits �(0) at time τ = t .

At this point, we produce a mollified version of η by a judicious choice of ϕ. In
particular, we now let ϕ :R → [0,∞) be a smooth, symmetric function satisfying
the following additional properties: ϕ is nondecreasing on [0,∞), ϕ(z) = z2 in
some neighborhood of 0, and ϕ is constant on [A,∞) for an appropriately chosen
constant A. It follows that the value of ϕ on [A,∞) is positive, ϕ is 0 only at 0,
and all derivatives of ϕ are bounded. If we now let η̂(x,p, τ ) = ϕ(ξ(x,p, τ )), then
η̂ is a mollified version of η, in the sense that they agree for small values of η but
η̂ is bounded, along with all of its derivatives.

Let D(τ) = E[η̂τ ]. Then equation (15) shows that

D(τ) = D(0) +
∫ τ

0
E
[
e−2psϕ′′[(a1 − e1p̄)2 + (a2 − e2p̄)2]

(17) + ϕ′(e−2p̄ − e−2ps
)
(�hp̄ − Kh)

]
ds.

Here, of course, the derivatives of ϕ are evaluated at ξ(xs,ps, s). Note that e1p̄,
e2p̄ and �hp̄ − Kh are all bounded. Also, for small ξ we have that ϕ′′ = 2 and
ϕ′ = 2(pτ − p̄), and both of these derivatives are bounded for all ξ . Moreover,
both e−2pτ ϕ′′ and ϕ′(e−2p̄ − e−2pτ ) are bounded because the derivatives of ϕ are
identically zero for ξ > A. In addition, for any two constants C1,C2 ≥ 0, there is
another constant C3 > 0 such that for any ξ ∈ R,

C1ϕ
′′(ξ) − C2ϕ

′(ξ)ξ ≥ −C3ϕ(ξ).

Notice that as a consequence of (17) and the continuity of the inside functions,
D(τ) is actually differentiable as a function of τ . In particular, combining this
with the above inequality we deduce that

D′(τ ) ≥ −CD(τ)
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for all τ ∈ [0, t]. This means that D(τ)eCτ is increasing with τ , so

D(t)eCt ≥ D(0) ≥ 0.(18)

By assumption, the controlled process hits �(0) at time t a.s., and thus D(t) = 0.
This, and the preceding inequality, immediately lead to D(0) = 0 which is equiv-
alent to saying that our initial point (α,β) is in �(t). Thus, we have proven that
V (t) ⊂ �(t).

The proof for the normalized Ricci flow is almost identical. With the appropriate
quantities, p̄, pτ , xτ and so on, equation (14) becomes

d
(
ϕ(ξ)

)
τ = √

2ϕ′e−pτ
[
(a1 − e1p̄) dW 1

τ + (a2 − e2p̄) dW 2
τ

]

+
2∑

i=1

e−2pτ
[
ϕ′′(−ei p̄)2 + ϕ′(−e2

i p̄
)]

dτ + ϕ′∂t p̄ dτ

(19)
+ e−2pτ

[
ϕ′Kh − re2pτ + ϕ′′(a2

1 + a2
2
)]

dτ

+ 2e−2pτ ϕ′′[−a1e1p̄ − a2e2p̄]dτ

and then from (9), we get exactly the same equation from (15), thus the rest of the
proof is identical. �

From the point of view of control theory, the above result is a verification the-
orem. From the point of view of PDE theory, this can also be thought of as a
uniqueness theorem. In particular, it shows that smooth solutions to the Ricci flow
are unique and we state this in the following.

COROLLARY 4. If there is a (smooth) solution to (normalized) Ricci flow on
the time interval [0, T ), then it is unique.

It bears repeating that the above relies on already knowing that the Ricci flow
has a smooth solution on some interval; in other words, it sheds no light on the
existence of a solution (to either the Ricci flow or the control problem). On the
other hand, this existence is well known in the present case. Cao [10] and Hamil-
ton [24] show that, for a smooth, compact initial surface, the Ricci flow always has
a smooth solution on some (nontrivial) interval of time, and the normalized Ricci
flow has a smooth solution for all time. (Of course, much more can be said, includ-
ing the relationship between the normalized and un-normalized flows, but again,
this is well known and can be found in any book on the subject.) For an accessible
overview we refer to [13], Chapter 5, which treats the (normalized) Ricci flow on
surfaces.

One additional feature of the successfully controlled process is that it provides
Brownian motion on M under the backward Ricci flow (or backward normalized
Ricci flow, of course), as we now explain. If we put a smooth family of metrics gτ
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on a smooth manifold M , then a process Bτ is a Brownian motion on (M,gτ ) if it
solves the martingale problem for the time-inhomogeneous operator �gτ . Suppose
we have a smooth solution to the Ricci flow, as above, for t ∈ [0, T ), and let gt

be the metric on M corresponding to this solution. Then if we choose a time t

[in (0, T )] and point x0 ∈ M , there is a unique point (x0, p̄0) over x0 (where, of
course, we use our standard fiber coordinate p) in �(t) = V (t). If we now run our
successfully controlled process Yτ = (xτ ,pτ ) starting from this point, we know
that it is on �(t − τ) for all τ ∈ [0, t), or equivalently that pτ = p̄t−τ (xτ ), for all
τ ∈ [0, t] almost surely. Then looking at xτ (which is just the M-marginal) and
recalling that gt = e2p̄t h, a little thought shows that xτ is a Brownian motion on
(M,gt−τ ) for τ ∈ [0, t]. That “process time” runs backward compared to “PDE”
time, which manifests itself in the t − τ parameter (with t fixed and τ increasing)
for the metric g, explains why we get Brownian motion on M under backward
Ricci flow, as opposed to just Ricci flow.

For clarity, let us temporarily denote xτ under the successful control as x̂τ . Then
recognizing it as Brownian motion under backward Ricci flow gives a way of rep-
resenting the solution to the Ricci flow (or normalized Ricci flow) that looks more
like the usual representations for parabolic (linear) PDEs. In the special case when
h is flat, normalized and un-normalized Ricci flow are the same, and we see that
pτ is a martingale. Further, we have that

p̄t (x0) = E
x0,t
[
p̄0(x̂t )

]
,(20)

where the expectation is taken with respect to the successfully controlled process
started from (x0, p̄t (x0)) and run until τ = t . This is analogous to solving the heat
equation with some initial condition by running Brownian motion and then using
it to average the initial condition. The difference is that, for the heat equation,
we can construct Brownian motion (or more analytically, the heat kernel) without
already having a solution to the heat equation with our initial data. This is because
Brownian motion (or the heat kernel) does not depend on the initial data, and so we
can use it to solve the heat equation in the first place. All of this is a manifestation
of the linearity of the heat equation. In the case of Ricci flow, we need to know
p̂τ in order to determine x̂τ (or more accurately, these two are intertwined by the
system of SDEs they solve), so we cannot first determine x̂τ and then use it in the
above to solve the Ricci flow.

Also, we can now say a bit more about the recent work of [15] and [1]. They
give a lift of Brownian motion on a manifold with time-dependent metric to the
frame bundle which gives the parallel transport along the Brownian paths. They
then introduce a notion of damped parallel transport which, under the Ricci flow
(but not the normalized flow), becomes an isometry as well. This damped parallel
transport can be used to produce martingales from solutions to heat problems under
the Ricci flow. In our notation, xτ is the Brownian motion with respect to a time-
dependent metric (with an additional factor of

√
2 to get the normalization right,

of course), and {e−pτ e(xτ )(e1), e
−pτ e(xτ )(e2)} (which is an orthonormal frame for

the time-varying metric) gives the parallel transport along the Brownian path xτ .
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4. The blow ups of the Ricci flow for the case of positive or negative Eu-
ler characteristic. This section is dedicated to showing that in the case of the
(unnormalized) Ricci flow, there are blow ups either in finite or infinite time if the
curvature of the reference metric Kh, is either always positive or always negative.

Assume now that the Ricci flow has a smooth solution defined on the time in-
terval [0, T ). Then, from Theorem 3, we learn that for any fixed time t ∈ [0, T ),
pτ = p̄t−τ (xτ ) where (xτ ,pτ ) is the solution to (10) with the initial conditions
(x, p̄0(x)). On the other hand, taking a smooth function ϕ : [0, t]×R→R in (11),
we obtain that

dϕ(τ,pτ ) = e−pτ ϕ′(pτ )

2∑
i=1

ai

√
2dWi

τ

+
[
∂τϕ(τ,pτ ) + e−2pτ

(
ϕ′(τ,pτ )Kh(xτ ) + ϕ′′(τ,pτ )

2∑
i=1

a2
i

)]
dτ.

Since the successful control is given by ai = ei p̄t−τ , we get

2∑
i=1

a2
i = ∣∣∇p̄t−τ (xτ )

∣∣2,
and this means that

ϕ(τ,pτ ) −
∫ τ

0

[
∂τϕ(σ,pσ )

+ e−2pσ
(
ϕ′(σ,pσ )Kh(xσ ) + ϕ′′(σ,pσ )

∣∣∇p̄t−σ (xσ )
∣∣2)]dσ

is a martingale. In particular, taking expectation at times τ = 0 and τ = t and using
pτ = p̄t−τ (xτ ), yields

ϕ
(
0, p̄t (x)

)= E
(x,t)[ϕ(t, p̄0(xt )

)]
−
∫ t

0
E

(x,t)[∂tϕ(σ,pσ )

(21)
+ e−2pσ

(
ϕ′(σ,pσ )Kh(xσ )

+ ϕ′′(σ,pσ )
∣∣∇p̄t−σ (xσ )

∣∣2)]dσ.

There are two obvious obstructions stemming from this formula. The first one is
that if Kh(x) > 0 for all x ∈ M , then taking ϕ(τ,p) = e2p , the above formula (21)
implies

e2p̄t (x) = E
(x,t)[e2p̄0(xt )

]− 2
∫ t

0
E

(x,t)[Kh(xσ ) + 2
∣∣∇p̄t−σ (xσ )

∣∣2]dσ

≤ E
(x,t)[e2p̄0(xt )

]− 2
∫ t

0
E

(x,t)[Kh(xσ )
]
dσ
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and thus, upon denoting the uniform norm by | · |u and taking K0 = infx∈M Kh(x),

e2p̄t (x) ≤ e2|p̄0|u − 2tK0.

As this is true for any t ∈ [0, T ), the extinction time of the Ricci flow is finite and
is certainly at most e2|p̄0|u/(2K0). Therefore, in the case of positive curvature the
flow develops singularities in finite time.

On the other hand, if the curvature is negative (Kh < 0 on M), then there are
some constants C1,C2 > 0 such that

p̄t (x) ≥ log(C1t + 1) − C2 for all x ∈ M and t ≥ 0.

To see this, take K0 = infx∈M −Kh(x) > 0, thus Kh(x) ≤ −K0 < 0 and then con-
sider ϕ(τ,p) = p in (21) to deduce that

p̄t (x) = E
(x,t)[p̄0(xt )

]− ∫ t

0
E

(x,t)[e−2pσ Kh(xσ )
]
dσ ≥ inf

x∈M
p̄0

which means that p̄t (x) is bounded below uniformly in t ≥ 0 and x ∈ M . Now con-
sider the test function ϕ(τ,p) = exp(α(t − τ − 1

2K0
e2p)). Since p̄t (x) is bounded

below, this implies that for large enough α, ϕ′′(σ,pσ ) ≥ 0. On the other hand,
∂τϕ(σ,p) − K0e

−2pϕ′(σ,p) = 0, and this combined with the preceding and the
fact that ϕ′ is negative leads to

ϕ
(
0, p̄t (x)

)≤ E
t,x[ϕ(t, p̄0(xt )

)]≤ 1,

which means that p̄t (x) ≥ 1
2 log(2K0t) for any t > 0 for which p̄t exists. In par-

ticular, this shows that either the flow ceases to exist after a finite time, or, if it
does exist for all times, p̄t (x) goes to infinity uniformly over x ∈ M . The moral is
that we cannot expect the Ricci flow to converge as the time approaches either the
extinction time or infinity.

For the flat case, since the curvature is 0, the normalized and the unnormalized
Ricci flows are the same, and thus we will treat this case as the normalized Ricci
flow.

REMARK 3. The blow up in the negative case does not take place in finite
time but this requires more arguments which we do not provide here.

5. Time-dependent a priori bounds for Ricci flow. We now turn our atten-
tion to using the stochastic target representation for the normalized Ricci flow to
derive (more accurately, of course, to re-derive) geometric facts about the flow. We
will always work with the case where the reference metric h has constant curva-
ture. By uniformization, this is no loss of generality, and it simplifies the analysis
considerably. After a preliminary rescaling, we can assume that this constant cur-
vature is either 1, 0, or −1. Further, we can rescale the initial metric g0 so that it
has the same area as h. Thus, without loss of generality, we are in one of three cases
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(by the Gauss–Bonnet theorem). First, if the Euler characteristic of M is positive,
we have that Kh ≡ r ≡ 1. If the Euler characteristic of M is zero, we have that
Kh ≡ r ≡ 0. Finally, when the Euler characteristic of M is negative we have that
Kh ≡ r ≡ −1. The bounds we have in mind are similar in all three cases, although
the differences in sign of Kh result in important differences.

We call these bounds “a priori” because they do not depend on the structure of
the reachable set. We elaborate on this after Theorem 6.

We have one more comment about notations before we begin. Because we will
be concerned with the normalized Ricci flow for the rest of the paper, we drop the
“n” superscripts. Thus, for instance, we let p̄t denote a solution to the normalized
Ricci flow, unless otherwise indicated.

The interesting feature of choosing h to be a metric of constant curvature is that
the drift of the SDE satisfied by pτ does not depend on xτ (although the target
always does, except in trivial cases). In particular, we have the following three
cases:

r = 1: dpτ = e−pτ

[ 2∑
i=1

ai

√
2dWi

τ

]
+ (e−2pτ − 1

)
dτ,

r = 0: dpτ = e−pτ

[ 2∑
i=1

ai

√
2dWi

τ

]
,(22)

r = −1: dpτ = e−pτ

[ 2∑
i=1

ai

√
2dWi

τ

]
+ (1 − e−2pτ

)
dτ.

In general, the stochastic target problem for the normalized Ricci flow (and also
the Ricci flow itself) gives an equation of the form

dpτ = e−pτ

[ 2∑
i=1

ai dWi
τ

]
+ Uτ (pτ ) dτ,(23)

where the controls ai , i = 1,2 are bounded and chosen such that pt is almost surely
on M0, the section corresponding to p̄0 in the bundle M ×R. In the case at hand,
we assume that Uτ (p) is a function U : [0, t] ×R→R which is uniformly locally
Lipschitz in the second variable, that is, for any L > 0 there is a constant CL with
|Uτ (p) − Uτ (q)| ≤ CL|p − q| for all τ ∈ [0, t] and p,q ∈ [−L,L].

The basic point is that there are natural barriers for pτ given in terms of equa-
tion (23) where the martingale part is set to be equal to 0. To be precise, we define
a barrier as a solution qτ to the ODE

dqτ = Uτ (qτ ) dτ.(24)

In this framework, we have a general result as follows.
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LEMMA 5. Assume that pτ and qτ are solutions to (23) and (24), respectively,
for τ ∈ [0, t] with U a uniformly locally Lipschitz function in the second variable
on [0, t] ×R.

If at any time τ1 ∈ [0, t), pτ1 < qτ1 with positive probability, then at any later
time τ2 ∈ (τ1, t], pτ2 < qτ2 with positive probability.

Similarly, if at any time τ1 ∈ [0, t), pτ1 > qτ1 with positive probability, then at
any later time τ2 ∈ (τ1, t], pτ2 > qτ2 with positive probability.

PROOF. The proof is a basic application of stopping time and Gronwall-type
argument. We will prove only the first part, the second one being similar.

So, assume that qτ1 > pτ1 with positive probability and, therefore, that we can
choose a constant L > 0 such that L ≥ qτ1 − pτ1 > 1/L with positive probability.
We further take L large enough so that |qτ | ≤ L for all τ ∈ [0, t].

Now, for any smooth function η :R→R, we have

η(qτ − pτ ) = η(qτ1 − pτ1) + Mτ

+
∫ τ

τ1

(
e−2psη′′(qs − ps)

(
a2

1(s) + a2
2(s)

)
(25)

+ η′(qs − ps)
(
Us(qs) − Us(ps)

))
ds,

where Mτ is a martingale with M(τ1) = 0. Further, we choose the function η(ξ)

such that it is nondecreasing, equal to 0 for ξ ≤ 0, equal to 1 for ξ ≥ 2L and
η(ξ) = ξ2 for small ξ ≥ 0.

Next, we define the stopping time σ = inf{u ≥ τ1 :pu ≥ qu}∧ t . With this setup,
we will denote for simplicity ητ = η(qτ −pτ ), η′

τ = η′(qτ −pτ ) and η′′
τ = η′′(qτ −

pτ ). Furthermore, from (25),

E[ητ∧σ ] = E[ητ1]
+
∫ τ

0
E
[
1[τ1,σ ](s)

(
e−2psη′′

s

(
a2

1(s) + a2
2(s)

)
(26)

+ η′
s

(
Us(qs) − Us(ps)

))]
ds.

Since qs remains bounded on [τ1, τ2] and η′ has compact support, combined with
the property that Uτ is uniformly Lipschitz in the second variable on compact
intervals, we can find a constant C > 0, such that

η′
s

(
Us(qs) − Us(ps)

)≥ −Cη′
s(qs − ps).

This, the choice of our function η, the fact that the controls ai , i = 1,2 are
bounded, and that qs is bounded, yield, in the first place, that e−2psη′′

s is bounded,
and also that for some constant C > 0,(

e−2psη′′
s

(
a2

1(s) + a2
2(s)

)+ η′
s

(
Us(qs) − Us(ps)

))≥ −Cηs.(27)
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To check this, one can reason as follows. For qs ≤ ps , both sides are 0. For
ε > qs − ps > 0 with small ε, the first term is nonnegative and the second one is
bounded below by −C(qs −ps)

2 which is again a constant times ηs . For qs −ps >

ε, the inequality follows easily as the left-hand side is bounded below by some
negative constant and ηs is certainly bounded below by ε2.

The next step is similar to the passage from (17) to (18). To wit, notice that,
from (26), u(τ) = E[ητ∧σ ] is a continuous and differentiable function of τ for
τ ∈ [τ1, τ2]. Combining this with (27) leads to

u′(τ ) ≥ −CE
[
1[τ1,σ ](τ )ητ

]
.

Since σ is the first time ps = qs , it follows that, 1[τ1,σ ](τ )ητ = ητ∧σ , conse-
quently,

u′(τ ) ≥ −Cu(τ),

which results with

u(τ)eC(τ−τ1) ≥ u(τ1) > 0

or equivalently,

E[ητ∧σ ]eC(τ−τ1) ≥ E[ητ1] > 0.

The hypothesis qτ1 > pτ1 with positive probability is translated into positivity of
E[ητ1]. For τ = τ2 we obtain E[ητ2∧σ ] = E[ητ2, σ > τ2] > 0 and, therefore, we
conclude that {σ > τ2} has positive probability; stated otherwise, the probability
that qτ2 > pτ2 is positive.

One technical word is in place here. Namely, the definition from (23) is in the
sense of local martingales, but during the proof we look at η(qτ − pτ ) and this is
actually a semi-martingale in the sense that is a sum of martingale and a bounded
variation process, not merely a sum of a local martingale and a locally bounded
variation. This is indeed due to the boundedness and continuity of the quantities
involved, namely e−psη′

s , e−2psη′′
s and the controls ai , i = 1,2. �

Next, we solve equation (24) for each of the three cases described in equa-
tion (22) (this is straightforward, as the resulting ODEs are separable). For ease
of reference, we will label the resulting equations as BK

c (τ ) with super- and sub-
scripts indicating relevant parameters. In the case r = 1, we have that

B1
c (τ ) = 1

2 log
(
1 − ce−2τ ) for some constant c ∈ (−∞,1).

The choice of c allows any initial condition. Note that c = 0 gives the constant
solution B1

0 (τ ) ≡ 0. For any c, as τ → ∞, we see that B1
c (τ ) → 0. The case r = 0

gives

B0
c (τ ) = c for some constant c ∈ R.
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Obviously, the choice of c allows any initial condition. (This is perhaps a bit pedan-
tic, but we include it for the sake of completeness.) Finally, r = −1 gives

B−1
c (τ ) = 1

2 log
(
1 − ce2τ ) for some constant c ∈ (−∞,1).

Again, the choice of c allows any initial condition, and c = 0 gives the constant
solution B−1

c (τ ) ≡ 0. This time, though, if c �= 0, then the solution heads to ±∞ as
τ increases (in finite time for negative initial condition, and as τ → ∞ for positive
initial condition).

Continuing, we want to use the previous lemma and a judicious choice of the
parameter c to bound the reachable set at time t . Recall that p̄0 gives the initial
metric g0 and serves as the target in the target problem [and which as a section
we write as �(0)]. The assumption that g0 and h have the same area implies that
maxx∈M p̄0(x) = α ≥ 0 and that minx∈M p̄0(x) = β ≤ 0. Further, if either α or β

is zero then both are, meaning that p̄0 ≡ 0 and g0 is just h.
The logic of the proof of the following theorem explains why solutions qτ of

equation (24) are called barriers, in this context.

THEOREM 6. Consider the target problem (for the normalized Ricci flow)
where h corresponds to one of the three constant curvature cases as discussed
above (and with α and β as just described). For any t ≥ 0, we have that

sup
(x,p)∈V (t)

p ≤
⎧⎪⎨
⎪⎩

1
2 log

(
1 − e−2t

(
1 − e2α

))
, if r = −1,

α, if r = 0,
1
2 log

(
1 − e2t

(
1 − e2α

))
, if r = 1,

and

inf
(x,p)∈V (t)

p ≥
⎧⎪⎨
⎪⎩

1
2 log

(
1 − e−2t

(
1 − e2β

))
, if r = −1,

β, if r = 0,
1
2 log

(
1 − e2t

(
1 − e2β

))
, if r = 1 and t < −1

2 log
(
1 − e2β

)
.

[If β = 0, we set −1
2 log(1 − e2β) = ∞.]

PROOF. We start with the upper bound in the r = −1 case. We consider some
fixed but arbitrary t ≥ 0. Let c′ = e−2t (1 − e2α). Then

B−1
c′ (t) = α and B−1

c′ (0) = 1
2 log

(
1 − e−2t (1 − e2α)).

Thus, by the previous lemma, if we start from a point (x0, p̄0) with p̄0 > B−1
c′ (0),

we have that pt > B−1
c′ (t) = α with positive probability (for any controls). By the

definition of α, this means that pt is not in the target with positive probability.
Since this holds for any controls, it follows that (x0, p̄0) is not in the reachable
set at time t , which we recall we denote V (t). This implies the upper bound on
sup(x,p)∈V (t) p given in the theorem.
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For the lower bound in the r = −1 case, consider c′ = e−2t (1 − e2β). Then

B−1
c′ (t) = β and B−1

c′ (0) = 1
2 log

(
1 − e−2t (1 − e2β)).

Analogously to the argument for the upper bound, the previous lemma implies that
no point (x0, p̄0) with p̄0 < B−1

c′ (0) can be in V (t). This implies the desired lower
bound.

For the r = 0 case, analogous arguments apply, using c′ = α for the upper bound
and c′ = β for the lower bound.

Finally, we consider the r = 1 case. The upper bound is proven just as in the
K = −1 case, using c′ = e2t (1 − e2α). The proof of the lower bound is simi-
lar, except that if t ≥ −1

2 log(1 − e2β), we have that B1
c (t) > β for any choice

of c ∈ (−∞,1). Thus, these arguments do not produce any lower bound for
inf(x,p)∈V (t) p in this case. On the other hand, if t < −1

2 log(1 − e2β), we can
let c′ = e2t (1 − e2β) and argue just as before. �

In light of the verification theorem, these conclusions can be restated in
terms of p̄t . Namely, we can replace sup(x,p)∈V (t) p in the above theorem with
maxx∈M p̄t (x) and inf(x,p)∈V (t) p with minx∈M p̄t (x). Nonetheless, there is a rea-
son to state the theorem as above. Suppose we consider the same target problem
(or problems, since there are three cases), except that now we allow the target to
be any (nonempty) closed set � such that max� p = α ≥ 0 and max� p = β ≤ 0,
rather than just a smooth section corresponding to a metric g0 on M . Then we can
still ask about the reachable set at time t ≥ 0. Assuming that it is nonempty, the
bounds in the above theorem still hold (with the same proofs). This shows that
these bounds do not depend on the verification theorem and the resulting connec-
tion with PDEs, or on the structure of the reachable set, such as its smoothness or
whether it is a section. (Moreover, similar methods could be employed even if α

and β were not assumed to be nonnegative and nonpositive, resp.) It is this sense
in which we refer to them as “a priori bounds.” Of course, it is likely that these
bounds are only interesting in light of their connection to the Ricci flow, as given
by the verification theorem.

We close this section with some easy observations about this theorem. First of
all, if α = 0, then sup(x,p)∈V (t) p = 0 for all t ≥ 0, and this holds in all three cases.
Similarly, if β = 0, then inf(x,p)∈V (t) p = 0 for all t ≥ 0, in all three cases. Since
one of α or β being zero implies that both are, we conclude that if either α or
β is zero, the reachable set only contains points with p = 0. On the other hand,
every point with p = 0 will clearly be in the reachable set (just let the controls be
identically zero). Thus, we will have V (t) = {p ≡ 0} for all t ≥ 0. This corresponds
to the basic fact that if g0 is already a metric of constant curvature, then it is
stationary under the normalized Ricci flow.

In the case when α and β are not zero, we see much different behavior for
the cases of the three different curvatures. For r = −1, the bounds improve as t
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increases, which we will see makes this the easiest case to deal with. For r = 0,
the bounds are constant. Finally, for r = 1, the bounds get worse as t increases, and
the lower bound even ceases to exist in finite time. This corresponds to the well-
known observation that the case of the sphere (or projective space) is the hardest
case to handle for Ricci flow on compact surfaces.

REMARK 4. It is worth pointing out that the above argument from Theorem 6
is overkill in the r = 0 case, since then the result follows directly from the fact that
pτ is a martingale and martingales have constant expectation.

We finish this discussion with the following useful corollary which plays an
important role later on.

COROLLARY 7. For the case of r = −1, or equivalently, the case χ(M) <

0, the solution p̄t of the normalized Ricci flow converges to 0 uniformly in the
C0-norm exponentially fast as t → ∞.

The same arguments work in the case of unnormalized Ricci flow. We record
this here as follows.

THEOREM 8. For the unnormalized Ricci flow, as long as the stochastic target
is well defined up to time t ,

sup
(x,p)∈V (t)

p ≤
{ 1

2 log
(
e2α + t

)
, if r = −1,

1
2 log

(
e2α − t

)
, if r = 1 and t < e2α

and

inf
(x,p)∈V (t)

p ≥
{ 1

2 log
(
e2β + t

)
, if r = −1,

1
2 log

(
e2β − t

)
, if r = 1 and t < e2β .

The only thing we should point out here is that there is a blow-up in finite time
for the case of r = 1 and there is also a blow up in finite or infinite time for the
case of r = −1. This recovers the blow-up results in the previous section, only this
time we used uniformization.

REMARK 5. This theorem shows that for the unnormalized Ricci flow, in the
negative curvature case, the flow does not blow up in finite time, at least in the
C0 topology. This is already a good indication that the solution is defined for all
times and corroborated with the above theorem shows that the flow blows up at
infinity. Thus, this result is probably a better result (in the case of negative constant
curvature case) as the one obtained in Section 4.
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6. Mirror coupling. For the remainder of the paper, we assume that we have
a smooth initial metric and a smooth solution to the normalized Ricci flow for
all time (which we do since the initial conditions are smooth on a compact sur-
face). We are interested in studying the convergence to the constant curvature limit
according to the stochastic framework we have been developing.

We consider the cases of zero Euler characteristic and of negative Euler charac-
teristic, and we work relative to the underlying metric of constant curvature, as in
the previous section. The positive Euler characteristic case (the sphere or projec-
tive plane) is well known to be more difficult. This is largely due to the fact that
there are many constant curvature metrics in any given conformal class, so that it is
not clear in advance which one will be the limiting metric under normalized Ricci
flow (this is related to the issue of solitons). As a result, we do not pursue this case.

We are assuming that we have a smooth solution to the normalized Ricci flow for
all time. This means that the reachable set is always a smooth hypersurface trans-
verse to the vertical fibers. From now on, we are only interested in the successfully
controlled process, so for notational simplicity we will let (xτ ,pτ ) always denote
that process [i.e., what we previously denoted Ŷτ = Yτ (Â)]. Moreover, if p̄ is
the smooth solution, we see that pτ = p̄t−τ (xτ ). One consequence of this is that
we can generally restrict our attention to the xτ process. In particular, if we wish
to couple two copies of the successfully controlled process (so that they meet as
quickly as possible), it is enough to couple the xτ marginals, since if the processes
meet on the manifold, then they also meet on the fiber. In this sense, what we are
doing is equivalent to just considering Brownian motion on the underlying time-
varying manifold, and so we see again that running a Brownian motion along the
solution flow (and employing the stochastic techniques that apply in that situation)
is subsumed by the more general construction of the stochastic target problem.

A significant part of our results on the long-time convergence of the normalized
Ricci flow is based on coupling two copies of the marginal process on M , which
we denote by xτ and yτ . Recall that xτ will be time-changed Brownian motion on
(M,h), with the time change given by integrating a = 2e−2p̄ along the paths, and
analogously for yτ , where we let b denote the instantaneous time-dilation (this is
one significant advantage to working relative to this fixed metric). Note that we
have incorporated the

√
2 normalization factor into the time-change, so that we

really do have Brownian motion with respect to h as the underlying object. This
makes the stochastic analysis look a bit more standard.

We wish to implement the mirror coupling for xτ and yτ , where the mirror map
is with respect to the fixed h metric. Viewed in this way, this is a fairly straight-
forward variant of the mirror coupling for two Brownian motions on a smooth
(nonvarying) Riemannian manifold. We simply generalize to allow our processes
to be Brownian motions up to a random but smooth (in terms of the particle’s po-
sition in space–time) time-change. References for the standard (nontime changed)
construction are [26] and [16], and we proceed by modifying this as necessary and
by not belaboring the aspects which carry over without modification.
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Note that, since we are working only in the cases of nonpositive Euler char-
acteristic, a (and thus also b) is bounded above and below by positive constants
(depending only on the initial metric) for all time, by the results of the previous
section.

First, let CM be the subset of M × M consisting of points (x, y) such that
y ∈ Cut(x) [which is equivalent to x ∈ Cut(y)], and let DM be the diagonal subset
of M × M . Then let EM be M × M minus CM and DM . Note that the distance
function dist(x, y) is smooth on EM , and that the direction of the (unique) minimal
geodesic from x to y is smooth on EM . Let (x, y) ∈ EM ; then the mirror map is
the isometry from TxM to TyM given by reflection along the minimal geodesic
connecting x and y. We see that the mirror map is smooth (on EM , which is where
it is defined). As a result, there is no problem in running the mirror coupling as long
as the joint process is in EM . That is, for one-dimensional independent Brownian
motions W 1

τ and W 2
τ , consider the system of SDEs

dxτ = aτ

[[ 2∑
i=1

ei (xτ ) ◦ dWi
τ

]]
,

dyτ = bτ

[[ 2∑
i=1

�τ

[
ei(yτ )

] ◦ dWi
τ

]]
,

where �τ = �(xτ , yτ ) = mxτ ,yτ e(xτ )e(yτ )
−1 with mx,y being the mirror map,

namely parallel transport followed by reflection with respect to the perpendicular
to the geodesic from x to y. Then the coefficients are smooth in both space and
time, so the system admits a unique strong solution, up until the first time the
process leaves EM .

The point of the coupling is to get the particles to meet, so we turn our attention
to this issue next. First, note that the marginals xτ and yτ are time-changed Brow-
nian motions as desired, so we are coupling the right processes. The natural object
of study is the distance between the particles, with respect to the fixed metric h.
We denote this distance by ρτ . It is a (continuous, nonnegative) semi-martingale,
so we derive the SDE that it satisfies by Itô’s formula. This is the standard compu-
tation with the factors of a and b included, so we will be brief. For more on this,
see [26], Section 6.5.

The martingale part is easily seen to be (a + b)dŴτ for some Brownian mo-
tion Ŵτ , whether we are in the r = 0 or r = −1 case. (In what follows, we use Ŵτ

to denote some Brownian motion, which may change from appearance to appear-
ance, in order to more conveniently describe the SDE satisfied by a given process.)
As for the drift, the only contribution comes from the second derivative of the
distance with respect to the diffusions perpendicular to the geodesic from x to y,
which is computed in terms of the index of the appropriate Jacobi field along the
geodesic from x to y. We now summarize the computation.
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Let γ be the unique minimal geodesic from x to y (parametrized by arc length),
and let E be a unit vector field along γ , perpendicular to γ (this determines v

uniquely up to sign, and either of choice of sign is fine). Then we want the Jacobi
field w(s)E(γ (s)) where w : [0, ρ] → R satisfies

ẅ + rw = 0, w(0) = a, w(ρ) = b.

When r ≡ 0, the solution space to this differential equation is spanned by 1 and s.
Taking the boundary conditions into account, we see that the solution is

w(s) = a + b − a

ρ
s.

Similarly, when r ≡ −1, the solution space is spanned by cosh s and sinh s, and
the boundary conditions give

w(s) = a sinh(ρ − s) + b sinh s

sinhρ
.

The index of each of these Jacobi fields is given by∫
γ

(
ẇ2 − rw2)ds = w(ρ)ẇ(ρ) − w(0)ẇ(0),

where the right-hand side is obtained from the left via integration by parts and the
differential equation satisfied by w. Thus, for r ≡ 0, the index is

b

(
b − a

ρ

)
− a

(
b − a

ρ

)
= (a − b)2

ρ
,

and for r ≡ −1, the index is

b

[
a sinhρ + (b − a coshρ)

coshρ

sinhρ

]
− a

[
b − a coshρ

sinhρ

]

= (a2 + b2) cothρ − 2ab
1

sinhρ

= (a − b)2 cothρ + 2ab tanh
ρ

2
.

Putting this together, we see that

dρτ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(a + b)dŴτ + 1

2

[
(a − b)2

ρ

]
dτ, for r = 0,

(a + b)dŴτ + 1

2

[
(a − b)2 cothρ + 2ab tanh

ρ

2

]
dτ, for r = −1.

As mentioned, this holds until the first exit time from EM . Following the reasoning
in [26], Section 6.6, one can show that Ŵτ = −∑2

i=1〈ei (xτ ), γ̇τ (0)〉dWi
τ where γτ

is the minimal geodesic joining xτ and yτ starting at xτ and running at unit speed.
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When the particles meet, we have achieved our goal, and we can either stop the
process, or allow it to continue to run as xτ = yτ . Either way, there is no problem
caused by the process hitting the diagonal. On the other hand, we do need to find
a way to continue the process past the first hitting time of the cut locus. Showing
that this is possible constitutes the content of the remaining of this section.

THEOREM 9. Let M = (M,h) be a compact surface of constant curvature 0
or −1, and let a = a(x, τ ) and b = b(y, τ ) be as above. Then there exists a process
(xτ , yτ ) on M × M , started from any (x0, y0) /∈ DM and run until the first time of
hitting DM , such that:

(1) The marginals xτ and yτ are time-changed Brownian motions, with times
changes given by a and b, respectively.

(2) The distance (relative to h) between xτ and yτ , denoted ρτ , satisfies the
SDE

dρτ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(a + b)dŴτ + 1

2

[
(a − b)2

ρ

]
dτ − Lτ ,

for r ≡ 0,

(a + b)dŴτ + 1

2

[
(a − b)2 cothρ + 2ab tanh

ρ

2

]
dτ − Lτ ,

for r ≡ −1,

(28)

where Lτ is a nondecreasing process which increases only when (xτ , yτ ) ∈ CM

[and the set of τ for which (xτ , yτ ) ∈ CM has measure zero almost surely].

PROOF. As mentioned, the only issue is extending the construction mentioned
above past the first hitting time of CM . As usual, we proceed by approximation.

Choose small, positive δ. Until yτ is within distance δ of Cut(xτ ), we run the
mirror coupling as above. When yτ hits distance δ from Cut(xτ ), at time τ1, we
start to run xτ and yτ as independent (time-changed) Brownian motions. This con-
tinues until yτ is distance 2δ from Cut(xτ ), at time τ2, when we again run them un-
der the mirror coupling. We continue this procedure, so that we have a joint process
(xδ

τ , y
δ
τ ) which evolves under the mirror coupling on intervals of time [τ δ

2n, τ
δ
2n+1)

and as independent processes on intervals of time [τ δ
2n−1, τ

δ
2n), for nonnegative in-

tegers n, where the τm are the alternating hitting times of the δ and 2δ level sets of
the distance from yτ to Cut(xτ ). [This is less symmetric than switching when the
joint process is distance δ or 2δ from CM , in the product metric on M × M , but
it is more convenient to compute with and works in essentially the same way. In
particular, the condition dist(yτ ,Cut(xτ )) < δ determines an open neighborhood
of CM in M × M , and these neighborhoods converge to CM as δ → 0.]

It is clear that xδ
τ and yδ

τ are time-changed Brownian motions as desired, and that
the ρδ

τ satisfies the desired SDE when (xδ
τ , y

δ
τ ) is distance more than 2δ from CM .
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It is also clear that when xδ
τ and yδ

τ are being run independently, ρδ satisfies an
SDE of the form

dρδ
τ = udŴτ + v dτ − L̂τ ,

where u and v are bounded (with bound depending only on M and the bounds on
a and b) and L̂τ is a nondecreasing process which increases only when (xδ

τ , y
δ
τ ) ∈

CM (again, see the references mentioned above).
Suppose we show that, for any t > 0 and any ε > 0, the expected amount of time

on the interval [0, t] that yδ
τ spends within distance ε of Cut(xδ

τ ) goes to zero with ε

at a rate independent of δ. Then the amount of time on [0, t] that yδ
τ spends within

distance 2δ of Cut(xδ
τ ) goes to zero with δ (just let ε = 2δ), and thus the amount

of time the particles spend being run independently goes to zero almost surely as
δ ↘ 0. (The point is that the total amount of time spent in the union of all intervals
of the form [τ δ

2n−1, τ
δ
2n)∩ [0, t] goes to zero uniformly, even though the number of

such intervals that are nonempty might increase without bound as δ goes to zero.)
So letting δ go to zero, we know there is at least one subsequence along which the
process (xδ

τ , y
δ
τ ) converges to a limiting process (xτ , yτ ) (by compactness). That

this limiting process satisfies the first property in the theorem is immediate, since
xδ
τ and yδ

τ do for all δ > 0. For the second property, note that the contributions from
the udW̃τ term and the v dτ term go to zero by the boundedness of u and v and
the fact that the expected length of time over which these terms are integrated goes
to zero. It follows that the martingale part and the “regular” part of the drift come
entirely from the SDE for ρ induced by the (mirror) coupling, and that the time
spent at CM [equivalently, the time spent with yτ ∈ Cut(xτ )] has measure zero.
Finally, the L̂τ contribution converges to a term Lτ as indicated.

Thus, to complete the proof, we need only show that the expected amount of
time on the interval [0, t] that yδ

τ spends within distance ε of Cut(xδ
τ ) goes to zero

with ε at a rate independent of δ. Here, we will take advantage of the specific ge-
ometry with which we are dealing much more so than in the general approximation
procedure just described. Because the argument is somewhat lengthy, we divide it
into four steps. Moreover, at the end of the first step, we highlight as a “key fact”
the most important aspect of the geometry for our purposes.

Step 1. Here, we describe the structure of the cut locus, which is also summa-
rized in Figure 1 below.

In particular, note that, because we deal with surfaces of nonpositive curvature,
there are no conjugate geodesics, and a point z is in Cut(x) exactly when there is
more than one minimal geodesic from x to z. In this case, there are necessarily
only finitely many such geodesics, and the exponential map at x is a local diffeo-
morphism near (the tangent vector corresponding to) each of these geodesics.

More concretely, if we let M̃ be the universal cover of M (with the metric in-
duced by M) and we let x̃ denote a distinguished lift of x to M̃ , then all other
lifts of x can be written as g(x̃) for g ∈ G, the group of Deck transformations. For
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FIG. 1. The fundamental domain for a negatively curved surface as a subset of the universal cover,
which is the hyperbolic plane. The pre-image of x on the universal cover is {x̃, g1(x̃), g2(x̃), . . .},
with g1, g2, . . . in the Deck group. The arc âi (x) is equidistant from x̃ and gi(x̃). For instance, the
vertex P̂3 is equidistant to x̃, g2(x̃) and g3(x̃). Here, ξi is the distance from y to ai , placed by the
geodesic that realizes this distance. Notice that the closest point to y on a3(x) falls outside the arc
â3(x), which is one of the reasons for introducing a tubular neighborhood around each arc later in
the proof.

a complete treatment of the Deck transformation in a more general framework,
see [25]. Then one can construct an open fundamental polygon P (also called a
Voronoi region or Dirichlet region) around x̃ by taking all points of M̃ that are
closer to x̃ than to any other lift of x. Note that P is convex. The boundary of
this fundamental polygon ∂P has each side given by (a portion of) the curve of
points equidistant from x̃ and g(x̃) for some g. Moreover, let q : M̃ → M be the
covering map (and local isometry) given by quotienting by the action of G. Then
if z is a point on a side (but not a corner) of ∂P , γ0 is the minimal geodesic from x̃

to z, and γ1 is the minimal geodesic from (the appropriate) g(x̃) to z, we see that
q(z) ∈ Cut(x) and that q(γ0) and q(γ1) are the two minimal geodesics from x to
q(z) (in M). Each corner of ∂P corresponds to a point z where there are at least
two (but only finitely many) lifts of x, say g1(x̃), . . . , gk(x̃), such that z is equidis-
tant from x̃ and each of these other lifts, with corresponding minimal geodesics
γ1, . . . , γk , and we obtain the minimal geodesics from x to q(z) ∈ Cut(x) as
q(γ0), q(γ1), . . . , q(γk). More globally, q(P ) = M \ Cut(x) and q(∂P ) = Cut(x).

The purpose of the above is that it gives us a way to understand how Cut(xτ )

evolves as xτ evolves. Indeed, in our situation, it would be possible to give a fairly
precise description, since we deal with surfaces of constant curvature. If r = 0, M̃

is R
2 with the Euclidean metric, and the group of Deck transformations consists

of translations by a lattice, if M is orientable, and thus a torus, or is generated by
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such translations plus a reflection, if M is nonorientable, and hence a Klein bot-
tle. Similarly, if r = −1, M̃ is the hyperbolic space H

2, and the group of Deck
transformations consists of a Fuchsian group, if M is orientable, or is generated
by such a group plus a reflection, if M is nonorientable, and these can be real-
ized fairly concretely using the upper half-space model of the hyperbolic plane.
Nonetheless, such an argument by cases is tedious and provides more than we
need here. Instead, we give a more general argument.

We choose some ε0 > 0, with the intent of studying the distance to the cut locus
in, roughly, an ε0-neighborhood of the cut locus, and we will assume ε0 is small
enough to satisfy various conditions as we go. Recall that the fundamental polygon
P(x) (where we now allow the possibility of making the dependence on the point
x from above explicit) has a finite number of smooth sides (which we think of as
closed segments by including the corners), which means that Cut(x) is given by
the union of a finite number of smooth (closed) arcs, which vary smoothly with x

[this smooth dependence follows from the fact that x̃ and all of the g(x̃) in M̃ vary
smoothly with x, and thus so do the curves of points equidistant between them];
denote these arcs by â1(x), . . . , âK(x), for some positive integer K as are shown
in Figure 1 below. (For clarity in the figures, we label the vertices of P by P̂i , with
âi being the side between P̂i and P̂i+1, with indices understood modulo K .)

Further, we let ai(x) be a (closed) arc which smoothly extends âi(x) some small
amount (independent of x) in each direction. We can accomplish this by extending
each side of the fundamental polygon a small amount past the two adjacent cor-
ners; indeed, in the constant curvature case, the âi(x) are geodesics segments, and
thus we can extend them to slightly longer geodesic segments. (This is the general
case when ai is a segment with two endpoints. It is possible for ai to be a closed
geodesic loop, in which case ai is just âi .) Next, consider a tubular (open) neigh-
borhood around ai(x) consisting of all points that lie on a geodesic perpendicular
to the interior of ai(x) at distance less than ε0, and denote this neighborhood by
Qi(x). Note that Qi(x) also varies smoothly with x. We now assume that ε0 is
small enough so that there is always only one such minimal geodesic from ai(x)

to any point in Qi(x). Because Qi(x) varies smoothly, M is compact, and there
are only finitely many sets Qi(x), it is indeed possible to choose such ε0 > 0 for
all x ∈ M and i ∈ {1,2, . . . ,K}; see Figure 2. (Again for clarity in the figures, we
let Pi and Pi+1 be the endpoints of the extended arc ai .)

Now let ξi(y) be the distance of y from ai(x). Of course ξi = ξi(y) also de-
pends on x, through its dependence on ai(x). We see that ξi is Lipschitz on all of
M × M (in fact, ξi is locally given by the minimum or maximum of a finite num-
ber of smooth functions), smooth in both x and y on Qi(x) \ ai(x), and convex
at ai(x) [indeed, the signed distance is smooth in a neighborhood of any point in
the interior of ai(x), and ξi is just the absolute value of this signed distance]. We
also let Si(x; ε) be the (closed) set consisting of all points that lie on a geodesic
perpendicular to âi(x) at a distance no more than ε, for any 0 < ε < ε0/2. See
picture Figure 2 below for an illustration of the relevant elements.
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FIG. 2. The arc âi from Figure 1 is the arc P̂i P̂i+1 and the extension ai described above is given
by PiPi+1. The light gray area is Qi(x) while the darker gray area is Si(x; ε). In this picture, ϕ is
the angle between the minimal geodesic joining x to y and the minimal geodesic from y to ai . We
will frequently think of this tubular neighborhood as lifted to the universal cover.

Consider a point y such that dist(y,Cut(x)) < ε0/2. If y is not in Cut(x), then
the closest point (or points) to y in Cut(x) is in the interior of an ai(x). This follows
from the fact that the fundamental polygon P(x) is convex, and thus the closest
boundary point to any interior point is in the interior of an edge (i.e., the closest
point is not a corner). It follows that, for any 0 < ε < ε0/2 and x ∈ M ,

{
y : dist

(
y,Cut(x)

)≤ ε
}⊂

K⋃
i=1

Si(x; ε).

So, in order to control the expected amount of time on the interval [0, t] that yδ
τ

spends within distance ε of Cut(xδ
τ ), it is enough to control the expected amount

of time on the interval [0, t] that yδ
τ spends in Si(x

δ
τ ; ε), for each i.

Before we move on to the next step, we make an important point, which will be
in fact the backbone of the argument, and comes from the fact that on nonpositively
curved manifolds there are no conjugate points. Let ϕ be the angle between the
minimal geodesic joining x to y and the minimal geodesic from y to ai , as shown
in Figures 2 and 3. Then we claim that |ϕ| is bounded away from π/2 on Qi , with
the bound depending only on M and ε0. To see this, first note that, any geodesic
from x to ai cannot be tangent to ai . Indeed, this is so because in the Euclidean
plane and the hyperbolic half space, the curves which are equidistant to two points
are geodesics and on any manifold a geodesic curve is uniquely defined by a point
and the tangent at the point. Thus, the if the arcs from x to z would be tangent,
this would mean that x is on the arc ai which is a contradiction. It follows thus
that any geodesic from x to a point on ai intersects ai transversally. Thus, if z is
a point on any of the curves ai , the angle between the geodesic arcs xz and ai is
always positive, and it varies continuously as z moves along ai . In addition, since
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FIG. 3. This is the picture of the arc ai(xτ ) together with the distances from yτ to ai(xτ ) and to xτ .
When xτ and yτ move independently, the 2-dimensional driving Brownian motions (W3,W4) and
(W1,W2) are independent while for the mirror coupling case they are the same (i.e., W1 = W3 and
W2 = W4).

the fundamental polygon Pi changes continuously with x (and M is a compact
manifold) we see that there is a value ω > 0 which depends on the manifold M

and the length of the extended arcs ai , such that for any z on any of the ai arcs, the
angle between the geodesic arc xz and ai belongs to [ω,π/2].

Next, suppose the point y approaches a point z ∈ ai smoothly, from Qi \ ai

(visually, we think of letting ξi go to zero in Figures 2 or 3). Then the limit of
|ϕ| is the angle between xz and the (“outward pointing”) normal vector to ai at z

(this follows from writing everything up to first order at z), which in turn is π/2
minus the angle between xz and ai . Thus, the limit of |ϕ| as y approaches z is
bounded from above by π/2 − ω. (As this argument makes clear, this is just a
simple consequence of the transversality of geodesics that do not coincide.) Again
by continuity and compactness, this implies that there is some neighborhood of
ai where the absolute value of ϕ is bounded from above by some constant less
than π/2.

Thus, if we take ε0 small enough and the point y moves in any of the sets Qi ,
the absolute value of the angle ϕ introduced above is bounded away from π/2
with the bound only depending on M , the length of the extended arcs ai , and ε0.
Equivalently, cosϕ is bounded from below by a positive constant under the same
conditions. Because this is one of the key geometric facts underlying our argument,
we highlight it separately here.

KEY FACT. There is a constant ϕ0 < π/2 such that for small enough ε0, and
any y ∈ Qi(x),

|ϕ| ≤ ϕ0 < π/2.(29)

From now on, we assume that ε0 is small enough so that this holds.
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(We note that if we consider a high-dimensional compact manifold of nonposi-
tive sectional curvature, the analogous fact holds relative to the hypersurface com-
ponents of the cut locus. For this and related reasons, the present argument extends
naturally to higher dimensions. However, if we allow positive curvature, the struc-
ture of the cut locus can change significantly, and new ideas would be required to
extend this method of proving the existence of the mirror coupling.)

Step 2. Here, we study the evolution of ξi under the process by controlling the
SDE it satisfies, both when the particles are running independently and when they
are running under the mirror coupling. We also (and much more briefly) derive an
SDE which governs how quickly yδ

τ can move from the complement of Qi(x
δ
τ ) to

Si(x
δ
τ ; ε0/2).

Let ξi,τ be, as usual, the process ξi(y
δ
τ ) = dist(yδ

τ , ai(x
δ
τ )). From the convexity

properties of ξi and the Itô–Tanaka formula, we see that ξi,τ is a semi-martingale.
Next, suppose that yδ

τ ∈ Qi(x
δ
τ ). There are two cases to consider, the one when the

particles are running independently, and the one when they are running under the
mirror coupling. Since we will be assuming either one or the other of these cases
in what follows, we will drop the superscript δ’s in the notation, making it less
cumbersome.

We begin with some observations that apply in either case. Referring to Figure 3,
we run the processes xτ and yτ as indicated, without yet assuming that (W 1,W 2)

and (W 3,W 4) are either independent or identical. Then, since the distance function
ξi is smooth away from 0 and convex at 0, we can use Itô–Tanaka formula to get
that

dξi,τ = −b cosϕ dW 1
τ − b sinϕ dW 2

τ + ri dW 3
τ + si dW 4

τ + vi dτ + dLi,(30)

where |ri |, |si |, |vi | are bounded by some constants depending only on M , ε0 and
the bounds on a and b, and where Li is a nondecreasing process increasing only
when ξi is 0. Notice the minus sign in the first term on the left-hand side above
equation, which is due to the fact that ξi decreases as y approaches ai because the
gradient of ξi points opposite of the minimal geodesic from yτ to ai . Notice also
that the first two terms of the martingale part are obtained by fixing the point x and
taking the derivative with respect to y, while the last two terms of the martingale
part come from fixing y and taking the derivative with respect to x (in this case the
arc ai changes with x).

The martingale part of equation (30) is controlled by its quadratic variation pro-
cess; equivalently, the martingale part is a time-changed (one-dimensional) Brow-
nian motion, and thus controlled by the time change. Clearly, the precise behavior
of the quadratic variation is different in our two cases (the independent case and
the mirror-coupled case). But in either case, our goal now is to show that the mar-
tingale part is of the form ui dŴτ where Ŵτ is a Brownian motion and ui a process
such that 0 < α ≤ ui ≤ β with α and β two constants independent of ε and δ. The
purpose is that, if this is true, standard methods of stochastic analysis will allow
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is to estimate the amount of time that yτ spends near ai(xτ ), which is our overall
task. In particular, the upper bound by some β already follows from equation (30),
in both cases. Thus, the real work is in obtaining the lower bound, and for this we
treat the two cases separately.

If the particles xτ and yτ evolve independently, then W 1, W 2, W 3, and W 4

in equation (30) are independent, and thus the martingale part can be writ-

ten as
√

b2 cos2 ϕ + b2 sin2 ϕ + r2
τ + s2

τ dŴτ =
√

b2 + r2
τ + s2

τ dŴτ . Because b is
bounded from below by a positive constant, this proves that, in the case the parti-
cles run independently, for yτ ∈ Qi(xτ ), ξi,τ satisfies the SDE

dξi,τ = uI,i dŴτ + vI,i dτ + dLI,i,

where uI,i and |vI,i | are bounded and uI,i is bounded from below by a positive
constant, with all of these bounds depending only on M , ε0, and the bounds on a

and b, and where LI,i is a nondecreasing process that increases only when ξi,τ = 0.
(Here, the subscript I is meant to denote that these are the coefficients for the SDE
induced by running the particles independently.)

Now we wish to perform a similar analysis when the particles are being run un-
der the mirror coupling. The issue now is that, in this case, the Brownian motions
in equation (30) are correlated by W3 = W 1 and W4 = W2. Therefore, the mar-

tingale part is of the form
√

(−b cosϕ + rτ )2 + (−b sin2 ϕ + sτ )2 dŴτ . To show
that the coefficient is bounded from below by a positive constant, it is enough to
show that at least one of the squares under the square root stays bounded from be-
low. Recall now that |ϕ| is bounded away from π/2, which we noted as our “key
fact” earlier and, therefore, b cosϕ is bounded away from 0. Our strategy in what
follows is to show that the term rτ does not spoil this property (i.e., we want to
make sure that the contribution to the quadratic variation coming from moving yτ

by dW 1
τ is not cancelled by the movement of xτ by dW 3

τ = dW 1
τ ). More precisely,

we are going to show that rτ is actually negative and this proves that −b cosϕ + rτ
stays away from 0, which is enough to get the desired conclusion.

In this case, we write the evolution for ξi,τ in the form

dξi,τ = uC,i dŴτ + vC,i dτ + dLC,i,(31)

where uC,i =
√

(−b cosϕ + rτ )2 + (−b sin2 ϕ + sτ )2. (Here, the subscript C de-
notes that the coefficients for the SDE are induced by running the particles mirror
coupled.) Also, recall that the particles never run under the mirror coupling when
yτ hits Cut(xτ ) (for any δ). Thus, when considering the present case, we have
that the geodesic between xτ and yτ along which we perform the mirror coupling
evolves continuously. That is, essentially, Figure 3 evolves continuously, and in
particular, the vectors along which the diffusions W 1, W 2, W 3 and W 4 occur and
the angle ϕ evolves continuously.

Since the martingale part of dξi,τ depends only on the first-order structure at
a point, we see that we can consider the contribution of xτ with y fixed and the
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contribution of yτ with x fixed separately (the “complete” martingale part is just
given by the sum of these two contributions). We have already seen that when x is
fixed, the arc ai is also fixed, and the contribution coming from the evolution of yτ

is −b cosϕ dW 1
τ − b sinϕ dW 2

τ .
The other contribution to the martingale part of dξi,τ comes from letting xτ

evolve while keeping y fixed [namely the ri and si terms in equation (30)]. To
provide a good picture for what follows, we put all the relevant elements in Fig-
ure 4 below. The point is that when xτ moves, ai(xτ ) moves as well. In order to
make the exposition clearer, we will assume for the moment that ξi,τ �= 0 [and thus
dist(y, ai(xτ )) > 0], so that ξi is smooth in a neighborhood of the present point.
We now use x to denote the starting point of xτ , before we let it move to first
order (stochastically). Thus, the closest point to y on ai(x), which we denote z,
and which we now also fix, is in the interior of ai , by the definition of Qi . Let
d0(·, ·) denote the distance between points in a neighborhood of x to points in a
neighborhood of y along geodesics which are close (in the exponential map) to
the minimal geodesics from x to âi(x) that lie on the same side of ai(x) as y. Let
d1(·, ·) denote the similar distance from points in a neighborhood of x to a points

FIG. 4. Here, x̃ moves away from y at unit speed along the dashed line, motion which we
parametrize as x̃σ . The distance d1(x̃, y) is obtained as the distance between gi(x̃) and y (on the
universal cover), and as x̃ moves, gi(x̃) moves along the dashed line as gi(x̃σ ). The derivative of
d1(x, y) is thus given by cos(θ), where θ is the angle between the arcs gi(x̃)gi(y) and gi(x̃)y.
Notice that for small enough ε0 and y ∈ Qi(x̃) the angle θ is positive (and we assume that ε0 sat-
isfies this condition). Indeed, gi(y) cannot be on the geodesic gi(x̃)y because y and gi(y) must be
some distance apart (given by the shortest noncontractible loop on the manifold M). The dashed line
Pi(x̃σ )Pi+1(x̃σ ) is the arc ai(x̃σ ), corresponding to moving x̃ to x̃σ .
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in a neighborhood of y along minimal geodesics from x to âi(x) that lie on the op-
posite side of ai(x) as y. In other words, if we think about the universal cover, d0
corresponds to minimal geodesics (in M̃) starting from a points in a neighborhood
of x̃, and d1 corresponds to minimal geodesics starting from points in a neighbor-
hood of g(x̃), where g is such that g(x̃) is the point “on the other side” of the lift
of ai(x). Both d0 and d1 are smooth in both arguments. We can assume z is in
both neighborhoods of y, so that d0(x, z) = d1(x, z), and moreover, ai(x) is given
by the equation d0(x, ·) = d1(x, ·) near z. Also d0(x, y) < d1(x, y), and it is this
inequality which shows “which side” of ai(x) y is on.

Now suppose xσ moves away (it moves away because of the mirror coupling)
from y along the minimal geodesic connecting them, at unit speed. (We imagine
xσ moves smoothly in order to estimate the relevant gradients, and then we use
Itô’s rule to determine the stochastic analogue.) Referring to Figure 4 and (30),
our next goal is to show that r = ∂

∂σ
ξi(xσ , y)|σ=0 ≤ 0. On one hand, we have

d
dσ

d0(xσ , y) = 1.
Now we will invoke a similar argument to the one involved in establishing the

key fact. Namely, for a point z on ai , the angle between the arc from z to gi(x̃)

and the arc from gi(z) to gi(x̃) is not zero (this is the angle θ in Figure 4, when
y allowed to go to z). To see this, we argue otherwise. If the angle were to be
0, then since both arcs are geodesic, they would overlap (said differently, one arc
would be a sub-arc of the other). Further, since d(x̃, z) = d(gi(x̃), gi(z)) we would
obtain that gi(z) = z (i.e., the arcs would be identical), which is impossible since
gi is an element of the group of Deck transformations other than the identity, and
thus gi does not fix any point of the universal cover (see [25], page 70). (Note that
we do not rule out the possibility that θ = π , which can happen, but causes no
trouble for the present proof.) Since θ is not zero in the limit as y approaches z,
the same continuity and compactness arguments as before show that there is some
neighborhood of ai on which θ is bounded below by a positive constant.

In particular, according to the discussion above and referring to Figure 4, for
ε0 small enough, the angle θ is not 0, thus d

dσ
d1(xσ , y) = cos θ ≤ 1 − λ, for some

small, positive λ. Hence, d
dσ

(d1 −d0)(xσ , y) < −λ < 0. Because d1 −d0 is smooth,
if y is close enough to z, we must have that d

dσ
(d1 − d0)(xσ , z) < 0. Further, by

compactness and continuity, we can make ε0 small enough so that this holds when-
ever y ∈ Qi \ ai . The point is that as xσ moves away from y in this way, d1(xσ , z)

immediately becomes smaller than d0(xσ , z), putting z on the “opposite side” of
ai(xσ ) from y. Since ai(xσ ) moves smoothly, this means that it immediately in-
tersects the minimal geodesic from y to z between y and z, or in other words,
that ξi(xσ , y) decreases to first order, and thus r is negative. In fact, an even softer
argument gives that the distance between y and ai(xσ ) is smaller than ξi , as is
obvious from Figure 4, which implies r ≤ 0. As pointed out earlier, this is enough
to conclude that uC,i in equation (31) is bounded from below by b cosϕ, and thus
is bounded from below by a positive constant depending only on M , ε0, and the
bounds on a and b.
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FIG. 5. The case when particle y moves in the region {ξ̃i < 0} [corresponding to y being on the
opposite side of ai(x) from x], which is denoted by the gray boxes. Here, we see ai(x̃σ ) moving away
from y, but this still corresponds to ξ̃i decreasing, because of our choice of sign.

To extend this to the case when we allow ξi,τ = 0, which means yτ ∈ ai(xτ ) \
âi(xτ ) (because the process never runs under the mirror coupling on the cut locus
itself), let ξ̃i be the signed distance from yτ to ai in some neighborhood of yτ , as
shown in Figure 5 [here we take our sign so that ξ̃i < 0 when y is on the opposite
side of ai(x) from x]. The reader may ask why do we have to consider this case
at all. The answer is provided in the caption of Figure 6 below and it comes from

FIG. 6. This is the universal cover of a flat torus with the group of Deck transformation gener-
ated by two translations (one by the vector DA and the other one by the vector AB). The torus
is obtained by gluing the edges of the parallelogram ABCD, however the fundamental polygon is
P1P2P3P4P5P6. One of the arcs we compute the distance to is the arc P2P3 and its corresponding
extension. The point is that because of the identification of the points down on the surface M , the
two rectangles around P2P3 and P1P̃2 are the same. Thus, even though it seems that the point y is
far away from the arc P2P3, in fact it is not due to this identification with the point ỹ. The point ỹ

viewed from the point of view of x̃ is “on the other side” of the arc P2P3. This explains why the case
in Figure 5 has to be considered.
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the fact that essentially the picture on the universal cover does not reflect exactly
what happens in the projection. To resume, then ξ̃i is smooth on this neighborhood
and, as noted above, the minimal geodesic from xτ to yτ is evolving continuously
(so there is no problem with the definition of the mirror coupling). Then the above
arguments apply to ξ̃i as well, by continuity. To be more precise, we can think
about the analogue of equation (30) for the signed distance ξ̃ . On the region where
ξ̃i ≥ 0, the same arguments as above apply (since here ξ̃i = ξi , and now we can in-
clude points with ξ̃i = 0 because they are now smooth points). On the region where
ξ̃i < 0, the gradient of ξ̃i is minus the gradient of ξi . Thus, the first term in equation
(30) is still −b cosϕ dW 1

τ . Now the arc ai(x̃σ ) is moving away from y, however,
because the gradient has the opposite sign, the above reasoning again shows that
r ≤ 0. This is illustrated in Figure 5, which should make the underlying geometry
clear. Thus, in taking the quadratic variation, we still have that (−b cosϕ + rτ )

2

is bounded from below by a positive constant, which is what we wanted. Because
ξi = |ξ̃i |, we use the Itô–Tanaka formula to see that, for yτ ∈ Qi(xτ ), we have

dξτ = uC dŴτ + vC dτ + dLC,(32)

where uC and |vC | are bounded and uC is bounded from below by a positive con-
stant, with all of these bounds depending only on M , ε0, and the bounds on a

and b, and where LC is a nondecreasing process that increases only when ξi,τ = 0
(assuming the process is being run under the mirror coupling, of course).

Now we see that the SDE satisfied by ξi,τ switches between these two possi-
bilities, running under independence or running under the mirror coupling, at the
stopping times τ δ

i . In particular,

dξi,τ = ui dWτ + vidτ + dLi for yδ
τ ∈ Qi

(
xδ
τ

)
,

where

u =
{

uI,i, for τ ∈ [τ δ
2n−1, τ

δ
2n

)
,

uC,i, for τ ∈ [τ δ
2n, τ

δ
2n+1

)
and

v =
{

vI,i , for τ ∈ [τ δ
2n−1, τ

δ
2n

)
,

vC,i, for τ ∈ [τ δ
2n, τ

δ
2n+1

)
,

and where L is a nondecreasing process that increases only when ξi,τ = 0. The
previously discussed bounds on uI,i , uC,i , vI,i and vC,i imply that there exist pos-
itive constants α, β and γ , depending only on M , ε0, and the bounds on a and b,
such that α ≤ ui ≤ β and |vi | ≤ γ , for any δ > 0 and any i ∈ {1, . . . ,K}. (I.e.,
these bounds hold for both uI,i and uC,i and both vI,i and vC,i , and thus they hold
for ui and vi regardless of whether the process is being run under independence
or under the mirror coupling, and thus they hold independent of δ. Also, because
there are only finitely many i, these bounds can be made independent of i.)
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Our final task, in this step, is to introduce a semi-martingale that will allow
us to control how the joint process transitions from having yτ ∈ Si(xτ ; ε0/2) to
having yτ /∈ Qi(xτ ). Indeed, this control is the other reason for introducing the
neighborhood Qi(x). Note that Si(x; ε0/2) and the complement of Qi(x) are a
positive distance apart, for any x, so we can take ηi to be a smooth function taking
values in [0,1], such that ηi is identically equal to 0 on Si(x; ε0/2) and identically
equal to 1 on the complement of Qi(x). Further, we can let ηi vary smoothly in x.
As usual, we let ηi,τ be the semi-martingale arising from composing ηi with the
process (xτ , yτ ), where the particles can be running independently or under the
mirror coupling (and thus switching at the τ δ

n for any δ > 0). Then, by smoothness
and compactness, we see that ηi,τ satisfies the SDE

dηi,τ = Ui dWτ + Vi dτ,

everywhere on M × M , where Ui and |Vi | are bounded, with bounds depending
only on M , ε0, and the bounds on a and b. More precisely, there are positive
constants β̃ and γ̃ , depending only on M , ε0, and the bounds on a and b, such
that 0 ≤ Ui ≤ β̃ and |Vi | ≤ γ̃ , for any δ > 0 and any i ∈ {1, . . . ,K}. (Because we
are dealing only with coarse bounds, it seems unnecessary to consider the cases of
independence and mirror coupling separately, as we did for ξi .)

Step 3. Here, we give the basic estimate on the amount of time spent near each
piece of the cut locus; that is, the amount of time yδ

τ spends in Si(x
δ
τ ; ε). The argu-

ment is essentially an exercise in stochastic calculus, which uses only the bounds
on the SDEs satisfied by ξi,τ and ηi,τ that we just derived.

For 0 < ε < ε0/2, consider the function

f (x) =
{

x2, for 0 ≤ x ≤ ε,

2εx − ε2, for x > ε.

Then f is C1 with |f ′(x)| ≤ 2ε, and f ′′ exists in the weak sense.
For now, we fix some i, and just write ξ for ξi , Q for Qi , etc.
We first suppose that y0 ∈ Q(x0). Then the Itô–Tanaka formula shows that, at

least until the first time yτ exits Q(xτ ), f (ξτ ) satisfies the SDE

df (ξτ ) = f ′(ξτ )uτ dWτ + f ′(ξτ )vτ dτ + u2
τ 1(−ε,ε)(ξτ ) dτ + f ′(ξτ ) dLτ .(33)

Notice here that
∫ τ

0 f ′(xu) dLu is a nondecreasing process due to the conditions
on L.

Next, consider the sequence of stopping times-defined inductively as follows:

σ0 = 0 and ζ0 = inf
{
s ≥ 0 :ys /∈ Q(xs)

}
and for n ≥ 1

σn = inf
{
s ≥ ζn−1 :ys ∈ S(xs; ε0/2)

}
and ζn = inf

{
s ≥ σn :ys /∈ Q(xs)

}
.



STOCHASTIC APPROACH TO RICCI FLOW 1385

It is clear now, from the geometry of these sets, that∫ t

0
1S(xτ ;ε)(yτ ) dτ ≤∑

n≥0

∫ ζn∧t

σn∧t
1(−ε,ε)(ξτ ) dτ

and thus

E

[∫ t

0
1S(xτ ;ε)(yτ ) dτ

]
≤∑

n≥0

E

[∫ ζn∧t

σn∧t
1(−ε,ε)(ξτ ) dτ

]
.

On each time interval [σn ∧ t, ζn ∧ t], we use (33) combined with the fact that

E

[∫ ζn∧t

σn∧t
f ′(ξτ )uτ dWτ

]
= 0

and |f ′(x)| ≤ 2ε to first justify that (recall that
∫

f ′ dLu is nondecreasing)

E

[∫ ζn∧t

σn∧t
u2

τ 1(−ε,ε)(ξτ ) dτ

]
+E

[∫ t∧ζn

t∧σn

f ′(ξτ )vτ dτ

]

≤ E
[
f (ξt∧ζn) − f (ξt∧σn)

]≤ 2εε0P(σn < t).

Complement this with the fact that vτf
′(ξτ ) ≥ −2εγ and uτ ≥ α to arrive at

E

[∫ ζn∧t

σn∧t
1(−ε,ε)(ξτ ) dτ

]
≤ 2ε

α2

(
ε0P(σn < t) + γE[t ∧ ζn − t ∧ σn]).

Consequently, since
∑

n≥0(t ∧ ζn − t ∧ σn) ≤ t this results in the main estimate

E

[∫ t

0
1S(xτ ;ε)(yτ ) dτ

]
≤ 2ε

α2

(
ε0E[Dt ] + γ t

)
,

where Dt is the number of “downcrossings” of yτ from the complement of Q(xτ )

to S(xτ ; ε0/2), inside the interval [0, t]. That is, Dt is supremum of n such that
σn ≤ t .

This basic estimate leaves us with the task of getting an upper bound on the
number of downcrossings, as just described. First, note that ηζn = 1 and ησn = 0,
assuming these stopping times are less than or equal to t . Also, we have that

E[ηt∧ζn − ηt∧σn] = E

[∫ t∧ζn

t∧σn

Ui dWu

]
+E

[∫ t∧ζn

t∧σn

Vi du

]

= E

[∫ t∧ζn

t∧σn

Vi du

]

≤ γ̃E[t ∧ ζn − t ∧ σn],
where we used the boundedness of Ui to see that the martingale part is actually
integrable. For any N ≥ 1, we have that

N∑
n=0

E[ηt∧ζn − ηt∧σn] ≤ γ̃

N∑
n=0

E[t ∧ ζn − t ∧ σn] ≤ γ̃ t.
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Since we always have 0 ≤ ητ ≤ 1, we let N → ∞ to see that

−1 +E[Dt ] ≤
∞∑

n=0

E[ηt∧ζn − ηt∧σn] ≤ γ̃ t.

This, in turn, implies that

E

[∫ t

0
1S(xτ ;ε)(yτ ) dτ

]
≤ 2ε

α2

(
ε0(1 + γ̃ t) + γ t

)
.

In the case, we start with y0 /∈ Q(x0), we run the process until it hits S(xτ ; ε0/2),
and once this happens use the same argument as above.

Step 4. From here, the proof is easy to complete. We just put everything together.
For any 0 < ε < ε0/2, the expected amount of time on the interval [0, t] that yδ

τ

spends within distance ε of Cut(xδ
τ ) satisfies

E

[∫ t

0
1{dist(·,Cut(xδ

τ ))≤ε}
(
yδ
τ

)
dτ

]
≤

K∑
i=1

E

[∫ t

0
1Si(x

δ
τ ;ε)
(
yδ
τ

)
dτ

]

≤ K
2ε

α2

(
ε0(1 + γ̃ t) + γ t

)= Cε,

where C > 0 (defined by the above equality) is a constant depending only on t , M ,
ε0, and the bounds on a and b (in particular, C does not depend on δ). As noted
just before step 1, this is exactly the estimate we need to complete the proof. �

7. Convergence of first order to constant curvature in the case χ(M) = 0.
Now that we have our uniqueness/verification theorem and the general coupling
procedure, we begin exploring some of the consequences. As usual, for simplicity,
we assume that we have a smooth solution p̄t for all time t ≥ 0 on the mani-
fold M . We take here a flat metric h, which is possible under the assumption that
χ(M) = 0.

The main result of this section is the following.

THEOREM 10. For M , h, and p̄0 as above, suppose that we have a smooth
solution p̄t to equation (9) for all t ∈ [0,∞). Then there exist constants, c,C > 0
which depend only on the metrics g0 and h such that

sup
x∈M

∣∣p̄t (x)
∣∣≤ ce−Ct .(34)

PROOF. Fix a time t > 0, a time s ∈ [0, t) and a point x ∈ M so that the Ricci
flow has a solution on [0, t]. The first thing to notice is that pτ = p̄t−τ (xτ ) is a
martingale. Thus, we have the following stochastic representation:

p̄t (x) = E
[
p̄t−σ (xσ )

]
(35)
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valid for any stopping time σ with 0 ≤ σ ≤ t . In particular, setting σ = t shows
that p̄t (x) is a weighted average of the values of p̄0. Thus,

min
M

p̄0 ≤ min
M

p̄t ≤ max
M

p̄t ≤ max
M

p̄0(36)

for any t . The main idea for getting (34) is to prove that for some c,C > 0,

osc p̄t ≤ ce−Ct .(37)

Indeed, if this is true, then combining this with the fact that the integral of e2p̄t

with respect to the volume induced by h is 1, we deduce that there is at least one
point x̃ for which p̄t (x̃) = 0 and from here it is clear that we get (34).

We now choose any two starting points x and y for the processes xτ and yτ .
Over each of these points, there is exactly one point [p̄t (x) and p̄t (y)] in the fiber
which is in the reachable set �t . We wish to run the controlled process starting
from both (x, p̄t (x)) and (y, p̄t (y)), and couple them so that they meet as quickly
as possible. Our reachable sets have the semi-group property, that is, the process
(xτ ,pτ ) at time τ ∈ [0, t] is on �t−τ , and since we know that we have a solution
until time t , we know that after running the controlled processes for time τ ≤ t

they will be on the solution section corresponding to the Ricci flow at time t − τ .
This means that if the particles couple on M , they couple in the total space as well,
that is, xτ = yτ implies that p̄t−τ (xτ ) = p̄t−τ (yτ ) as well.

In light of this, if σ is the coupling time of xσ and yσ , the martingale property
gives that

p̄t (x) − p̄t (y) = E
[
p̄t−σ∧s(xσ∧s)

]−E
[
p̄t−σ∧s(yσ∧s)

]
= E

[
p̄t−σ (xσ ) − p̄t−σ (yσ ), σ ≤ s

]
(38)

+E
[
p̄t−s(xs) − p̄t−s(ys), s < σ

]
= E

[
p̄t−s(xs) − p̄t−s(ys), s < σ

]
.

The outcome of this is that

osc p̄t ≤ P(s < σ)osc p̄t−s .(39)

What remains to be controlled here is P(s < σ). While the above is true for any
coupling of xτ and yτ , we wish to use the mirror coupling, as was introduced in the
previous section. The main property of this coupling, for us, is contained in (28)
which gives the equation satisfied by the distance function ρτ = d(xτ , yτ ), namely

dρτ = (a + b)dŴτ + 1

2ρτ

(a − b)2 dτ − Lτ(40)

with aτ = e−p̄t−τ (xτ ), bτ = e−p̄t−τ (yτ ) and Ŵ being a one-dimensional Brownian
motion on the time interval [0, t]. Obviously, the time τ runs up to σ (the hitting
time of 0) or t , whichever comes first and the term Lτ is nonnegative. We are
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interested in estimating the probability this hitting time σ occurs after time s. To
this end, the first thing which will be used here is the fact that from (36) we know
that a and b are all bounded from above as well from below. So we have two
constants A,B > 0 which are depending only on p̄0, or otherwise the starting
metric g0, with the property that

A ≤ a, b ≤ B.(41)

To move on, we let

λ(u) =
∫ u

0

1

(av + bv)2 dv

be the time-change making the martingale part of ρτ from (40) into a Brownian
motion. Then with the notation ρ̃u = ρλ(u),

dρ̃u = dW̃u + 1

2ρ̃u

(a − b)2

(a + b)2 du − dL̃u,(42)

where a and b are evaluated at time λ(u) and the above equation is valid for u ∈
[0, t ∧ λ−1(t)), where λ−1(t) is the first value of u corresponding to λ(u) = t .
Obviously, cu ≤ λ(u) ≤ Cu for some constants c,C > 0 and also because of (41),∣∣∣∣a − b

a + b

∣∣∣∣≤ B − A

B + A
= 1 − ε < 1.

Ignoring the L term in (42) and then using standard comparison for ordinary
stochastic differential equations, we learn that the process ρ̃ is bounded above
by a Bessel process of dimension δ < 2 and starting at some value ρ̃0 bounded by
the diameter (with respect to the metric h) of the manifold M . Thus, invoking [22],
equation (15), which gives the distribution of the hitting time σ̃ of 0 for a Bessel
process of dimension δ < 2 starting at ρ̃0, we obtain

P(s < σ̃ ) = 1

�(1 − δ/2)

∫ ρ̃2
0/(2s)

0
y−δ/2e−y dy.

Finally, since cu ≤ λ(u) ≤ Cu and the diameter of the manifold M is finite, we
arrive at

P(s < σ) ≤ 1

�(1 − δ/2)

∫ D/s

0
y−δ/2e−y dy =: �(s),

where D is a constant which depends only on the initial metric g0 and some ge-
ometry of the underlying metric h (more precisely the diameter of M with respect
to h). Hence, it turns out that the function � is determined by the metrics h and g0.

To summarize, from (39) and the preceding we now have that

osc p̄t ≤ �(s)osc p̄t−s .
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Using this, it is easy to get (37) as follows. For t ∈ [0,1], we know from (36), that
osc p̄t ≤ osc p̄0. Now for each t ∈ [n,n + 1], n ≥ 1, using repeatedly the above
inequality, we arrive at

osc p̄t ≤ �(1)n osc p̄t−n ≤ �(1)t osc p̄0/�(1)

which is exactly the exponential decay of (37) since 0 < �(1) < 1. �

REMARK 6. It is interesting to point out that we can prove the same expo-
nential decay as in Theorem 10 for the case of χ(M) < 0 using the coupling ar-
gument. This decay is, however, already taken care of by the a priori estimates of
Corollary 7. Nonetheless, this coupling argument is the one we will employ for the
gradient estimates in the following section.

8. Estimates on the gradient decay of the normalized Ricci flow in the case
χ(M) ≤ 0. We continue under the same assumptions that M is a compact surface
with reference metric h of constant curvature 0 or −1 (so M has nonpositive Eu-
ler characteristic by the Gauss–Bonnet theorem) and g0 is a smooth initial metric
in the same conformal class and with the same area as h, so that the normalized
Ricci flow has a smooth solution for all time which is given by p̄t . Now, p̄t con-
verges in the C0-norm exponentially fast to 0 as shown in Corollary 7 for the case
χ(M) < 0 and Theorem 10 for the case χ(M) = 0. So we have that for some con-
stants c,C > 0,

sup
x∈M

∣∣p̄t (x)
∣∣≤ ce−Ct .(43)

Let

G(t) = sup
x∈M

∣∣∇p̄t (x)
∣∣.

The idea is to start with

〈∇p̄t (x), ξ
〉= lim

h→0

p̄t (γh(x)) − p̄t (x)

h
,

where ξ is a unit vector in the tangent space at x and γt (x) is any curve started at x

with initial speed ξ . Then we use the coupling to estimate p̄t (x) − p̄t (y) for x and
y close to one another. Due to the nonlinearity of the flow, the estimates coming
from the above will still contain the gradient bounds, but in the end, letting x and
y come close to one another leads to a functional inequality on G(t), from which
we are able to derive the desired estimate.

THEOREM 11. If χ(M) ≤ 0 then G(t) goes to 0 exponentially fast. As a con-
sequence, p̄t converges to 0 exponentially fast in C1.
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PROOF. Pick two sufficiently close points x, y ∈ M and some t > 0, and let
ρτ = d(xτ , yτ ) for 0 ≤ τ ≤ t be the distance (measured with respect to the time
independent metric h) between the processes xτ and yτ started at x and y, respec-
tively. We are going to use mirror coupling for the processes x· and y·. Recall that
the coupling equations satisfied by (xτ ,pτ ) and (yτ , qτ ) are given by

dxτ = e−pτ

[[ 2∑
i=1

ei (xτ )
√

2 ◦ dWi
τ

]]
,

dyτ = e−qτ

[[ 2∑
i=1

ei (yτ )
√

2 ◦ dW̃ i
τ

]]
,

(44)

dpτ = e−pτ

[ 2∑
i=1

ai

√
2dWi

τ

]
+ r
(
e−2pτ − 1

)
dτ,

dqτ = e−qτ

[ 2∑
i=1

a′
i

√
2dW̃ i

τ

]
+ r
(
e−2qτ − 1

)
dτ,

where r = 0 or −1 and W̃ is the Brownian motion given by the mirror coupling.
We consider σ , the coupling time of x· and y·. From the fact that pτ + r

∫ τ
0 (1 −

e−2pu) du is a martingale and pτ = p̄t−τ (xτ ), we write

p̄t (x) − p̄t (y) = E[pt∧τ − qt∧τ ] − rE

[∫ t∧τ

0

(
e−2pu − e−2qu

)
du

]
(45)

for any stopping time τ . The useful estimates we are interested in are estimates
from above of p̄t (x)− p̄t (y), and this is good if we assume that p̄t (x)− p̄t (y) > 0.
This is always possible unless p̄t is constant in which case the gradient is 0, so
there is nothing to prove then. Thus, assume that p̄t (x) − p̄t (y) > 0 for some
points x and y (which is the same as p0 > q0) and take α to be the first time u for
which pu = qu. With this choice of the stopping time, for any u ∈ [0, α] we know
that pu ≥ qu, which thus means e−2pu − e−2qu ≤ 0. This combined with the fact
that r ≤ 0 and the exponential decay of p̄t , implies that for any s ∈ [0, t ∧ 1],

p̄t (x) − p̄t (y) ≤ E[pα − qα,α ≤ s] +E[ps − qs, s < α] ≤ ce−Ct
P(s < α).

The point is that if σ is the first coupling time, of the processes x· and y·, it is
obvious that α ≤ σ , and thus

P(s < α) ≤ P(s < σ) for any s ∈ [0, t ∧ 1],
which in turn yields

p̄t (x) − p̄t (y) ≤ ce−Ct
P(s < σ) for any s ∈ [0, t ∧ 1].(46)

With this equation our next task becomes the estimate of P(s < σ).
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From Theorem 9, we learn that the distance process ρτ satisfies

dρτ ≤ (e−pτ + e−qτ
)
dBt + (e−pτ − e−qτ )2

2ρτ

dτ(47)

in the case r = 0 and

dρτ ≤ (e−pτ + e−qτ
)
dBτ

(48)

+ 1

2

[(
e−pτ − e−qτ

)2 cothρτ + 2e−pτ −qτ tanh
ρτ

2

]
dτ

in the case r = −1. Here, Bt is a one-dimensional Brownian motion run in the time
interval [0, t].

So far, we have used this strategy of coupling in the proof of Theorem 10, in
which, due to the singularity in the drift of the equations (47) and (48), we com-
pared the distance function ρτ with a Bessel process. For the gradient estimates,
we are going to remove the singularity based on the observation that

pτ = p̄t−τ (xτ ) and similarly qτ = p̄t−τ (yτ ).

The upshot of this is that the term e−pτ −e−qτ is in fact of order ρτ . More precisely,
due to the boundedness of p̄,∣∣e−pτ − e−qτ

∣∣= ∣∣e−p̄t−τ (xτ ) − e−p̄t−τ (yτ )
∣∣≤ C d(xτ , yτ ) sup

x∈M

∣∣∇p̄t−τ (x)
∣∣

= CG(t − τ)ρτ .

Since ρτ ≤ D, where D is the diameter of M , it is straightforward to show that
either (47) or (48) implies

dρτ ≤ (e−pτ + e−qτ
)
dBτ + C

(
1 + G2(t − τ)

)
ρτ dτ.

To go further from here, consider ρ̃τ the solution to

dρ̃τ = (e−pτ + e−qτ
)
dBτ + C

(
1 + G2(t − τ)

)
ρ̃τ dτ,

with the same initial condition ρ0 = d(x, y) as ρτ . Standard arguments (in fact a
simple application of Gronwall’s lemma) give that

ρτ ≤ ρ̃τ

which results in the fact that the first hitting time of 0 for ρ is less then or equal
to the first hitting time of 0 for ρ̃. Now if σ̃ denotes the hitting time of 0 for the
process ρ̃t

P(s < σ) ≤ P(s < σ̃ ) for all s ∈ [0, t ∧ 1].(49)

Therefore, the task now is to estimate the latter, and to do this we solve for ρ̃ as

ρ̃τ =
(
ρ0 +

∫ τ

0

(
e−pv + e−qv

)
e− ∫ v

0 f (z) dz dBv

)
e
∫ τ

0 f (z) dz
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with the notation f (τ) = C(1 + G2(t − τ)), for 0 ≤ τ ≤ t . Consequently, the first
hitting time of 0 for ρ̃ is the first hitting time of −ρ0 for the time-changed Brow-
nian motion

∫ τ
0 (e−pv + e−qv )e− ∫ v

0 f (z) dz dBv . In law, this is the same as the first
hitting time of −ρ0 of Bc(τ), with the time change

c(τ ) =
∫ τ

0

(
e−pv + e−qv

)2
e−2

∫ v
0 f (z) dz dv.

Once again using the boundedness of p̄, we can find a constant C > 0 such that

c(τ ) ≥ c̃(τ ) := C

∫ τ

0
e−2

∫ v
0 f (z) dz dv for τ ∈ [0, t].

Now, if σ−ρ0 is the first hitting time of −ρ0 for the Brownian motion, then the
hitting time of −ρ0 for Bc(τ) is given by c−1(σ−ρ0 ∧ c(t)). This combined with
(49) yields that

P(s < t ∧ σ̃ ) = P
(
s < c−1(σ−ρ0 ∧ c(t)

))≤ P
(
c(s) ≤ σ−ρ0

)
(50)

≤ P
(
c̃(s) < σ−ρ0

)
.

The distribution of σ−ρ0 is actually well understood (see, e.g., the remark after

[41], Proposition 3.7 of Chapter II), and its density is given by ρ0√
2πx3

e−ρ2
0/(2x) on

the positive axis, which results with

P
(
c̃(s) < σ−ρ0

)= ∫ ∞
c̃(s)

ρ0√
2πx3

e−ρ2
0/(2x) dx = 2√

2π

∫ ρ0/
√

c̃(s)

0
e−τ 2/2 dτ.

Going back to (46) and using the preceding, we conclude that for s ∈ [0, t],

p̄t (x) − p̄t (y) ≤ ce−C(t−s)
∫ ρ0/

√
c̃(s)

0
e−τ 2/2 dτ,

from which, using the fact that d(x, y) = ρ0 and letting ρ0 go to 0, we fairly easily
deduce that

G(t) ≤ c
e−Ct

√
c̃(s)

,

which we rearrange as

A(t)

∫ s

0
e− ∫ τ

0 A(t−u)du dτ ≤ ce−Ct

for all s ∈ [0, t ∧ 1] with A(τ) = CG2(τ ).

From here, the exponential decay of A(t) is taken care of by the following
lemma. �
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LEMMA 12. Suppose A : [0,∞) → [0,∞) is a continuous function with the
property that for some constants c,C > 0,

A(t)

∫ s

0
e− ∫ τ

0 A(t−u)du dτ ≤ ce−Ct for all s ∈ [0, t ∧ 1].(51)

Then there are constants k,K > 0 such that

A(t) ≤ Ke−kt for all t > 0.

PROOF. For each n ≥ 1, let

mn = sup
t∈[n,n+1]

A(t) and Mn = sup
t∈[n−1,n+1]

A(t).

Notice that the exponential decay we are looking for is actually equivalent to mn ≤
Ke−kn for large enough n.

Now, for t ∈ [n,n + 1] and s ∈ [0,1], we have t − s ∈ [n − 1, n + 1] and,
therefore, −A(t − u) ≥ −Mn, which combined with (51) yields, for t near the
supremum of A(t) on [n,n + 1], and eventually another constant c > 0

mn

∫ 1

0
e−τMn dτ = mn

1 − e−Mn

Mn

≤ e−cn for all large n,

which in turn gives

mn ≤ Mn

1 − e−Mn
e−cn.(**)

Now, for each particular n, we have one of the following two alternatives:

(1) Mn ≤ e−cn/2, in which case it is clear that

mn ≤ e−cn/2.(#)

(2) Mn > e−cn/2, and in this case 1 − e−Mn > 1 − e−e−cn/2
> 1

2e−nc/2 for large

enough n, say n ≥ n0. From (**), it follows that mn ≤ 2Mne
−cn/2 ≤ Mne

−c/2 for
all n large enough, say n ≥ n1. This inequality implies that

mn ≤ mn−1e
−c/2 for all n ≥ n1.(##)

Indeed if the supremum of A(t) on the interval [n − 1, n + 1] is the same as the
supremum on [n,n + 1], then Mn = mn and this in turn implies Mn = 0, in partic-
ular we trivially have (##). If the supremum of A(t) on [n − 1, n + 1] is the same
as the supremum on [n − 1, n], this gives Mn = mn−1 and then (**) gives (##).

Using these two alternatives we argue as follows. Assume that there is a large
enough n2 such that mn2 ≤ e−cn2/2. Then an easy induction using the two alter-
natives above give that mn ≤ e−cn/2 for all n ≥ n2. If there is no such n2, this
means that for all n ≥ n1 we clearly have the second alternative and in this case
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mn ≤ mn1e
−(n−n1)c/2. In both cases, we obtain the exponential decay we were

looking for.
An alternative proof can be given as follows. Take a sufficiently large con-

stant K > 0, which will be chosen later. Now we look at B(t) = A(t)ekt . As-
sume there is a time t ≥ K such that B(t) = maxτ∈[0,t] B(τ). We then have
A(τ) ≤ A(t)e−k(τ−t) for τ ∈ [0, t] and from (51) with s = 1,

A(t)

∫ 1

0
e−τA(t)ek du dτ ≤ ce−Ct ,

and from this

1 − e−A(t)ek ≤ ceke−Ct ,

which gives that

A(t) ≤ −e−k log
(
1 − ceke−Ct ).

If we choose the constant K large enough and k small enough, so that 1/2 <

1 − ceke−CK , then we arrive at

A(t) ≤ ce−Ct ≤ Ce−kt ,

where we again have to take K large enough to ensure this. In particular, this
means that A(t)ekt ≤ C. As this B(t) is the maximum of B(τ) over τ ∈ [0, t], we
get that A(τ) ≤ Ce−kt .

The other alternative which remains is that there is no t ≥ K for which B(t)

attains a maximum on [0, t] for t ≥ K . In this case, we deduce that supt≥0 B(t) =
supt∈[0,K] B(t) and the exponential decay follows again. �

Before we close this section, let us point out that the exponential decay of the
gradient has the following consequence that we will use later on for the estimates
of the higher order derivatives.

COROLLARY 13. Under the same assumptions as in Theorem 11,

P(s < σ) ≤ C
ρ0√

s
for s ∈ (0, t].(52)

PROOF. This follows by combining (49), (50) and the fact that c̃(s)/s is
bounded (due to the gradient estimate). �

9. Triple coupling.

9.1. Basic idea. We have just used coupling to prove the exponential conver-
gence of p̄ to 0 in the C1-topology. The next step in our analysis is the estimate
of the decay of the Hessian of p̄, which, from the Ricci flow equation, implies the
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convergence of the curvature to a constant. The basic idea starts with writing

〈
Hess p̄t (z)ξ, ξ

〉= lim
ρ0→0

p̄t (γ (−ρ0)) − 2p̄t (z) + p̄t (γ (ρ0))

ρ2
0

,

where ξ is a unit vector at z, and γ is a geodesic running at unit speed started (at t =
0) at z with velocity ξ . Now we are concerned with three points, x = γ (−ρ0), y =
γ (ρ0), and the middle point z. As in the gradient estimate case, we want to write
p̄(x), p̄(y) and p̄(z) as integrals of some functions of the associated Brownian
motions and then use probabilistic estimates to find bounds for p̄t (γ (−ρ0)) −
2p̄t (z) + p̄t (γ (ρ0)) in terms of ρ0.

There is very little literature on this idea, though it certainly seems that this prob-
abilistic tool is quite useful for estimating second-order derivatives for evolution
equations. The only reference to this approach we are aware of is in [17], where
it is essentially used to estimate the Hessian of harmonic functions on Euclidean
domains.

To make this idea more precise, we will develop a mechanism of triple coupling
(i.e., a coupling of three particles, as opposed to just two). We will use mirror
coupling for the processes corresponding to the particles x and y, taking them
as time changed Brownian motions, as in the previous section. Now we wish to
include a third particle, namely z, which we want to couple together with x and y.
It is natural to want to have this “middle particle” remains on the geodesic joining
the other two as it is pictured in Figure 7.

We will see that this is possible (at least in the cases we are considering) if we
allow it to evolve as time-changed Brownian motion, possibly with drift along the
direction of the geodesic.

Instead of starting with a time-changed Brownian motion with a drift, zτ and
then trying to figure out the time change and drift necessary so that it stays on the
geodesic, we do it the other way around. Namely, since we want the particle zτ

to move on the geodesic, we determine the conditions on the distance to one of
the other points so that the corresponding point on the geodesic is a time-changed
Brownian motion with a drift along the geodesic. For the purpose of the Hessian
estimates, and in light of the gradient decay, this will be sufficient.

FIG. 7. The configuration of the three particles xτ , yτ being mirror coupled and zτ on the geodesic
between them.
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9.2. Rigorous approach. Assume we start with an arbitrary Riemannian sur-
face M and that xτ , yτ run as time-changed Brownian motions with the time
changes a and b, as above in Figure 7. The idea is that the middle point zτ on
the geodesic joining xτ and yτ is completely described by specifying the distance
ρ1,τ from zτ to one of the ends, say xτ . We use a mirror coupling of the particles xτ

and yτ and ρ1,τ will be described in terms of a real-valued SDE. In addition to ρ1,
we will also consider ρ2, which in intuitive terms is just the distance from the mid-
dle particle zτ to yτ . We are seeking several key symmetry properties which will
play an important role in the economy of the Hessian estimates to follow.

In what follows, as always, fix a time horizon t > 0, and assume that a =
a(τ, x, y, ρ1, ρ2) and b = b(τ, x, y, ρ1, ρ2) are two positive functions defined on
[0, t] × M × M × [0,∞) × [0,∞), which will be time changes for the processes
xτ and yτ . To describe this, again denote by mx,y :TxM → TyM the mirror map,
that is, the parallel transport along the minimal unit speed geodesic γx,y joining
x and y (assuming that x, y are not at each other’s cut locus) followed by the
reflection about the orthogonal direction to the geodesic at y.

The system we start with is the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxτ = a(τ)

[[ 2∑
i=1

ei(xτ ) ◦ dWi
τ

]]
,

dyτ = b(τ)

[[ 2∑
i=1

�τ

[
ei (yτ )

] ◦ dWi
τ

]]
,

dρ1,τ = −a(τ)

2∑
i=1

〈
ei (xτ ), γ̇τ (0)

〉
dWi

τ + α(τ) dW 3
τ + β(τ) dτ,

dρ2,τ = b(τ)

2∑
i=1

〈
�τ

[
ei (yτ )

]
, γ̇τ

(
l(τ )

)〉
dWi

τ + α̃(τ ) dW 3
τ + β̃(τ ) dτ,

(53)

where �τ = mxτ ,yτ e(xτ )e(yτ )
−1 is the reflection map acting on Tyτ M , γτ is

the minimal geodesic running at unit speed from xτ to yτ , and W 3 is a one-
dimensional Brownian motion independent of (W 1,W 2). As a notation, let l(τ )

be the length of the geodesic γτ . Here, we do not specify what the functions α, α̃,
β , β̃ are as we will do this along the way, depending on the properties we want to
reveal. They are defined, like a and b, on [0, t] × M × M × [0,∞) × [0,∞). The
equations for ρ1 and ρ2 can be thought of as the equations of the distances from
the middle point zτ to xτ and yτ , as indicated in the previous section, and also
as discussed for the coupling in [26], Section 6.6. Notice here an important point,
namely, since

〈
�τ ei (yτ ), γ̇τ

(
l(τ )

)〉= −〈ei (xτ ), γ̇τ (0)
〉
,
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the last equation of (53) can be rewritten as

dρ2,τ = −b(τ)

2∑
i=1

〈
ei (xτ ), γ̇τ (0)

〉
dWi

τ + α̃(τ ) dW 3
τ + β̃(τ ) dτ.(54)

We should also point out that to be in tune with the system (12) we should take√
2a instead of a and

√
2b instead of b. Since this is not important for this section

and to avoid carrying around an extra
√

2 factor, we will work with the system in
the form (53).

There is no problem with the existence of a solution for the system (53) (as long
as the entries a, b,α,β, α̃ and β̃ are smooth) up to the stopping time T , which is
the first time τ when ρ1,τ ρ2,τ hits 0 or when d(xτ , yτ ) hits a (small) r0 smaller
than the injectivity radius (with respect to the background metric h). This way we
have a well-defined system and do not have to worry about the extension beyond
the cut locus, as we did in the previous (two particle) coupling case. From now on,
during this section we will assume that the time in the system (53) is run until T .

The object of interest to us is the process (x, y, ρ1, ρ2). It is clear that this is a
diffusion, and it is a relatively straightforward task to determine that the generator
of (x, y, ρ1, ρ2) is

a2

2
�x + b2

2
�y + a2 + α2

2
∂2
ρ1

+ b2 + α̃2

2
∂2
ρ2

+ ab〈mxyX1,i , Y2,j 〉X1,iY2,j

− a2〈X1,i , γ̇x,y(0)
〉
X1,i∂ρ1 − ab

〈
X1,i , γ̇x,y(0)

〉
X1,i∂ρ2

− ab
〈
X1,i , γ̇x,y(0)

〉
mx,yX1,i∂ρ1 − b2〈X1,i , γ̇x,y(0)

〉
mx,yX1,i∂ρ2

+
(
αα̃ − ab

2∑
i=1

〈
X1,i , γ̇x,y(0)

〉2)
∂ρ1∂ρ2 + β∂ρ1 + β̃∂ρ2,

with X1,i , i = 1,2 being an orthonormal basis of TxM and Y2,j , j = 1,2 an
orthonormal basis of TyM . In fact, we can choose X1,1 = γ̇x,y(0) and X1,2 =
ξ1 ∈ TxM , which is perpendicular to γ̇x,y(0). Similarly, choose Y2,1 = γ̇y,x(0) and
Y2,2 = ξ2 = mx,yξ1, or, in simpler terms, the parallel transport of ξ1 along the
geodesic γx,y . With these choices, the generator simplifies to

L = a2

2
�x + b2

2
�y + a2 + α2

2
∂2
ρ1

+ b2 + α̃2

2
∂2
ρ2

+ ab
(
γ̇x,y(0)γ̇y,x(0) + ξ1ξ2

)− a2γ̇x,y(0)∂ρ1 − abγ̇y,x(0)∂ρ1(55)

− abγ̇x,y(0)∂ρ2 − b2γ̇y,x(0)∂ρ2 + (αα̃ − ab)∂ρ1∂ρ2 + β∂ρ1 + β̃∂ρ2 .

The first property we want to see is that ρ1 + ρ2 = ρ. This property is nothing
but the geometric picture that ρ1 is the distance from zτ to xτ while ρ2 is the
distance between zτ to yτ .
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To do this, we recall that the distance ρτ between the mirror-coupled processes
xτ and yτ is given by

dρτ = −(a(τ) + b(τ)
) 2∑

i=1

〈
ei (xτ ), γ̇τ (0)

〉
dWi

τ + 1

2
I(τ ) dτ,(56)

where I is the index form of the Jacobi field J (τ) along the geodesic γτ which,
at the endpoints, has values aE and bE. We use the notation E for the parallel
translation of ξ1 ∈ TxM along the geodesic joining x and y. The index form is
computed as

I(J, J ) =
∫ l(γ )

0

∣∣J̇ (u)
∣∣2 + 〈R(γ̇ (u), J (u)

)
γ̇ (u), J (u)

〉
du,

with l(γ ) being the length of the geodesic γ . Here, the curvature tensor is the
standard tensor curvature given as in [11]

R(X,Y ) = ∇X∇Y − ∇Y ∇X − ∇[X,Y ].

Furthermore, a simple integration by part gives that

I(J, J ) = 〈J̇ (l(γ )
)
, J
(
l(γ )

)〉− 〈J̇ (0), J (0)
〉
.(57)

On the other hand, from (53),

d(ρ1,τ + ρ2,τ )

= −(a(τ) + b(τ)
) 2∑

i=1

〈
ei(xτ ), γ̇τ (0)

〉
dWi

τ + (α(τ) + α̃(τ )
)
dW 3

τ

+ (β(τ) + β̃(τ )
)
dτ.

We clearly see here that ρτ and ρ1,τ + ρ2,τ have the same martingale part if α̃ =
−α. The choice for β and β̃ is provided by the following result.

THEOREM 14. Assume that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

α̃ = −α,

β(τ, x, y, ρ1, ρ2) = 1

2

∫ ρ1

0

(∣∣J̇ (u)
∣∣2 + 〈R(γ̇ (u), J (u)

)
γ̇ (u), J (u)

〉)
du,

β̃(τ, x, y, ρ1, ρ2) = 1

2

∫ l(γ )

l(γ )−ρ2

(∣∣J̇ (u)
∣∣2 + 〈R(γ̇ (u), J (u)

)
γ̇ (u), J (u)

〉)
du,

(58)

where J is the Jacobi field along the geodesic γ from x to y and having values aE

at 0 and bE at l(γ ).
If in addition, ρ1,0 = ρ2,0 = ρ0/2, then almost surely ρτ = ρ1,τ + ρ2,τ .
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PROOF. Take ρ̃1,τ = ρτ − ρ2,τ . It is clear now that we have

d(ρ̃1,τ − ρ1,τ ) =
∫ ρ̃1,τ

0
A(u)du −

∫ ρ1,τ

0
A(u)du

with

A(u) = 1
2

[∣∣J̇ (u)
∣∣2 + 〈R(J (u), γ̇ (u)

)
γ̇ (u), J (u)

〉
du
]
.

From here, the fact that ρ̃1,0 = ρ1,0 (or ρ̃1,0 − ρ1,0 = 0) and standard application
of Gronwall’s inequality leads to ρ̃1,τ = ρ1,τ , which is what we want. �

We return now to the case where the curvature is constant and start with [20],
Lemma 3.4, which says that

R(X,Y )Z = −r
(〈X,Z〉Y − 〈Y,Z〉X).(59)

We should point out that do Carmo [20] takes the curvature to be given by the
negative of the curvature we consider here, or for that matter other people as, for
instance, [11]. Then the Jacobi field equation becomes

J̈ − R(γ̇ , J )γ̇ = 0

or equivalently,

J̈ + rJ − r〈γ̇ , J 〉γ̇ = 0.(60)

Since this Jacobi field is perpendicular to the geodesic, it follows that⎧⎪⎨
⎪⎩

J̈ + rJ = 0,

J (0) = aE,

J
(
l(γ )

)= bE.

The solution is

J (s) = (aw1(s) + bw2(s)
)
E(s) for s ∈ [0, l(γ )

]
,(61)

where w1,w2 are defined on the interval [0, l(γ )] by the following ODEs:⎧⎪⎨
⎪⎩

ẅ1 + rw1 = 0,

w1(0) = 1,

w1
(
l(γ )

)= 0,

and

⎧⎪⎨
⎪⎩

ẅ2 + rw2 = 0,

w2(0) = 0,

w2
(
l(γ )

)= 1.

(62)

Combining now (57) and the Jacobi field just considered reveals that∫ s

0

∣∣J̇ (u)
∣∣2 − 〈R(J (u), γ̇ (u)

)
γ̇ (u), J (u)

〉
du

=
∫ s

0

∣∣J̇ (u)
∣∣2 − r

∣∣J (u)
∣∣2 du

= 〈J̇ (s), J (s)
〉− 〈J̇ (0), J (0)

〉
= (aw1(s) + bw2(s)

)(
aẇ1(s) + bẇ2(s)

)− b
(
aẇ1(0) + bẇ2(0)

)
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and∫ l(γ )

s

∣∣J̇ (u)
∣∣2 − 〈R(J (u), γ̇ (u)

)
γ̇ (u), J (u)

〉
du

= 〈J̇ (l(γ )
)
, J
(
l(γ )

)〉− 〈J̇ (s), J (s)
〉

= b
(
aẇ1

(
l(γ )

)+ bẇ2
(
l(γ )

))− (aw1(s) + bw2(s)
)(

aẇ1(s) + bẇ2(s)
)
.

A direct consequence of these formulae and the fact that w2(s) = w1(l(γ ) − s),
plus a few elementary manipulations, results in∫ l(γ )

l(γ )−s

∣∣J̇ (u)
∣∣2 − 〈R(J (u), γ̇ (u)

)
γ̇ (u), J (u)

〉
du

= (bw1(s) + aw2(s)
)(

bẇ1(s) + aẇ2(s)
)− b

(
bẇ1(0) + aẇ2(0)

)
.

Summarizing, the choices of β and β̃ from (58) in the case of constant curvature
become more explicit as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
β = 1

2

((
aw1(ρ1) + bw2(ρ1)

)
× (aẇ1(ρ1) + bẇ2(ρ1)

)− a
(
aẇ1(0) + bẇ2(0)

))
,

β̃ = 1
2

((
bw1(ρ2) + aw2(ρ2)

)
× (bẇ1(ρ2) + aẇ2(ρ2)

)− b
(
bẇ1(0) + aẇ2(0)

))
.

(63)

It goes without saying that here a and b are evaluated at (τ, x, y, ρ1, ρ2).
We say that a function f (τ, x, y, ρ1, ρ2) is symmetric in ρ1 and ρ2 if

f (τ, x, y, ρ1, ρ2) = f (τ, x, y, ρ2, ρ1).
Before we move on to another property of the diffusion (x, y, ρ1, ρ2), we

close the discussion so far with the following property of the choices of β and
β̃ from (63):

If a and b are equal and symmetric in ρ1 and ρ2, then
β(τ, x, y, ρ1, ρ2) = β̃(τ, x, y, ρ2, ρ1).

A symmetry which plays a crucial role in the Hessian estimates is the following.

THEOREM 15. If, in equation (53), we take⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a and α symmetric in ρ1 and ρ2,

b = a,

α̃ = −α,

β̃(τ, x, y, ρ1, ρ2) = β(τ, x, y, ρ2, ρ1),

ρ1,0 = ρ2,0,

then the processes (x, y, ρ1, ρ2) and (x, y, ρ2, ρ1) have the same law. In particular,
the processes (x, y, ρ1) and (x, y, ρ2) have the same law.
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PROOF. Although this is almost trivial, we say a word about it. If L is the
generator of a diffusion ωτ on a manifold M and π :M → M is such that for any
smooth function ϕ :M →R,

L(ϕ ◦ π) = (Lϕ) ◦ π,

then uniqueness of the diffusion implies that ω and π(ω) have the same law. This
can be easily seen from the martingale characterization of the law of the diffu-
sion. We apply this to the operator L from (55) and the map π(x, y,ρ1, ρ2) =
(x, y, ρ2, ρ1). The rest follows. �

Notice that [cf. (63)], the choices of β and β̃ from Theorem 14 are actually
consistent with the conditions of Theorem 15 under the assumptions that a and b

are equal and symmetric.
The “middle particle” process we are interested is

zτ = γxτ ,yτ (ρ1,τ ).(64)

The symmetry between ρ1 and ρ2 should be interpreted as saying that the re-
flection of the process zτ with respect to the middle point of the geodesic γxτ ,yτ

has the same law as zτ itself.
Our next objective is the law of zτ . Before we jump into the heart of the matter,

we take up a discussion on the following class of vector fields that are the main
actors in our computation.

Assume we have a geodesic γ from x to y with length l and consider a smooth,
two-parameter geodesic perturbation f : (−ε, ε)× (−ε, ε)×[0, l] → M of γ , that
is, f (0,0, s) = γ (s) and for each fixed choice of u and v, the curve s → f (u, v, s)

is a geodesic. One of the things we want to understand is the field

H(s) = D

du

D

dv
f (u, v, s)

∣∣∣
u=0,v=0

.

Let Jv(s) = D
dv

f (u, v, s)|u=v=0 be the Jacobi field obtained by differentiating
f with respect to v and we will use Jv(u, s) = D

dv
f (u, v, s)|v=0 as the Jacobi

field which is still depending on u. Similarly, let Ju(s) = D
du

f (u, v, s)|u=v=0 be
the Jacobi field obtained by differentiating f with respect to u and use Ju(v, s) =
D
du

f (u, v, s)|u=0. In order to determine the equation satisfied by H, we recall here
[20], Lemma 4.1, which asserts that for any two-parameter family g(a, b) and
vector field V along g,

D

da

D

db
V − D

db

D

da
V = −R

(
Dg

db
,
Dg

da

)
V.(65)

Now, what we want to do is to find a differential equation satisfied by H.
As pointed out already, H(s) = D

du
Jv(u, s)|u=0 and starting with (60) for Jv(u),

namely,

D2

ds2 Jv(u) + rJv(u) − r〈γ̇ , Jv〉γ̇ = 0
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we take the derivative with respect to u at u = 0 to arrive at

D

du

D2

ds2 Jv + rH− r

〈
D

du
γ̇ , Jv

〉
γ̇ − r〈γ̇ ,H〉γ̇ − r〈γ̇ , Jv〉 D

du
γ̇ = 0.

To move forward, use that D
du

γ̇ |u=0 = D
ds

D
du

γ |u=0 = J̇u to re-write the previous
equation as

D

du

D2

ds2 Jv + rH− r〈H, γ̇ 〉γ̇ − r〈J̇u, Jv〉γ̇ − r〈γ̇ , Jv〉J̇u = 0.

Our task now is to commute the derivatives with respect to u and s. For this,
use (65) and (59) to justify that at u = 0,

D

du

D2

ds2 Jv = D

ds

D

du

D

ds
Jv − R

(
Df

ds
,
Df

du

)
J̇v

= D

ds

D

du

D

ds
Jv − R(γ̇ , Ju)J̇v(*)

= D

ds

D

du

D

ds
Jv + r

(〈γ̇ , J̇v〉Ju − 〈Ju, J̇v〉γ̇ )
and once again employing (65),

D

ds

D

du

D

ds
Jv = D2

ds2

D

du
Jv − D

ds

(
R

(
Df

ds
,
Df

du

)
Jv

)

= Ḧ− D

ds

(
R(γ̇ , Ju)Jv

)
(**)

= Ḧ+ r
D

ds

(〈γ̇ , Jv〉Ju − 〈Ju, Jv〉γ̇ )
= Ḧ+ r

(〈γ̇ , J̇v〉Ju + 〈γ̇ , Jv〉J̇u − 〈J̇u, Jv〉γ̇ − 〈Ju, J̇v〉γ̇ ).
Putting together (*) and (**), we obtain

D

du

D2

ds2 Jv = Ḧ+ r
(
2〈γ̇ , J̇v〉Ju + 〈γ̇ , Jv〉J̇u − 〈J̇u, Jv〉γ̇ − 2〈Ju, J̇v〉γ̇ ),

and finally since the boundary conditions are pretty straightforward we get the
following:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ḧ+ rH− r〈H, γ̇ 〉γ̇ + 2r
(〈γ̇ , J̇v〉Ju − 〈J̇u, Jv〉γ̇ − 〈Ju, J̇v〉γ̇ )= 0,

H(0) = D

du

D

dv
f (u, v,0)

∣∣∣
u=v=0

,

H(l) = D

du

D

dv
f (u, v, l)

∣∣∣
u=v=0

.

(66)
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We discussed the case of a two-parameter perturbation of the geodesic γ in
the form f (u, v, s) but exactly the same argument works also for the case where
f (u, s) is a perturbation with geodesics of γ , and we consider the field

H(s) = D2

du2 f (u, s)
∣∣∣
u=0

.

The main result from the argument above then gives that⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ḧ+ rH− r〈H, γ̇ 〉γ̇ + 2r
(〈γ̇ , J̇u〉Ju − 2〈Ju, J̇u〉γ̇ )= 0,

H(0) = D2

du2 f (u,0)
∣∣∣
v=0

,

H(l) = D2

du2 f (u, l)
∣∣∣
u=0

,

(67)

with Ju(s) = D
du

f (u, s)|u=0.
The perturbation g(u, v, s) that will appear below is slightly different from the

perturbation f (u, v, s) considered above. To describe it, take a unit speed geodesic
γ defined on [0, l] and consider two geodesic curves, η1,u with η1,0 = γ (0) and
another, η2,v so that η2,0 = γ (l). Let g(u, v, ·) be the geodesic run at unit speed
from η1,u to η2,v . One problem immediately arising with this choice is that the
parameter in the geodesic direction, namely s, is no longer running in the interval
[0, l] and this is the reason we have to treat it separately. Consequently, the above
calculations do not apply in the same way as they were carried out in the case of
f (u, v, s).

To fix this, let us denote by l(u, v), the length of the geodesic γu,v =
γη1,u,ηv,2 and reparametrize this geodesic such that it has constant speed equal
to l(u, v)/ l. More precisely if γ̃u,v is the reparametrized geodesic, then γu,v(s) =
γ̃u,v(sl/ l(u, v)). Now let f (u, v, s) = γ̃u,v(s). Clearly, now the parameter s for
f (u, v, s) runs in the interval [0, l] and

g(u, v, s) = f
(
u, v, sl/ l(u, v)

)
.

Our interest is again in the understanding of the field K(s) = D
dv

D
du

g(u, v, s)|u=v=0.
We do this via the fact that f (u, v, s) = g(u, v, sl(u, v)/ l) and upon differentiation
with respect to u to get

D

∂u
f (u, v, s) = D

∂u
g
(
u, v, sl(u, v)/ l

)
(68)

+ s

l

(
d

du
l(u, v)

)
D

∂s
g
(
u, v, sl(u, v)/ l

)
and from this and the first variation formula [11], equation (1.3), page 5, to get the
relation between Jacobi field J

g
u generated by g and J

f
u as

J f
u (s) = J g

u (s) − s

l

〈
η̇1,0, γ̇ (0)

〉
γ̇ (s).
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Similarly,

Jf
v (s) = J g

v (s) + s

l

〈
η̇2,0, γ̇ (l)

〉
γ̇ (s).

Now taking the derivative with respect to v in (68), set u = v = 0 to obtain

H(s) = K(s) + s

l

〈
η̇2,0, γ̇ (l)

〉
J̇ g

u (s) − s

l

〈
η̇1,0, γ̇ (0)

〉
J̇ g

v (s)

+ s

l

(
d2

dv du
l(u, v)

)∣∣∣∣
u=v=0

γ̇ (s).

The case of interest in the sequel is the case of geodesics η1,u and η2,v such that
η̇1,0 = E(0) and η̇2,0(l) = E(l). In this case, the second and the third terms vanish
while the last term is computed using the second variation formula which is [11],
equation (1.14), page 20. We also learn that J

g
u = J

f
u and J

g
v = J

f
v and the last

term becomes(
d2

dv du
l(u, v)

)∣∣∣∣
u=v=0

= I
(
J f

u , J f
v

)= 1

2

(
ẇ1(l) − ẇ2(0)

)
,

where in between we used a polarization argument for (57) together with (61)
and (62). Thus, we get

K(s) =H(s) − s

2l

(
ẇ1(l) − ẇ2(0)

)
γ̇ (s).(69)

Another situation we encounter below is the following. Take η1,u a geodesic
starting at γ (0) such that η̇1,0 = E(0). Then we take g(u, s) to be the geodesic
γu(s) run at unit speed from η1,u to γ (l). The field we are interested in is K(s) =
D2

du2 g(u, s)|u=0. With a very similar argument, we can show that

K(s) = H(s) + s

l
ẇ1(0)γ̇ (s),(70)

where H(s) = D2

du2 g(u, sl/ l(u))|u=0 with l(u) being the length of the geodesic
from η1,u to γ (l).

Similarly, if we take η2,v the geodesic starting at γ (l), such that η̇2,0 = E(l)

and g(v, s) being the unit speed geodesic joining η2,v to γ (0), and K(s) =
D2

dv2 g(v, s)|v=0 then

K(s) = H(s) − s

l
ẇ2(l)γ̇ (s)(71)

with H(s) = D2

dv2 g(v, sl/ l(v))|v=0 and l(v) the length of the geodesic from η2,v to
γ (0).

We are finally ready for the next result.
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THEOREM 16. Assume that

α(τ, x, y, ρ1, ρ2) = a(τ, x, y, ρ1, ρ2)w1(ρ1) + b(τ, x, y, ρ1, ρ2)w2(ρ1),

θ(τ, x, y, ρ1, ρ2)

= β(τ, x, y, ρ1, ρ2)

+ ρ1

ρ

(
a(τ, x, y, ρ1, ρ2)

2 + b(τ, x, y, ρ1, ρ2)
2

2
ẇ1(0)(72)

− a(τ, x, y, ρ1, ρ2)b(τ, x, y, ρ1, ρ2)ẇ1(l)

)

+ r

(∫ ρ1

0

(
a(τ, x, y, ρ1, ρ2)w1(σ ) + b(τ, x, y, ρ1, ρ2)w2(σ )

)2
dσ

− ρ1

l

∫ l

0

(
a(τ, x, y, ρ1, ρ2)w1(σ ) + b(τ, x, y, ρ1, ρ2)w2(σ )

)2
dσ

)

with w1 and w2 defined by (62). With these choices, the process zτ = γxτ ,yτ (ρ1,τ )

has the property that, for any smooth function ϕ on M ,

ϕ(zτ ) −
∫ τ

0

(
α2(u)

2
[�ϕ](zu) + θ(u)

〈∇ϕ(zu), γ̇xu,yu(ρ1,u)
〉)

du(73)

is a martingale with respect to the filtration generated by W1, W2 and W3,
where inside the integral, α(u) and θ(u) are shorthand for α and θ evaluated
at (u, xu, yu, ρ1,u, ρ2,u). In other words, zτ is a time-changed Brownian motion
(with the time change given by α) with a drift in the geodesic direction from xτ

to yτ .

PROOF. The idea of the proof is to start with the generator of the diffusion
(x, y, ρ1) and a function ϕ and look at the process ϕ(zτ ). More precisely, we find
the bounded variation part of this. It is clear that, in terms of the generator (55), we
need to compute the action of each term of this expression on ϕ(γx,y(s)). Notice
that the part which involves derivatives of ρ2 simply drops out in this calculation.

For simplicity, we will drop the dependence on τ , x and y in the notation and
let l = d(x, y). Thus, the geodesic γx,y will appear as γ if we do not prescribe
otherwise. Let E denote the parallel vector field along γ which is obtained by
parallel translation of ξ1.

Before we start the proof, let us mention that all geodesics appearing in this
proof are geodesics run at unit speed.

Now we take the terms one by one. Again for simplicity in writing, we use s

instead of ρ1 as the parameter in the geodesic direction.

(1) We write the Laplacian term as

�x

[
ϕ
(
γx,y(s)

)]= d2

du2 ϕ
(
γη1,u,y(s)

)+ d2

du2 ϕ
(
γη2,u,y(s)

)
,
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where η1,u and η2,u are geodesics starting at x and having derivatives given by
η̇1,0 = γ̇x,y(0) and η̇2,u = ξ1. Then we continue with

�x

[
ϕ
(
γx,y(s)

)]= 〈Hessϕ
(
γ (s)

)
γ̇ (s), γ̇ (s)

〉+ 〈Hessϕ
(
γ (s)

)
J1(s), J1(s)

〉
+
〈
∇ϕ
(
γ (s)

)
,

D2

∂u2 γη1,u,y(s)
∣∣∣
u=0

〉
(74)

+
〈
∇ϕ
(
γ (s)

)
,

D2

∂u2 γη2,u,y(s)
∣∣∣
u=0

〉
,

where J1 is the Jacobi field along γ given by J1(s) = D
du

γη2,u,y(s)|u=0, which can
also be characterized as the Jacobi field with the boundary conditions J1(0) = ξ1
and J1(l) = 0 which is solved as J1(s) = w1(s)E(s).

Now notice that the third term vanishes because γη1,u
(s) = γ (s + u) and γ is a

geodesic. Next, we look at K(s) = D2

∂u2 γη2,u,y(s)|u=0. Using (70), we need to focus
on finding H now. Exploiting (67), the equation for H becomes⎧⎪⎨

⎪⎩
Ḧ+ rH− r〈H, γ̇ 〉γ̇ + 2r

(〈γ̇ , J̇1〉J1 − 2〈J1, J̇1〉γ̇ )= 0,

H(0) = 0,

H(l) = 0.

Notice here that the boundary conditions follow from the fact that η2,u is a geodesic
and that γη2,u,y(l(u)) = y, where l(u) is the length of the geodesic joining η2,u

and y.
Now, the Jacobi field J1 is given by

J1(s) = w1(s)E(s)

and this in turn gives the equation of H as⎧⎪⎨
⎪⎩
Ḧ+ rH− r〈H, γ̇ 〉γ̇ = 4rw1ẇ1γ̇ ,

H(0) = 0,

H(l) = 0.

We solve this as

H = w1,0γ̇ with w1,0(s) = 2r

∫ s

0
w2

1(σ ) dσ − 2sr

l

∫ l

0
w2

1(σ ) dσ.(75)

The conclusion is that

�x

[
ϕ
(
γx,y(s)

)]= 〈Hessϕ
(
γ (s)

)
γ̇ (s), γ̇ (s)

〉
+ w2

1(s)
〈
Hessϕ

(
γ (s)

)
E(s),E(s)

〉
(76)

+
(
w1,0(s) + s

l
ẇ1(0)

)〈∇ϕ
(
γ (s)

)
, γ̇ (s)

〉
.
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(2) In the same vein, with very few changes, we can treat the next term, which
is the Laplacian �y applied to ϕ(γ (s)). To this end, take η1,u a geodesic starting
at y with initial speed given by γ̇ (l), and η2,u a geodesic starting at y with initial
speed ξ2 = E(l) and write

�y

[
ϕ
(
γx,y(s)

)]= d2

du2 ϕ
(
γx,η1,u

(s)
)+ d2

du2 ϕ
(
γx,η2,u

(s)
)
.

Notice that γx,η1,u
(s) = γ (s) for small u, and thus the first derivative is 0. Thus,

we arrive at

�y

[
ϕ
(
γ (s)

)]= 〈Hessϕ
(
γ (s)

)
J2(s), J2(s)

〉
(77)

+
〈
∇ϕ
(
γ (s)

)
,

D2

∂u2 γx,η2,u
(s)
∣∣∣
u=0

〉
,

where J2 is the Jacobi field which is 0 at 0 and ξ2 at l which is exactly solved by
J2(s) = w2(s)E(s). The second term in the equation above can be dealt with in a
similar way to that outlined above for �x . We skip the details and give the main
result. From (71),

K(s) = D2

∂u2 γx,η2,u
(s)
∣∣∣
u=0

= H− s

l
ẇ2(l)γ̇ (s).

From (67), the equation satisfied by H [with w2 given by (62)] is given by⎧⎪⎨
⎪⎩
Ḧ+ rH− r〈H, γ̇ 〉γ̇ = 4rw2ẇ2γ̇ ,

H(0) = 0,

H(l) = 0,

which is solved for

H = w0,1γ̇ with w0,1(s) = 2r

∫ s

0
w2

2(σ ) dσ − 2sr

l

∫ l

0
w2

2(σ ) dσ.(78)

Then we have

�y

[
ϕ
(
γx,y(s)

)]= w2
2(s)

〈
Hessϕ

(
γ (s)

)
E(s),E(s)

〉
(79)

+
(
w0,1(s) − s

l
ẇ2(l)

)〈∇ϕ
(
γ (s)

)
, γ̇ (s)

〉
.

(3) For the next term, matters are fairly simple. Namely, because we are differ-
entiating with respect to the geodesic parameter s,

∂2
s

[
ϕ
(
γ (s)

)]= 〈Hessϕ
(
γ (s)

)
γ̇ (s), γ̇ (s)

〉
.(80)

(4) Next in line is

γ̇x,y(0)γ̇y,x(0)
[
ϕ
(
γ (s)

)]= 0(81)
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because

γ̇y,x(0)
[
ϕ
(
γx,y(s)

)]= 0,

which follows from the fact that perturbing y along a curve η2,u in the geodesic
direction of γx,y yields that γx,η2,u

(s) = γx,y(s), and thus is independent of u.
(5) Now we deal with

ξ1ξ2
[
ϕ
(
γx,y(s)

)]
.

To this end, consider the geodesics η1,u and η2,v which start at x (resp., y) and
have the initial tangent vectors ξ1 (resp., ξ2). What we need to compute is

D

du

D

dv

[
ϕ
(
γx,y(s)

)]∣∣∣
u=v=0

= 〈Hessϕ
(
γx,y(s)

)
J1(s), J2(s)

〉

+
〈
∇ϕ
(
γx,y(s)

)
,

D

du

D

dv
γη1,u,η2,v

(s)
∣∣∣
u=v=0

〉

with J1 = w1E and J2 = w2E. If we let

K(s) = D

du

D

dv
γη1,u,η2,v

(s)
∣∣∣
u=v=0

,

from (69), we have K =H− s
2l

(ẇ1(l) − ẇ2(0))γ̇ (s). Now, from (66), we obtain⎧⎪⎨
⎪⎩
Ḧ+ rH− r〈H, γ̇ 〉γ̇ = 2r(w1ẇ2 + w2ẇ1)γ̇ ,

H(0) = 0,

H(l) = 0,

which we solve as

H = w1,1γ̇
(82)

with w1,1(s) = 2r

∫ s

0
w1(σ )w2(σ )σ − 2sr

l

∫ l

0
w1(σ )w2(σ ) dσ.

We conclude that

ξ1ξ2
[
ϕ
(
γx,y(s)

)]= w1(s)w2(s)
〈
Hessϕ

(
γ (s)

)
E(s),E(s)

〉
(83)

+
(
w1,1(s) − s

2l

(
ẇ1(l) − ẇ2(0)

))〈∇ϕ
(
γ (s)

)
, γ̇ (s)

〉
.

(6) Next is

γ̇x,y(0)∂s

[
ϕ
(
γx,y(s)

)]= γ̇ (0)
〈∇ϕ

(
γ (s)

)
, γ̇ (s)

〉= 〈Hessϕ
(
γ (s)

)
γ̇ (s), γ̇ (s)

〉
.

(8) Now,

γ̇y,x(0)∂s

[
ϕ
(
γx,y(s)

)]= 0,(84)

as can be easily seen from the fact that perturbing y in the geodesic direction (say,
along ηv) reveals that γx,ηv (s) = γx,y(s), and thus the derivative with respect to v

vanishes.
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(8) The last term is easy to deal with and gives

∂s

[
ϕ
(
γx,y(s)

)]= 〈∇ϕ
(
γ (s)

)
, γ̇ (s)

〉
.(85)

Putting together all the results from (76)–(85) and using that w2(s) = w1(l − s),
we arrive at

L
[
ϕ
(
γ (s)

)]= α2

2

〈
Hessϕ

(
γ (s)

)
γ̇ (s), γ̇ (s)

〉

+ (aw1(s) + bw2(s))
2

2

〈
Hessϕ

(
γ (s)

)
E(s),E(s)

〉
(86)

+
(
β + s

l

(
a2 + b2

2
ẇ1(0) − abẇ1(l)

)

+ a2w1,0 + b2w0,1 + 2abw1,1

2

)〈∇ϕ
(
γ (s)

)
, γ̇ (s)

〉
.

A little simplification follows from

a2w1,0 + b2w0,1 + 2abw1,1

= 2r

(∫ s

0

(
a(s)w1(τ ) + b(s)w2(τ )

)2
dτ

− s

l

∫ l

0

(
a(s)w1(τ ) + b(s)w2(τ )

)2
dτ

)

which then gives the result for the choice of α as in (72). �

We close this section with the following result summarizing all of the important
findings of this section which is used in the next section.

COROLLARY 17. Assume that the entries of (53) satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a is symmetric in ρ1 and ρ2,

b = a,

α̃ = −α,

α(τ, x, y, ρ1, ρ2) = a(τ, x, y, ρ1, ρ2)w(ρ1),

β(τ, x, y, ρ1, ρ2) = 1
2a2(τ, x, y, ρ1, ρ2)

(
w(ρ1)ẇ(ρ1) − ẇ(0)

)
,

β̃(τ, x, y, ρ1, ρ2) = 1
2a2(τ, x, y, ρ1, ρ2)

(
w(ρ2)ẇ(ρ2) − ẇ(0)

)
,

ρ1,0 = ρ2,0 = ρ0/2
(87)

with

⎧⎪⎨
⎪⎩

ẅ + rw = 0,

w(0) = 1,

w
(
d(x, y)

)= 1.

Then:
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(1) ρ1,τ + ρ2,τ = ρτ almost surely.
(2) The diffusions (xτ , yτ , ρ1,τ , ρ2,τ ) and (xτ , yτ , ρ2,τ , ρ1,τ ) have the same law.

In particular, (xτ , yτ , ρ1,τ ) and (xτ , yτ , ρ2,τ ) have the same law.
(3) If zτ = γxτ ,yτ (ρ1,τ ), then for any smooth function ϕ on M ,

ϕ(zτ ) −
∫ τ

0

(
α2(u)

2
[�ϕ](zu) + θ(u)

〈∇ϕ(zu), γ̇xu,yu(ρ1,u)
〉)

du(88)

is a martingale with respect to the filtration generated by W1, W2 and W3, where

θ(τ, x, y, ρ1, ρ2)

= β(τ, x, y, ρ1, ρ2)

+ a2(τ, x, y, ρ1, ρ2)

×
(

ρ1

d(x, y)
ẇ(0) + r

(∫ ρ1

0
w2(σ ) dσ − ρ1

d(x, y)

∫ d(x,y)

0
w2(σ ) dσ

))
.

A word is in place here. The statement of Theorem 15 requires the symmetry of
α with respect to ρ1 and ρ2. This is not satisfied by the choice in (87) for arbitrary
ρ1 and ρ2. However, because of the choice of β and β̃ and Theorem 14, we know
that (almost surely) ρ1,τ + ρ2,τ = ρτ . So it suffices to ensure the symmetry of α

and α̃ with respect to ρ1 and ρ2 only in the case that ρ1 +ρ2 = ρ = d(x, y), which
follows from the fact that w(s) = w(d(x, y) − s) for s ∈ [0, d(x, y)].

For a given l, the solution w to (87) is

w(s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, r = 0,
cosh((l − 2s)/2)

cosh(l/2)
, r = −1,

cos((l − 2s)/2)

cos(l/2)
, r = 1.

(89)

In particular, if l is small snough, w(s) and all its derivatives stay bounded. In
addition to this ẇ(0) = O(l), a property which will play an important role in the
coming section. Thus, if a is a bounded function, then

sup
τ∈[0,d(x,y)]

θ(τ, x, y, ρ1, ρ2) = O(ρ1).(90)

10. Estimates on the Hessian decay for χ(M) ≤ 0. For Euler characteristic
less than or equal to 0, we know that p̄t and ∇p̄t decay exponentially fast. Our
goal is now to extend this to the Hessian of p̄t , resulting in the convergence of the
metric to the constant curvature metric in C2. In particular, the curvature converges
to a constant.

To estimate the Hessian decay, we proceed in a similar way to the estimation of
the gradient, only that now we need to use the coupling procedure for three points
rather than two.
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Let us denote, for t > 0,

H(t) = sup
x∈M

∣∣Hess p̄t (x)
∣∣.

What we want to show is that H(t) decays to 0 exponentially fast.

THEOREM 18. For the case χ(M) ≤ 0, H(t) converges to 0 exponentially fast
as t → ∞.

PROOF. To begin with, notice that

〈
Hess p̄t (z)ξ, ξ

〉= lim
ρ0→0

p̄t (γ (−ρ0)) − 2p̄t (z) + p̄t (γ (ρ0))

ρ2
0

,(91)

where γ is the unique geodesic passing through z and having the initial velocity
given by ξ . Thus, similarly to the case of the gradient estimate, we will use the
three particle coupling to get a handle on the right-hand side of the above quantity,
for sufficiently small ρ0.

For convenience, fix a time t > 0 and let s ∈ [0,1∧ t]. Pick two points x, y ∈ M ,
with d(x, y) = ρ0 small enough, and let z be the middle point on the geodesic be-
tween x and y such that d(x, z) = d(z, y) = ρ0/2. Consider the triple coupling
described by (53) with the choices from Corollary 17. All the data there is com-
pletely described by the choice of the time change a of the processes xτ and yτ . In
this section, we choose

a(τ, x, y, ρ1, ρ2) = √
2e−p̄t−τ (λx,y),(92)

where λx,y is the middle point on the geodesic between x and y. This choice does
not depend on ρ1 or ρ2, and consequently it is symmetric in ρ1 and ρ2, as required
by Corollary 17. Other choices are possible for the argument here, but we stick
with this one because it is symmetric with respect to x and y and makes some of
the estimates look more natural.

Now, we consider p̄t−σ (zσ ), where zτ is defined in the previous section. Again
invoking Corollary 17, we learn that

dp̄t−τ (zτ )

= M1,τ +
(
−∂t p̄t−τ (zτ ) + α2(τ )

2
�p̄t−τ (zτ ) + θ(τ )

〈∇p̄t−τ (zτ ), γ̇τ

〉)
dτ,

where M1,τ is a martingale. From the Ricci flow equation, ∂t p̄t−τ (zτ ) =
e−2p̄t−τ (zτ )�p̄t−τ (zτ ) + r(1 − e−2p̄t−τ (zτ )) so we continue with

dp̄t−τ (zτ )

= M1,τ +
((

α2(τ )

2
− e−2p̄t−τ (zτ )

)
�p̄t−τ (zτ )(93)

+ θ(τ )
〈∇p̄t−τ (zτ ), γ̇τ

〉− r
(
1 − e−2p̄t−τ (zτ )))dτ.
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For the semi-martingale p̄t−τ (xτ ) we have from (53) and the Ricci flow equa-
tion that

dp̄t−τ (xτ ) = M2,τ + ((e−2p̄t−τ (λτ ) − e−2p̄t−τ (xτ ))�p̄t−τ (xτ )
(94)

− r
(
1 − e−2p̄t−τ (xτ )))dτ,

where λτ is the middle point of the geodesic joining xτ and yτ . Similarly, for
p̄t−τ (yτ ),

dp̄t−τ (yτ ) = M3,τ + ((e−2p̄t−τ (λτ ) − e−2p̄t−τ (yτ ))�p̄t−τ (yτ )
(95)

− r
(
1 − e−2p̄t−τ (yτ )))dτ.

Now, putting these together,

p̄t−τ (xτ ) − 2p̄t−τ (zτ ) + p̄t−τ (yτ )

= p̄t (x) − 2p̄t (z) + p̄t (y) + Mτ

− 2
∫ τ

0

((
α2(u)

2
− e−2p̄t−u(zu)

)
�p̄t−u(zu)

)
du

− 2
∫ τ

0
θ(u)

〈∇p̄t−u(u), γ̇u

〉
du(96)

+
∫ τ

0

((
e−2p̄t−u(λu) − e−2p̄t−u(xu))�p̄t−u(xu)

+ (e−2p̄t−u(λu) − e−2p̄t−u(yu))�p̄t−u(yu)
)
du

+ r

∫ τ

0

(
e−2p̄t−u(xu) − 2e−2p̄t−u(zu) + e−2p̄t−u(yu))du,

where Mτ is a martingale.
From the definition of α in Corollary 17 and the fact that we stop the processes

before the distance between x and y hits some small number r0, it is not hard to
prove [e.g., directly from (89)] that there is a constant C > 0 such that∣∣α(u) − a(u)

∣∣≤ Cρu,

which in turn, using the gradient decay estimates and the fact that d(zu, λu) ≤
d(xu, yu)/2 = ρu/2, leads to (notice that t − u ≥ t − 1 because u ∈ [0,1 ∧ t])∣∣∣∣α

2(u)

2
− e−2p̄t−u(zu)

∣∣∣∣≤ Cρu + ∣∣e−2p̄t−u(zu) − e−2p̄t−u(λu)
∣∣

≤ Cρu + Ce−Ctρu ≤ Cρu.

Observe here that we do not need the full power of the exponential decay of the
gradient; just the boundedness suffices for this particular estimate, but used in con-
junction with (90), for any u ∈ [0,1 ∧ t],∣∣θ(u)

〈∇p̄t−u(zu), γ̇u

〉∣∣≤ cρue
−Ct .
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Finally, from the exponential decay of the gradient and elementary arguments, as
long as u ∈ [0,1 ∧ t],∣∣e−2p̄t−u(xu) − e−2p̄t−u(zu)

∣∣+ ∣∣e−2p̄t−u(yu) − e−2p̄t−u(zu)
∣∣≤ cρue

−Ct

and also∣∣e−2p̄t−u(xu) − e−2p̄t−u(λu)
∣∣+ ∣∣e−2p̄t−u(yu) − e−2p̄t−u(λu)

∣∣≤ cρue
−Ct .

Now, let σ be the first time u when ρ1,u or ρ2,u becomes 0, and let ζ be the
first time u when either ρ1,u or ρ2,u hits r0, a small number (less than half of the
injectivity radius). Replacing τ by τ ∧σ ∧ζ in (96) and then taking the expectation
at τ = 0 and τ = s, combined with the above estimates, lead to∣∣p̄t (x) − 2p̄t (z) + p̄t (y)

∣∣
≤ ∣∣E[p̄t−s∧σ∧ζ (xs∧σ∧ζ ) − 2p̄t−s∧σ∧ζ (zs∧σ∧ζ ) + p̄t−s∧σ∧ζ (ys∧σ∧ζ )

]∣∣(97)

+ ce−Ct
E

[∫ s∧σ∧ζ

0
ρu du

]
+ cE

[∫ s∧σ∧ζ

0
ρuH(t − u)du

]
for any s ∈ [0,1 ∧ t].

Next, the stopping time σ is T1 ∧ T2, where T1 and T2 are, respectively, the first
time ρ1 hits 0 and the first time ρ2 hits 0. Now we can write

E
[
p̄t−s∧σ∧ζ (xs∧σ∧ζ ) − 2p̄t−s∧σ∧ζ (zs∧σ∧ζ ) + p̄t−s∧σ∧ζ (ys∧σ∧ζ )

]
= E

[
p̄t−s∧ζ (xs∧ζ ) − 2p̄t−s∧ζ (zs∧ζ ) + p̄t−s∧ζ (ys∧ζ ), ζ < σ

]
+E

[
p̄t−s∧σ (xs∧σ ) − 2p̄t−s∧σ (zs∧σ ) + p̄t−s∧σ (ys∧σ ), σ ≤ ζ

]
= E

[
p̄t−s∧ζ (xs∧ζ ) − 2p̄t−s∧ζ (zs∧ζ ) + p̄t−s∧ζ (ys∧ζ ), ζ < σ

]
+E

[
p̄t−T1(yT1) − p̄t−T1(xT1), T1 < T2 ≤ s ∧ ζ

]
(98)

+E
[
p̄t−T2(xT2) − p̄t−T2(yT2), T2 < T1 ≤ s ∧ ζ

]
+E

[
p̄t−T1(yT1) − p̄t−T1(xT1), T1 ≤ s ∧ ζ < T2

]
+E

[
p̄t−T2(xT2) − p̄t−T2(yT2), T2 ≤ s ∧ ζ < T1

]
+E

[
p̄t−s(xs) − 2p̄t−s(zs) + p̄t−s(ys), s ≤ σ < ζ

]
.

Here, we bear to fruit the work done in the previous section and argue that due to
the symmetry with respect to ρ1 and ρ2 from Corollary 17, we have the crucial
cancellations

E
[
p̄t−T1(yT1) − p̄t−T1(xT1), T1 < T2 ≤ s ∧ ζ

]
(99)

+E
[
p̄t−T2(xT2) − p̄t−T2(yT2), T2 < T1 ≤ s ∧ ζ

]= 0

and also

E
[
p̄t−T1(yT1) − p̄t−T1(xT1), T1 ≤ s ∧ ζ < T2

]
(100)

+E
[
p̄t−T2(xT2) − p̄t−T2(yT2), T2 ≤ s ∧ ζ < T1

]= 0.
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Furthermore, from the exponential decay of p̄ and ∇p̄, for any s ∈ [0,1 ∧ t] we
have ∣∣E[p̄t−s∧σ∧ζ (xs∧σ∧ζ ) − 2p̄t−s∧σ∧ζ (zs∧σ∧ζ ) + p̄t−s∧σ∧ζ (ys∧σ∧ζ )

]∣∣
≤ E

[∣∣p̄t−s∧ζ (xs∧ζ ) − 2p̄t−s∧ζ (zs∧ζ ) + p̄t−s∧ζ (ys∧ζ )
∣∣, ζ < σ

]
+E

[∣∣p̄t−s(xs) − 2p̄t−s(zs) + p̄t−s(ys)
∣∣, s ≤ σ ≤ ζ

]
≤ ce−Ct

P(ζ ≤ s ∧ σ) + ce−Ct
E[ρs, s ≤ σ ∧ ζ ],

where we used the following inequalities:∣∣E[p̄t−s∧ζ (xs∧ζ ) − 2p̄t−s∧ζ (zs∧ζ ) + p̄t−s∧ζ (ys∧ζ ), ζ < σ
]∣∣

≤ E
[∣∣p̄t−s(xs) − 2p̄t−s(zs) + p̄t−s(ys)

∣∣, s < ζ < σ
]

+E
[∣∣p̄t−ζ (xζ ) − 2p̄t−ζ (zζ ) + p̄t−ζ (yζ )

∣∣, ζ ≤ s ∧ σ
]

≤ ce−Ct
E[ρs, s < σ ∧ ζ ] + ce−Ct

P(ζ ≤ s ∧ σ).

Putting these together into (97), plus a little simplification, gives that for any s ∈
[0,1 ∧ t]∣∣p̄t (x) − 2p̄t (z) + p̄t (y)

∣∣
≤ ce−Ct

P(ζ ≤ s ∧ σ) + ce−Ct
E[ρs, s ≤ σ ∧ ζ ]

+ ce−Ct
∫ s

0
E[ρu,u ≤ σ ∧ ζ ]du + c

∫ s

0
H(t − u)E[ρu,u ≤ σ ∧ ζ ]du.

A further simplification is due to the symmetry with respect to ρ1 and ρ2 from
Corollary 17, which has the effect that

E[ρu,u < σ ∧ ζ ] = 2E[ρ1,u, u < σ ∧ ζ ],
and thus for s ∈ [0,1 ∧ t],∣∣p̄t (x) − 2p̄t (z) + p̄t (y)

∣∣
≤ Ce−Ct

P(ζ < s ∧ σ) + Ce−Ct
E[ρ1,s , s < σ ∧ ζ ]

(101)
+ e−Ct

∫ s

0
E[ρ1,u, u < σ ∧ ζ ]du

+ C

∫ s

0
H(t − u)E[ρ1,u, u < σ ∧ ζ ]du.

The key step forward is the following result.

THEOREM 19. Let W 1, W 2 and W 3 be three independent, one-dimensional
Brownian motions, and let ρ̃1 and ρ̃2 be two processes such that ρ̃1,0 = ρ̃2,0 =
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ρ̃0 > 0 and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dρ̃1,τ = (1 + O(ρ̃1,τ )
)(

Aτ dW 1
τ + Bτ dW 2

τ

)
+ (1 + O(ρ̃1,τ )

)
dW 3

τ + O(1) dτ,

dρ̃2,τ = (1 + O(ρ̃2,τ )
)(

Aτ dW 1
τ + Bτ dW 2

τ

)
− (1 + O(ρ̃2,τ )

)
dW 3

τ + O(1) dτ,

(102)

with A2
τ + B2

τ = 1.
Let σ̃ be the first hitting time of 0 for the process ρ̃1ρ̃2 and ζ̃ the first time either

ρ̃1 or ρ̃2 hits some value r̃0. Assume that (102) is valid for τ ∈ [0, σ̃ ∧ ζ̃ ], and in
addition that for some constant C > 0

E[ρ̃2,s, s < σ̃ ∧ ζ̃ ] ≤ CE[ρ̃1,s, s < σ̃ ∧ ζ̃ ] for all s ∈ [0,1 ∧ t].(103)

Then there is a constant C > 0 such that, for all s ∈ [0,1∧ t] and sufficiently small
ρ̃0 > 0,

E[ρ̃1,s , s < σ̃ ∧ ζ̃ ] ≤ Cρ̃2
0/

√
s(104)

and

P(ζ̃ < s ∧ σ̃ ) ≤ Cρ̃2
0 .(105)

PROOF. If we regard the process (ρ̃1,τ , ρ̃2,τ ) as a process in the first quadrant,
the equations in (102) tell us that near the axes the process is near

√
2 times a

two-dimensional Brownian motion which certainly satisfies both properties (104)
and (105). Consequently, what we will do is to compare E[ρ̃1,s , s < σ̃ ] with the
analogous quantity in which ρ̃1 and ρ̃2 run as independent Brownian motions.

In the simplest case in which (ρ̃1, ρ̃2) is
√

2 times a planar Brownian mo-
tion started at (ρ̃0, ρ̃0) the quantity E[f (ρ̃1,s , ρ̃2,s), s < σ̃ ] is simply ϕ(s, ρ̃0, ρ̃0),
with ϕ being the solution to the following PDE on the upper-right quadrant
	 = {(x, y) ∈ R

2, x, y > 0}:⎧⎪⎨
⎪⎩

∂tϕ = �ϕ,

ϕ
(
t, (x, y)

)= 0, (x, y) ∈ ∂	,

ϕ
(
0, (x, y)

)= f (x, y), (x, y) ∈ 	.
(106)

This solution can be written in an explicit form in terms of the heat kernel, which
we discuss now. On the half line, the heat kernel for the Laplacian with the Dirich-
let boundary condition is given by

ht (x, y) = 1√
4πt

(
e−(x−y)2/4t − e−(x+y)2/4t )

for all x, y, t > 0. On 	, the heat kernel with the Dirichlet boundary condition is
simply

ht

(
(x1, x2), (y1, y2)

)= ht (x1, y1)ht (x2, y2).
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Turning back to the PDE (106), the solution is given by

ϕ(t, x, y) =
∫ ∞

0

∫ ∞
0

ht

(
(x, y), (x1, y1)

)
f (x1, y1) dx1 dy1.

For the case we are most interested in, namely f (x, y) = x, the solution above can
be computed as

ϕ(s, x, y) = x�

(
y√
s

)
with �(x) = 1√

π

∫ y

0
e−u2/4 du.

Now we go back to the system (102) and take ϕ(s − τ, ρ̃1,τ , ρ̃2,τ ) as a semi-
martingale which, from Itô’s formula and ∂tϕ = �ϕ, becomes

dϕ(s − τ, ρ̃1,τ , ρ̃2,τ )

= ∂xϕ dρ̃1,τ + ∂yϕ dρ̃2,τ − ∂tϕ dτ

+ 1

2
∂2
xxϕ d〈ρ̃1〉τ + ∂2

xyϕ d〈ρ̃1, ρ̃2〉τ + 1

2
∂2
yyϕ d〈ρ̃2〉τ

= Mτ + O(1)

(
�

(
ρ̃2,τ√
s − τ

)
+ ρ̃1,τ√

s − τ
�′
(

ρ̃2,τ√
s − τ

))
dτ

+ ρ̃1,τO(ρ̃2,τ )�
′′(ρ̃2,τ /

√
s − τ)

s − τ
dτ + O(ρ̃1,τ + ρ̃2,τ )√

s − τ
�′
(

ρ̃2,τ√
s − τ

)
dτ,

where Mτ is a martingale. Since �′ and y�′′(y) are bounded, we deduce that the
drift in the above is bounded in absolute value by C(ρ̃1,τ +ρ̃2,τ )√

s−τ
. Now replacing τ by

τ ∧ σ̃ ∧ ζ̃ and evaluating at τ = 0 and τ = s, we are led to

E[ρ̃1,s, s < σ̃ ∧ ζ̃ ] ≤ E
[
ϕ(s − s ∧ σ̃ ∧ ζ̃ , ρ̃1,s∧σ̃∧ζ̃ , ρ̃2,s∧σ̃∧ζ̃ )

]

≤ ϕ(s, ρ̃0, ρ̃0) + CE

[∫ s∧σ̃∧ζ̃

0

ρ̃1,τ + ρ̃2,τ√
s − τ

dτ

]

≤ Cρ̃0�

(
ρ̃0√

s

)
+ C

∫ s

0

E[ρ̃1,τ + ρ̃2,τ , τ < σ̃ ∧ ζ̃ ]√
s − τ

dτ.

Denote for simplicity f (s) = E[ρ̃1,s, s < σ̃ ∧ ζ̃ ] and g(s) = Cρ̃0�(
ρ̃0√

s
). Now con-

dition (103) implies for all s ∈ [0,1 ∧ t] that

f (s) ≤ g(s) + C

∫ s

0

f (τ)√
s − τ

dτ.(107)

This functional inequality is interesting enough to be treated separately, and
so we do this formally in the following result. Incidentally, this also appears in
renewal theory, but we were not able to pinpoint exactly this statement in the liter-
ature.
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LEMMA 20. Assume f,g : [0, t] → [0,∞) are bounded, continuous functions
such that for all s ∈ [0,1 ∧ t]

f (s) ≤ g(s) + C

∫ s

0

f (τ)√
s − τ

dτ.(108)

If g(s) ≤ Cρ2/
√

s for all s ∈ [0,1 ∧ t], then

f (s) ≤ Cρ2/
√

s for all s ∈ (0,1 ∧ t].

PROOF. Rewrite (108) in the form

f (s) ≤ g(s) + C

∫ s

0

f (τ)√
s − τ

dτ = g(s) + C
√

s

∫ 1

0

f (sw)√
1 − w

dw.

Now introduce the random variable W with density 1
2
√

1−w
and observe that the

right-hand side of the above equation becomes g(s) + C
√

sE[f (sW)]. Hence, the
inequality at hand can be rewritten as

f (s) ≤ g(s) + C
√

sE
[
f (sW)

]
.

Iterating this inequality, one can prove that if we pick an i.i.d. sequence W1,W2, . . .

with the same distribution as W , then for any n ≥ 1,

f (s) ≤
n∑

k=0

(C
√

s)kE
[√

W1
√

W1W2 · · ·
√

W1W2 · · ·Wk−1g(sW1W2 · · ·Wk)
]

+ (C
√

s)n+1
E
[√

W1
√

W1W2 · · ·√W1W2 · · ·Wnf (sW1W2 · · ·Wn+1)
]
.

The random variable W has moments

E
[
Wk]=

√
π�(k + 1)

2�(k + 3/2)
for all k > −1.

Particularly important is the case of k = −1/2, so that 1√
W

is integrable, and in

fact E[1/
√

W ] = π/2. It is an elementary task to obtain from this that, for some
constant C > 0,

E
[
Wk]≤ C/

√
k for all k > 0.

Since g is bounded, the series

∞∑
k=0

(C
√

s)kE
[√

W1
√

W1W2 · · ·
√

W1W2 · · ·Wk−1g(sW1W2 · · ·Wk)
]

is absolutely convergent and

(C
√

s)nE
[√

W1
√

W1W2 · · ·√W1W2 · · ·Wnf (sW1W2 · · ·Wn+1)
]
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goes to 0 as n → ∞. Consequently,

f (s) ≤
∞∑

k=0

(C
√

s)kE
[√

W1
√

W1W2 · · ·
√

W1W2 · · ·Wk−1g(sW1W2 · · ·Wk)
]
.

If g(s) ≤ Cρ2/
√

s, the above yields

f (s) ≤ C
ρ2
√

s

∞∑
k=0

(C
√

s)kE

[√
W1

√
W1W2 · · ·√W1W2 · · ·Wk−1√

W1W2 · · ·Wk

]
= Cρ2

√
s

,

where we used the decay of the moments of W together with the fact that 1/
√

W

is integrable to justify that the series is convergent. �

The rest of the proof of (104) follows now from Lemma 20.
We now turn our attention to (105) and observe that, from (102), we easily

obtain that

d(ρ̃1ρ̃2) = ρ̃1 dρ̃2 + ρ̃2 dρ̃1 + d〈ρ̃1, ρ̃2〉τ
= dMτ + O(ρ̃1 + ρ̃2) dτ

with Mτ a martingale. Using this at the times τ = 0 and τ = s ∧ σ̃ ∧ ζ̃ with 0 ≤
s ≤ 1 ∧ t and integrating, we get

r̃2
0P(ζ̃ < s ∧ σ̃ ) ≤ E[ρ̃1,s∧σ̃∧ζ̃ ρ̃2,s∧σ̃∧ζ̃ ] ≤ ρ̃2

0 + CE

[∫ s∧σ̃∧ζ̃

0
(ρ̃1,τ + ρ̃2,τ ) dτ

]

≤ ρ̃2
0 + C

∫ s

0
E
[
(ρ̃1,τ + ρ̃2,τ ), τ < σ̃ ∧ ζ̃

]
dτ

(103) and (104)≤ ρ̃2
0 + C

∫ s

0

ρ̃2
0√
τ

dτ = Cρ̃2
0 ,

which is what we needed. �

Now we go back to (101). We cannot use Theorem 19 to conclude that
E[ρ1,s, s < σ ∧ ζ ] ≤ Cρ2

0/
√

s because the equations satisfied by ρ1 and ρ2 are not
of the form (102). However, if we take ρ̃1,s = ρ1,se

p̄t−s (λs), ρ̃2,s = ρ2,se
p̄t−s (λs),

then (53) and an application of Itô’s formula (followed by several rearrangements)
show that ρ̃1 and ρ̃2 do satisfy (102). In addition, Corollary 17 combined with the
fact that ep̄t−s (λs) is bounded shows that (103) is also satisfied. Therefore, accord-
ing to Theorem 19, E[ρ̃1,s, s < σ ∧ ζ ] ≤ Cρ2

0/
√

s and this in turn implies

E[ρ1,s, s < σ ∧ ζ ] ≤ Cρ2
0/

√
s and

∫ s

0
E[ρ1,u, u < σ ∧ ζ ]du ≤ Cρ2

0
√

s.
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Using the preceding in (101), we write the resulting equation as

∣∣p̄t (x) − 2p̄t (z) + p̄t (y)
∣∣≤ cρ2

0
e−Ct

√
s

+ cρ2
0

∫ s

0

H(t − u)√
u

du

for any s ∈ [0,1 ∧ t].
Now dividing both sides by ρ2

0 and then letting ρ0 tend to 0, we arrive at

H(t) ≤ c
e−Ct

√
s

+ c

∫ s

0

H(t − u)√
u

du for any s ∈ [0,1 ∧ t].
From here, the rest is taken care of by the following lemma.

LEMMA 21. If H : [0,∞) → [0,∞) is a continuous function such that, for
some constant C > 0,

H(t) ≤ c

(
e−Ct

√
s

+
∫ s

0

H(t − u)√
u

du

)
, 0 < s ≤ 1 ∧ t,(109)

then there are constants k,K > 0 such that

H(t) ≤ Ke−kt for all t > 0.

PROOF. It suffices to concentrate on the case t ≥ 1. The strategy is similar to
the one for proving Lemma 12 with a few tweaks.

Let mn = supt∈[n,n+1] H(t) and Mn = supt∈[n−1,n+1] H(t). Clearly, mn ≤ Mn

and Mn is either mn or mn−1.
Now, if we take the t which maximizes H(t) on [n,n + 1] and use (109), we

get that for some constant C > 0 and any s ∈ [0,1],

mn ≤ c

(
e−Cn

√
s

+ √
sMn

)
.

We want to minimize the right-hand side of the above expression over s ∈ [0,1].
For any a, b > 0, the minimum of a/

√
s + b

√
s with s ∈ [0,1] is attained at a

b
∧ 1.

Hence,

mn ≤ c

(
e−Cn√

e−Cn/Mn ∧ 1
+ Mn

(√
e−Cn

Mn

∧ 1
))

.

Now, for each given n, we have one of the following two cases:

(1) Case: e−Cn/2 ≤ Mn. This leads first to e−Cn/Mn < e−Cn/2 < 1, and then to

mn ≤ 2ce−Cn/2
√

Mn ≤ 2ce−Cn/4Mn.

This is enough to conclude that for a large n1 (e.g., such that 2ce−Cn1/4 < 1/2) and
n ≥ n1 one gets mn ≤ Mn/2, which means that we cannot have Mn = mn unless
mn = mn−1 = 0. Hence Mn = mn−1, which in turn implies that for some k > 0

mn ≤ e−kmn−1 if n ≥ n1.(*)
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(2) Case: Mn ≤ e−Cn/2. This already yields

mn ≤ e−kn.(**)

Notice that we can arrange the constant k > 0 to be the same in (*) and (**) simply
by taking the smaller.

By combining (*) and (**), we can show that mn decays exponentially fast. In-
deed, if there is n2 ≥ n1 for which the second alternative holds, then mn2 ≤ e−kn2 .
Then an easy induction and use of both alternatives yields that mn ≤ e−kn for all
n ≥ n2. On the other hand, if there is no such n2, that means the first alterna-
tive holds, and this means that mn ≤ mn−1e

−k for all n ≥ n1. This then results in
mn ≤ mn1e

−k(n−n1), and thus the exponential decay follows again. �

This completes the proof of Theorem 18. �

11. Ck convergence of p̄ on surfaces with χ(M) ≤ 0. In the previous two
sections, using the same notation and assumptions, we proved there exists a con-
stant C > 0 such that

sup
x∈M

∣∣p̄t (x)
∣∣+ sup

x∈M

∣∣∇p̄t (x)
∣∣+ sup

x∈M

∣∣Hess p̄t (x)
∣∣≤ ce−Ct

(110)
for all t > 0.

Alternatively stated, p̄ converges to 0 exponentially fast in the C2-norm. In partic-
ular, this proves that the metric gt converges to the constant curvature metric h in
the C2-topology, and thus the curvature of gt converges uniformly to a constant.

We now complete our discussion of the convergence to the constant curvature
metric by extending this to C∞-convergence. The culmination of the last several
sections is the following theorem.

THEOREM 22. Let M be a smooth, compact surface with χ(M) ≤ 0, with a
reference metric h of constant curvature 0 or −1, and let g0 be a smooth initial
metric in the same conformal class as h and with the same area. Then if we let p̄t

for t ∈ [0,∞) be the associated solution to the normalized Ricci flow [as given in
equation (9)], we have that

p̄t → 0 in C∞, exponentially fast,

in the sense that this convergence takes place exponentially fast in the Ck-norm
for all positive integers k. Stated differently, if gt for t ∈ [0,∞) is the family of
solution metrics to the normalized Ricci flow (and so the metrics corresponding
to p̄t ), then gt → h in C∞, exponentially fast.

PROOF. We start with the equation

∂t p̄ = e−2p̄t �p̄t + r
(
1 − e−2p̄t

)
.
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Now we can assume, by induction, that all derivatives of p̄t of order l with
0 ≤ l ≤ k − 1 decay to 0 exponentially fast as t goes to infinity. In light of the
C2-convergence, we may assume that k ≥ 3.

Taking the kth derivative p̄
(k)
t = ∇(k)p̄t , after commuting the Laplacian with the

covariant derivative we obtain

∂t p̄
(k)
t = e−2p̄t �p̄

(k)
t + 2re−2p̄t p̄

(k)
t + Q

(k)
t ,(111)

where Qk depends on the lower order derivatives of p̄t , and thus we may assume
by induction that for k ≥ 2, ∣∣Q(k)

t

∣∣≤ ce−Ct .(112)

The idea now is to write a Feynman–Kac formula for the solution to (111) and
get the estimates from this. Indeed, notice that if xσ is the time changed Brownian
motion starting at x which is defined by (12), then

exp
(

2r

∫ σ

0
e−2p̄t−u(xu) du

)
Tσ p̄

(k)
t−σ (xσ )

(113)

+
∫ σ

0
exp
(

2r

∫ u

0
e−2p̄t−v(xv) dv

)
TuQ

(k)
t−u(xu) du

is a martingale, where Tu is the extension to tensors of the parallel transport (with
respect to the underlying metric h) along the path x|[u,0] from xu to x0 = x. From
the technical side, this expression can be seen in a clear way by lifting the equa-
tion (111) to the orthonormal frame bundle, where the lift of p̄

(k)
t takes values in a

tensor product space of a fixed 2-dimensional Euclidean space. This is standard in
stochastic analysis and we do not belabor it.

One result of equation (113) is that evaluation at σ = 0 and σ = t yields

p̄
(k)
t (x) = E

[
exp
(

2r

∫ t

0
e−2p̄t−u(xu) du

)
Tt p̄

(k)
0 (xt )

]
(114)

+E

[∫ t

0
exp
(

2r

∫ u

0
e−2p̄t−v(xv) dv

)
TuQ

(k)
t−u(xu) du

]
.

Notice the first consequence of this, namely that |p̄(k)
t | is bounded for r ≤ 0 (which

is the case under consideration). We consider separately the cases r = −1 and
r = 0.

Case: r = −1. From the exponential decay of p̄t and the induction hypothesis
(the decay of Q

(k)
t ), it is easy to see that∣∣p̄(k)

t (x)
∣∣≤ ce−Ct for all t ≥ 0,

and thus the induction is done.

Case: r = 0. For the flat case, we still learn from (114) that p̄
(k)
t (x) is uniformly

bounded in t and x. Since the curvature of the underlying metric h is 0, we know
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(cf. [31], Theorem 8.1, Chapter II) that the holonomy groups are trivial (perhaps
after lifting to the orientation cover). Stated differently, the parallel transport along
loops is the identity.

To finish the argument, we are going to use the coupling technique we already
exploited for the gradient estimates. Start with a fixed point x ∈ M and a unit
vector ξ , and write

p̄k
t (x)ξ = ∇ξ p̄

(k−1)
t = lim

h→0

Thp̄
(k−1)
t (γ (h)) − p̄

(k−1)
t (x)

h
,(115)

where Th is the parallel transport from Tγ (h) to Tx along the geodesic γ started at
x with initial velocity ξ .

Now we use the martingale representation (113) with k replaced by (k − 1) to
see that, for x and y close enough and T the parallel transport from Ty to Tx along
the minimizing geodesic,

T p̄
(k−1)
t (y) − p̄

(k−1)
t (x)

= E
[
T Tσ p̄

(k−1)
t−σ (yσ ) − Tσ p̄

(k−1)
t−σ (xσ )

]
−E

[∫ σ

0

(
T TuQ

(k−1)
t−u (yu) − TuQ

(k−1)
t−u (xu)

)
du

]
.

Take t ≥ 1 and let σ be 1 ∧ τ with τ the coupling time of xu and yu which run
mirror coupled. Now, because the holonomy group is trivial, it follows that

E
[
T T1∧τ p̄

(k−1)
t−1∧τ (y1∧τ ) − T1∧τ p̄

(k−1)
t−1∧τ (x1∧τ )

]
= E

[
T T1p̄

(k−1)
t−1 (y1) − T1p̄

(k−1)
t−1 (x1),1 < τ

]
.

From this and the exponential decay of p̄
(k−1)
t and Q

(k−1)
t , we have

∣∣T p̄
(k−1)
t (y) − p̄

(k−1)
t (x)

∣∣≤ e−Ct
P(1 < τ) + e−Ct

∫ 1

0
P(u < τ)du.

Finally, using the estimate (52), we get∣∣T p̄
(k−1)
t (y) − p̄

(k−1)
t (x)

∣∣
≤ e−Ct d(x, y) + e−Ct

∫ 1

0

d(x, y)√
u

du = Ce−Ct d(x, y).

Now taking y = γ (h) and considering the limit as h goes to 0 leads to∣∣p̄(k)
t (x)ξ

∣∣≤ ce−Ct

for any unit vector ξ , which implies the exponential convergence of p̄
(k)
t . �
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BUCHAREST

ROMANIA

E-MAIL: ionel.popescu@imar.ro
ipopescu@math.gatech.edu

http://www.ams.org/mathscinet-getitem?mr=1715265
mailto:robert.neel@lehigh.edu
mailto:ionel.popescu@imar.ro
mailto:ipopescu@math.gatech.edu

	Introduction
	Stochastic target formulation
	Ricci ﬂow
	The target problem

	Veriﬁcation and the connection with Ricci ﬂow
	The blow ups of the Ricci ﬂow for the case of positive or negative Euler characteristic
	Time-dependent a priori bounds for Ricci ﬂow
	Mirror coupling
	Convergence of ﬁrst order to constant curvature in the case chi(M)=0
	Estimates on the gradient decay of the normalized Ricci ﬂow in the case chi(M)<=0
	Triple coupling
	Basic idea
	Rigorous approach

	Estimates on the Hessian decay for chi(M)<=0
	Ck convergence of p on surfaces with chi(M)<=0
	Acknowledgements
	References
	Author's Addresses

