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The Service Annual Survey (SAS) is a business survey conducted annu-
ally by the U.S. Census Bureau that collects aggregate and detailed revenues
and expenses data. Typical of many business surveys, the SAS population is
highly positively skewed, with large companies comprising a large propor-
tion of the published totals. When alternative data are not available, missing
data are handled with ratio imputation models that assume missingness is at
random. We propose a proxy pattern-mixture (PPM) model that provides a
simple framework for assessing nonresponse bias with respect to different
nonresponse mechanisms. PPM models were first introduced in this context
by Andridge and Little [Journal of Official Statistics 27 (2011) 153–180],
but their model assumed the characteristic of interest and the predicted proxy
have a bivariate normal distribution, conditional on the missingness indica-
tor. Although often appropriate for large demographic surveys, the normality
assumption is less justifiable for the highly skewed SAS data. We propose an
alternative PPM model using a bivariate gamma distribution more appropri-
ate for the SAS data. We compare the two PPM models through application
to data from six years of data collection in three industries in the health care
and transportation sectors of the SAS. Finally, we illustrate properties of the
method through simulation.

1. Introduction. Effects of nonresponse on bias in survey estimates have
been studied extensively over the past decade, as response rates to large-scale sur-
veys continue to decline while public and federal demands for timelier and more
detailed measures continue to emerge. Nonresponse can occur for an entire survey
unit (unit nonresponse) or for selected items provided by a survey unit (item nonre-
sponse). Our research is motivated by the Service Annual Survey (SAS) conducted
by the U.S. Census Bureau, a business survey that uses imputation to account for
unit and item nonresponse. Typical of many business surveys, the SAS population
is highly positively skewed, with large companies comprising a large proportion
of the published totals. The SAS imputation procedures are designed to exploit
available information when there is nonresponse in order to obtain inference about
population parameters by maximizing the usage of available reliable auxiliary data
for substitution. When such data are not available, then the SAS imputes replace-
ment values via ratio imputation models that rely on strong (verifiable) linear rela-
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tionships, especially with total revenue and total expenses, the two key published
items.

The Office of Management and Budget requires that federal programs perform
nonresponse bias analyses when the unit response rate falls below 80% or response
rates for published items fall below 70%. Of course, the literature supports the hy-
pothesis that nonresponse bias is not necessarily a function of survey response
rates; for example, see Peytcheva and Groves (2009). Indeed, although the SAS
unit response rates tend to fall below 70%, the survey methodologists have long
contended that their item-specific imputation procedures mitigate the effects of
nonresponse bias on the survey’s key estimates. However, this contention is en-
tirely anecdotal. The proxy pattern-mixture model analysis approach described
below provides a statistical method to evaluate/assess this hypothesis separately
for each survey item in a nonresponse bias analysis study.

There are three components that can be used to assess the potential for non-
response bias: the amount of nonresponse, the differences between respondents
and nonrespondents on fully observed characteristics (e.g., paradata, frame data),
and the relationship between these fully observed characteristics and the survey
outcomes (only measurable among respondents). Wagner (2012) describes a ty-
pology that classifies types of “indicators” of nonresponse bias based on these
three components: (1) indicators based on response propensities, (2) indicators
involving the response propensity and fully observed characteristics and (3) in-
dicators involving the response propensity, fully observed characteristics and the
survey outcome. Andridge and Little (2011) demonstrate a proxy pattern-mixture
(PPM) analysis approach to assessing the potential for nonresponse bias that falls
under the third category, assimilating all three components into a single sensitivity
analysis. Their framework facilitates assessment of nonresponse bias with respect
to different nonresponse mechanisms. In particular, their PPM analysis provides
estimates of survey outcomes (e.g., means) under a missing at random (MAR) as-
sumption and various missing not at random (MNAR) assumptions, providing an
assessment of the sensitivity of estimates to nonignorable missingness.

In brief, the PPM model reduces a set of fully observed auxiliary variables to a
single “proxy” variable X. The joint distribution of a survey outcome Y and this
proxy X is modeled as a bivariate normal distribution with separate parameters for
respondents and nonrespondents (a pattern-mixture model). Through assumptions
on the missing data mechanism, adjusted estimates of the mean of Y under these
various missingness mechanisms are obtained. For more details, see Andridge and
Little (2011).

As mentioned above, the SAS survey methodologists were very interested in
using the PPM approach on their data to—hopefully—validate their contention
of minimal detrimental effects on key survey estimates due to nonresponse after
all adjustment procedures are completed. In particular, they were particularly inter-
ested in using the resulting values of the fraction of missing information (FMI) esti-
mated via the PPM model as the study metric, since the FMI is easily interpretable
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and bounded; see Section 3.3. However, the methods presented in Andridge and
Little (2011) assume that the characteristic of interest Y and the proxy X have a bi-
variate normal distribution, conditional on the missingness indicator. This normal
PPM model is appealing for its computational tractability and is often appropriate
for large demographic survey applications. However, it is less justifiable for highly
positively skewed populations, such as business populations like the SAS. The nor-
mal PPM model is relatively robust to departures from normality since it relies on
first and second moments in estimating the mean of Y . However, while estimates
of the mean of Y may be robust, variance estimates may not be. For example, sup-
pose that units with larger values of X are more likely to respond than units with
smaller values of X. If the proxy model holds for respondents, variance estimates
under the normal model will be inflated, which in turn could lead to misleading
interpretation of the effects of nonresponse bias on the survey estimates. Thus, we
sought an alternative model that could be used in the PPM framework that would
incorporate two key features of the SAS business survey data (and by extension,
could be applicable to other, similar business surveys): (1) skewed marginal distri-
butions, and (2) larger variance for larger values of the proxy X.

This paper presents the results of a feasibility study conducted for the SAS us-
ing a subset of surveyed industries and data items. The primary objective of the
study was to develop a variation of an accepted analysis procedure that could be
easily applied to skewed business survey data; if feasible, one would expect the
new method to be applied on a much larger scale to other industries. In this pa-
per, we develop a PPM model using a bivariate gamma model. Many other studies
have successfully modeled the marginal distributions of business data populations
as gamma [Krewski and Rao (1981); Haziza et al. 2010; Thompson (2005)], so the
choice of distribution is well supported. First, to motivate the gamma PPM model,
we give an overview of the SAS in Section 2. Section 3 introduces the proposed
gamma PPM model, and in Section 4 we apply both the original (normal) and
bivariate gamma PPM models to empirical data from six separate years of SAS
data collection in three industries located in the health care and transportation sec-
tors. The conflicting results between the normal and bivariate gamma PPM models
motivate the simulation study presented in Section 5. Some concluding remarks
follow in Section 6.

2. Background on the service annual survey. The SAS is a mandatory sur-
vey of approximately 72,000 employer businesses having one or more establish-
ments located in the U.S. that provide services to individuals, businesses and
governments; the survey coverage includes most personal, business, automotive,
amusement and recreation, social welfare, health care and other professional ser-
vices industries. The SAS collects aggregate and detailed revenues and expenses,
e-commerce, exports and inventories data from a stratified sample of business firms
with paid employees in selected industries. For processing purposes, the SAS is di-
vided into five sections, each covering one or more NAICS service sectors. At the



2240 R. ANDRIDGE AND K. J. THOMPSON

survey methodologists’ suggestion, the feasibility study is restricted to the SAS
sectors covering the transportation and health industries (SAS-T and SAS-H, re-
spectively).

The SAS uses a single-stage stratified random sample design. Companies are
stratified by their major kind of business (determined by the industry containing
the largest portion of total receipts for the company) and then are further sub-
stratified by annual receipts or revenue (the measure of size). Each company’s
frame measure of size is compared to an industry-specific size cutoff. Compa-
nies whose values exceed the applicable thresholds are designated as certainty
units (sampled with probability equal to one). The Employer Identification Num-
bers (EINs) of the remaining companies are further stratified by major kind of
business and sub-stratified by the frame value of their total annual receipts or
revenue. Within each noncertainty stratum, a simple random sample of EINs is
selected without replacement. Thus, the sampling units are either companies or
EINs. Each sampling unit represents one or more establishments/locations owned
or controlled by the same firm. The initial sample is updated quarterly to re-
flect births and deaths, adding new employer businesses identified in the Busi-
ness and Professional Classification Survey and dropping firms and EINs that are
no longer active. Information on the SAS design and methodology is available at
http://www.census.gov/services/sas/about_the_surveys.html.

Target populations for business surveys tend to have highly positively skewed
characteristics, and the SAS is no exception. Figure 1 presents a truncated his-
togram of frame measure of size from the “All Other Miscellaneous Ambulatory

FIG. 1. Truncated SAS-H histogram of measure of size in the “All Other Miscellaneous Ambulatory
Health Care Services” Industry (NAICS 621999), with the largest cases excluded from presentation
to preserve confidentiality.

http://www.census.gov/services/sas/about_the_surveys.html
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Health Care Services” industry (NAICS 621999) in the health services component
of the Service Annual Survey (SAS-H). The skewness coefficient (calculated on
the nontruncated data) is 2.8, indicative of positive skew. The larger businesses
(those in the right-hand tail) are more likely than small business to provide re-
sponse data. First, the smaller units may not keep track of the requested data items
[Willimack and Nichols (2010) and Snijkers et al. (2013), Chapter 2] or may per-
ceive the response burden as being quite high [Bavdaž (2010)]. Second, to improve
or maintain the quality of the totals, operational procedures are designed to in-
crease the likelihood of obtaining valid response from large units, for example by
performing phone call follow-up of the largest cases, followed by intensive analyst
research for auxiliary data sources such as publicly available financial reports to
replace imputed values with equivalent data [Thompson and Oliver (2012)].

Imputation methodology is used to account for both unit and item nonresponse
in the SAS. These models use auxiliary survey and administrative records data as
input. The imputation cells are six-digit industry (NAICS) code cross-classified
by tax-exempt status. Unlike the sampling strata definitions, the imputation cells
do not account for unit size (in terms of expected value of total receipts), and
imputation parameters use certainty and (weighted) noncertainty units within the
same cell. The imputation base for the ratio imputation parameters is restricted to
complete respondent data, subject to outlier detection and treatment.

To perform item imputation, direct substitution of administrative or auxiliary
survey data is implemented as feasible; this is referred to as a logical edit proce-
dure. Otherwise, the SAS uses ratio imputation to account for nonresponse. The
ratio imputation model assumes that the finite population of y is generated from a
superpopulation model m such that Em(y|x) = βx and Vm(y|x) = xσ 2, where x

is a strictly positive continuous variable and y is drawn from an unspecified dis-
tribution. Given a sample of size n, with r respondents and n − r nonrespondents,
estimates of β under this model are given by β̂ = ȳr/x̄r (without design weights) or
by β̂ = ∑

i∈R wiyi/
∑

i∈R wixi (with design weights), where wi is a design weight
and i ∈ r denotes summing over respondents [Lohr (2010), Chapter 4]. The ratio
imputation model requires that the regression line goes through the origin, a rea-
sonable assumption with many business data items (e.g., if the business does not
have employees, then no payroll is expended). Thompson and Washington (2013)
provide a more complete discussion on the challenges of developing unit nonre-
sponse adjustment procedures for the SAS program.

These key features of data from business surveys—severe positive skew and the
use of ratio imputation procedures—motivate the development of a new method
for assessing the sensitivity of inferences to nonresponse. In particular, we sought
to develop a framework similar to the proxy pattern-mixture model of Andridge
and Little (2011) that could be applied to SAS and other business survey data with
skewed characteristics.
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3. A proxy pattern-mixture model for positively skewed data. In develop-
ing our method we adopt a model-based approach to survey sampling, by which
we specify a “superpopulation model” and use this model as the basis for infer-
ence [Royall (1992)]; this is in contrast to the design-based (randomization-based)
classical approach, where the outcome variables are assumed to be “fixed” in the
population and inference is made with respect to the sample selection probabil-
ities. As such, we assume that we have a simple random sample of size n from
an infinite population. Let Yi denote a continuous positive survey outcome and
Zi = (Zi1,Zi2, . . . ,Ziq) the values of q covariates for unit i in the sample. Only r

of the n sampled units respond, so observed data consist of (Yi,Zi) for i = 1, . . . , r

and Zi for i = r + 1, . . . , n.
As in Andridge and Little (2011), we start by reducing the dimension of the

covariates Z by creating a proxy variable X using linear regression of respondent
data. We regress Y on Z and take the proxy X to be the predicted values of Y

from the regression model, which is thus available for both respondents and non-
respondents. We exclude the intercept in this model to create the proxy, paralleling
the ratio estimation/ratio imputation models used for the SAS data. By definition,
the outcome Y only takes positive values, and consequently the proxy X should
as well. In the applications described in Section 4, this no-intercept model helps
ensure that X is positive. In the SAS data, the covariates Z are positive (e.g., total
sales, payroll or expenditures) and relationships between Z and Y are strong, so
no negative predictions of Y are made. If the linear regression results in a negative
proxy value for a specific data set, then our proxy pattern-mixture model is not
an appropriate choice. Note that if the outcome variable can be real valued (e.g,
profit/loss, income), then our gamma proxy pattern-mixture model is likewise not
appropriate; however, the normal PPM of Andridge and Little (2011) may be.

We note that while the construction of the proxy uses regression parameters
estimated using respondent data only, in subsequent estimation and inference we
do not have to assume that the parameters of the regression of Y on Z are the
same for both respondents and nonrespondents. Under an MAR mechanism, by
definition these parameters are the same, but under MNAR mechanisms they will
be different. The proxy X serves merely as a method of reducing multivariate Z

to a univariate X as was done by Andridge and Little (2011). If the correlation
between Y and X for respondents is high we call X a “strong proxy” for Y and
if this correlation is low we call X a “weak proxy” for Y . The type of auxiliary
variables Z available will affect the strength of the proxy. In household surveys,
design variables and paradata have been shown to have weak correlations with sur-
vey outcomes [Kreuter et al. (2010)]. However, since our application is restricted
to the key items collected by the SAS, we have strong predictors of Y [Thompson
and Washington (2013)].

Our goal is to assess the potential for nonresponse bias for the SAS under vary-
ing assumptions on the missing data mechanism, specifically, when data are MAR
versus MNAR. We focus on estimation of the mean of Y , but other estimators such
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as totals could easily be estimated under our framework. Let M denote the miss-
ingness indicator, such that M = 0 if Y is observed and M = 1 if Y is missing. The
PPM model as described by Andridge and Little (2011) assumes bivariate normal-
ity for the outcome Y and proxy X conditional on M . As mentioned in Section 2,
for the highly skewed characteristics of business populations such as the SAS, this
assumption seems questionable. Moreover, the ratio imputation model commonly
used for business data assumes that the variance of Y given X depends on X,
which is not true for the bivariate normal PPM model. Instead, we assume that
the joint distribution of (Y,X,M) follows a pattern-mixture model using Kibble’s
(1941) bivariate gamma distribution (KBGD), where respondents (M = 0) and
nonrespondents (M = 1) have distinct parameters:

(Y,X|M = m) ∼ KBGD
(
α(m), ν(m)

y , ν(m)
x , ρ(m)),

(1)
M ∼ Bernoulli(1 − π).

The joint density of the KBGD(α(m), ν
(m)
x , ν

(m)
y , ρ(m)) is given by

f
(
x(m), y(m)|m,α(m), ν(m)

x , ν(m)
y , ρ(m))

= (ν
(m)
x ν

(m)
y )α

(m)

(1 − ρ(m))�(α(m))

(
xy

ρ(m)ν
(m)
x ν

(m)
y

)(α(m)−1)/2

(2)

× exp
(
−ν

(m)
x x + ν

(m)
y y

1 − ρ(m)

)
Iα(m)−1

(2
√

ρ(m)ν
(m)
x ν

(m)
y xy

1 − ρ(m)

)
,

where x, y, ν
(m)
x , ν

(m)
y , α(m) > 0, 0 ≤ ρ(m) < 1, and Iα(m)(·) is the modified Bessel

function of the first kind of order α(m).
Under this pattern-mixture model, the marginal distributions of X and Y given

M are Gamma(α(m), ν
(m)
x ) and Gamma(α(m), ν

(m)
y ), that is, gamma with shape

parameter α(m) and rate parameters ν
(m)
x and ν

(m)
y (i.e., E[X] = α/νx ). The de-

pendence between X and Y given M is described with Corr(X,Y |M) = ρ(m). The
shared shape parameter α(m) is a feature of the KBGD; this assumption should
be checked before applying our PPM model by comparing estimates of the shape
parameter for Y and X among respondents (m = 0). If this assumption does not
hold, then fitting the KBGD (e.g., by maximum likelihood) will result in biased pa-
rameter estimates. For the marginal gamma distribution with the smaller (larger)
shape parameter, the estimates of both the shape and rate parameters will be bi-
ased upward (downward), resulting in an unbiased estimate of the mean, but an
underestimate (overestimate) of the variance.

The conditional distribution of Y given X and M is a randomized gamma dis-
tribution [Feller (1966)], also called a Bessel function distribution of the first type
by Yuan and Kalbfleisch (2000). The pattern-mixture model based on the KBGD



2244 R. ANDRIDGE AND K. J. THOMPSON

has the attractive property that both the expectation and variance of Y given X and
M are linear in X,

E[Y |X = x,M = m] = α(m)(1 − ρ(m))

ν
(m)
y

+ ρ(m)ν
(m)
x

ν
(m)
y

x = β
(m)
y0.x + β(m)

yx.xx,

(3)

Var[Y |X = x,M = m] = α(m)(1 − ρ(m))2

ν
(m)2

y

+ 2ρ(m)(1 − ρ(m))ν
(m)
x

ν
(m)2

y

x.

The conditional expectation and variance of X given Y and M has a similar form,
with the roles of the y and x terms (and associated parameters) reversed.

The KBGD was chosen over other bivariate distributions applicable to skewed
data, such as the bivariate lognormal, because of this linearity. E[Y |X = x] has
a regression-like form amenable to adapting for a pattern-mixture model, and the
dependence of V [Y |X] on X reflects our beliefs about the business survey data.
Additionally, this form is similar to the commonly used ratio imputation model
presented in Section 2, where both the expectation and variance are linear in X,
with the addition of an intercept in the bivariate gamma model. We call the proxy
pattern-mixture model that results from using the KBGD the “gamma PPM” model
to distinguish it from the “normal PPM” model of Andridge and Little (2011).

The pattern-mixture model defined by (1) is underidentified; there is no infor-
mation in the data to estimate the nonrespondent parameters ν

(1)
y or ρ(1). However,

as with previously described pattern-mixture models [e.g., Little (1994)], parame-
ter restrictions induced by assumptions on the missing data mechanism allow the
model to be identified. Specifically, we assume that the probability that Y is miss-
ing depends on a linear combination of the proxy X and the outcome Y ,

P(M = 1|Y,X) = f (X + λY ).

Here λ is a sensitivity parameter that determines the missingness mechanism,
and f is an unspecified function. When λ = 0, missingness depends only on X,
and data are MAR. This is the case where the regression of Y on Z is assumed to
be the same for respondents and nonrespondents. Non-zero values of λ correspond
to MNAR mechanisms, since in this case missingness depends on the partially
observed Y . When λ = ∞, missingness is a type of “extreme” MNAR depending
only on the unobserved Y and not on X.

There is no information in the data with which to estimate λ, thus we perform a
sensitivity analysis using λ ∈ {0,∞} to bound the potential for nonresponse bias.
In their sensitivity analysis, Andridge and Little (2011) also consider an interme-
diate case of λ = 1, a “compromise” response mechanism which equally weights
the contribution from the proxy X and the outcome Y . However, if X and Y follow
the KBGD, the distribution of X +Y is not any type of gamma distribution [Izawa
(1965)], and thus we restrict ourselves to λ = 0 (MAR) and λ = ∞ (“extreme”
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MNAR). We note that the intermediate case using λ = 1 (or any other value be-
tween 0 and ∞) would produce estimates that lie between the extremes of λ = 0
and λ = ∞, thus by omitting λ = 1 we are still bounding the potential for nonre-
sponse bias.

If we assume that missingness depends only on X (λ = 0, MAR), then the con-
ditional distribution of Y given X is the same for respondents (m = 0) and non-
respondents (m = 1), implying the restrictions β

(1)
y0.x = β

(0)
y0.x and β

(1)
yx.x = β

(0)
yx.x

in (3). Setting these terms equal and solving for the unidentified parameters ν
(1)
y

and ρ(1) yields

ν(1)
y = α(1)ν

(1)
x

α(1)β
(0)
yx.x + ν

(1)
x β

(0)
y0.x

= α(1)ν
(1)
x ν

(0)
y

α(1)ρ(0)ν
(0)
x + α(0)(1 − ρ(0))ν

(1)
x

,

(4)

ρ(1) = α(1)β
(0)
yx.x

α(1)β
(0)
yx.x + ν

(1)
x β

(0)
y0.x

= α(1)ρ(0)ν
(0)
x

α(1)ρ(0)ν
(0)
x + α(0)(1 − ρ(0))ν

(1)
x

.

If we assume that missingness depends only on Y (λ = ∞, MNAR), the condi-
tional distribution of X given Y is the same for respondents and nonrespondents
[recall that the distribution of X|Y,M is (3) with the x and y terms swapped].
Thus β

(1)
x0.y = β

(0)
x0.y and β

(1)
xy.y = β

(0)
xy.y , and by setting these terms equal we can

again solve for ν
(1)
y and ρ(1) to obtain

ν(1)
y = α(1)ν

(1)
x β

(0)
xy.y

α(1) − ν
(1)
x β

(0)
x0.y

= α(1)ρ(0)ν
(1)
x ν

(0)
y

α(1)ν
(0)
x − α(0)(1 − ρ(0))ν

(1)
x

,

(5)

ρ(1) = α(1) − ν
(1)
x β

(0)
x0.y

α(1)
= α(1)ν

(0)
x − α(0)(1 − ρ(0))ν

(1)
x

α(1)ν
(0)
x

.

Once ν
(1)
y and ρ(1) have been identified, the marginal mean of Y can be obtained

as is standard in a pattern-mixture model,

μy = π
α(0)

ν
(0)
y

+ (1 − π)
α(1)

ν
(1)
y

.(6)

3.1. Maximum likelihood estimation. Maximum likelihood estimates (ML)
for the gamma PPM model are obtained in two steps. The first step is to use an
iterative algorithm such as Newton–Raphson to obtain ML estimates for the iden-
tifiable parameters, (α(0), ν

(0)
x , ν

(0)
y , ρ(0), α(1), ν

(1)
x , π ), since there are no closed-

form solutions. Estimates for parameters of the joint distribution of X and Y for
the respondents (α(0), ν

(0)
x , ν

(0)
y , ρ(0)) are obtained by maximizing the likelihood

arising from the distribution function given in (2) for respondents (M = 0). The
marginal distribution of X for nonrespondents (M = 1) is Gamma(α(1), ν

(1)
x ) so
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we take the estimates of these parameters to be the standard gamma MLEs. The
ML estimate for π is the proportion of respondents. In the second step, the MLEs
of the remaining parameters (ν(1)

y , ρ(1)) are estimated for a chosen value of λ, by
plugging the MLEs of the identifiable parameters into (4) for λ = 0 and (5) for
λ = ∞.

Once the MLEs for all parameters are obtained, substituting them into (6) yields
the ML estimate of the mean of Y . In the normal PPM model, modifications to the
parameters identified via restrictions are sometimes needed to ensure that estimates
lie within the appropriate sample space [Little (1994)]. Similarly, for the gamma
PPM model, under MNAR (λ = ∞), if α̂(1)ν̂

(0)
x < α̂(0)ν̂

(1)
x (1 − ρ̂(0)) then ρ̂(1) will

be negative. This may occur when the mean of the proxy for nonrespondents is
much smaller than the mean for respondents and the proxy is weak (ρ̂(0) close to
zero). In this case, the weak relationship between the proxy and the outcome, cou-
pled with the size differential between respondents and nonrespondents, leaves the
PPM model very little information with which to adjust estimates for nonignorable
nonresponse (MNAR). If this occurs, ρ̂(1) should be set to zero, and whether the
gamma PPM model is the appropriate model for the data should be reevaluated.
A large-sample variance estimate for μy is available through inversion of the infor-
mation matrix, but unlike the normal PPM, this variance estimate must be solved
numerically since there is no closed-form solution for the ML estimates.

3.2. Multiple imputation. A limitation of ML estimation for the gamma PPM
model is that it treats the proxy X as known, when in fact it is constructed us-
ing estimated regression parameters. An alternative estimation method is multiple
imputation [Little and Rubin (2002)], which can incorporate uncertainty in the
proxy X by including the regression parameters that create X into the imputation
framework. We create K complete data sets for a specified value of λ and estimate
the adjusted mean of Y using these data. In what follows we describe the three
steps required to perform imputation using the gamma PPM model: (1) generat-
ing “draws” of the proxy X, (2) generating draws of the parameters of the gamma
PPM model and (3) generating draws for the missing Y .

In the first step, “draws” of the proxy X are generated. We place noninfor-
mative priors on the regression coefficients in the standard ordinary least squares
regression model (without an intercept) that is used to create the proxy X (i.e.,
the regression of Y on Z) and draw the parameters of the regression model from
their posterior distribution. Using these parameter draws we create a “draw” of the
proxy X for respondents and nonrespondents. Since the gamma PPM model re-
quires Y > 0, the proxy values must be checked to ensure that they are all positive.
In our application, the proxy values are rarely nonpositive. However, if a given
draw of the regression parameters results in any negative proxy values, these pa-
rameter draws are discarded and new draws are generated until the all proxy values
are positive. Only for data with a very weak proxy will this be a major problem,
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and in this case imputation under the gamma PPM model—or really any linear
regression model that includes X—may not be an appropriate choice.

In the second step, the remaining parameters of the gamma PPM model
are drawn (conditional on the proxy created in the previous step) using algo-
rithms described by Iliopoulos, Karlis and Ntzoufras (2005) for the bivariate
KBGD(α(0), ν

(0)
x , ν

(0)
y , ρ(0)) and using standard Bayesian inference for the uni-

variate gamma (α(1), ν
(1)
x ). Details can be found in Appendix A.

In the final step, once draws for all parameters are obtained, the missing values
of Y are drawn based on the conditional distribution of Y given X for nonrespon-
dents (M = 1), which for the KBGD is a randomized gamma distribution of the
first type. Draws from this distribution are obtained by first drawing a Poisson
random variate, and then, conditional on this variate, drawing a Gamma variate
[Makarov and Glew (2010)]. For the gamma PPM model, this results in the fol-
lowing draws to impute Y (where the parameters are their values at the current
iteration of the imputation algorithm):

Wi ∼ Poisson
(

ρ(1)

1 − ρ(1)
ν(1)
x xi

)
,

Yi |Wi ∼ Gamma
(
Wi + α(1),

ν
(1)
y

1 − ρ(1)

)
.

For imputation, we allow a burn-in of the Gibbs sampler and thin the chain to
reduce auto-correlation between imputations, cycling through until a total of K

completed data sets are produced.
For the kth completed data set, standard combining rules are used to estimate the

mean of Y(μ̂y), and its variance, V (μ̂y), which breaks down into between (B) and
within (W ) components of variance [Little and Rubin (2002)]. The estimate of the
mean of Y in the kth completed data set is the weighted (by π̂ ) average of the ML
estimates from the respondent and nonrespondent gamma distributions. As usual,
the between-imputation variance is estimated by the variance of these K mean
estimates and the within-imputation variance is the average of the K estimates of
the variance of the mean. For the kth completed data set, the estimated variance
of the mean is given by the ML estimate of the variance of the mixture of gamma
distributions divided by the total sample size.

3.3. Estimating the fraction of missing information with the gamma PPM
model. The fraction of missing information (FMI) has been proposed as a metric
for assessing the risk of nonresponse bias for a specific adjusted survey estimate
[Wagner (2012)], and as a measure of survey quality that can be monitored during
data collection [Wagner (2010)]. The FMI is a measure of loss of precision due to
nonresponse and is the ratio of between-imputation variance to total variance for a
specific estimator [Little and Rubin (2002)]. Under the PPM framework, Andridge
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and Little (2011) propose using the set of FMI values obtained in their sensitivity
analysis as a marker of the potential for nonresponse bias and the ability to correct
potential bias. A useful threshold is the nonresponse rate or the imputation rate for
an outcome variable as described in Thompson and Oliver (2012). An FMI below
either rate indicates a strong proxy X, and therefore good information with which
to correct for bias, even under an MNAR mechanism (λ = ∞). If the FMI values
are close together, then the inflation of variance due to an MNAR mechanism is
not severe, relative to the MAR mechanism. However, if the range of FMI values
is large, and especially if the largest value approaches the maximum value of 1,
then this indicates a lack of information for assessing bias. Of course, if the mini-
mum value of the FMI is close to 1—or both values were exactly equal to 1—then
one could conclude that the imputation model used to derive the proxy is inad-
equate for ameliorating nonresponse bias effects under any response mechanism.
For a more detailed discussion of the factors impacting FMI and its use in the PPM
framework, see Andridge and Thompson (2015a).

As with the normal PPM model, estimates of FMI can be obtained under the
gamma PPM model. The FMI is a natural byproduct of the multiple imputation
approach and is estimated as the ratio of the between-imputation variance to the
total variance of a specific estimator, the overall mean of Y in our application, with
an adjustment factor based on K for the finite number of imputations [Little and
Rubin (2002)]. An ML estimate of the FMI can also be obtained from the ML
estimates identified via parameter restrictions (see Appendix B), but no closed-
form solution exists.

4. Application to the service annual survey (SAS).

4.1. Empirical data background. In this section we apply the normal and
gamma PPM models to six years of collection data in selected industries from
the Service Annual Survey (SAS). We focus on total revenue and total expenses,
the key items collected by the SAS; payroll is collected along with expenses. For
the SAS, when ratio imputation is used, total payroll is regressed on total ex-
penses, and total expenses are regressed on total revenue. We therefore perform
two separate PPM analyses: one using expenses (Z) to predict payroll (Y ), and
using revenue (Z) to predict expenses (Y ). Imputation parameters are developed
within industry and tax-status category (taxable and tax-exempt).

Our empirical analysis uses data from three industries:

• Farm Product Warehousing and Storage (NAICS 493130).
• Miscellaneous Ambulatory Health Care Services (NAICS 621999).
• Psychiatric and Substance Abuse Hospitals (NAICS 622218).

Because of the lengthy titles associated with each industry, we use their as-
sociated industry codes in the figures and tables below. These industries repre-
sent a very small cross-section of the SAS sample and are not meant to represent



PROXY PATTERN-MIXTURE ANALYSIS FOR SKEWED DATA 2249

the larger survey in its entirety. Instead, they were recommended by subject mat-
ter experts as candidates for a feasibility study because they present the realistic
situations often encountered with business surveys’ response patterns (discussed
below). This set of industries also allows us to assess differences between the nor-
mal and gamma PPM models. Note that our estimates differ from the published
estimates. First, we exclude all cases that have missing or zero-value independent
variable values, as well as any observations with an imputed zero-valued dependent
variable. In practice, zero-value revenue, expenses, and payroll responses are im-
puted deterministically via separate analysis procedures that depend on the sample
unit business classification (e.g., non-employer, not-for-profit). Second, we con-
sider only ratio imputation. In practice, the missing data for the larger units are
more likely to be replaced by administrative or other auxiliary data (e.g., values
from published reports), which in turn would greatly reduce the effect of imputa-
tion error on the totals [Beaumont, Haziza and Bocci (2011)]. Total revenue and
total expenses are rarely changed in practice by the “logical edit” imputation, al-
though the reported value of total payroll may be modified slightly since it is a
component of total expenses. Our PPM analyses therefore represent “worst case”
scenarios for nonresponse bias analyses of the SAS key estimates.

In the Farm Product Warehousing and Storage industry (NAICS 493130), the
response rates for each unit size strata are approximately the same so that nonre-
sponse does not appear to depend on size. In the Miscellaneous Ambulatory Health
Care Services industry (NAICS 621999), the largest units (the certainty units) re-
spond at a lower rate than the smaller noncertainty units, and among noncertainty
units, the respondents tend to be smaller than the nonrespondents. The Psychiatric
and Substance Abuse Hospitals Industry (NAICS 622218) is the most “typical” of
the data sets for a business population; larger (certainty) units respond at a higher
rate than the smaller noncertainty units, and among noncertainty units the respon-
dents tend to be larger than the nonrespondents. The median (unweighted) unit
nonresponse rate with our research data was 32% across these industries and years.

To assess the appropriateness of the gamma assumption of the PPM model, we
performed three separate checks using the SAS data. First, we plotted the em-
pirical CDFs of the predicted proxies within industry against the theoretical CDFs
obtained using maximum likelihood estimates for normal and gamma distributions
(θ = 0). The empirical CDFs incorporate the sampling weights as recommended
in Lohr (2010), and consequently have a pronounced “step pattern” with concen-
trated mass on smaller units that have large sampling weights. Because of this,
goodness-of-fit tests that compared empirical CDFs to the smooth theoretical dis-
tributions such as the Kolmogorov–Smirnov test have very poor power and thus
were not performed. Figure 2 presents “typical” results from one industry from the
2005 data collection. The complete set of results for all studied years and models
are available upon request. In all cases, there is little evidence for a normally dis-
tributed proxy, whereas the theoretical gamma distributions appear to better fit the
data. As a second validation of the gamma distribution assumption, we simulated
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FIG. 2. Empirical and theoretical CDF for (a) gamma distributed proxy and (b) normally dis-
tributed proxy in the “Farm Product Warehousing and Storage” Industry (NAICS 493130), 2005
data, for the SAS payroll proxy model.

gamma-distributed populations for our predicted proxy using method-of-moment
parameters (with sampling weights) from the empirical data in the studied indus-
tries and compared the first three moments from the simulated populations to the
(weighted) empirical data moments (sample mean, sample variance and sample
skewness). As a third and final check, we verified that the assumption of a shared
shape parameter in the gamma PPM was reasonable by estimating the shape pa-
rameters of the outcome and estimated proxy among respondents using standard
method-of-moments estimators and confirming that they were similar.

We applied multiple imputation using both the normal and gamma PPM models
to the three industries’ data separately by year, for both payroll and expenses data.
We needed a large number of imputed data sets in order to estimate the FMI with
reasonable precision [Harel (2007)], and so for the normal multiple imputation
(MI) we created K = 500 imputed datasets. For the gamma MI, we allowed a
burn-in of 500 draws and afterwards thinned the chain by 10 to obtain a total of
K = 200 imputed data sets; the smaller number of imputations was due to a high
computational burden. As a consequence of the smaller number of imputations, we
expect that the gamma model FMI estimates will be more subject to more random
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noise than their normal counterparts. That said, we did examine results obtained
with larger numbers of imputations for a subset of industries/years and found that
the differences were generally in the third or fourth decimal places, not sufficient
to change interpretation. We also performed ML estimation for both models. The
main difference between the estimation methods was a slight underestimation of
variance by the ML models compared to the MI models, which is as expected,
since proxy variability is ignored in the ML estimation. However, the comparison
between the gamma and normal models was essentially the same and so we do not
report the ML results.

4.2. Results. Figure 3 presents mean estimates and 95% confidence intervals
from multiple imputation using the gamma PPM model and the normal PPM model
for λ = 0 (MAR) and λ = ∞ (MNAR) in the three industries for the payroll model.
Results for the expenses model were similar and are available in the supplemen-
tal material [Andridge and Thompson (2015b)]. Confidence intervals were con-
structed as described in Little and Rubin (2002) for multiply imputed data using a
t reference distribution. As expected, within the same response mechanism (MAR
or MNAR), the estimated means (μ̂y) from the normal and gamma models are
generally very close, and each set of means shifts downward from λ = 0 (MAR)
to λ = ∞ (MNAR). Thus if we were simply interested in estimating mean payroll
(or expenses) for the SAS data, either the normal or the gamma model could be
used, and the same conclusions drawn. In general, the mean shift from MAR to
MNAR within a model is larger than the difference in means between the gamma
and normal models within a response mechanism, though the shift is very small
in magnitude in some cases (e.g., NAICS 493130, 2005 data). On average across
the industries and years, the MNAR mean is 3% smaller than the MAR mean.
Consequently, if data were truly MNAR (an unverifiable assumption), these re-
sults suggest that the imputation procedures that assume MAR produce overesti-
mates of means. The magnitude of the shift from MAR to MNAR is related to
the strength of the proxy. For example, there is a more pronounced shift in the
means from MAR to MNAR for the Farm Product Warehousing and Storage in-
dustry and the Miscellaneous Ambulatory Health Care Services industry (NAICS
493130 and 621999), which have the weakest proxies, compared to the shift in the
means in the Psychiatric and Other Substance Abuse Hospitals industry (NAICS
622218), which is barely noticeable due to the extremely strong proxies. However,
in all cases the shift in means is quite small relative to the size of the confidence
intervals; in this case we would conclude that the penalty for assuming MAR (as
is done by the standard SAS imputation procedures) if data were in fact MNAR is
small relative to the overall variability in the mean estimates.

Although the means are similar for the normal and gamma PPM models, the
variances are quite different. Variance estimates from the normal model were larger
than the gamma model for the payroll data across all but one 18 industry/year
combinations under MAR and across all combinations under MNAR. The average
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FIG. 3. Empirical mean and 95% confidence intervals for the SAS payroll proxy model for three
industries. MAR = Missing at Random (λ = 0); MNAR = Missing Not at Random (λ = ∞).
G = Gamma model; N = Normal model.

overestimation was 93% for the MAR models and 89% for the MNAR models.
Note that the scale of the y-axis is different in each industry, and the apparently
small differences in confidence interval widths in the Psychiatric and Other Sub-
stance Abuse Hospitals industry (NAICS) 622218 are about the same magnitude
as in the other industries.
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TABLE 1
Multiple imputation estimates of FMI using the normal and gamma payroll proxy models, for both
MAR (λ = 0) and MNAR (λ = ∞), for three SAS industries. R2 values are the median value across

years for each industry

Data collection (Year)

2005 2006 2007 2008 2009 2010

Industry Model λ = 0 λ = ∞ λ = 0 λ = ∞ λ = 0 λ = ∞ λ = 0 λ = ∞ λ = 0 λ = ∞ λ = 0 λ = ∞

493130 Normal 0.13 0.18 0.06 0.09 0.10 0.12 0.11 0.18 0.18 0.34 0.03 0.04
(R2 = 0.80) Gamma 0.04 0.06 0.05 0.07 0.07 0.09 0.11 0.14 0.11 0.16 0.04 0.03
621999 Normal 0.28 0.38 0.16 0.17 0.19 0.22 0.12 0.14 0.12 0.14 0.27 0.36
(R2 = 0.88) Gamma 0.16 0.17 0.04 0.04 0.06 0.07 0.07 0.08 0.05 0.08 0.14 0.19
622218 Normal 0.10 0.11 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.03 0.03
(R2 = 0.96) Gamma 0.12 0.15 0.01 0.01 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.02

The effect of the differences in estimated variances manifests itself in the FMI
estimates, which is the metric we proposed using in Section 1 to assess the risk
for nonresponse bias in the SAS. Table 1 presents the multiple imputation-based
estimates of FMI along with median R2 using both the normal and gamma PPM
models for the payroll data. Often the differences in corresponding FMI for normal
and gamma PPM models are not trivial. The first two industries (493130, 621999)
have the weakest proxies, and the Miscellaneous Ambulatory Health Care Services
industry (621999) has the highest nonresponse rates. Here, the normal FMI values
are much larger than the gamma FMI counterparts in most cases, demonstrating
the effect of model misspecification when there is a nonnegligible missingness
rate coupled with a weaker proxy. For these two industries, if we use the normal
model, the larger FMI values provide evidence against the subject matter experts’
contentions that their imputation procedures have mitigated the effects of nonre-
sponse on key survey estimates. In contrast, the smaller gamma model FMIs are
more in line with the “commonly held wisdom” that the SAS imputation proce-
dures are reducing the impact of nonresponse.

The Psychiatric and Other Substance Abuse Hospitals (NAICS 622218) repre-
sents the most “typical” response pattern of the three studied industries; respon-
dents are larger on average than nonrespondents, so that response propensity is
related to unit size. However, this industry also has the smallest sample size (me-
dian n = 73) and the strongest proxies (R2 ≥ 0.92 for all years). Looking at the
FMI estimates in Table 1 shows that for this industry the normal FMI estimates
tend to be approximately equal to or slightly smaller than their gamma counter-
parts, which is the reverse of what is seen with the other two industries (493130,
621999). In this case, there is little difference in the interpretation of the effect of
nonresponse bias if using a misspecified model.

Notice that in two instances the gamma FMIs for λ = 0 are slightly larger than
their λ = ∞ counterparts (2010, industries 493130 and 622218). For both of these
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cases the proxy model is very strong (R2 values of 0.96 and 0.97, respectively) and
the proxy means for respondents and nonrespondents are close together, leading
to FMI estimates very close to zero for both λ = 0 and λ = ∞. We believe that
these FMI estimates (for λ = 0 and ∞) are not significantly different, and it is just
the finite number of imputations causing the small difference in the unexpected
direction.

The contrast between normal and gamma results supports the theory presented
in Section 3. Within the same response mechanism (MAR or MNAR), the normal
and gamma models produce similar mean estimates, but variance estimates (and
thus FMI estimates) can be substantially different, even with very strong auxiliary
information (high R2 values). In the SAS data we have very strong predictors of
revenue and expenses from other survey items as demonstrated here; these high
model R2 values for the key items are not atypical. However, not all applications
will have such strong proxy variables. In fact, other items collected by the SAS
such as the detailed revenue or detailed expenses subcomponent items have much
weaker relationships with candidate predictors. We expect the disagreement be-
tween the models to be more severe with weaker proxies and with higher rates
of nonresponse, making choosing the appropriate model even more important. To
investigate this further we performed a simulation study.

5. Simulation study. We conducted a small simulation study to explore the
contribution of proxy strength and differing sizes (and variances) of respondents
and nonrespondents to inference obtained under the normal and gamma PPM mod-
els. We expected both models to produce approximately unbiased mean estimates,
as we saw similar mean estimates for both models with the SAS data. However,
we expected the normal model to overestimate (underestimate) variances when
small (large) Y were missing. Correspondingly, we also expected to see the nor-
mal methods to overestimate (underestimate) the FMI when small (large) Y were
missing.

5.1. Data generation. The outcome Y and a single covariate Z were first gen-
erated from the KBGD(α, νy, νz, ρ) for a sample of size n, using the method of
Ong (1992) to generate the draws. To reduce the size of the experiment while
focusing attention on key parameters, we fixed the total sample size at n = 100,
which was approximately the median sample size for the SAS industries stud-
ied. We fixed the shape parameter at α = 1 and the rate parameters at νy = 0.02,
νz = 0.01. These shape and rate parameters were based on method of moment
estimates from empirical analysis of the studied SAS datasets, though rate pa-
rameters were scaled to be more tractable for the simulation (preserving the
shape of distributions). We considered three different values for the correlation,
ρ ∈ {0.5,0.7,0.9}. In our studied SAS data sets, the covariates are highly pre-
dictive of the outcome, with R2 values above 0.75. However, this is not always the
case in other data sets (or even with other survey items in the SAS), so we included
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lower correlation values to evaluate differences in methods with weaker proxies.
A total of 500 replicates of each parameter combination were used.

The missing data indicator M was generated via random draws from the
Bernoulli distribution with probability according to a logistic regression model,

logit
(
Pr(M = 1|Y,Z)

) = γ0 + γZZ + γY Y,

and values of Y were deleted when M = 1. We considered both MAR and MNAR
mechanisms, as well as varied whether respondents or nonrespondents were larger
on average. The four missing data scenarios and corresponding parameter values
for the logistic model were: (1) MAR with nonrespondents larger than respon-
dents (γ0 = −1;γZ = 0.01;γY = 0); (2) MAR with nonrespondents smaller than
respondents (γ0 = 1;γZ = −0.01;γY = 0); (3) MNAR with nonrespondents larger
than respondents (γ0 = −1;γZ = 0;γY = 0.02); (4) MNAR with nonrespondents
smaller than respondents (γ0 = 1;γZ = 0;γY = −0.02). The values of γ0 were
chosen to induce a 50% nonresponse rate, which was the highest nonresponse rate
in all of the studied SAS data sets and represented our “worst-case” scenario.

We note that in our simulations, the gamma PPM is not the data generation
model, since the gamma PPM implies the joint distribution of Y and X is KBGD
conditional on M , whereas in the simulation the unconditional joint distribution
of Y and Z is the KBGD. In this simulation the distributional assumptions of the
gamma PPM model are therefore violated, so that in addition to comparing the
normal and gamma models, we can assess how well the gamma PPM model per-
forms when it is not exactly the data generation model. All steps of the simulation
study were conducted using R [R Core Team (2012)].

5.2. Estimation methods. For each replicate, complete data were generated,
missingness was imposed, and multiple imputation was performed under the
gamma PPM model and the normal PPM model. As with the SAS application,
we also performed estimation using maximum likelihood; variance estimates were
slightly smaller (within a model) as expected, but overall conclusions comparing
the normal and gamma models were similar as with MI and thus are not discussed
further. For scenarios 1 and 2 we used λ = 0 for the PPM models, corresponding to
an assumption of MAR, and for scenarios 3 and 4 we used λ = ∞, corresponding
to an assumption of MNAR. In order to estimate the FMI with reasonable pre-
cision, we used a total of 200 imputed data sets for both the normal and gamma
MI procedures. The normal MI is noniterative; for the gamma MI, we allowed a
burn-in of 500 draws and then imputed on every tenth draw. This resulted in little
to no correlation between parameter draws used for imputation for all parameters
except ρ(0), for which a low level of autocorrelation remained. A higher thinning
value would be desirable but was not possible due to the computational intensity
of the procedure; results were averaged over 500 simulation replicates and thus are
still reasonable.



2256 R. ANDRIDGE AND K. J. THOMPSON

FIG. 4. Ratios of median estimated variance to empirical variance estimate from the simulation
study for the gamma and normal PPM imputation models, with 95% bootstrap confidence intervals
(1000 bootstrap samples). Numbers 1–4 refer to the four simulation scenarios. Results over 500
replicates. MAR = Missing at Random (λ = 0); MNAR = Missing Not at Random (λ = ∞); NR =
Nonrespondents; G = Gamma model; N = Normal model.

To illustrate how well each method estimated the mean of Y , we calculated the
median relative bias of the estimate of μy , noting that the true mean of Y was 50
across all scenarios. Since we were especially interested in assessing estimation
of the variance of μ̂y we calculated the ratio of the median estimated variance of
μ̂y to the empirical variance of μ̂y . Estimates of the simulation error for this ratio
were obtained using the bootstrap [Efron (1994)], since each set of 500 replicates
only provided a single point estimate of the ratio. One thousand bootstrap samples
were drawn from the set of 500 mean and variance estimates, and for each boot-
strap sample the ratio was recalculated; 2.5th to 97.5th percentiles of the resulting
bootstrap distribution of the ratio are provided together with the point estimates
(see Figure 4). We also computed the actual coverage of a nominal 95% interval.
The median FMI for each method across the 500 simulation replicates is reported
in order to compare models; we note that the true value of FMI is not easily cal-
culated. Medians are reported instead of means to reduce the impact of occasional
very large imputed values that occurred with lower correlations under the MNAR
mechanism, inflating mean and variance estimates.

5.3. Results. For the normal MI model, when smaller units were missing and
data were MNAR, parameter draws frequently got stuck trying to find draws that
produced nonnegative variance parameters. This will happen for the normal model
when the respondent variance is much smaller than the nonrespondent variance.
This is of particular concern for the SAS applications (and business survey appli-
cations in general) since survey respondents tend to be the larger sampled units
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TABLE 2
Median empirical relative bias, coverage, and fraction of missing information (FMI) for the

simulation study. Results over 500 replicates. MAR = Missing at Random, MNAR = Missing Not at
Random. Bolded coverages are below 1.96 simulation standard errors; shaded cells are coverages

above 1.96 simulation standard errors

Scenario ρ Model Relative bias (%) Coverage FMI

1 MAR Nonrespondents 0.5 Gamma −2.6 0.90 0.56
(λ = 0) larger Normal −0.7 0.86 0.52

0.7 Gamma −3.1 0.92 0.49
Normal −1.7 0.86 0.40

0.9 Gamma −2.7 0.94 0.27
Normal −2.3 0.89 0.18

2 MAR Nonrespondents 0.5 Gamma 1.5 0.96 0.40
(λ = 0) smaller Normal −1.2 0.97 0.51

0.7 Gamma −0.2 0.95 0.28
Normal −2.3 0.96 0.44

0.9 Gamma −0.8 0.95 0.11
Normal −2.1 0.96 0.25

3 MNAR Nonrespondents 0.5 Gamma 16.2 0.98 0.92
(λ = ∞) larger Normal 2.0 0.94 0.82

0.7 Gamma 5.4 0.95 0.71
Normal 1.6 0.91 0.55

0.9 Gamma −1.1 0.94 0.32
Normal −2.9 0.90 0.20

4 MNAR Nonrespondents 0.5 Gamma 0.7 0.97 0.68
(λ = ∞) smaller Normal −∗ – –

0.7 Gamma −2.9 0.94 0.45
Normal – – –

0.9 Gamma −2.4 0.93 0.13
Normal −2.1 0.94 0.30

∗The Normal MI model did not run for MNAR with nonrespondents smaller and lower correlations
(ρ = 0.5,0.7).

and it is impossible to assess the cause of unit nonresponse (e.g., are certain units
not responding because the collection is burdensome?) without successfully de-
briefing the nonrespondents. As a result, no results were obtained for the normal
MI model when data were MNAR with nonrespondents smaller than respondents
(scenario 4) and ρ ∈ {0.5,0.7}.

When data were MAR, both the normal and gamma models were either unbi-
ased or slightly underestimated the mean (Table 2), and the relative bias was no
larger than 3.1% for either model in any MAR scenario. When data were MNAR,
the normal MI model had low relative bias when it could provide estimates. The
gamma MI model had low relative bias everywhere except when large units were
missing and the correlation was low (ρ = 0.5). In this case, the gamma MI pro-
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cedure occasionally imputed extremely large values, skewing the MI means and
inflating variance estimates. In practice, one could discard these draws, but in the
simulation study they skewed the results and thus the median relative bias across
the simulation replicates was relatively high for this case.

More striking differences between the two models arose when looking at the
estimated to empirical variance ratio, as well as coverage and the FMI. Figure 4
shows the ratio of estimated to empirical variance along with 95% bootstrap in-
tervals to reflect simulation error. When data were MNAR and large units were
missing (scenario 3), the occasional extremely large imputed values for lower cor-
relations under both models made comparing the estimated and empirical variance
uninformative, since both values were drastically inflated, thus the variance ratio is
not shown. In these cases coverage was at or above nominal for the gamma model
and there was slight undercoverage for the normal model for these situations (Ta-
ble 2).

The normal model underestimated the variance of when larger units were miss-
ing, with estimated variance as much as 45% below the empirical variance for the
MI method. Coverage was therefore below nominal for all scenarios (Table 2).
Conversely, the normal model overestimated the variance of when smaller Y were
missing, with estimated variance as much as 30% above the empirical variance for
MI. The poor performance of the normal models was somewhat worse for weaker
proxies (smaller ρ). In contrast, for the gamma model, estimated variances were
closer to empirical variances (within simulation error) for all scenarios. We note
that the biased variance estimates of the normal PPM model are clearly illustrated
with the variance ratios in Figure 4, but are somewhat less evident looking at the
coverage values in Table 2, especially for the scenarios where there is overesti-
mation. Since our initial concern with the normal PPM was its ability to produce
unbiased estimates of variances, the variance ratios were a key component of the
simulation.

Table 2 also shows the FMI estimates for all scenarios for each model. As ex-
pected, FMI estimates from the gamma model were larger than from the normal
model when larger units were missing, and were smaller when smaller units were
missing. These differences were relatively constant across the different correla-
tions, but were more exaggerated when smaller units were missing. In some cases
the differences between the gamma and normal model estimates of FMI were quite
striking. For example, when data were MAR with small respondents missing and
a high correlation of ρ = 0.9, the FMI estimate for the gamma model was 11%
compared to 25% for the normal model, a greater than two-fold difference. We
note that the FMI values in the simulation are quite a bit larger than those seen in
the SAS data; this is due to the simulation data having a higher rate of nonresponse
and weaker proxies than most of the SAS data sets.

The results of the simulation study illustrate that the normal PPM model is
robust to departures from normality when estimating means, but not necessarily
when estimating variances. In particular, with positively skewed data as seen in
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the SAS data, the normal PPM model can produce highly biased variance esti-
mates. The direction of the bias depends on the direction of differences between
respondents and nonrespondents in terms of the proxy variable. If nonrespondents
tend to be larger than respondents then the normal model will underestimate vari-
ances, and if nonrespondents tend to be smaller then it will overestimate variances.
Because the variance estimates from the normal PPM model are biased, the FMI
estimates are likewise affected and can be misleading. In contrast, the gamma PPM
model that we developed specifically for use with the skewed SAS data does not
have the same deficiencies in variance estimation, as demonstrated in the simu-
lation where estimated to empirical variances are close to one (despite the data
generation model not being the gamma PPM model). Thus in the SAS applica-
tions, where the skewed data are well represented by gamma distributions, when
we saw differences between the two models’ FMI values, we give more credibility
to results from the gamma PPM model over the normal PPM model. The distinc-
tions between the two sets of FMI values are particularly important in the case
of a “weak” proxy and a nonnegligible missingness rate (industries 493130 and
621999), where the normal FMI estimates tend to be about twice as large as their
gamma counterparts. If we were to “believe” the normal model results (we do not),
then these results would provide evidence against the subject matter experts’ con-
tention that the item-specific imputation procedures offset nonresponse bias in the
key estimates. However, results from the gamma model, which better fits the SAS
data, support their contention.

6. Conclusion. Federal surveys are required to perform nonresponse bias
analyses when either their unit response rate or key item response rates fall be-
low performance benchmarks. At a minimum, such analyses need to determine the
existence of nonresponse bias in survey estimates and to measure, when possible,
the effects of these biases. Within the same program, the effect of nonresponse
bias—if it exists—may differ by item. Consequently, different mitigation strate-
gies may be needed within the same survey.

The PPM analysis proposed by Andridge and Little (2011) provides an item-
specific method of evaluating the effects of nonresponse bias on survey data. The
usage of the FMI as objective criteria is quite appealing for a survey manager as it
is easily interpretable and can be computed before and after mitigation strategies
such as new imputation or weighting strategies introduced in order to assess their
effectiveness (a decrease in the FMI would indicate an improvement).

However, the originally proposed PPM methodology assumes that the underly-
ing population distribution is multivariate normal. This assumption is often quite
reasonable for a demographic survey. However, business survey populations like
the SAS often have highly positively skewed characteristics. Thus we developed a
PPM model that uses a bivariate gamma distribution. The empirical results from
the SAS presented in Section 4 demonstrate situations where results from the nor-
mal model would be quite different from those obtained under the gamma model
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and could lead to erroneous conclusions, particularly as they relate to variance and
FMI estimates. In the presented analyses, the normal model FMIs tend to be much
larger than their gamma model counterparts in two of the three industries, although
the range of FMIs (under differing response mechanisms) is about the same. From
a survey manager’s perspective, the distinction between the two sets of FMIs is
important. Recall that the SAS managers contend that their survey’s imputation
procedures essentially eliminate the effect of nonresponse bias on the adjusted es-
timates. The gamma model FMIs support this claim, whereas the normal model
FMIs are less confirmatory.

The gamma PPM model has attractive features. The form of the bivariate
gamma distribution used was easily adaptable to the PPM framework, since both
the conditional mean and variance had regression-like forms. This allowed the
“inversion” of the model using parameter restrictions to identify nonrespondent
parameters when missingness depended on Y(λ = ∞, MNAR). Additionally, the
sensitivity analysis based on λ draws a picture of the potential for nonresponse
bias and our ability to correct it under two different assumptions on the missing
data mechanisms (MAR, MNAR).

We considered alternate models for the highly skewed and heteroskedastic busi-
ness data, such as lognormal distributions or imposing normality on the ratio im-
putation model. However, neither of these methods easily fit into the PPM frame-
work. In the bivariate lognormal distribution neither the conditional mean E(Y |X)

nor variance V (Y |X) is linear in X, which was a property we sought given that the
ratio imputation model has this form. Another possibility was extending the ratio
imputation model by adding a normality assumption to the variance. However, the
corresponding joint distribution did not factor into a form amenable to imposing
parameter restrictions when missingness depended on Y (λ = ∞, MNAR). In other
words, this model could be used for inference when λ = 0, but did not provide a
method for inference when λ = ∞.

There are implementation challenges with the gamma PPM model that are not
present with the more tractable normal model implementation. First, there is no
closed-form solution for ML estimates and numerical solutions are required. Sec-
ond, while the Bayesian implementation is attractive because it treats the proxy
values as estimates rather than as fixed, it requires a large number of iterations,
along with a substantial burn-in. Additionally, the algorithm used for the imputa-
tions treats gamma scale parameters as fixed (at their ML estimates), which may
cause underestimation of variances.

In the simulation study, the multiple imputation approach occasionally produced
extremely large draws under the MNAR mechanism (λ = ∞). This can occur when
there is a low correlation between Y and Z, for example, for the scenario where
the average correlation was 0.5, some replicates had a correlation very close to
zero. In practice, we recommended restricting the multiple imputation procedure
to analysis of key survey items, which are expected to have strong predictors (at a
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minimum, frame variables) and should be fairly well reported. The maximum like-
lihood approach is available in the case of computation failure and has proven quite
useful in other applications. For example, see Andridge and Thompson (2015a) for
discussions on the usage of the ML FMI in the selection of variables for regression
imputation models or for the development of imputation cells.

Our empirical results using the SAS data illustrate the importance of conducting
model validation before applying a PPM analysis. These business survey popula-
tions have characteristics that can be well approximated by a gamma distribution.
Using the normal PPM model can provide dramatically different results from those
obtained with the more appropriate gamma PPM model, and the direction of the
difference depends on the characteristics of the response set. Moreover, even if the
response mechanism is covariate-dependent, there will be missing values through-
out the distribution. Consequently, it is difficult to predict whether the model mis-
specification will result in over or underestimation of variances.

The procedure that we present is a parametric analysis of survey data. However,
we propose using it on populations that cannot be well approximated with normal
models, replacing the more tractable distribution with data-appropriate models.
This approach is similar to the adaptations for complex survey data to chi-squared
tests or logistic regression models proposed by Rao and Scott (1992) and Roberts,
Rao and Kumar (1987), that is, determine the appropriate analysis, then modify the
test statistic so that it has the correct asymptotic properties given the finite popula-
tion and sample design. In a similar vein, the MI approach provides an alternative
yet comparable measure that can be used to analyze data from small samples when
large sampling theory fails; cf. the Fay–Herriot model in small area estimation [Fay
and Herriot (1979), Rao (2003)].

The analyses that we conducted did not use survey weights in any step. In our
application to the SAS data, we implicitly incorporated the sampling design by
conducting each PPM analysis separately within imputation cell (industry by tax-
exempt status) and by using predictors that are strongly correlated to unit size. We
would have obtained identical results by including indicator variables for strata and
for tax-exempt status in these particular models; including the sampling weight ad-
ditionally would have made little or no difference. Other practitioners should not
discard the usage of survey weights in their proxy models without having validat-
ing model diagnostics. Survey weights can be incorporated into both PPM models
as predictors in the regression model that creates the proxy, and could also be used
in the post-MI inference for both gamma and normal models (e.g., use a Horvitz–
Thompson estimator).

Ultimately, we believe that the gamma PPM model can provide a concise pic-
ture of the nonresponse problem for the SAS and other business surveys, especially
as it relates to comparing across missingness assumptions (MAR λ = 0 vs MNAR
λ = ∞) and across industries (subpopulations) and years. Likewise, the gamma
PPM model could be applied to other types of establishment surveys that exhibit
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skewness, heteroscedasticity and similar patterns of nonresponse such as govern-
ment surveys or establishment surveys. In our empirical analysis of the SAS data,
the level of the FMI was quite low, supporting the appropriateness of the ratio im-
putation procedures used for these variables and indicating that even if data were
missing not at random, strong auxiliary information exists to correct nonresponse
bias.

APPENDIX A: BAYESIAN ESTIMATION OF THE GAMMA PPM MODEL

Bayesian estimation of the parameters of the gamma proxy pattern-mixture
model proceeds as follows. After drawing the regression parameters that create
the proxy and (re-)creating X, the remaining parameters are estimated using al-
gorithms described by Iliopoulos, Karlis and Ntzoufras (2005) for the bivariate
KBGD(α(0), ν

(0)
x , ν

(0)
y , ρ(0)) and using standard Bayesian inference for the uni-

variate gamma (α(1), ν
(1)
x ).

The shape parameter α is treated as fixed in Iliopoulos, Karlis and Ntzoufras
(2005), so we treat both α(0) and α(1) as fixed in our model by setting them
equal to the maximum likelihood estimates. As a consequence, variances may
be slightly underestimated due to ignoring the variability in these parameters. As
in Iliopoulos, Karlis and Ntzoufras (2005), we reparameterize the KBGD, taking
θ

(0)
j = ν

(0)
j /(1 − ρ(0)) for j = x, y and specify the following prior distributions:

θ
(0)
j ∼ Gamma(0.001,0.001) for j = x, y,

ρ(0) ∼ Beta(1,1),

f
(
ν(1)
x

) ∝ 1/ν(1)
x .

The posterior distribution for ν
(1)
x is ν

(1)
x ∼ Gamma((n− r)α(1),

∑
i∈NR xi). For

θ
(0)
x , θ

(0)
y , and ρ(0), the data augmentation approach of Iliopoulos, Karlis and Nt-

zoufras (2005) is used to obtain draws from their posterior distributions. Briefly,
the algorithm augments with an unobserved sample from the negative binomial
distribution, κ ∼ NB(α(0),1 − ρ(0)) such that Xi and Yi are independent condi-
tional on κi . These κ then have a Bessel distribution conditional on θ

(0)
x , θ

(0)
y , ρ(0),

Xi and Yi . This results in the posterior distributions of θ
(0)
x , θ

(0)
y and ρ(0) being

independent Gamma(θ(0)
x , θ

(0)
y ) and Beta(ρ(0)) distribution, conditional on κ , Xi

and Yi [see Iliopoulos, Karlis and Ntzoufras (2005) for details] and a Gibbs sam-
pler can be used to sequentially draw from the posteriors. Simulation from the
Gamma and Beta distributions is straightforward; random variates from the Bessel
distribution are created using the second rejection sampling algorithm of Devroye
(2002).

The draws of θ
(0)
x and θ

(0)
y are then back-transformed to obtain draws of ν

(0)
x

and ν
(0)
y . Draws of ρ(1) and ν

(1)
y are obtained through the transformations given in
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(4) and (5), depending on the selected value of the sensitivity parameter λ. Care
must be taken to ensure that parameter constraints on ν

(1)
y and ρ(1) are satisfied

under MNAR (λ = ∞). In this case, the drawn value of θ
(0)
x must be larger than

ν
(1)
x α(0)/α(1); if this does not hold then θ

(0)
x is redrawn until this condition is met.

This check of parameter constraints is not unique to the gamma PPM model; sim-
ilar restrictions must also be checked for Bayesian implementations of the normal
pattern-mixture model [Little (1994)].

APPENDIX B: MAXIMUM LIKELIHOOD ESTIMATION OF THE FMI
WITH THE GAMMA PPM MODEL

A maximum likelihood estimate of the fraction of missing information (FMI)
for the mean of Y(μy) can be obtained as follows. As described in Section 3.1,
the ML estimate of the (total) variance of μy is obtained through inversion of the
information matrix and must be solved numerically. This produces an estimate of
the total variance component of the FMI. The estimate of the within-imputation
component is given by

Ŵ = 1

n

[
π̂

α̂(0)

(ν̂
(0)
y )2

+ (1 − π̂)
α̂(1)

(ν̂
(1)
y )2

+ π̂(1 − π̂)

(
α̂(0)

ν̂
(0)
y

− α̂(1)

ν̂
(1)
y

)2]

using the ML estimates of the parameters obtained as described in Section 3.1
for a specified value of λ. This expression derives from the variance of a mixture
of the two gamma distributions (M = 0, M = 1). The between-imputation vari-
ance component is then estimated by subtracting this within-variance component
from the total variance estimate. Thus the FMI can be estimated as the ratio of the
between-imputation variance estimate to the total variance estimate.
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SUPPLEMENTARY MATERIAL

Supplement to “Assessing nonresponse bias in a business survey: Proxy
pattern-mixture analysis for skewed data” (DOI: 10.1214/15-AOAS878SUPP;
.pdf). The supplementary material contains the results of applying multiple impu-
tation using the gamma PPM model and the normal PPM model for λ = 0 (MAR)
and λ = ∞ (MNAR) in the three SAS industries for the expenses model.
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