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MULTILINEAR TENSOR REGRESSION FOR LONGITUDINAL
RELATIONAL DATA

BY PETER D. HOFF1

University of Washington

A fundamental aspect of relational data, such as from a social network, is
the possibility of dependence among the relations. In particular, the relations
between members of one pair of nodes may have an effect on the relations
between members of another pair. This article develops a type of regression
model to estimate such effects in the context of longitudinal and multivariate
relational data, or other data that can be represented in the form of a tensor.
The model is based on a general multilinear tensor regression model, a spe-
cial case of which is a tensor autoregression model in which the tensor of
relations at one time point are parsimoniously regressed on relations from
previous time points. This is done via a separable, or Kronecker-structured,
regression parameter along with a separable covariance model. In the context
of an analysis of longitudinal multivariate relational data, it is shown how the
multilinear tensor regression model can represent patterns that often appear
in relational and network data, such as reciprocity and transitivity.

1. Introduction. Longitudinal relational data among a set of m objects or
nodes can be represented as a time series of matrices {Yt : t = 1, . . . , n}, where
each Yt is an m × m square matrix. The entries of Yt represent directed relation-
ships or actions involving pairs of nodes (dyads) at time t , so yi1,i2,t is a numerical
description of the action taken by node i1 with node i2 as the target at time t .
Such data therefore consist of a time series for each pair of nodes. For example, in
this article we consider longitudinal data on actions involving country pairs, where
yi1,i2,t represents the intensity of actions taken by country i1 toward country i2 in
time period t . Specifically, we analyze weekly relational measures between pairs
of 25 countries over the roughly ten and a half year period from 2004 to mid-2014,
giving n = 543 weeks of data. The value of yi1,i2,t is a transformed count of the
number of positive verbal statements of country i1 toward country i2 during week t

(a fuller description of the data appears in Section 4).
While the statistical challenge in analyzing static relational data is to describe

the potential dependence between dyadic observations, with longitudinal data the
challenge is to describe dependence between dyadic time series. Such dependence
in our data set is illustrated graphically in Figure 1: Two dyadic time series are
positively correlated, even though they have no nodes in common. In this article we
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FIG. 1. From left to right, positive verbal relations versus time from Palestine to Israel and USA to
Iraq, and a scatterplot.

develop a parsimonious approach to analyzing and describing such dependencies
between time series. This is done in the context of a statistical model for the time
series of matrices {Yt : t = 1, . . . , n}.

Foundational development of a class of agent-based longitudinal network mod-
els appears in Snijders (2001) and is developed further in Snijders, Steglich and
Schweinberger (2007). These articles develop models for binary relational data
(i.e., social networks) in which social links are modeled as the result of deci-
sions made by nodes acting to maximize their individual utilities. Parameters in
the models can be interpreted as preferences for various types of social structures,
such as reciprocated dyads or transitive triads. These parameters are typically ho-
mogeneous, in that they are common to all individuals in the network (or possibly
common to all individuals having common observable attributes). Further develop-
ment of homogeneous models for binary data has involved the use of exponentially
parameterized random graph models [Hanneke, Fu and Xing (2010), Krivitsky and
Handcock (2014)].

A popular alternative to such homogeneous models utilizes a dynamic latent
variable formulation, in which each Yt is represented as a function of node-specific
latent variables Zt that evolve over time. Ward and Hoff (2007), Ward, Ahlquist
and Rozenas (2013) and Durante and Dunson (2014) model the relationship be-
tween nodes i1 and i2 at time t as a function of low-dimensional latent variables
zi1,t and zi2,t . Hoff (2011a) considers a version of such a model where the la-
tent variables are parameterized as static latent factors that are modified by time-
varying weights. Similar models considered by Fu, Song and Xing (2009) and
Xing, Fu and Song (2010) assume the latent variables are categorical-valued latent
classes. Latent variable models such as these can be viewed as a class of random
effects models, and can represent certain types of dependence often seen in social
networks and relational data [Hoff (2008)]. Somewhat related to this, Westveld
and Hoff (2011) and Hoff (2011b) consider different covariance models for longi-
tudinal relational data.

A fundamental feature of relational data is the statistical interdependence among
relations, and a standard goal of relational data analysis is to quantify and evalu-
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ate this interdependence. The two modeling approaches discussed in the previous
paragraph both represent certain types of dependencies, but in different ways. The
agent-based approach explicitly models how dyads might affect one another, but
generally assumes such influences are homogeneous. Conversely, the latent vari-
able approach allows for across-node heterogeneity in the representation of net-
work behavior, but the interdependence between relations is not explicitly param-
eterized, and the types of dependence that can be represented are limited by the
simple structure of the latent variables. This article presents a modeling approach
that is unlike either the agent-based or the random effects models, but, like the
former, has an explicit representation of the dependence between dyads, and, like
the latter, allows for nodal heterogeneity in the model parameters. The approach is
based on a reduced-parameter regression model as follows: Consider modeling the
actions Yt at time t as a function of their values Xt ≡ Yt−1 at the previous time
point. A conceptually simple model for such data would be a vector autoregressive
(VAR) model. Letting yt = vec(Yt ) and xt = vec(Xt ), a first-order VAR model
posits that

yt = �xt + et , E[et ] = 0, E
[
eteT

s

] =
{

�, if t = s,

0, if t �= s,

where � and � are parameters to be estimated. For simplicity, here and in what
follows we consider models without intercepts, which are appropriate if the time
series for each pair i1, i2 has been demeaned (so that

∑
t yi1,i2,t /n = 0). Given

sufficient data, unrestricted estimates of � in a VAR model can generally be ob-
tained via ordinary least squares (OLS) or feasible generalized least squares (GLS).
However, such estimates can be unstable or unavailable unless the time series is
extremely long: As yt and xt are each of length m2 [or m(m − 1) if the diagonal
of each Yt is undefined], the regression matrix � has m4 entries (m2 per pair of
nodes).

Estimation stability can be improved by restricting � to belong to a parameter
space of lower dimension. In this article we focus on models where the regression
matrix has the form � = B ⊗ A, where A and B are m × m matrices and “⊗” is
the Kronecker product. Such a model is a “bilinear” regression model, as in terms
of Yt and Xt the model is

Yt = AXtBT + Et ,(1)

so that the regression model is bilinear in the parameters, that is, linear in A and
linear in B, but not linear in (A,B). This model appears similar to, but is dis-
tinct from, the “growth curve” model [Gabriel (1998), Potthoff and Roy (1964),
Srivastava, von Rosen and von Rosen (2009)], in which E[Y|X,Z,C] = XCZT ,
where X and Z are known and C is a matrix of parameters to be estimated. This
latter model is linear in the parameters and bilinear in the two explanatory matri-
ces X and Z. The model in (1) is more related to recently developed reduced-rank
regression models [Basu et al. (2012), Shi, Xu and Baraniuk (2014), Li, Zhou and
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Li (2013)], in which a scalar response y is regressed on a matrix X via the mean
function tr(CXDT ), where C ∈ R

r1×p1 and D ∈R
r2×p2 , with r1 < p1 and r2 < p2.

In particular, a rank-one model has the mean function cT Xd, with c ∈ R
p1 and

d ∈ R
p2 . Similarly, in model (1) the mean function for element i1, i2 of Yt is given

by aT
i1

Xtbi2 , and so (1) can be seen as a rank-one regression model for each dyad
i1, i2, but one in which the parameters are shared across dyads. This parameter
sharing leads to m-times fewer parameters than having separate rank-one models
for each dyad (roughly 2m2 versus 2m3 parameters). This reduction in the number
of parameters, in addition to the information sharing across dyads that it allows,
can be helpful when the amount of data is limited. For example, as will be shown
in an example data analysis, using separate rank-one regression models for each
dyad can lead to severe overfitting as compared to model (1).

Interpretation of the parameters in (1) is facilitated by noting that for a given
ordered pair of nodes (i1, i2),

E[yi1,i2,t |Xt ] = ∑
j1

∑
j2

ai1,j1bi2,j2xj1,j2 .

Roughly speaking, ai1,j1 describes how the actions by i1 are influenced by previous
actions of j1, and bi2,j2 describes how actions toward i2 are influenced by previous
actions toward j2. This model could be referred to as a multiplicative model, as the
element of the regression coefficient matrix � corresponding to (yi1,i2, xj1,j2) is
given by ai1,j1bi2,j2 , and so is a multiplicative function of the parameters. A more
familiar analogue to this multiplicative model is an additive model such as

yi1,i2,t = ∑
j1

∑
j2

(ai1,j1 + bi2,j2)xj1,j2 + εi1,i2,t ,

Yt = AXt11T + 11T XtBT + Et ,

where “1” denotes a vector of m ones. While perhaps in an unfamiliar form, this
additive model can be expressed as an ordinary linear regression model, although
with a complicated design matrix. The additive and multiplicative models have
essentially the same number of parameters, but their interpretation is somewhat
different. In the multiplicative model, the influence of xj1,j2 on yi1,i2 is nonneg-
ligible if both ai1,j1 and bi2,j2 are nonnegligible. In the additive mode, xj1,j2 in-
fluences yi1,i2 if either ai1,j1 or bi2,j2 are nonnegligible. Which model provides a
closer approximation to the data-generating process will depend on the application.
However, we argue that for many longitudinal relational data sets, and longitudinal
international relations data in particular, the effect of xj1,j2 on yi1,i2 will be small
for most values of i1, i2, j1, j2, and large only when there is some similarity be-
tween both i1 and j1, and i2 and j2. For example, if i1 and j1 have an alliance, and
i2 and j2 have an alliance, then the actions of j1 toward j2 may influence future
actions of i1 toward i2, but perhaps not of i1 toward i′, a country unallied with j2.
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FIG. 2. Relatively large entries of Â (left) and B̂ (right).

We evaluate this claim empirically with a brief comparison of the two models.
We fit both of these models to the country interaction data using a least squares
criterion. While the models explain only a small fraction of the data variation, the
multiplicative model explains over twice as much: The R2 coefficients (one minus
the ratio of the residual sum of squares to the total sum of squares) are 5.8% for
the additive model and 13.2% for the multiplicative model. As the models have
the same number of parameters, this suggests we should favor the multiplicative
model over the additive model.

As there are a large number of parameters in the multiplicative model (essen-
tially 2m2), it is natural to wonder if they are simply representing noise in the
data or a meaningful signal. To examine this, we identified the i, j pairs for which
the values of âi,j and b̂i,j are largest. This information is depicted graphically in
Figure 2, in which a link is drawn between countries i and j if âi,j is among the
largest 10% of values of Â (in the left panel) or b̂i,j is among the largest 10% of
values of B̂ (the right panel). The figure indicates a strong geographic component
to the off-diagonal elements of Â and B̂ (plotting labels the standard ISO-3 coun-
try codes). This is empirical evidence that relations between a pair (j1, j2) are in
some cases predictive of future relations between other pairs (i1, i2). Otherwise,
these off-diagonal components would be representing noise, and there would be
no discernible geographic pattern.

We examined this claim further with a small cross-validation study. We ran-
domly generated 10 cross-validation data sets, each consisting of a training set
and test set of 488 and 55 values of {Yt ,Xt}, respectively. For each data set, least
squares parameter estimates for the additive and multiplicative models were ob-
tained from each training set, and then used to make predictions of each Yt in
the test set. The multiplicative model outperformed the additive model for all data
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sets: The average predictive R2 for the multiplicative model was 12.3% (with a
range of 10.9% to 13.7%), compared to 4.5% (with a range of 3.7% to 5.4%) for
the additive model.

Given the modest R2 and predictive R2 values for the multiplicative model, it
is natural to wonder whether or not a more complex model might achieve a better
fit. For example, one could fit a separate rank-one regression model for each dyad,
of the form yi1,i2,t = cT

i1,i2
Xtdi1,i2 + εi1,i2,t . Unlike the multiplicative model in (1),

the parameters here are distinct for each dyad, and so the number of parameters
is on the order of 2m3 instead of 2m2 as in the multiplicative model. Such an ap-
proach does indeed improve within-sample fit, giving an R2 of 26.5%. However,
applying the cross-validation analysis to this approach indicates severe overfitting:
The average predictive R2 was −2.4% (with a range of −3.5% to −0.2%), indi-
cating that using separate rank-one fits is worse than fitting no model, in terms of
identifying consistent patterns in the data.

The performance of the multiplicative model relative to comparable alterna-
tives motivates further study and development of models of this form. In the next
section, we present some basic theory for this model, including results on identi-
fiability, convergence of OLS estimates and parameter interpretation under model
misspecification. We then extend this model to a general multilinear regression
model that can accommodate longitudinal measurements of multiway arrays, or
tensors. Such models are motivated by the fact that a more complete version of
the data set includes information on four different relation types, and so the data
Yt at week t consist of a 25 × 25 × 4 three-way tensor. The regression problem
then becomes one of regressing the relational tensor Yt from time t on the tensor
Xt = Yt−1 from time t −1 in a parsimonious way. To accomplish this, in Section 3
we propose and develop the following multilinear generalization of the bilinear re-
gression model: To relate an m1 × · · · × mK tensor Yt to a p1 × · · · × pK tensor
Xt , we use the model

Yt = Xt × {B1, . . . ,BK} + Et or, equivalently,

yt = (BK ⊗ · · · ⊗ B1)xt + et ,

where “×” is a multilinear operator known as the “Tucker product,” and yt ,xt , et

are the vectorizations of Yt ,Xt ,Et , respectively. We present least squares and
Bayesian approaches to parameter estimation, including methods for joint infer-
ence on the regression coefficients and the error variance, Cov[et ] = �. Sample
size limitations will generally preclude unconstrained estimation of �, an m × m

error covariance matrix, where m = ∏
mk . As a parsimonious alternative, we use

an array normal model for et , which is a multivariate normal model with a Kro-
necker structured covariance matrix, Cov[et ] = �K ⊗ · · · ⊗ �1 [Akdemir and
Gupta (2011), Hoff (2011b)]. Bayesian estimation for the resulting general multi-
linear tensor regression model with Kronecker structured error covariance can be
made using semi-conjugate priors and a Gibbs sampler.
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A detailed analysis of the longitudinal relational data presented above is given
in Section 4. This includes a cross-validation study to evaluate different models,
development of a parsimonious model that allows for network reciprocity and tran-
sitivity, and a summary of a Bayesian analysis of the data using this latter model.
A discussion of model limitations and possible extensions follows in Section 5.

2. The bilinear regression model. In this section and the next we consider
the general problem of regressing one tensor Y on another tensor X, where Y
and X are of potentially different sizes. We start with the matrix case: A bilinear
regression model of a matrix Y ∈ R

m1×m2 on a matrix X ∈R
p1×p2 takes the form

Y = AXBT + E,(2)

where E is an m1 × m2 matrix of mean-zero disturbance terms, and A ∈ R
m1×p1

and B ∈ R
m2×p2 are unknown matrices to be estimated. As discussed in the Intro-

duction, this model can be equivalently represented as

y = (B ⊗ A)x + e,(3)

where “⊗” is the Kronecker product and y, x and e are the vectorizations of Y, X
and E. Both representations (2) and (3) will be useful in what follows. Note that
the parameters A and B are not separately identifiable, in that E[y|x, cA,B/c] =
E[y|x,A,B] for any nonzero scalar c. However, these parameters are identifiable
up to scale, in the sense that if (B ⊗ A)x = (B̃ ⊗ Ã)x for all x, then Ã = cA and
B̃ = B/c for some c �= 0 unless all entries of either A or B are zero.

Given replications {(Y1,X1), . . . , (Yn,Xn)} from (2), least squares parameter
estimates (Â, B̂) of (A,B) are minimizers of the residual mean squared error:

(Â, B̂) = arg min
A,B

n∑
r=1

∥∥Yr − AXrBT
∥∥2

/n

= arg min
A,B

∑‖Yr‖2/n − 2
∑

tr
(
YT

r AXrBT /n
)

(4)
+ ∑

tr
(
AXrBT BXrAT /n

)
= arg min

A,B
tr

(
AT A

∑
XrBT BXr/n

)
− 2 tr

(
AT

∑
YrBXT

r /n
)
,

where tr(H) denotes the trace of a square matrix H, and the term
∑‖Yr‖2/n has

been dropped, as it does not affect the minimization. Equivalently, using represen-
tation (3), we have

(Â, B̂) = arg min
A,B

n∑
r=1

∥∥yr − (B ⊗ A)xr

∥∥2
/n

= arg min
A,B

∑‖yr‖2/n − 2 tr
(
(B ⊗ A)

∑
xryT

r /n
)
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+ tr
((

BT B ⊗ AT A
)∑

xrxT
r /n

)
= arg min

A,B
f (A,B,Sxx,Sxy),

where

f (A,B,Sxx,Sxy) = tr
((

BT B ⊗ AT A
)
Sxx

) − 2 tr
(
(B ⊗ A)Sxy

)
,(5)

with Sxx = ∑
xrxT

r /n and Sxy = ∑
xryT

r /n.
Taking derivatives of the objective function in (4) or (5) with respect to A in-

dicates that for a nonzero value of B, the minimizer of the residual mean squared
error in A is given by

Ã(B) =
(∑

YrBXT
r

)(∑
XrBT BXT

r

)−1
.

A similar calculation shows that for a nonzero value of A, the minimizer in B is
given by

B̃(A) =
(∑

YT
r AXr

)(∑
XT

r AT AXr

)−1
.

This suggests the following alternating least squares algorithm to locate local min-
ima of (5): Given values {Â(s), B̂(s)} at iteration s, new values are generated as
Â(s+1) = Ã(B̂(s)) and B̂(s+1) = B̃(Â(s+1)). Such a procedure is a block coordinate
descent algorithm, and will converge to a local minimum of (5) if certain condi-
tions on the data are met [such as

∑
XrBT BXT

r and
∑

XT
r AT AXr being invertible

for all nonzero A and B; see Luenberger and Ye (2008), Section 8.9].
One would hope that, given sufficient data, the parameter estimates would bear

some resemblance to the true data-generating mechanism. We investigate this
by examining the critical points of a large-sample version of the objective func-
tion (5). Consider a scenario in which Sxx = ∑

xrxT
r /n converges almost surely

to a positive definite matrix �xx = E[xxT ] and Sxy = ∑
xryT

r /n converges al-
most surely to a matrix �xy = E[xyT ]. This implies almost sure convergence of
f (A,B,Sxx,Sxy) to f (A,B,�xx,�xy), and so we would expect that a minimizer
of f (A,B,Sxx,Sxy) would resemble a minimizer of f (A,B,�xx,�xy), given
sufficient data. In particular, results of White (1981) imply that if estimation of
{A,B} is restricted to a compact subset of R

m1×p1 × R
m2×p2 , then a sequence

of local minimizers {Ân, B̂n} of f (A,B,Sxx,Sxy) will converge almost surely to
the global minimizer of f (A,B,�xx,�xy), if one exists. This motivates an in-
vestigation of minimizers of f (A,B,�xx,�xy) under various conditions on �xx

and �xy . Such minimizers are referred to as “pseudotrue” parameters in the litera-
ture on nonlinear least squares estimates and misspecified models [see, e.g., White
(1981, 1982)].

The ideal condition is, of course, when the model is correct. In this case,
E[y|x] = (B0 ⊗ A0)x and so �xy = E[xxT (B0 ⊗ A0)

T ] = �xx(B0 ⊗ A0)
T . The
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large-sample objective function is then

f
(
A,B,�xx,�xx(B0 ⊗ A0)

T )
= tr

((
BT B ⊗ AT A

)
�xx

) − 2 tr
(
(B ⊗ A)�xx(B0 ⊗ A0)

T )
.

If �xx is positive definite, then this function is uniquely minimized in (B ⊗ A) by
the truth (B0 ⊗ A0). The pseudotrue parameters are equal to the true parameters,
and the least squares estimator is asymptotically consistent.

If the model is incorrect, we may still hope that (Â, B̂) conveys meaningful
information about the data-generating mechanism. For example, recall that ai,j ,
the i, j th element of A, represents a measure of the conditional dependence of
yi = (yi,1, . . . , yi,m2)

T , the ith row of Y, on xj = (xj,1, . . . , xj,p2)
T , the j th row

of X, given the other rows of X. If there is no such dependence, then we would
hope that the pseudotrue parameter for ai,j would be zero as well. It can be shown
that this is true, under some additional conditions:

PROPOSITION 1. If E[xj yT
i ] = 0 and E[xj xT

j ′ ] = 0 for all j ′ �= j , then the
pseudotrue parameter for ai,j is zero.

A similar result holds if the conditional expectation of Y given X is truly linear,
although not necessarily Kronecker structured. In this case we can write E[y|x] =
�x, where here y and x are the vectorizations of Y and X.

PROPOSITION 2. Let E[y|x] = �x and E[xxT ] = � ⊗ � for some positive
definite matrices � and � . Then if the entries of � corresponding to the elements
of yi and xj are zero, then the pseudotrue parameter for ai,j is zero.

Proofs of both propositions are in Appendix A. The conditions of both results
correspond to yi being “conditionally uncorrelated” with xj in some way: Under
the conditions of the first proposition, the inverse of a covariance matrix of the
elements of Y and X would have zeros for all entries corresponding to elements
of yi and xj , that is, the partial correlations are zero. In the second proposition, �
represents the conditional relationship directly.

3. Extension to correlated multiway data. In this section the bilinear regres-
sion model is extended in two ways: First, we show that the bilinear model is a spe-
cial case of a more general type of multilinear tensor regression model that can be
applied to tensor-valued data. Such a model can accommodate, for example, mul-
tivariate longitudinal relational data of the type described in Section 1, where we
have multiple relation types measured between pairs of countries over time. Such
data can be represented as a time series of three-way tensors. A second extension
of the model allows for covariance in the error term. As sample size limitations will
generally preclude unrestricted estimation of the covariance, a reduced-dimension
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multilinear covariance model is proposed that allows for correlation along each
mode of the tensor. The covariance model, like the mean model, is obtained from
a multilinear transformation, so we refer to the combined mean and covariance
model as a general multilinear tensor regression model (generalized MLTR). The
joint multilinear structure of the mean and covariance facilitates parameter esti-
mation. In particular, a Bayesian approach to generalized least squares (GLS) is
available via a straightforward Gibbs sampling algorithm.

3.1. Multilinear tensor regression. The bilinear regression model maps a co-
variate matrix X ∈ R

p1×p2 to a mean matrix M = AXBT ∈ R
m1×m2 . Equiva-

lently, the model maps x, the vectorization of X, to m = (B ⊗ A)x, the vec-
torization of M. Such a map between spaces of matrices is a special case of a
more general class of maps between spaces of multiway arrays, or tensors. Specif-
ically, given matrices B1, . . . ,BK , with Bk ∈ R

mk×pk , we can define a mapping
from R

p1×···×pK to R
m1×···×mK by first obtaining the vectorization x, comput-

ing m = (BK ⊗ · · · ⊗ B1)x, and then forming an m1 × · · · × mK -dimensional ar-
ray M from m. This transformation is known as the “Tucker product” [Tucker
(1964)] of the array X and the list of matrices B1, . . . ,BK , which we write as
M = X × {B1, . . . ,BK}.

An important class of operations related to the Tucker product are matriciza-
tions, which reshape an array M into matrices of various dimensions. For exam-
ple, the mode-1 matricization of an m1 × m2 × m3-dimensional array M is an
m1 × (m2m3)-dimensional matrix denoted M(1). More generally, the mode-k ma-
tricization of an m1 × · · · × mK -dimensional array M is an mk × (

∏
k′:k′ �=k mk′)-

dimensional matrix denoted M(k). The matricization operation facilitates both un-
derstanding and computation of the Tucker product via the following set of equiv-
alencies:

M = X × {B1, . . . ,BK},
m = (BK ⊗ · · · ⊗ B1)x,(6)

M(k) = BkX(k)(BK ⊗ · · · ⊗ Bk+1 ⊗ Bk−1 ⊗ · · · ⊗ B1)
T .(7)

In particular, (7) can be used to compute the Tucker product via a series of reshap-
ings and matrix multiplications. Additionally, this result indicates that the Tucker
product consists of a series of linear transformations along the different modes
of the array. More on the Tucker product and related operations can be found in,
for example, De Lathauwer, De Moor and Vandewalle (2000), Kolda and Bader
(2009) and Hoff (2011b).

Given an explanatory tensor X ∈ R
p1×···×pk and an outcome tensor Y ∈

R
m1×···×mK , the Tucker product can be used to construct a multilinear tensor re-

gression model of the form

Y = X × {B1, . . . ,BK} + E,(8)
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where Bk ∈ R
mk×pk , k = 1, . . . ,K . If K = 3, for example, the model for element

i1, i2, i3 of Y is

yi1,i2,i3 = ∑
j1

∑
j2

∑
j3

b1,i1,j1b2,i2,j2b3,i3,j3xj1,j2,j3 + εi1,i2,i3,

and so b1,i1,j1 can be viewed as the multiplicative effect of “slice” j1 of X on slice
i1 of Y. The similarity of this model to the bilinear regression model is most easily
seen via the vectorized version of (8), which takes the following form:

y = (BK ⊗ · · · ⊗ B1)x + e.(9)

With this notation, replicate observations {(Y1,X1), . . . , (Yn,Xn)} are eas-
ily handled by “stacking” the arrays to form two (K + 1)-way arrays Y ∈
R

m1×···×mK×n and X ∈R
p1×···×pK×n, where the (K +1)st mode indexes the repli-

cations. If each slice follows model (8), then the model for the stacked data is

Y = X × {B1, . . . ,BK, In} + E or, equivalently,
(10)

y = (In ⊗ Bk ⊗ · · · ⊗ B1)x + e,

where In is an n×n diagonal matrix, E is a mean-zero array of the same dimension
as Y, and e is the vectorization of E. However, in what follows we work with
model (8), while recognizing that estimation with replications can be handled as
a special case by stacking the replications and fixing the parameter matrix for the
last mode to be the identity matrix.

Estimation is facilitated by application of identity (7). For example, matricizing
each term in (8) along the first mode gives

Y(1) = B1X̃(1) + E(1),(11)

where X̃(1) = X(1)(BK ⊗ · · · ⊗ B2)
T . In terms of B1, this is simply a multivariate

linear regression model [Mardia, Kent and Bibby (1979), Chapter 6]. The least
squares criterion in B1 is ‖Y − B1X̃‖2, which is uniquely minimized in B1 by
YX̃T (X̃X̃T )−1 (if X̃ has full row rank). Similar forms result from matricizing
along any of the other K modes. It follows that estimates of {B1, . . . ,BK} can
be obtained by generalizing the block coordinate descent algorithm described in
Section 2. Given starting values of B1, . . . ,BK , the algorithm is to iterate the fol-
lowing steps until convergence:

For for each k ∈ {1, . . . ,K}:
1. compute X̃ = X × {B1, . . . ,Bk−1, Ipk

,Bk+1, . . . ,BK};
2. form Y(k) and X̃(k), the mode-k matricizations of Y and X̃;
3. set Bk = Y(k)X̃T

(k)(X̃(k)X̃T
(k))

−1.

Note that in the algorithm we are computing X̃(1), for example, by first comput-
ing X × {Ip1,B2, . . . ,BK} and then matricizing, rather than matricizing X and
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FIG. 3. Eigenvectors of mode-specific residual correlation matrices.

then multiplying on the right by (BK ⊗ · · · ⊗ B2)
T . The two approaches give

the same result, but the former can be accomplished with K − 1 “small” matrix
multiplications, whereas the latter requires construction of and multiplication by
(BK ⊗ · · · ⊗ B2)

T , which can be unmanageably large in some applications.

3.2. Inference under a separable covariance model. The international rela-
tions data presented in Section 1, and that will be more fully analyzed in Sec-
tion 4, consist of time series of four different relational measurements between
pairs of 25 countries. These data can be represented as a four-way array Y ∈
R

25×25×4×543. Using the algorithm described in Section 3.1, least squares esti-
mates of {B1,B2,B3} for the model Y = X × {B1,B2,B3, I} + E were obtained,
where X is a lagged version of Y. These estimates are equivalent to maximum like-
lihood estimates under the assumption of i.i.d. residual variation. The plausibility
of this assumption is examined graphically in Figure 3. This plot shows eigenvec-
tors of the sample correlation matrices of R(1) and R(2), which are the mode-1 and
mode-2 matricizations of the residual array R = Y − X × {B̂1, B̂2, B̂3, I}. These
plots should appear patternless under the assumption of i.i.d. residuals. Instead,
clear patterns of residual correlation among certain groups of countries are exhib-
ited, many of which are geographic. In cases like this, where residual variation is
not well represented by an i.i.d. model, it may be preferable to use an estimation
method that accounts for residual correlation or heteroscedasticity.

Given multiple observations, we might model the residuals in the vectorized
version of the model (9) as e1, . . . , en ∼ i.i.d. Nm(0,�), where m = ∏

mk and
� is an unknown covariance matrix to be estimated. The difficulty with this, as
with an unrestricted regression model, is that the sample size will generally be
too small to reliably estimate � without making some restrictions on its form.
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A flexible, reduced-parameter covariance model that retains the tensor struc-
ture of the data is the array normal model [Akdemir and Gupta (2011), Hoff
(2011b)], which assumes a separable (Kronecker structured) covariance matrix.
For example, we say that E has a mean-zero array normal distribution, and write
E ∼ Nm1×···×mK

(0,�1, . . . ,�K), if the distribution of the vectorization e of E is
given by e ∼ Nm(0,�K ⊗ · · · ⊗ �1), where �k is a positive definite mk × mk

matrix for each k = 1, . . . ,K . Each �k can be interpreted as the covariance along
the kth mode of E. For example, if E ∼ Nm1×···×mK

(0,�1, . . . ,�K), then it is
straightforward to show that E[E(k)ET

(k)] ∝ �k , where E(k) is the mode-k matri-
cization of E.

Combining this error model with the mean model in (8), and applying iden-
tities (6) and (7), gives three equivalent forms for this general multilinear tensor
regression model:

Tensor form: Y = X × {B1, . . . ,BK} + E,

E ∼ Nm1×···×mK
(0,�1, . . . ,�K),

Vector form: y = (BK ⊗ · · · ⊗ B1)x + e,
(12)

e ∼ Nm(0,�K ⊗ · · · ⊗ �1),

Matrix form: Y(k) = BkX(k)BT−k + E(k),

E(k) ∼ Nmk×m−k
(0,�k,�−k),

where in the matrix form, B−k = BK ⊗ · · · ⊗ Bk+1 ⊗ Bk−1 ⊗ · · · ⊗ B1, �−k is
defined similarly and m−k = ∏

k′:k′ �=k mk′ . As before, we note that n replications
from a K-mode model can be represented by stacking the data arrays and using a
(K + 1)-mode model with the restriction that BK+1 = �K+1 = In.

As in the uncorrelated case, the matrix form of the model can be used to obtain
iterative algorithms for parameter estimation. For example, multiplying the terms
in the matrix form on the right by �

−1/2
−k allows us to express the model as

Ỹ(k) = BkX̃(k) + Ẽ(k), Ẽ(k) ∼ Nmk×m−k
(0,�k, Im−k

),(13)

where now Ỹ(k) = Y(k)�
−1/2
−k and X̃(k) = X(k)BT−k�

−1/2
−k . Given the parame-

ters other than Bk , this is a multivariate linear regression model with depen-
dent errors. The (conditional) MLE and generalized least squares estimator is
B̂k = Ỹ(k)X̃T

(k)(X̃(k)X̃T
(k))

−1, which has the same form as the OLS estimator [see,
e.g., Mardia, Kent and Bibby (1979), Section 6.6.3], except here the covariance
along the modes other than k have been incorporated into the construction of Ỹ(k)

and X̃(k). Generalized least squares estimates of the Bk’s, conditional on values of
the �k’s, can thus be found via the coordinate descent algorithm in the previous
subsection, modulo the modification to Ỹ(k) and X̃(k). Analogously, given current
values of the Bk’s, the likelihood can be minimized in the �k’s by applying a
similar iterative algorithm, described in Hoff (2011b).
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3.3. Bayesian estimation and inference. Generally speaking, maximum likeli-
hood estimates in high-dimensional settings can be unstable and overfit to the data.
Such problems can often be ameliorated by instead obtaining estimates that max-
imize a penalized likelihood. By viewing a penalty as a prior distribution, penal-
ized estimates can be obtained via Bayesian procedures, which have the additional
advantage of providing a very complete description of parameter uncertainty. In
particular, Markov chain Monte Carlo (MCMC) methods that approximate pos-
terior distributions are useful for exploring the parameter space in a way that is
often more informative than computing a matrix of second derivatives at a local
mode, especially if the dimension of the parameter space is large. With this in
mind, we present a class of semiconjugate prior distributions for the model (12),
and obtain a Gibbs sampler that can be used to simulate parameter values from the
corresponding posterior distribution.

Recall from the previous subsection that, given {Bk′ : k′ �= k} and {�k′ : k′ �=
k}, the model in terms of (Bk,�k) can be expressed as an ordinary multivariate
regression model,

Y ∼ Nm×n(BX,�, In),(14)

where B ∈ R
m×p and � ∈ S+

p are to be estimated from Y ∈ R
m×n and X ∈ R

p×n.
As such, Bayesian inference for {(Bk,�k), k = 1, . . . ,K} can be made via a Gibbs
sampler that iteratively re-expresses the model in terms of (14) for each mode k,
and simulates (Bk,�k) from the corresponding posterior distribution.

Posterior inference for (14) is facilitated by choosing a conjugate prior, which
for this model is � ∼ inverse-Wishart(S−1

0 , ν0) and B|� ∼ Nm×p(M0,�, Ip),
where the inverse-Wishart distribution is parameterized so that E[�−1] = ν0S−1

0 .
Under this prior and model (14), the joint posterior density of (B,�) given Y can
be expressed as p(B,�|Y) = p(B|�,Y) × p(�|Y), where the first density on the
right-hand side is a matrix normal density, and the second is an inverse-Wishart
density. Specifically,

�|Y ∼ inverse-Wishart
(
S−1

n , ν0 + n
)

(15)
where Sn = S0 + Y

(
In + XT X

)−1YT ;
B|�,Y ∼ Nm×p

(
Mn,�,

(
Ip + XXT )−1)

(16)
where Mn = (

M0 + YXT
)(

Ip + XXT
)−1

.

Typically, n will be much larger than p, in which case Sn is more efficiently cal-
culated as Sn = S0 + Y(In − XT (I + XXT )−1X)YT , which requires inversion of a
p × p matrix rather than an n × n matrix.

Returning to the tensor regression model, for Bayesian analysis we parameterize
the model as

Y = X × {B1, . . . ,BK} + τE,

E ∼ Nm1×···×mK
(0,�1, . . . ,�K),
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where τ is an additional scale parameter that decouples the magnitude of the
error variance from the prior variance of the Bk’s (both of which would oth-
erwise be determined by the �k’s). An inverse-gamma(η0/2, η0τ

2
0 /2) prior dis-

tribution for τ 2 results in an inverse-gamma([η0 + m]/2, [η0τ
2
0 + ‖Y − X ×

{�−1/2
1 B1, . . . ,�

−1/2
K BK}‖2]/2) full conditional distribution. Based on these re-

sults, a Gibbs sampler with a stationary distribution equal to the posterior distribu-
tion of {B1, . . . ,BK , �1, . . . ,�K , τ 2} can be constructed by iterating the following
steps:

1. Iteratively for each k = 1, . . . ,K :
(a) compute Ỹ = Y(k)�

−1/2
−k /τ and X̃ = X(k)BT−k�

−1/2
−k /τ ;

(b) simulate (�k,Bk) from (15) and (16), replacing Y and X with Ỹ and X̃.
2. Simulate τ 2 ∼ inverse-gamma([η0 + m]/2, [η0τ

2
0 + ‖Y − X × {�−1/2

1 B1, . . . ,

�
−1/2
K BK}‖2]/2).

Parameter values simulated from this Markov chain can be used to make Monte
Carlo approximations to posterior quantities of interest.

4. Analysis of longitudinal multirelational IR data. In this section we an-
alyze weekly counts of four different action types between 25 countries over the
ten and a half-year period from 2004 through the middle of 2014. These data were
obtained from the ICEWS project (http://www.lockheedmartin.com/us/products/
W-ICEWS/iData.html), which records time-stamped actions taken by one coun-
try with another country as the target. The 25 countries included in this analysis
consist of the most active countries during the time period. The action types corre-
spond to the four “quad classes” often used in international relations event analy-
sis, and include negative material actions, positive material actions, negative verbal
actions and positive verbal actions, denoted m−, m+, v−, v+, respectively. Exam-
ples of events that would fall into each of these four categories are as follows: im-
posing a blockade (m−), providing humanitarian aid (m+), demanding a change
in leadership (v−), and granting diplomatic recognition (v+). These data can be
expressed as a 25 × 25 × 4 × 543-dimensional array Y, where entry yi1,i2,j,t cor-
responds to the number of actions of type j , taken by country i1 with country i2 as
the target, during week t . A normal quantile–quantile transformation was applied
to each time series corresponding to an actor-target-type triple, so that for each
i1, i2, j , the empirical distribution of {yi1,i2,j,t : t = 1, . . . ,543} is approximately
standard normal.

This section presents several candidate models for these data, and presents in
detail the estimation results for the one providing the best fit in terms of predic-
tive R2. Perhaps the simplest modeling approach is to fit four separate bilinear
regression models to each of the four action types, that is, to fit Y(j) = X(j) ×
{B(j)

1 ,B(j)
2 , I} + E(j), where Y(j) is the 25 × 25 × 543 array of between-country

http://www.lockheedmartin.com/us/products/W-ICEWS/iData.html
http://www.lockheedmartin.com/us/products/W-ICEWS/iData.html
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TABLE 1
Averages (and ranges in parentheses) of predictive R2-values across the ten cross-validation data

sets, for each model

Model Material− Material+ Verbal− Verbal+
Separate bilinear 7.9 (7.0, 9.5) 2.9 (1.8, 3.5) 7.8 (6.9, 9.0) 12.3 (10.9, 13.7)
Joint multilinear 8.9 (7.9, 10.3) 3.6 (2.9, 4.4) 9.5 (8.5, 11.1) 12.5 (11.5, 13.7)
Relational multilinear 11.0 (9.6, 12.6) 4.5 (3.5, 5.0) 11.5 (10.7, 12.9) 13.6 (12.6, 14.7)

relations of type j , and X(j) is a lagged version of Y(j), for each j ∈ {1, . . . ,4}.
A competing model is the joint multilinear model Y = X × {B1,B2,B3, I} + E,
where Y is the complete 25 × 25 × 4 × 543 data array, and B3 is a 4 × 4 matrix
of coefficients representing the effects of the different event types on one another.
One possible advantage of using separate bilinear fits is that separate coefficient
matrices B1 and B2 can be estimated for each event type. Two disadvantages of this
approach, as compared to the joint multilinear procedure, are that (1) the bilinear
approach does not make use of one relation type to help predict another, and (2)
if the coefficient matrices are not substantially different across event types, then
fitting them to be equal (as in the multilinear model) could improve estimation.

Inspection of the OLS estimates of {(B(j)
1 ,B(j)

2 ), j = 1, . . . ,4} indicated a high
degree of similarity across the four action types, suggesting that the joint multilin-
ear model may be appropriate. More formally, we compared the separate and joint
models using a 10-fold cross-validation study as described in the Introduction: For
each of the 10 training sets, OLS estimates for each model were obtained using
the algorithm described in Section 3.1. Averages of predictive R2-values, as well
as their ranges across the 10 test sets, are presented in Table 1. The results indicate
that, in terms of out-of-sample predictive performance for each action type, the
benefits of the joint multilinear model outweigh the flexibility of having separate
bilinear fits.

4.1. Reciprocity and transitivity. We now extend the explanatory tensor X to
account for certain types of patterns often seen in relational data and social net-
works. One such pattern is the tendency for actions from one node i1 to another
node i2 to be reciprocated over time, so that if yi1,i2,j,t is large, we may expect
yi2,i1,j,t+1 to be large as well. To estimate such an effect from the data, we add four
“slices” to the tensor X along its third mode as follows: Redefine X so that X ∈
R

25×25×8×543, with lagged elements xi1,i2,j,t = yi1,i2,j,t−1 for j ∈ {1, . . . ,4} as
before, and reciprocal lagged elements xi1,i2,j,t = yi2,i1,j−4,t−1 for j ∈ {5, . . . ,8}.
A multilinear regression model of the form Y = X × {B1,B2,B3, I} + E then has
B3 ∈ R

4×8, the first four columns of which describe, for example, the effects of
yi1,i2,j,t−1 on yi1,i2,j,t , and the last four columns of which describe the effects of
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yi2,i1,j,t−1 on yi1,i2,j,t , that is, the tendencies of actions to be reciprocated at the
next time point.

Other network effects can be accommodated similarly. One common pat-
tern in network and relational data is a type of third-order dependence known
as transitivity, which describes how the simultaneous presence of relations be-
tween nodes i1 and i3, and between i2 and i3, might lead to a relation from
i1 to i2. Based on this idea, we construct a transitivity predictor for each ac-
tion type and add them to the third mode of X. Specifically, we let xi1,i2,j,t =∑

i3
(yi1,i3,j−8,t +yi3,i1,j−8,t )(yi2,i3,j−8,t +yi3,i2,j−8,t ) for each j ∈ {9,10,11,12},

so that now X ∈ R
25×25×12×543, and the last four columns of the coefficient matrix

B3 ∈ R
4×12 represent how the relations of nodes i1 and i2 with common targets

lead to actions between i1 and i2 at the next time point. Note that this is a simpli-
fied measure of transitivity, in that the directions of the actions are not accounted
for. In what follows, we refer to this regression model as a relational multilinear
regression, as it includes terms that allow estimation of patterns of reciprocity and
transitivity that are often observed in relational data.

4.2. Longer-term dependence. Finally, we illustrate how to extend the rela-
tional multilinear model to account for longer-term longitudinal dependence. The
appropriateness of doing so for these data is suggested by Figure 1: While the
week-t observations are predictive of those at week t + 1, some trends in the time
series appear to persist beyond one week. In a separate exploratory analysis (not
presented here), we considered using lagged monthly averages as predictors, along
with the one-week lag currently in the model. We found that after including a one-
week lag and a one-month lag (the latter being an average of four weeks of previous
data), the effects of lagged data from earlier months were minimal. For this reason,
in what follows we model the data at time t + 1 as a function of the data from the
previous week t , as well as the average of the data from the previous month (weeks
t − 1, t − 2, t − 3, t − 4).

One possibility for incorporating the one-month lagged data would be to add
12 more variables along the third mode of X as in the previous subsection. Each
of these 12 variables would represent a monthly lagged version of the exist-
ing 12 variables along this mode. Such an approach would double the dimen-
sion of B3 and also make the interpretation of parameter values more cumber-
some. A more parsimonious alternative is to assume separability of the effects
of the two lag scales (weekly and monthly). Specifically, we reconstruct X to be
a 25 × 25 × 12 × 2 × 543-dimensional tensor, where xi1,i2,j,1,t corresponds to
the previously existing entries of X, and xi1,i2,j,2,t corresponds to the average of
xi1,i2,j,1,t−1, . . . , xi1,i2,j,1,t−4, that is, the average of the previous month’s predic-
tors. Treating Y as a 25 × 25 × 4 × 1 × 543 dimensional array, the multilinear
regression model of Y on X is expressed as

Y = X × {B1,B2,B3,B4, I} + E,(17)
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where B4 is a 1 × 2 matrix (or vector) that describes the effect of 1-week lagged
data relative to that of the 1-month lagged data.

4.3. Parameter estimation and interpretation. We first compare the predic-
tive performance of the least squares estimates from the relational multilinear
model (17) to the performance of the previously discussed models, using the 10-
fold cross-validation procedure described above. As shown in Table 1, model (17)
outperforms the others in terms of predictive performance, and in fact outper-
formed the joint multilinear model on each of the 10 test data sets. These results
suggest that this model is not overfitting relative to these simpler models.

A more complete description of these data can be obtained via a Bayesian anal-
ysis of (17), using a separable model for residual covariance as described in Sec-
tion 3.2. Such an analysis accommodates residual dependence and provides an
assessment of parameter uncertainty using, for example, Bayesian confidence in-
tervals. For this analysis, we used diffuse but proper priors, with (ν0, τ

2
0 ) = (1,1),

and for each mode k, M0k = 0, S0k = Imk
and ν0k = mk + 1. The resulting poste-

rior distributions of B1 and B2 are summarized in Figure 4. (Details on the MCMC
approximation are provided in the Appendix.) In each panel, nominally significant
positive effects are shown by drawing a directed link from country i1 to country i2
if the lower 99% posterior quantile for entry i1, i2 of B1 or B2 is greater than zero
(the 99th quantile was used instead of the 95th to ensure readability of the graphs).
Also, there were very few negative coefficients of B1 and B2: only approximately
1% had their upper 99% posterior quantile below zero. Not shown in the graph
is that the lower 99% posterior quantile of each diagonal entry of B1 and B2 was
positive, and that these coefficients were generally much larger in magnitude than
the off-diagonal coefficients: For example, the diagonal elements of the posterior
mean of B1 were about 35 times larger than its off-diagonal elements, on average.
The diagonal elements of B̂3 were also larger than the off-diagonal elements (as
shown in Table 3), but to a lesser extent. These results indicate that, in general,
the strongest predictor of yi1,i2,j,t is xi1,i2,j,t . The next strongest predictors gener-
ally include xi1,i2,j

′,t (a relation of a different type between the same dyad), then
xi′,i2,j,t or xi1,i

′,j,t (relations involving either the same actor or the same target)
depending on whether or not b̂1,i1,i

′ or b̂2,i2,i
′ is moderately large. Interpretation

may be further aided with the following example: Letting i1 denote the index of
Iran, for example, the largest value of {b1,i1,i

′ : i′ ∈ {1, . . . ,25} \ {i1}} corresponds
to that of Syria. The parameter estimates thus predict that actions of Syria toward
a country i2 will increase the probability of actions of Iran toward i2, at a future
time point. Posterior means and standard deviations for the top ten nondiagonal
elements of B1 and B2, in terms of the ratio of mean to standard deviation, are
given in Table 2.

The posterior distribution of the B3 coefficients, which describe the main, recip-
rocal and transitive effects of the four action types on future actions, is summarized
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FIG. 4. Summary of the posterior distributions of B1 and B2.

in Table 3. This table gives posterior mean estimates of those coefficients of B3 for
which zero is not included in their 95% posterior confidence interval. The first four
columns of this matrix largely represent the direct effects of action variable j1 from
i1 to i2 on the future value of action variable j2 from i1 to i2, for j1, j2 ∈ {1,2,3,4}.
Not surprisingly, the largest estimated coefficients are along the diagonal, indicat-
ing that the strongest predictor of action variable j1 is the previous value of this
variable. Other “significant” coefficients include effects of actions on actions of
a common valence: The second most important predictors of “m−”, “m+” and
“v−” are “v−”, “v+” and “m−”, respectively. The variable “v+” (verbal posi-

TABLE 2
Posterior means and standard deviations of the top ten elements of B1 and B2, in terms of the ratio

of mean to standard deviation

B1 B2

i1, i2 E[b1,i1,i2 ] SD[b1,i1,i2 ] i1, i2 E[b2,i1,i2 ] SD[b2,i1,i2 ]
GBR DEU 0.137 0.023 GBR DEU 0.110 0.022
DEU FRA 0.121 0.018 GBR AUS 0.101 0.024
TUR IRN 0.120 0.015 ISR PSE 0.092 0.022
FRA DEU 0.120 0.021 IRQ USA 0.067 0.012
JPN KOR 0.114 0.020 AUS GBR 0.066 0.014
AUS GBR 0.097 0.016 RUS USA 0.063 0.013
GBR USA 0.096 0.012 GBR USA 0.060 0.012
LBN IRN 0.088 0.012 LBN ISR 0.060 0.014
KOR CHN 0.088 0.015 PRK IRQ 0.054 0.011
UKR RUS 0.061 0.011 SDN IRQ 0.047 0.011
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TABLE 3
Summary of the posterior distribution of B3

Predictor

Direct Reciprocal Transitive

Outcome m− m+ v− v+ m− m+ v− v+ m− m+ v− v+
m− 0.68 0.04 0.17 0.20 0.02 0.12 0.02 0.02
m+ 0.09 0.50 0.04 0.13 0.04 0.02 0.04
v− 0.18 0.61 0.12 0.13 0.03 0.21 0.01 0.02
v+ 0.05 0.03 0.08 0.67 0.05 0.02 0.03 0.32 0.02 0.02

tive) represents an exception to this pattern. However, many of the actions that fall
into this category are bilateral negotiations and diplomatic resolutions that often
occur as a result of diplomatic disputes that are in the “verbal negative” category.
The second four columns of B3 represent the reciprocal effects of actions from i2
to i1 on future actions from i1 to i2. Similar to the direct effects, the largest coeffi-
cients for three of the four action types are along the main diagonal. The exception
is the “m+” category (material positive), for which the 95% posterior confidence
interval contained zero. This reflects the fact that this category is largely comprised
of actions that involve the provision of economic, military and humanitarian aid.
Such actions are typically initiated by wealthy countries with less-developed coun-
tries as the target, and so are often unreciprocated. The final four columns of B3
represent the transitivity effects. While the results indicate some evidence of transi-
tivity, the magnitude of such effects is small compared to the direct and reciprocal
effects.

The matrix B4 consists of two coefficients representing the multiplicative effects
of one-week lagged data as compared to one-month lagged data. Both coefficients
of B4 were positive in every iteration of the Gibbs sampler, and the posterior dis-
tribution of the ratio of the former coefficient to the latter had a mean of 1.98 and
a 95% posterior confidence interval of (1.94, 2.03), indicating that the effect of the
one-week lagged data was roughly twice that of the one-month lagged data.

5. Discussion. This article has developed a general multilinear tensor regres-
sion (MLTR) model for regressing a tensor of correlated outcome data on a tensor
of explanatory variables. The regression coefficients in such a model are multi-
plicative in the parameters, rather than additive as in the more standard class of
linear regression models. As was shown in an example analysis of longitudinal
relational data, in some cases a multiplicative effects model provides a better rep-
resentation of the data than a comparable but more standard additive effects model.
Additionally, it was shown how the MLTR model can be extended to estimate a
variety of network effects, such as reciprocity and transitivity, as well as temporal
effects of lagged data beyond those in a first-order autoregressive model.



MULTILINEAR TENSOR REGRESSION 1189

Application of this MLTR model to longitudinal international relations data pro-
vided a quantification of how the relations and actions of a given country are
dependent upon those of other countries. Specifically, the application identified
those countries whose actions are predictive of a given country’s future actions,
and quantified this predictive dependency. The strongest dependencies are gen-
erally between countries that are geographically close, with exceptions being the
dependence between Australia and the United Kingdom, and between the United
States and several countries. Furthermore, this application identified dependencies
between different types of relations and the extent to which these relations are re-
ciprocated. In summary, the results of the application indicate that the relations
between a given pair of countries are dependent on those of other country pairs,
and that data analyses that ignore this fact present an incomplete picture of the
dynamics of international relations.

Like any regression model, the multilinear tensor regression model could be
extended or modified in many different ways. Of particular use would be an exten-
sion to accommodate data that is binary, ordinal or generally of a form for which
a least squares criteria or normal error model would be inappropriate. One possi-
ble approach for doing this would be via various link functions, as is done with
generalized linear models. An alternative approach would be to use a semipara-
metric transformation model via a rank likelihood [Hoff (2007), Pettitt (1982)],
in which the observed data are modeled as being a nondecreasing function of a
latent tensor that follows a normal multilinear tensor regression model. However,
for some data types, such as if Y were a sparse binary tensor, there might not be
enough information in the data to provide stable parameter estimates. Even though
the MLTR model with E[y] = (BK ⊗ · · · ⊗ B1)x constitutes a great simplification
as compared to a full model E[y] = �x, the MLTR model still has a large number
of parameters. One possible remedy in cases with limited data information is to
use sparsity-inducing penalties, such as L1 penalties on the Bk’s. This would have
to be done with some care, as the overall scale of each Bk matrix is not identifiable.

APPENDIX A: PROOFS

PROOF OF PROPOSITION 1. Let (Ã, B̃) be a pseudotrue parameter for (A,B).
If B̃ = 0, then setting ãi,j , the i, j th element of Ã, to zero does not change the
asymptotic criterion function, and so ãi,j = 0 is a pseudotrue value. If B̃ �= 0, then
E[XB̃T B̃XT ] is invertible (assuming, e.g., the distribution of X has full support on
R

p1×p2 ), and the pseudotrue parameter Ã will satisfy

Ã = E
[
YB̃XT ]

E
[
XB̃T B̃XT ]−1

.(18)

Let yi and xj be rows i and j of Y and X, respectively. If xj is mean zero and
independent of the other rows of X, so that E[xj xT

k ] = 0, then the i, j th element of
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Ã is given by

ãi,j = E
[
yT
i B̃xj

]
/E

[
xT
j B̃T B̃xj

]
.

If yi is uncorrelated with xj , then the numerator and the coefficient are zero. �

PROOF OF PROPOSITION 2. As in the proof of Proposition 1, if E[XB̃T B̃XT ]
is invertible, then the pseudotrue parameter is given by Ã in (18). Under the as-
sumption that E[xxT ] = � ⊗ � , we have E[XB̃T B̃XT ] = c� with c = tr(�BT B),
and

E
[
YBXT ] = (

1T
m2

⊗ Im1

)[
�yx ◦ (

B ⊗ 11T
)]

(1p2 ⊗ Ip1),

where “◦” is the Hadamard (elementwise) product. Under the assumption of the
proposition, �yx = E[yxT ] = E[E[y|x]xT ] = �E[xxT ] = �(� ⊗ �), which can
be expressed as⎛

⎜⎝
�1,1 · · · �1,p2

...
...

�m2,1 · · · �m2,p2

⎞
⎟⎠

⎛
⎜⎝

ω1,1� · · · ω1,p2�
...

...

ωp2,1� · · · ωp2,p2�

⎞
⎟⎠

=

⎛
⎜⎜⎜⎝

∑
1≤j2≤p2

ωj2,1�1,j2� · · · ∑
ωj2,p2�1,j2�

...
...∑

ωj2,1�m2,j2� · · · ∑
ωj2,p2�m2,j2�

⎞
⎟⎟⎟⎠ ,

where �i2,j2 is the m1 ×p1 matrix describing the effects of the column j2 of X on
column i2 of Y. The expectation E[YBXT ] is obtained by multiplying each block
of the form

∑p2
j2=1 ωj2,j

′
2
�i2,j2� by element i2, j

′
2 of B, and summing the blocks.

This results in an m1 × p1 matrix given by

E
[
YBXT ] =

(
m2∑

i2=1

p2∑
j2=1

( p2∑
j ′

2=1

ωj2,j
′
2
bi2,j

′
2

)
�i2,j2

)
�.

Multiplying by the inverse of E[XB̃T B̃XT ] on the left gives the pseudotrue param-
eter A as

Ã = c−1
m2∑

i2=1

p2∑
j2=1

( p2∑
j ′

2=1

ωj2,j
′
2
bi2,j

′
2

)
�i2,j2 .

The effects of the j th row of X on the ith row of Y consist of the i, j th elements of
the �i2,j2 ’s. These are all zero under the assumption of the proposition, and thus
so is ãi,j . �



MULTILINEAR TENSOR REGRESSION 1191

FIG. 5. Values of the 48 entries of B3 simulated from the Gibbs sampler, using the least squares
estimates as starting values.

APPENDIX B: DETAILS OF THE MCMC ALGORITHM

The posterior distribution described in Section 4.3 was approximated with four
separate Gibbs samplers: three with random starting values and one starting at the
least squares estimates. Each sampler was run for 5500 iterations, allowing for 500
iterations for convergence to the stationary distribution. The sampler that started at
the least squares estimates appeared to converge essentially immediately, whereas
the samplers with random starting values appeared to take between about 50 and
250 iterations to arrive at the same part of the parameter space. Recalling that the
separate magnitudes of the Bk’s (and the �k’s) are not separately identifiable [as
F ⊗ G = (cF) ⊗ (G/c)], we saved normalized versions of these parameters from
the MCMC output. The normalization maintained a constant relative magnitude
among ‖B1‖2,‖B2‖2,‖B3‖2‖B4‖2, but leaves the magnitude of B4 ⊗B3 ⊗B2 ⊗B1
unchanged as compared to doing no normalization. The �k’s were rescaled simi-
larly. Further details on this post-processing of the MCMC output is available from
the replication code available at the author’s website. Mixing of the Gibbs sampler
was very good: Figure 5 shows traceplots of the elements of B3, the coefficients
describing the effects of the different action types, from the Gibbs sampler starting
at the least squares estimates. After convergence, traceplots from the other Gibbs
samplers looked nearly identical. For example, the across-sampler standard devia-
tion of the four posterior mean estimates was not more than 0.0011 for any element
of any of the Bk’s.

Acknowledgments. Replication code for the results in Section 4 is available at
the author’s website: http://www.stat.washington.edu/~pdhoff. The author thanks
Michael Ward for guidance with the data.
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