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GOODNESS OF FIT IN NONLINEAR DYNAMICS: MISSPECIFIED
RATES OR MISSPECIFIED STATES?

BY GILES HOOKER1 AND STEPHEN P. ELLNER2

Cornell University

This paper introduces diagnostic tests for the nature of lack of fit in or-
dinary differential equation models (ODEs) proposed for data. We present a
hierarchy of three possible sources of lack of fit: unaccounted-for stochastic
variation, misspecification of functional forms in rate equations, and omis-
sion of dynamic variables in the description of the system. We represent lack
of fit by allowing a parameter vector to vary over time, and propose generic
testing procedures that do not rely on specific alternative models. Instead,
different sources for lack of fit are characterized in terms of nonparametric
relationships among latent variables. The tests are carried out through a com-
bination of residual bootstrap and permutation methods. We demonstrate the
effectiveness of these tests on simulated data and on real data from laboratory
ecological experiments and electro-cardiogram data.

1. Introduction. Recent statistical literature has seen substantial interest in
the problem of fitting nonlinear continuous-time dynamical system models to data.
Statistical problems include estimating parameters, determining parameter identi-
fiability, experimental design, and testing goodness of fit. These topics have been
approached from numerous perspectives and using various models, from deter-
ministic models in the form of ordinary differential equations (ODEs) through
stochastic models based on Wiener processes or finite population models such as
branching processes. Techniques for fitting models include nonlinear least squares
[Arora and Biegler (2004), Bates and Watts (1988), Bock (1983), Girolami and
Calderhead (2011)], maximizing likelihoods for stochastic systems through par-
ticle filters [Ionides, Bretó and King (2006)] or via equivalent Bayesian methods
[e.g., Golightly and Wilkinson (2011)], methods based on pre-smoothing [Bellman
and Roth (1971), Ellner, Seifu and Smith (2002), Varah (1982), Wu, Xue and
Kumar (2012)], mimicking forecast models [Pascual and Ellner (2000)] or indi-
rect inference [Gouriéroux and Monfort (1997)], and fitting summary statistics
[Ratmann et al. (2009), Reuman et al. (2006), Tien and Guckenheimer (2008),
Wood (2010)]. Ramsay et al. (2007) combine the criteria from least squares and
from pre-smoothing methods to achieve the advantages of each.
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This paper presents an approach to model diagnostics for improving the fit of
a dynamical systems model. Hooker (2009) proposed a goodness-of-fit test for
ODE models using a likelihood ratio test. Here we assume that a proposed ODE
model has been found to fit poorly, so the next goal is to distinguish among differ-
ent potential sources of model misspecification. In particular, we suppose that the
proposed model is an ODE

d

dt
x = f(x; t, θ)(1)

in which x ∈ R
d describes the state of the system and f(x; t, θ) describes how

quickly the system changes at location x in the state-space, depending on a vector
of model parameters θ to be estimated. We assume that we have vector-valued
data y1, . . . ,yn from this system observed at times t1, . . . , tn, where yi is related to
x(ti) by a known, possibly indirect, measurement process. If we find that the model
cannot fit the data well, we then wish to improve the fit by changing the model in
some way. Here, we develop testing methods to distinguish between three likely
reasons for lack of fit, which would imply three different directions for improving
the model:

1. Unmodeled disturbances unrelated to system dynamics, which if modeled as
random suggests a probabilistic description of system dynamics.

2. Misspecification of the parametric form of f.
3. Misspecification of the state vector x, in particular, that the state vector x

omits some variables that are needed to provide a full description of the system
state.

The methods we propose can be used in combination with a variety of methods
for parameter estimation in ordinary differential equations, as discussed below.
The same ideas can be employed for model improvement in stochastic systems
which propose a probabilistic model for the evolution of x. However, applications
to stochastic systems will require modifications to some of the details below and
we will not examine these further.

Hooker (2009) notes that residuals from solutions to differential equation mod-
els give poor graphical indications of how lack of fit should be addressed. This
is because the models describe the derivatives dx/dt rather than the (observed)
state variables themselves. Instead, Hooker (2009) proposed estimating lack of fit
in terms of empirical forcing functions. These are nonparametric functions g(t)

which modify (1) to

d

dt
x(t) = f

(
x(t); t, θ) + g(t)(2)

in such a way that a good fit to the data is achieved. g(t) will thus represent both
random disturbances to the system and deterministic lack of fit in f.



756 G. HOOKER AND S. P. ELLNER

The estimated g(t) can now be examined graphically by plotting its relationship
to x(t), along with lagged values of both x and g, although this can only be done
comprehensively when x is relatively low dimensional. In ODE models, local (in
time or state-space) disturbances to the system are usually modeled as affecting
dx/dt . These modify future values of x, so the effects of the disturbances will per-
sist over time in the observations. However, they can be accounted for locally in g.
Hooker (2009) provides approximate goodness-of-fit tests for the null hypothesis
g ≡ 0 based on a basis expansion, g = �(t)D for a vector of basis functions �(t),
and a coefficient matrix D.

In this paper, we take the same approach, but we model lack of fit in a more
general way that includes the possibility of parameter values changing over time,
producing the system

d

dt
x(t) = f

(
x(t); θ ,g(t)

)
(3)

in which g(t) can modify f more generally than by additive forcing. In particular,
we will examine allowing a parameter of interest to vary over time when doing
so has a relevant, mechanistic interpretation. The calculations in Hooker (2009)—
based on first-order Taylor expansions—can be readily extended to test g(t) ≡ 0 in
this more general model. This approach can be seen as encompassing the model (2)
and we will use it throughout the paper.

Our new diagnostic tests provide more information about that nature of the lack
of fit when g(t) is found to be significant. In particular, three nested possibilities for
the properties of g(t) correspond to the alternatives listed above for how model (1)
should be reformulated:

Case 1. Exogenous stochastic perturbations: if g(t) is independent of x(t), this
suggests that g(t) be modeled as a stochastic process, but that the functional form
of (1) is otherwise reasonable.

Case 2. Misspecification of f: this is indicated by g(t) being at least partly
determined by x(t). This would require f to be revised, as already discussed in
Hooker (2009).

Case 3. Missing state variables: if g(t) depends not only on x(t) but also on
past values g(t − δ). These lags serve as surrogates for missing state variables
such as additional species in an ecological model, additional chemical products in
a reaction, or additional ion channels in a neuron. See Section 4 for further details.

We can motivate this sequence of tests by supposing the data in fact come from
an ODE of the form

dx
dt

= f̃(x, y),

(4)
dy

dt
= k(x, y),
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in which y represents a possible additional state variable and f̃ represents the true
law of motion that may differ from the assumed law of motion f. Model (4) has
both of the sources of error that we want to detect. Case 2 corresponds to f̃ being a
function of only x, f̃(x, y) = f̃(x). We consider the additive form of lack of fit (2).
Then we can write

g(t) = f̃
(
x(t)

) − f
(
x(t), θ

)
,

so case 2 implies g(t) can be written as a function of x(t) only.
In case 3 we have

g(t) = f̃
(
x(t), y(t)

) − f
(
x(t), θ

)
,

so the time derivative of g is given by

dg(t)

dt
= dx(t)

dt

[
d f̃(x(t), y(t))

dx
− df(x(t), θ)

dx

]
+ dy(t)

dt

d f̃(x(t), y(t))

dy

= f̃
(
x(t), y(t)

)[d f̃(x(t), y(t))

dx
− df(x(t), θ)

dx

]
(5)

+ k
(
x(t), y(t)

)d f̃(x(t), y(t))

dy
.

If the map from (x, y) to (x,g) is invertible, then the expression above implies that
dg
dt

= l(x,g) for some function l. The complete dynamical system therefore has the
form

dx
dt

= f̃(x,g, θ),

(6)
dg
dt

= l(x,g).

If case 2 holds, the second term in (5) is zero and the first term does not depend
on y, meaning that dg/dt is only dependent on x. This suggests testing for de-
pendence of dg/dt on g, after controlling for x, as a way of distinguishing case 3
from case 2. However, we have found that this test is statistically less stable than
testing whether the lagged quantity g(t − δ) helps to predict g(t), after controlling
for x(t). The rationale for this approach is explained more fully in Section 4.

This heuristic can be extended to the model (3) if f(x(t); θ ,g(t)) is an invertible
function of g for every x and θ . However, we note that if this is not the case—for
example, if g is too low dimensional—we will not be able to completely resolve
lack of fit and this could make a case 2 misspecification appear as case 3. Apparent
case 3 dependence can also result from stochastic fluctuations if the system evolves
probabilistically.

We also note that (5) also indicates that there may be little power to detect case 3
dependence in some systems. In particular, if y is itself close to being a function
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of x—as we find to be the case in the chemostat experiments described below—it
will be difficult or impossible to distinguish case 2 from case 3.

A system in which parameters are changing systematically (e.g., a steady up-
ward trend) will also appear as a case 3 type misspecification, if there is sufficient
power to distinguish case 3 from case 2. We believe that this is appropriate. Pa-
rameters that are changing systematically can be considered to have their own
dynamics and are effectively additional state variables. Similar comments can be
made about systems with stochastic dynamics.

In this paper, we develop tests to distinguish between each successive pair of
possibilities. These tests need to account for sources of variation that include
resampling methods for the yt as well as examining the significance of an ap-
propriate nonparametric regression. Our methods can be considered as nonlin-
ear continuous-time extensions of methods to select the number of lags in linear
time-series models and to test between models of parameter drift; unlike our case,
such tests for linear models can be performed by likelihood ratio tests [see, e.g.,
Hamilton (1994)].

To provide a concrete example, we consider a model and data from experi-
mental population ecology. In the actual experiments [Becks et al. (2010)] al-
gae of the species Chlamydomonas reinhardtii, (C), are grown in a chemostat
microcosm which is continuously supplied with nitrogen-limited medium. These
algae are preyed upon by rotifers of the species Brachionus calyciflorus, (B), near-
microscopic animals that feed on algae and reproduce asexually unless at high pop-
ulation density. As a candidate model for this system, we use a standard predator–
prey model from the ecological literature, the Rosenzweig–MacArthur model:

dC

dt
= rC

(
1 − C

KC

)
− pGCB

KB + pC
,

(7)
dB

dt
= χBpGCB

KB + pC
− δB.

Here dC/dt is the rate of change of the algal population. The first equation de-
scribes this change in terms of logistic growth (because algae are limited by re-
source constraints) with maximal growth rate r and carrying capacity KC . This
term represents algal birth rate minus deaths for causes unrelated to predation (in
the actual experiments, washout from the chemostat is the main cause of algal
mortality). The second term represents predation by rotifers. Predation occurs at
maximum rate G but is reduced when algae are scarce, with KB representing the
algal density pC at which the predation rate is half of its maximum. The param-
eter p represents the fraction of algae available for predation, and is held at 1 for
the moment. Later we will allow p to vary with time, in providing goodness-of-fit
diagnostics. The equation for the rotifer growth rate dB/dt represents the conver-
sion of consumed algae into rotifers with conversion rate χB , and rotifer mortality
δB in proportion to their numbers. Numerically, it is advantageous to reexpress
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this system in terms of log variables x̃ = (logC, logB) with differential equation
dx̃/dt = f(exp(x̃); t, θ)/ exp(x̃) and we have employed this below. Note that ex-
plicitly modeling washout from the chemostat will be confounded with parameters
r , KC , and δ and we have not included this in the model.

The experimental system was sampled once each day, and rofiters and algae
in the sample were counted. Two samples were taken each day, from the top and
bottom of the chemostat, to verify that the system was well mixed so that spatial
variation in population densities does not need to be considered. The data we an-
alyze are the average of the two daily samples. Plots of the time series and a fit
to these data are given in the first panel of Figure 1; these data come from Becks
et al. (2010), where the experimental methods are presented in detail.

A number of features are evident from these plots. Most evidently, solutions
to the ODE have much more regular cycles than the observed time series. There
is also a difference in phase relationships between the rotifers and algae. In the
ODE solutions the rotifer peak is about 1/4 cycle period delayed from the al-
gal peak (because rotifer population growth rate peaks when algal density is at a
maximum), but in the observed time series the delay is about 1/2 the cycle pe-
riod. A proposed explanation for this discrepancy [Yoshida et al. (2003)] is that
the algae consist of two subpopulations: one of which does not get predated but
pays a cost in reproducing less efficiently, so that the relative advantage of each
subpopulation is determined by the rate of rotifer predation. Models incorporating
subpopulation structure—hence expanding the state-vector to (C1,C2,B) for two
algal populations—reproduce the out-of-phase dynamics [Yoshida et al. (2003)].
However, this does not rule out the possibility that the lack of fit is actually due to
misspecifying the functional forms for the dynamics of the two-dimensional state
vector (C,B).

In our examination below, we will allow p—the proportion of C that is edible—
to vary over time. We examine whether this variation can be considered random
(case 1), is partly determined by C and B (case 2), or also depends on its own
past history, indicating a case 3 misspecification. Experimental evidence tells us
that the right answer is case 3 [Yoshida et al. (2003)]: when the algal population is
homogenous (all individuals are descended from a single cell), the dynamics are
much more like the predictions of classical predator–prey models such as (7) and
do not have a 1/2-period delay.

To represent time-varying quantities g(t), we employ a basis expansion, g(t) =
�(t)D in which the coefficients D of the basis function �(t) = ψ1(t), . . . ,ψK(t)

are treated as additional parameters to be estimated. Because the addition D can
make the system unidentifiable [e.g., Hooker (2009)], we employ a two-stage es-
timation procedure, first estimating fixed parameters θ and then obtaining an esti-
mate for D. Because estimating derivatives by differencing noisy data significantly
increases the noise level and degrades performance, in all of the methods presented
below, θ , x, and D are estimated without the need to difference the data.
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FIG. 1. Diagnostics for the chemostat data. Top left: time series plot of log data (top) and solution
to the Rosenzweig–MacArthur ODE on log scale with constant p(t) (bottom). These plots allow a
comparison between the qualitative behavior of the observed time series and of solutions to the ODE
model, which produces phase relationships between B(t) and C(t) different from those in the data.
Top right: estimated smooth trajectory x̂(t) and time-varying p(t). This allows a comparison of x̂(t)

with the data to ensure that our smoothing procedures reflect the data appropriately. Bottom left:
comparison of dx/dt (dashed lines) and f(x; θ,p(t)) (solid lines) to ensure that these largely agree
after estimating p(t). Very large discrepancies relative to the size of f(x; θ ,p(t)) would indicate that
lack of fit has not been adequately addressed. The lower plot gives dx/dt plotted against f(x; θ,p(t))

for each of B(t) and C(t) to evaluate the relative size of these departures. Bottom right: p(t) plotted
against C(t) and B(t). The evident relationships in these graphs are a visual indicator that f has
been incorrectly specified.

While the ecological experiment described above provides a useful motivation,
our diagnostics can be employed on a variety of systems. We explore by simula-
tion the effectiveness of our methods in models for cardiac rhythms and chaotic
dynamics as well as the Rosenzweig–MacArthur model above. These are investi-
gated both in cases in which simulated data are generated from an ODE and also
when a stochastic differential equation is used to generate noisy trajectories which
are then observed with noise.

The rest of the paper is structured as follows. Section 2 details parameter esti-
mation methods and visual diagnostics for lack of fit and Sections 3 and 4 provide
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testing procedures for misspecification of f and x, respectively. Section 5 evalu-
ates these procedures in distinguishing van der Pol and Rössler systems from lin-
ear ODEs, while Sections 6 and 7 investigate these procedures with the nonlinear
Rosenzweig–MacArthur and van der Pol sytems, respectively, along with applying
them to real-world data. We conclude with some speculation about the power of
these tests and further directions to be investigated.

2. Parameter estimation and visual diagnostics. In this section we describe
a straightforward method of obtaining parameter estimates for use in the simula-
tions below. Throughout this paper we assume that an ordinary differential equa-
tion of the form (1) has been proposed for a system under study in which x(t) is
a d-dimensional vector and f(x; t, θ) takes values in R

d . We further assume that
we have observations yi = x(ti) + εi taken at times ti in which each of the state
variables is measured with error. This assumption allows us to use the gradient
matching procedures described below, which we have chosen for the sake of clar-
ity. However, the tests that we employ can be combined with alternative parameter
estimation methods that do not require observations of all assumed state variables.

Gradient matching [Ellner, Seifu and Smith (2002)], also referred to as two-
stage least squares in Wu, Xue and Kumar (2012), fits parameters of an ODE
model via an initial smoothing step. It proceeds via the following two steps:

1. Fit a vector of smooth curves to the data (ti ,yi) to obtain estimates x̂(t) of
the state variables and their time derivatives dx̂/dt . In our studies below we use
smoothing splines as implemented in the fda package in R [Ramsay, Hooker and
Graves (2009), see Section 5 for details], but alternatives such as local polynomial
models [used in Ellner, Seifu and Smith (2002), Wu, Xue and Kumar (2012)] could
also be employed.

2. Estimate parameters θ by minimizing
∫ [dx/dt − f(x̂(t); t, θ)]2 dt .

The first step is implemented in many software packages and the second may be
carried out efficiently with a Gauss–Newton iteration. Note that if f is linear in
its parameters, the second step can be solved with a simple matrix inversion, a
property exploited by Dattner and Klaassen (2013) and which also pertains in our
examples. Importantly, we expect that this procedure will be relatively robust to
model misspecification or disturbances that additively impact dx/dt ; this is in
contradistinction to fitting solutions to (1) to observed data directly (“trajectory
matching”) where local disturbances of dx/dt can persist in deviations from the
unperturbed solutions for a long time. This means that we expect to be able to bet-
ter focus on sources of lack of fit. However, our tests described below can also be
applied using trajectory matching as a parameter estimation method.

The gradient matching procedure can be readily extended to higher-order sys-
tems. In Section 7 we employ a second-order representation of the van der Pol
equation in one state variable. Here step 2 is modified to fit the estimated second
derivative of x(t) to a function of its values and its first derivative.
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Gradient matching, while simple to implement and present, is limited in its ap-
plicability. Most importantly, it cannot be applied to systems in which some state
variables are not directly measured. It also introduces bias when there are either
relatively few observations or substantial observation noise. Generalized profiling,
introduced in Ramsay et al. (2007), avoids both these complications by using the
ODE model to improve the smooth in the first step. We have used generalized pro-
filing with the chemostat example in Section 6 and provided a description of these
methods in the supplementary material [Hooker and Ellner (2015)] along with a
further set of simulations.

In our methods we first estimate θ̂ in step 2 above with g(t) ≡ 0. In order to esti-
mate g, we represent it by another basis expansion: g(t) = �(t)D. The coefficients
D are now fit with θ̂ held fixed by minimizing the gradient matching objective:∫ [dx/dt − f(x̂(t); t, θ,�(t)D)]2 dt . This two-stage estimation procedure is car-
ried out to ensure the identifiability of parameters. Note that D is estimated within
the gradient matching methodology so that the estimate x(t) will not correspond
to an exact ODE solution.

We can now employ the estimate ĝ(t) = �(t)D̂ to visually examine lack of
fit. First, examining the discrepancy between dx̂/dt and f(x̂; t, θ,g(t)) provides a
visual diagnostic of whether time-varying parameters can account for lack of fit.
The procedures we develop here are only appropriate when this is true, because
they presume that some function g(t) exists that brings the model into line with
the data. If so, we can first test whether ĝ(t) differs from being constant using the
methods in Hooker (2009). Assuming it does (as we do here), we can then plot ĝ(t)

versus x̂(t) to look for consistent relationships that may indicate misspecification
of the form of f.

These visual diagnostics are demonstrated in Figure 1. The two panels at the top
left show the data and a solution of the proposed Rosenzweig–MacArthur ODE
model. The top right panel shows the smooth curves fitted to C(t) and B(t) in
the first step of gradient matching, and the estimated g(t) = p(t). p(t) appears to
bear some relationship to both B(t) and C(t) (bottom right panels). The bottom
left panels show that dx/dt and f(x; θ ,g) are fairly similar (i.e., their values lie
near the 1:1 line in the bottom panel), but there remains some additional departure.
This is because Rosenzweig–MacArthur is an “off the shelf” predator–prey model
which is not mechanistically right for the chemostat system.

3. Tests for dependence between g(t) and x(t). For this paper we assume
that g(t) has been shown to differ from zero, hence, the ODE mode (1) is misspeci-
fied. We next want to distinguish between the three alternative forms of misspecifi-
cation listed in the Introduction. The first step is to distinguish between alternatives
1 and 2 by asking whether g(t) has a consistent relationship with x(t). If so, this in-
dicates that the functional form of f has been misspecified [because replacing g(t)

with a function of x(t) produces a different ODE model]. The visual diagnostics
above can then indicate help to determine how f should be amended.
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To determine whether g depends on x, we assume a null hypothesis in which
g(t) follows a smooth, stationary stochastic process with zero mean. We attempt
to distinguish this from the alternative hypothesis of some dependence of g(t) on
x(t). This alternative still allows for error due to genuine random disturbances,
estimation errors, and other forms of misspecification. We conduct this test via
a block-permutation test, using nonparametric estimates for the relationship be-
tween g(t) and x(t). We also account for the estimation of g(t) through a residual
bootstrap.

Formally, our test can be stated as

H0 :E
(
g(t)|x(t)

) ≡ 0 versus HA :E
(
g(t)|x(t)

) ≡ h
(
x(t)

)
for some nonconstant function h(·),

where h is assumed to be a sufficiently smooth function that nonparametric meth-
ods can be employed to estimate. This test could be conducted via a generalized
likelihood ratio test [Fan and Yao (2003)], but we must account for the functional
nature of g(t) and x(t) and their estimation.

To develop a testing procedure for H0, we first propose a test statistic given by
the form of an F -statistic. To calculate this, we estimate ĥ to fit the nonparametric
regression model

ĝ(t) = h
(
x̂(t)

) + ε(t).

ĥ can be obtained by estimating values of ĝ at a dense set of time points t1, . . . , tK ,
and then applying any smoothing method that minimizes squared error. In the sim-
ulations and examples below we set the tj equal to the observation times in the
data and estimated h by smoothing splines using 40 basis functions with the de-
fault settings in the mgcv package in R [Wood (2013)]. However, our methods are
not specific to these choices.

We now propose the F -statistic

F = (1/K)
∑K

i=1 ‖ĥ(x̂(ti)) − (1/K)
∑K

j=1 ĥ(x̂(tj ))‖2

(1/K)
∑K

i=1 ‖ĝ(ti) − ĥ(x̂(ti))‖2
(8)

as a measure of the strength of association between ĝ(ti) and x̂(ti). F is analo-
gous to the standard F -statistic for one-way ANOVA, with x̂ values regarded as
“treatment” levels. Alternative measures such as mutual information could also
be employed. We have chosen the F -statistic for its familiarity in statistical prac-
tice and because it can be readily extended to tests for missing state variables in
Section 4.

We now need to compare F to its distribution if H0 were true. We develop this
distribution via a two-stage resampling method. For a fixed ĝ and x̂, a null distri-
bution for F can be obtained by a permutation test: permute the values of ĝ(ti)

relative to x̂(ti) so that any relationship between g and x is destroyed, re-estimate
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h(x), and re-calculate the F -statistic. Because of the continuity of ĝ(t), the values
of ĝ(ti) exhibit serial dependence over short time intervals, and we therefore per-
mute these values in blocks. In addition, we must also account for the variability
in the estimates of ĝ and x̂. This is done via a residual bootstrap, and the block-
permutation test is conducted within each bootstrap. This procedure is sketched
below, with specific details following:

1. Estimate x̂, θ̂ , and ĝ from the data.
2. Estimate ĥ to predict ĝ from x̂, by smoothing the values (x(tj ),g(tj ))

K
t=1. Use

the fitted smooth to calculate h(tj ) values and the F -statistic in (8).
3. Evaluate a null distribution for F by a residual bootstrap. Loop over 1 to B1:

(a) Create new data by resampling the residuals εi = yi −x(ti) to create new
data yb

i = x(ti) + εb where the superscript b indicates a resampled quantity.

(b) Estimate x̂b, θ̂
b
, and ĝb using the bootstrap data.

(c) Estimate ĥb to predict ĝb from x̂b and calculate the F -statistic F0b

from (8).
(d) (Permutation test): loop over k = 1, . . . ,B2:

(i) Permute blocks of the vector ĝb(t1), . . . , ĝb(tK) to create new values
ĝkb

1 , . . . , ĝkb
K .

(ii) Estimate ĥkb to predict the permuted ĝkb from the x̂b and calculate the
F -statistic Fkb.

(e) Measure the significance of F0b by evaluating its p-value relative to the
permutation distribution:

pb = 1

B1

B2∑
k=1

I (F0b > Fkb).

4. Assess the significance of the test by rejecting H0 if the average bootstrap
p-value is less than α:

∑
b pp/B1 < α.

We now elaborate on some of these steps to provide detail. In reverse order:

Step 4 rejects based on an average of p-values. This approach is also taken
for tests based on random projections [Srivastava (2014)]. Under the null, the pb

should have a uniform distribution. Their average is thus not uniform—it should
be more concentrated around 1/2. Since the pb are not plausibly independent,
we cannot derive a null distribution for their average, and rejecting based on the
original significance threshhold is at least conservative.

Step 3(d)(i). We employ blocks larger than the support of the basis functions
�(t), so that the permutation does not remove the dependence among close-in-
time g̃b values due to the basis function representation. We also remove one half
block at the beginning and end of time points, to avoid edge effects in estimating g.
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Step 3(b) is easily computed when parameters are estimated by gradient match-
ing, particularly when f(x; t, θ) is linear in θ . However, this step can be compu-
tationally demanding for profiling methods. For this case, in the supplementary
material [Hooker and Ellner (2015)] we provide a one-step bootstrap based on a
Taylor series expansion.

4. Tests for missing dynamical variables. In addition to misspecifying the
parametric form of f, in dynamical systems the proposed model can also mis-
specify x by omitting important components of a system. One example of this
is the presence of two visually indistinguishable subpopulations of algae in the
chemostat system described in the Introduction. Another occurs in neural dynam-
ics in which the voltage across the neuron cell membrane is governed by multiple
ion channels [e.g., Tien and Guckenheimer (2008), and see Wilson (1999) for an
overview]. Not all of the known channels are always necessary to describe the dy-
namics of a single neuron, so models often focus on a subset of channels, and lack
of fit may result when too few channels are included in a model. Similar situations
can arise in modeling chemical reactions or pharmacokinetics, if a model omits
some reactions or reaction products.

In this section we assume that a model of the form (1) has been proposed, but
the data actually correspond to a model of the form

dx
dt

= f̃(x, y, θ),

dy

dt
= k(x, y).

To determine whether the proposed model is misspecified in this way, we seek to
evaluate evidence that the estimated forcing function g(t) has additional internal
dynamics that are not accounted for by a functional dependence of g on x.

As we observed above [see equation (6)], the difference between this kind of
misspecification and the case 2 misspecification considered in the last section is
that how g(t) changes over time depends on g itself, not just on the putative
state vector x. However, we do not directly test for dependence of dg/dt on g.
Instead, motivated by the literature on attractor reconstruction [see Abarbanel
(1996), Kantz and Schreiber (2005) for an overview] that has developed around
the Takens embedding theorem [Takens (1981)], we instead test for dependence
of g(t) on g(t − δ). The methods in this literature predominantly test for depen-
dence on time-lagged state variables rather than derivatives because the results are
generally more stable [e.g., Kantz and Schreiber (2005)]. Our experience is in line
with this—estimated derivatives were more noisy, and our use of a basis expan-
sion creates an unavoidable relationship between g and dg/dt . As a result, using
derivatives instead of time-lagged variables decreased the power of our tests. The
theorem’s underlying attractor reconstruction does not necessarily hold in stochas-
tic systems or systems far away from their limiting behavior [although see Stark
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et al. (1997) for extensions]. But for our purposes this is not important. Testing for
dependence of g(t) on g(t − δ) in addition to x is simply a stable method for seek-
ing evidence that g is a dynamically evolving state variable whose present state
depends on its past. In contrast, if g(t) is just a function of x(t), past values of g

provide no additional information about its present value. This qualitative distinc-
tion and the tests we now propose do not depend on the existence of the transform
l or on its invertibility.

The use of a basis expansion induces a relationship between g(t) and g(s) when
|s − t | is small. We therefore choose δ to be larger than the support of the B-spline
basis used to estimate g(t), specifically twice the block length employed in the
block permutation test. With this in mind, we can state our test of missing compo-
nents explicitly as

H0 :Egi(t) ≡ h0
(
x(t)

)
versus HA :Egi(t) ≡ h1

(
x(t), gi(t − δ)

)
.

We will approach this test using the same ideas as in the previous section. To do
so, we construct smooths ĥ0 and ĥ1 corresponding to the two hypotheses above
and calculate an F -statistic for the difference in predictions between these. Specif-
ically, we define

F = (1/K)
∑K

i=1 ‖ĥ1(x̂(ti), ĝ(ti − δ)) − ĥ0(x̂(ti))‖2

(1/K)
∑k

i=1 ‖ĝ(ti) − ĥ1(x̂(ti), ĝ(ti − δ))‖2
.(9)

For this we again use the functions in the mgcv package, but any smoothing
method could be employed. We also need to modify the permutation test, which
we do by permuting the residuals from the null model η(t) = g(t) − ĥ0(x(t)) in
blocks to create a data set in which H0 is true.

To carry this out, we proceed following the procedure given in Section 3, mod-
ifying only the following steps:

3(c) Estimate ĥb
0 to predict ĝb from x̂b and ĥb

1 to predict ĝb from both x̂b and
ĝb(t − δ) and calculate the F -statistic F0b from (9).

3(d) (Permutation test): loop over k = 1, . . . ,B2:

(a) Permute blocks of the residual vector ηb(ti) = g(ti) − ĥ0(x(ti)) and
add these to predictions to create ĝkb

j = ĥb
0(x(tj )) + ηkb(tj ). ĝkb

1 , . . . , ĝkb
K .

(b) Estimate ĥkb
0 to predict ĝkb from x̂b and ĥkb

1 to predict ĝkb from both
x̂b and ĝkb(t − δ) and calculate the F -statistic F0b from (9).

This test can thus be run alongside the test in Section 3.

5. Simulation example: Linear systems versus van der Pol and Rössler sys-
tems. We have a set of four nested hypotheses concerning the misspecification
of the system, which we can write as:
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H0. g(t) ≡ 0,
H1. E[g(t)|x(t),g(t − δ)] ≡ 0,
H2. E[g(t)|x(t),g(t − δ)] = h(x(t)),
H3. E[g(t)|x(t),g(t − δ)] = l(x(t),g(t − δ)).

In the previous sections we have proposed tests to distinguish H2 from H1 and H3
from H2. Hooker (2009) presents methods to distinguish H1 from H0. We now
examine the performance of these tests using simulations and real data.

In our first experiment the proposed model is the 2-dimensional linear system

dx1

dt
= a11x1 + a12, x2,

dx2

dt
= a21x1 + a22x2

with the aij as unknown parameters. We examine three data-generating models:

1. Circular motion, which corresponds to the linear model with (a11, a12, a21,

a22) = (0,−1,1,0). In this case H0 is true, because the model is correctly speci-
fied.

2. The van der Pol oscillator [van der Pol (1927)]:

dx1

dt
= ax2,

dx2

dt
= b

(
x2 − x1 − x3

2

3

)
,

in which misspecification appears as an additive term in the equation for x2. In this
case H2 is true. We take (a, b) = (0.25,4).

3. The Rössler system [Rössler (1976)]:

dx1

dt
= −x2 − z,

dx2

dt
= x1 + ax2,

dz

dt
= b + z(x − c).

In this case the true state vector includes a third variable, so H3 is true. We take
(a, b, c) = (0.2,0.2,3), and we also consider values (a, b, c) = (0.2,0.2,5.7), pa-
rameter values classically chosen to produce chaotic dynamics.

For each of these we will examine data generated from the differential equation
and data from a stochastic differential equation with additive noise corresponding
to

dx = f(x, θ) dt + σ dW,(10)
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where W is a multivariate Wiener process with independent components. For the
systems above, we took σ 2 = 0.01 for the linear and van der Pol models and
σ 2 = 0.004 for the Rössler system. These choices gave us a range of stochas-
tic variabilities without making the nonlinear systems diverge to infinity. For the
Rössler system with chaotic parameter values, the stochastic system exhibits no-
ticeably shorter-period oscillations; we therefore sped up the ODE experiments by
multiplying the right-hand side of this system by a factor of 2, which gave periods
similar to the stochastic version.

For each of these systems, we generated a set of observations by adding Gaus-
sian noise to the state of the system:

yi = x(ti) + εi ,

where the ti are taken to be 440 equally spaced time points from t = 0 to t = 55
and the εi are independent Gaussians with variances 0.25, 0.001, and 0.01 for the
linear, van der Pol, and Rössler systems, respectively. For the Rössler system, only
x1 and x2 were observed. In each case we estimated an empirical forcing function
g(t) that was added to the second state variable x2. We used cubic B-splines with
a second-derivative penalty to generate x̂ based on knots every 0.25 time intervals
with penalty parameter 0.01; some undersmoothing at this step is recommended
to reduce bias [Ellner, Seifu and Smith (2002)]. g(t) was represented by a cubic
B-spline with knots at integer time intervals from 0 to 55. Each simulation was
repeated 200 times.

Visual diagnostics for lack of fit are given in Figure 2, which shows three-
dimensional representations of the empirical relationship between g(t), x1(t), and
x2(t). For the linear data we see no relationship, correctly supporting H0. For the
van der Pol data, we see a clear functional depence of g on (x1, x2), correctly sup-
porting H2. For the Rössler and Chaotic data, there is no single-valued functional
relationship. Rather, the plots suggest trajectories of a three- (or more) dimensional
dynamical system, which correctly supports H3.

The power of our proposed tests for each of these systems is given in Table 1.
For the linear system, the formal tests correctly do not detect any lack of fit, and
for the van der Pol system the tests correctly reject H1 against H2 with high power,
but do not reject H2 against H3. For the Rössler and Chaotic, H1 and H2 should
both be rejected, but this does not always occur with high power. In these systems,
the unequivocal evidence for presence of an unmeasured third state variable is that
trajectories in the (x1, x2) plane cross each other, which cannot happen in any ODE
with (x1, x2) as the only state variables. In these simulations, such crossings only
occur in a limited region of the two-dimensional state space, and this may account
for the reduction in power.

Overall, our tests are somewhat conservative for these test cases. We would ex-
pect that the power of our tests would increase with longer time intervals and more
frequent data, but would likely decrease as the dimension of the systems under
study increases. However, our tests do have reasonable power to detect relevant
types of misspecification in these models.
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TABLE 1
Power of goodness-of-fit test for case 2 (misspecification of f) and case 3 (missing components in x)

for data generated by the linear, van der Pol and Rössler ODE and SDE models following
parameter estimation by gradient matching. These were estimated from

200 simulations for each model as described in Section 5

Linear dynamics van der Pol Rössler Chaotic

ODE model Case 2 (H2 v H1) test 0.06 1 1 1
Case 3 (H3 v H2) test 0.005 0 0.48 1

SDE model Case 2 (H2 v H1) test 0.01 1 1 0.91
Case 3 (H3 v H2) test 0.005 0 0.915 0.68

6. Example: Chemostat models. In this section we present the application
of these tests to assess evidence for evolution in the chemostat models described
in the Introduction and shown in Figure 1, with the Rosenzweig–MacArthur
model (7) as the proposed model. Because of the relative sparsity of the experi-
mental data, we estimated model parameters using the profiling methods described
in the supplementary material [Hooker and Ellner (2015)], rather than gradient
matching as described in Section 2. All other aspects of testing the model remain
the same.

FIG. 2. Diagnosing lack of fit for the linear model fitted to data generated by the linear, van der Pol,
Rössler, and chaotic Rössler systems. Top row: phase plane plots of the state variables x1, x2 in the
ODE (deterministic) model that were sampled to create the data series. Bottom: diagnostic plots of
ĝ(t) plotted against x1(t) and x2(t). Black curves are the three-dimensional trajectories of the SDE,
and the grey curves are their projections onto the (x1, x2) plane. A clear functional relationship is
especially visible for the van der Pol example, suggesting correctly that H2 is true in this case.
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FIG. 3. Visualization of the diagnostic tests for the Rosenzweig–MacArthur model applied to the
chemostat data. Surface indicates predictions of p(t) based only on (C(t),B(t)); Dark lines are p(t)

plotted against (C(t),B(t)); Light lines are predictions of p(t) based also on p(t − δ).

Figure 3 presents the estimated time-varying trait p(t) plotted against the esti-
mated C(t) and B(t) (represented by a cubic B-spline basis with knots every 0.5
days), along with a surface representing the smooth of this relationship, and pre-
dictions from a model that also includes p(t −δ) where p(t) was parameterized by
a cubic B-spline basis with knots every 3 days. There is apparent misspecification
of f (H2 against H1), although the p-value for this (0.052) falls short of the tradi-
tional threshold for significance. There is insufficient evidence (p = 0.45) that the
state variable is missing a component (H3 against H2), which could be produced
by an additional algal subpopulation.

However, these results do not warrant the conclusion that evolution does not
occur in this system, indeed, additional experiments proved that it does [Yoshida
et al. (2003)]. The tests rely on the system producing behaviors in which this type
of dependence can be readily uncovered. For this system, the power to detect such
lack of fit is very low. To demonstrate this, we conducted a simulation study based
on two plausible, more complex, stochastic models for the rotifer-algae system.
Details of these models are in the supplementary material [Hooker and Ellner
(2015)]. The salient distinction between the two models is that one of them in-
cludes two populations of algae, while the other does not. We again simulated 200
data sets from each and conducted the proposed tests. Figure 4 presents histograms
of the p-values for each test along with example plots relating p(t) to B(t) and
C(t) in each model. Here we see that misspecification of f is detectable (p-value
< 0.05 in 53% of the data sets) in the two-algal population model, but the test
for missing state variables has very little power (0 out of 200 in both models).
The diagnostic plots of Figure 4 are helpful in explaining why this is the case;
the grey lines produce the design of covariates values for the case 2 regression of
p(t) on (C(t),B(t)). Here we see that while the model that incorporates multiple
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FIG. 4. Top row: example diagnostic plots for a Rosenzweig–MacArthur model with only one algal
population fitted to data from a chemostat system model with either one algal population (left) or two
algal populations (right). Bottom: histograms of p-values tests for misspecification of the dynamics
f (top) and misspecification of the state vector (bottom), based on 200 simulations.

algal types produces cycles which are much more elongated, the cycles still do not
cross (as they do in the Rössler system in Figure 2). This means that an appro-
priate nonlinear dependence of p(t) on (C(t),B(t)) can capture all of the signal
in this relationship, so adding p(t − δ) as a covariate will not improve predictive
performance.

This example provides the important practical lesson that detection of missing
state variables requires the system to behave in ways that cannot be replicated by
any dynamical model that uses the current state space. In this case, there are mech-
anisms besides algal evolution that can generate the observed system behavior.
Once the system is close to its stable periodic trajectory, the relative abundance
of the two different algal types can be predicted from the rotifer abundance and
total algal abundance (as seen in the functional relationships of p with B and C
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in the bottom right panels of Figure 1). Inserting this dependence into the rotifer’s
feeding rate equation [where p(t) has the largest effect] produces a two-variable
model that can exhibit the kind of antiphase cycles seen in the experiment with two
algal subpopulations. We hypothesize that this modification to the predator’s feed-
ing rate equation serves as a proxy for predator age structure, allowing the model
to behave like models that can exhibit the kind of antiphase cycles seen in the ex-
periment as a result of predator age structure. Independent experimental evidence
tells us predator age structure is not the mechanism operating in these experiments
[Hiltunen et al. (2014), Yoshida et al. (2003)], but from the time series alone it
may not be possible to determine that the actual mechanism involves additional
state variables.

We also undertook 200 simulations employing the ODE model (7), transformed
to represent logC(t) and logB(t), to generate data along with additive Gaussian
errors with variance 0.25. This provides a means of checking that the nonlinearity
of these equations does not distort our tests. The levels of both tests were esti-
mated from this simulation at 0, indicating that the test remains conservative in the
presence of nonlinearities.

7. Example: Cardiogram data and the van der Pol system. In this sec-
tion we present data from electro-cardiogram measurements obtained from the
MIT-BIH Arrhythmia Database [subject 214, Goldberger et al. (2000), Moody and
Mark (2001)], given in the first plot of Figure 5. For these data we employ an al-
ternative formulation of the van der Pol model studied in Section 5 that is given as
a second-order differential equation

d2x

dt2 = a + b
dx

dt
+ cx + dx2 + ex

(
dx

dt

)2

.(11)

The van der Pol model places further restrictions on the parameters a, b, c, d ,
and e, but we leave these to be estimated independently. For this system we em-

FIG. 5. Left: electro-cardiogram data. Middle: diagnostic plots for the van der Pol model indicating
both cases 2 and 3 misspecification. Right: histograms of p-values for data simulated from a van der
Pol model without misspecification.
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ploy an extension of gradient matching to second-order ODE’s by estimating two
derivatives: x̂, dx̂/dt , and d2x̂/dt2 using a cubic B-spline basis with 500 knots
across the time interval. We then choose parameters to minimize

∫ (
d2x̂

dt2 − a − b
dx̂

dt
− cx̂ − dx̂2 − ex̂

(
dx̂

dt

)2)2

dt.

This can be carried out by evaluating the estimated smooth and its derivatives at a
fine grid of time points and then employing linear regression. Following this, the
residuals are smoothed using an unpenalized cubic B-spline basis expansion with
knots every 0.05 seconds—about 8 observations per knot—to obtain an estimated
g(t) as a lack of fit forcing function. The testing procedure proceeds as above with
model misspecification obtained by relating g(t) to x(t) and dx/dt , and tests for
missing state variables carried out by testing whether g(t − δ) provides additional
predictive accuracy.

A visual display of the analysis for this system is given in Figure 5. The middle
panel, in particular, plots the estimated g(t) against x(t) and dx/dt . Here we see a
consistent relationship, but also an evident, nearly vertical “cycle” that is preserved
across multiple heart beats. This cycle corresponds to the small, but consistent
bump in the left-hand plot just before the main spike in voltage. It presents a visual
indication of missing state variables, where knowledge of g(t − δ) can distinguish
which part of the subcycle the system is in. To formally test this conclusion, we
left off the first and last 100 time points in our testing procedures, and used blocks
of size 50. Here both tests returned p-values of zero, indicating that both types of
misspecification are present and confirming our visual impression.

To ensure that this effect was not an artifact of the estimation methodology, we
conducted a simulation study employing solutions to (11) as the data, with additive
observation noise, so that the fitted model is correctly specified. Histograms of
p-values from both tests are given in the final plot of Figure 5. Although these are
not uniformly distributed, the level of the test is at least conservative (0.035 for
case 2, 0 for case 3).

8. Conclusions. This paper represents lack of fit in differential equation mod-
els as a series of nested hypotheses:

1. No lack of fit.
2. Unaccounted-for stochastic variation.
3. Misspecified right-hand side functions for the differential equation.
4. Missing or misspecified state variables that describe the system.

We presented tests to distinguish the third from the second and the fourth from
the third of these. This nested structure is necessary for the last two possibilities,
but nesting the second and third is not strictly required. However, we believe this
nesting makes sense in analogy to regression model diagnostics which include a
random error term. Lack of fit can alternatively be tested by proposing alternative
parametric models and comparing model likelihoods; to our knowledge, this paper
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is the first attempt to produce tests that distinguish between different kinds of lack
of fit without explicitly modeling them.

Our tests rely on bootstrap and permutation methodologies in order to require
as few assumptions as possible. This leads to their being conservative at the null
hypothesis; it also makes conducting them computationally demanding. However,
they are still capable of distinguishing meaningful differences between models,
as our simulations indicate. While our methods are based on explicitly smooth
models of dynamics, we have also demonstrated that these systems work well with
nonsmooth diffusion processes.

The nonparametric nature of these tests can reduce their power. Moreover, some
systems exhibit dynamics in which detecting a missing component is fundamen-
tally difficult. As our ecological example indicates, genuinely three-dimensional
systems can often be represented as two-dimensional systems, unless they have
behavior that cannot be embedded in two dimensions, and this confounds the two
tests that we propose. Methods to distinguish which systems will exhibit this type
of confounding are an important direction for future research. More powerful tests
can be based on specific alternative hypotheses. For example, the two-algal popu-
lation model given in the supplementary material [Hooker and Ellner (2015)] pro-
vides better qualitative agreement with the data than does the elaborated one-algal
model. However, neither model is exactly correct, and tests to distinguish between
them while making few assumptions about the form of a stochastic model have yet
to be developed.

There is also room to design experiments that would yield behavior in which
missing state variables, such as the second algal population in the chemostat data,
is more readily detected by the tests proposed here. Hooker, Lin and Rogers (2015)
and Thorbergsson and Hooker (2013) present some experimental design methods
for dynamical systems in which inputs are perturbed so that observations yield
optimal information about parameters of interest. Mork work is needed to adapt
these techniques to our tests. The power of our test for misspecified state variables
also might be higher when several trajectories have been observed that have dif-
ferent initial values. The test fails when the trajectory of an n-dimensional system,
projected onto n − k dimensions, can be reproduced or approximated well by the
solution of some (n−k)-dimensional dynamical system. This is especially likely if
the observed trajectory is on or near a low-dimensional attractor for the dynamics
and the dynamics are close to deterministic because of the Takens Embedding The-
orem [Takens (1981)]. A second trajectory, with initial values far from the attrac-
tor, might require a higher-dimensional system or a different lower-dimensional
system to reproduce it, and these would reveal that the system is actually higher
dimensional.

SUPPLEMENTARY MATERIAL

Supplementary material for “Goodness of fit in nonlinear dynamics: Mis-
specified rates or misspecified states?” (DOI: 10.1214/15-AOAS828SUPP;

http://dx.doi.org/10.1214/15-AOAS828SUPP
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.pdf). This appendix provides supporting material which includes the following:
details of the chemostat models used to generate data for Section 6 and background
material on the generalized profiling methods of Ramsay et al. (2007), along with
simulation experiments using this method instead of gradient matching.
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