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We develop a feature allocation model for inference on genetic tumor
variation using next-generation sequencing data. Specifically, we record sin-
gle nucleotide variants (SNVs) based on short reads mapped to human refer-
ence genome and characterize tumor heterogeneity by latent haplotypes de-
fined as a scaffold of SNVs on the same homologous genome. For multiple
samples from a single tumor, assuming that each sample is composed of some
sample-specific proportions of these haplotypes, we then fit the observed vari-
ant allele fractions of SNVs for each sample and estimate the proportions of
haplotypes. Varying proportions of haplotypes across samples is evidence of
tumor heterogeneity since it implies varying composition of cell subpopu-
lations. Taking a Bayesian perspective, we proceed with a prior probability
model for all relevant unknown quantities, including, in particular, a prior
probability model on the binary indicators that characterize the latent hap-
lotypes. Such prior models are known as feature allocation models. Specifi-
cally, we define a simplified version of the Indian buffet process, one of the
most traditional feature allocation models. The proposed model allows over-
lapping clustering of SNVs in defining latent haplotypes, which reflects the
evolutionary process of subclonal expansion in tumor samples.

1. Introduction. We propose a feature allocation model [Broderick, Jordan
and Pitman (2013, 2013)] to describe tumor heterogeneity using next-generation
sequencing (NGS) data. We use a variation of the Indian buffet process (IBP)
[Griffiths and Ghahramani (2005), Teh, Görür and Ghahramani (2007)]. The fea-
ture allocation in our model is latent. That is, the features are not directly observed.
We record point mutations as single nucleotide variants (SNVs), each of which is
defined as a DNA locus that possesses a variant sequence from that on the refer-
ence human genome. We use the feature allocation model to describe unobserved
haplotypes, defined as a collection of single nucleotide variants (SNVs) scaffolded
on a homologous genome. In a tumor sample, having more than two haplotypes is
evidence of heterogeneous cell subpopulations with a distinct genome. This is the
case because humans are diploid and we would therefore only observe up to two
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haplotypes if all cells in a tumor sample were genetically homogeneous. In the
proposed application of feature allocation models to inference for tumor hetero-
geneity, the haplotypes are the features and the SNVs are the experimental units
that select the features. The number of features is unknown. Each tumor sample
is composed of an unknown proportion of each of these haplotypes. The top level
sampling model for the observed SNV counts is then defined as binomial sampling
with a proportion for each SNV that is implied by this composition. In summary,
we solve a deconvolution problem to explain the observed SNV frequencies for
each sample by compositions of latent haplotypes.

Heterogeneity in cancer tissue has been hypothesized over the past few decades
[Wersto et al. (1991)] and has been demonstrated elegantly using NGS technol-
ogy over the past few years [Gerlinger et al. (2012)]. Genetic variation in a tumor
occurs due to evolutionary processes that drive tumor progression. Specifically,
tumors include distinct clonal subpopulations of cells that arise stochastically by
a sequence of randomly acquired mutations. Substantial genetic heterogeneity be-
tween tumors (inter-tumor) or within a tumor (intra-tumor) can be explained by
differences in clonal subpopulations and varying proportions of those subpopula-
tions [Landau et al. (2013), Marusyk and Polyak (2010), Russnes et al. (2011)].
For example, Navin et al. (2010) reported clonal genomic heterogeneity in breast
cancers.

Data derived from NGS experiments include SNVs, small indels and copy num-
ber variations [Ng and Kirkness (2010), Wheeler et al. (2008)]. Many researchers
use SNV data to investigate genes and genomic regions related to cancer pheno-
types [Engle, Simpson and Landers (2006), Erichsen and Chanock (2004)]. In this
paper, we utilize whole-genome sequencing data measuring variant allele fractions
(VAFs) at SNVs to understand tumor heterogeneity by proposing inference on how
haplotypes may be distributed within a tumor.

In an NGS experiment, millions of short DNA reads are generated and are then
aligned to the reference genome. At certain positions of the genome, some or all
of the mapped reads will show a sequence different from what is in the reference
genome. At each genomic locus, the proportion of short reads bearing a variant
sequence is called the VAF. If the VAF at a locus is nonzero, an SNV may be
“called” at that locus, based on statistical inference [Li et al. (2009)]. The raw
experimental data comprises the total number of reads (N ) that are mapped to the
locus and the number of those reads (n) indicating a variation from the reference
sequence. Then VAF = n/N . If a tumor sample is homogeneous, that is, having
a single clone, the VAF values of all the SNVs should be close to 0, 0.5 or 1,
reflecting the three possible homozygous and heterozygous alleles (i.e., AA, AB,
BB) at any SNV. Different VAF values imply heterogeneity of the cellular genome
in the tumor sample (see Figure 1 for an example). We propose to study inference
to deconvolute the VAFs from multiple SNVs and back out the latent haplotypes.
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(a) Multiple haplotypes as evidence of a heterogeneous tumor

(b) Hypothetical short reads data

FIG. 1. A hypothetical example explaining how NGS data can be used to infer heterogeneous tumor
samples. (a) shows that there are two subclones (cell subpopulations) in the tumor sample with
different haplotypes consisting of two SNVs: For subclone 1, there are two haplotypes, AT and GT.
For subclone 2, there is only one haplotype, AC. Thus, there are a total of three haplotypes in the
tumor sample, implying heterogeneous cell populations since a population of homogeneous cells
would only support up to two haplotypes. Here sequence G for SNV 1 and sequence C for SNV 2
are mutations. (b) shows hypothetical short reads for this sample if it is sequenced, assuming that
the proportions of the two subclones are equal. The short reads counts are summarized as observed
VAFs, which are used for our statistical inference.

We propose a Bayesian feature allocation model to characterize such cellular
heterogeneity in a way that explains the observed NGS data. We construct a ma-
trix of binary features (equivalently, haplotypes) as shown in Figure 2. In the fig-
ure, columns correspond to haplotypes and rows correspond to SNVs. We define
haplotype c by a binary vector (z1c, . . . , zSc) of indicators of whether (zsc = 1)
or not (zsc = 0) a variant sequence is observed at the SNV s. Here we view SNV
as a genetic locus on which either a variant or reference DNA sequence could be
observed. Figure 2 illustrates the definition of five haplotypes (C = 4, columns)
with S = 10 SNVs (rows). In the figure, black (white) indicates zsc = 1 (zsc = 0).
For example, SNV 1 in Figure 2 possesses a variant sequence in the two haplo-
types c = 0 and c = 1. On the other hand, SNV 9 possesses variant sequences in
four haplotypes: c = 0,1,2 and 4. A prior probability model on such a binary ma-
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FIG. 2. An illustration of cell types (binary latent features) in columns. A black/white block indi-
cates a variant/reference DNA sequence at the corresponding SNV (row) for the haplotype (column).

trix Z = [zsc] is known as a feature allocation model. Here, we assume that C is
unknown and place a prior on C.

Assuming that samples are composed of different proportions of C haplotypes,
we aim to fit the observed VAFs of the SNVs to infer these proportions. For exam-
ple, we may observe that one sample is dominated by haplotypes 1 and 4, while
another is dominated by haplotypes 2 and 3. If the samples are from the same
tumor, the differences in haplotypic compositions are evidence of intra-tumor het-
erogeneity; on the other hand, differences in samples from different tumors imply
inter-tumor heterogeneity. Therefore, the proposed inference provides a unified
framework to address inference for both biological concepts. Importantly, the char-
acterization of haplotypes is based on selected SNVs only. Otherwise inference
for heterogeneity between tumors in different patients would not be biologically
meaningful, as cellular genomes and haplotypes are not expected to be shared
across patients. However, for tumors in the same class of disease, SNVs in local
disease-related genomic regions may be common to all or some of the tumors,
thereby allowing for the proposed inference.

There are currently few approaches that address the problem of tumor hetero-
geneity. Su et al. (2012) and Larson and Fridley (2013) recognized that a tumor
sample is a mixture of normal cells and tumor cells, and developed a method to
estimate tumor purity levels for paired tumor-normal tissue samples using DNA
sequencing data. None of the two methods considers more than two samples or
unpaired samples. PurBayes [Larson and Fridley (2013)] accounts for intra-tumor
heterogeneity, but it does not provide inference on the subpopulation configura-
tions as inference on the latent matrix Z under the proposed model. PyClone [Roth
et al. (2014)], a recently published method, proposes inference to cluster SNVs
with different VAFs. An underlying assumption of PyClone is that SNVs can be
arranged in clusters that inform about subclones. A key component of PyClone is
the use of clustering models such as the Dirichlet process for inference on these
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clusters. While such clusters are informative about heterogeneity, inference that is
provided by PyClone is not meant to identify subclones or haplotypes. The primary
aim of PyClone is inference on mutation clusters, defined as a group of SNVs with
similar variant allele fractions.

In contrast, our proposed feature allocation model explicitly models the haplo-
typic genomes of subclones, allowing overlapping SNVs shared between different
subclones. We do not use nonoverlapping SNV clusters as the building block for
subclones. That is, instead of first estimating the SNV clusters and then construct-
ing subclones based on clusters, we directly infer the subclonal structure based on
haplotypes. We show in later examples the distinction between PyClone and our
proposed method.

The remainder of the paper is organized as follows: Section 2 describes the pro-
posed Bayesian feature allocation model and a model selection criterion to select
the number of subclones. Section 3 describes simulation studies. Sections 4 and 5
report data analyses of in-house data sets to illustrate inter-tumor heterogeneity
and intra-tumor heterogeneity, respectively. The last section concludes with a final
discussion.

2. Probability model.

2.1. Sampling model. Let n denote an S × T matrix of count data from an
NGS genome sequencing experiment, with nst denoting the number of reads that
bear a variant sequence at the location of SNV s for tissue sample t , s = 1, . . . , S

and t = 1, . . . , T . We assume a binomial sampling model. Let Nst denote the total
number of reads in sample t that are mapped to the genomic location of SNV s.
We assume

nst
indep∼ Bin(Nst ,pst ).(1)

In Figure 3, nst = 3 and Nst = 5. We do not model Nst , that is, we treat Nst as
fixed, and only consider a sampling model for nst conditional on Nst (modeling

FIG. 3. An illustration of the Binomial model. The illustration shows that 5 short reads are mapped
to a position marked with * and among them three reads indicate variation at the position, that is,
Nst = 5 and nst = 3.



626 LEE, MÜLLER, GULUKOTA AND JI

Nst would not contribute any information on tumor heterogeneity based on SNVs).
Conditional on Nst , the observed counts nst are independent across s and t . The
model in (1) is illustrated in Figure 3.

2.2. Prior. We build a prior probability model for pst in two steps, using the
notion that each sample is composed of a mixture of different haplotypes. And
each haplotype, in turn, is characterized by the haplotypes consisting of the SNVs.
Let wtc denote the proportion of haplotype c in sample t and let zsc ∈ {0,1} denote
a latent indicator of the event that SNV s bears a variant sequence for haplotype c.
Note that zsc = 1 corresponds to a black block in Figure 2. Then pst is written as
a sum over C latent haplotypes

pst = wt0p0 +
C∑

c=1

wtczsc ≡ εt0 +
C∑

c=1

wtczsc.(2)

The construction of the haplotypes, including the number of haplotypes, C, and the
indicators zsc are latent. The key term,

∑C
c=1 wtcztc, indirectly infers haplotypes by

explaining pst as arising from sample t being composed of a mix of hypothetical
haplotypes which do (zsc = 1) or do not (zsc = 0) include a mutation for SNV s.
The indicators zsc are collected in a (S × C) binary matrix Z. The number of
latent haplotypes, C, is unknown. Conditional on C, the binary matrix Z describes
C latent tumor haplotypes present in the observed samples. Joint inference on C,
Z and wt explains tumor heterogeneity.

In addition, we introduce a background haplotype, labeled as haplotype c = 0,
which includes all SNVs. The background haplotype accounts for experimental
noise and haplotypes that appear with negligible abundance. Specifically, εt0 =
wt0p0 in (2) relates to this background haplotype, with p0 being the relative fre-
quency of observing a mutation at an SNV due to noise and artifact (we assume
equal frequency for all SNVs) and wt0 being the proportion in sample t . The prior
on wt0 is defined later. For p0, we assume p0 ∼ Be(a00, b00) with a00 � b00 to
inform a small p0 value a priori.

We start the prior construction with a prior for the number of haplotypes, C. We
consider a geometric distribution, C ∼ Geometric(r) where E(C) = 1/r . Condi-
tional on C, we use a feature allocation model for a binary matrix Z. We first define
the model for any given C and start with feature-specific selection probabilities,

μc|C i.i.d.∼ Be(α/C,1).(3)

Let μ = (μ1, . . . ,μC). The selection probabilities are used to define p(Z|μ,C) as

p(Z|μ,C) =
S∏

s=1

C∏
c=1

μzsc
c (1 − μc)

(1−zsc) =
C∏

c=1

μmc
c (1 − μc)

S−mc,(4)

where mc = ∑S
s=1 zsc is the number of SNVs bearing variant sequences for hap-

lotype c. A limit of the model, as C → ∞, becomes a constructive definition of
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the Indian buffet process (IBP) [Griffiths and Ghahramani (2005), Teh, Görür and
Ghahramani (2007)]. The model is symmetric with respect to arbitrary indexing
of the SNVs, simply because of the symmetry in (4) and (3). Note that mc = 0 is
possible with positive prior probability.

Next, we consider a prior distribution for abundances associated with the hap-
lotypes defined by Z. The haplotypes are common for all tumor samples, but the
relative weights in the composition (2) are different across tissue samples. We
assume Dirichlet priors for the relative weights wtc, defined as follows. Let θtc de-
note an (unscaled) abundance level of haplotype c in tissue sample t . We assume

θtc|C i.i.d.∼ Gamma(a,1) for c = 1, . . . ,C and θt0
i.i.d.∼ Gamma(a0,1). We then de-

fine

wtc = θtc

/ C∑
c′=0

θtc′

as the relative weight of haplotype c in sample t . This is equivalent to wt |C i.i.d.∼
Dir(a0, a, . . . , a) for t = 1, . . . , T , where wt = (wt0,wt1, . . . ,wtC).

Recall the binomial sampling likelihood (1) with success probability, pst . Given
C, Z and w, we define pst in (2). In words, pst is determined by C, Z and wt with
the earlier describing the latent haplotypes and the latter specifying the relative
abundance of each haplotype in sample t .

2.3. Posterior simulation. Let x = (Z, θ,p0), where θ = {θtc}. Markov chain
Monte Carlo (MCMC) posterior simulation proceeds by sequentially drawing ran-
dom numbers for the parameters in x. Given C, such MCMC simulation is straight-
forward. Specifically, Gibbs sampling transition probabilities are used to update
zsc, and Metropolis–Hastings transition probabilities are used to update θ and p0.
It is possible to improve the mixing of the Markov chain by updating all columns
in row s of the matrix Z jointly by means of a Metropolis–Hastings transition
probability that proposes changes in the entire row vector zs .

The construction of transition probabilities that involve a change of C is more
challenging, since the dimension of Z and θ changes as C varies. We use a re-
versible jump (RJ) MCMC algorithm for posterior simulation [Green (1995)].
We first define a proposal distribution q(C, C̃) for C, and then introduce a pro-
posal distribution q(̃x|C̃) for x conditional on the proposed C̃. The latter po-
tentially involves a change in dimension of the parameter vector. We found that
high posterior correlation of Z and w conditional on C greatly complicated the
construction of a practicable RJ scheme. To overcome this, we use an approach
similar to Casella and Moreno (2006). We split the data into a minimal train-
ing set (n′,N′) with n′

st = bstnst , N ′
st = bstNst , and a test data set, (n′′,N′′)

with n′′
st = (1 − bst )nst etc. In the implementation we use bst generated from

Be(25,975). Let p1(x|C) = p(x|n′,C) denote the posterior distribution under C
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using the training sample. We use p1 in two instances. First, we replace the orig-
inal prior p(x|C) by p1(x|C) and, second, we also use it as proposal distribution
q(̃x|C̃) = p1(̃x|C̃). The test data is then used to evaluate the acceptance probabil-
ity. The strategy can be characterized as model comparison by fractional Bayes
factors [O’Hagan (1995)] and is related to a similar approach proposed in Casella
and Moreno (2006) for model comparison with intrinsic Bayes factors. Both are
originally proposed for model comparison with noninformative priors, but can be
modified to facilitate MCMC across models as we need it here.

We summarize the joint posterior distribution, p(C,Z,w,p0|n), by factor-
izing it as p(C|n)p(Z|n,C)p(w,p0|n,C,Z). Based on the available posterior
Monte Carlo sample, we (approximately) evaluate the marginal posterior distri-
bution for C and determine the maximum a posteriori (MAP) estimate C�. We
then estimate Z conditional on C� as follows: For any two matrices, Z and Z′,
1 ≤ c, c′ ≤ C�, let Dcc′(Z,Z′) = ∑S

s=1 |zsc − z′
sc′ |. We then define a distance

d(Z,Z′) = min
∑C�

c=1 Dc,πc(Z,Z′), where πc is a permutation of {1, . . . ,C�} and
the minimum is over all possible permutations. A posterior point estimate for Z is
defined as

Z�
C = arg min

Z′

∫
d
(
Z,Z′)dp

(
Z|n,C�) ≈ arg min

Z′
1

L

L∑
�=1

d
(
Z(�),Z′),

for a posterior Monte Carlo sample, {Z(�), � = 1, . . . ,L}. Finally, we report poste-
rior point estimates w� and p�

0 for w and p0 conditional on C� and Z�
C .

3. Simulation. We validated the proposed model in a simulation study. We
simulated a set of S = 100 SNVs with T = 30 samples. In the simulation truth,
we assumed four latent haplotypes (CTRUE = 4) as well as a background hap-
lotype (c = 0) with all SNVs bearing variant sequences. Haplotype c = 1 has
variant sequences for the first 15 SNV positions, haplotype 2 for the first 20
SNV positions, haplotype 3 for the first 85 positions and haplotype 4 for the
first 90 positions. In other words, SNVs 1–15 bear variant sequences for all four
haplotypes, SNVs 16–20 for haplotypes 2–4, SNVs 21–85 for haplotypes 3–4,
SNVs 86–90 for haplotype 4 only and SNVs 91–100 for none of the haplo-
types, as shown in Figure 4(a). The green color in panel (a) implies presence
(zsc = 1) of a variant sequence at SNV s for haplotype c and the red color
shows absence (zsc = 0), for c = 1, . . . ,4 and s = 1, . . . ,100. We then gener-
ated wTRUE

t as follows. We let aTRUE = (8,6,3,1) and for each t randomly per-
muted aTRUE. Let aTRUE

π denote a random permutation of aTRUE. We generated
wTRUE ∼ Dir(0.2,aTRUE

π ). That is, the first parameter of the Dirichlet prior for the
(CTRUE + 1)-dimensional weight vector was 0.2, and the remaining parameters
were a permutation of aTRUE. Using the assumed ZTRUE and wTRUE and letting
pTRUE

0 = 0.01 and Nst = 50 for all t and s, we generated nst ∼ Bin(Nst ,p
TRUE
st )

with pTRUE
st = pTRUE

0 wTRUE
t0 + ∑C

c=1 wTRUE
tc zTRUE

sc . The weights wTRUE are shown
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(a) ZTRUE (b) wTRUE

FIG. 4. Heatmaps of ZTRUE and wTRUE in the simulation.

in Figure 4(b). Similar to the heatmap of ZTRUE, the green color in panel (b) repre-
sents high abundance of a haplotype in a sample and the red color low abundance
for c = 0, . . . ,4 and t = 1, . . . ,30. For haplotype 0 the heatmap plots wt0p0. The
samples in rows are rearranged for better display.

To fit the proposed model, we took r = 0.2, α = 3, a0 = 0.5, a = 0.5, a00 = 1
and b00 = 100. For each value of C, we initialized Z using the observed sample
proportions. We generated initial values for θ tc and p0 by prior draws. We gener-

ated bst
i.i.d.∼ Be(25,975) to construct the minimal training set and ran the MCMC

simulation over 25,000 iterations, discarding the first 10,000 iterations as initial
burn-in.

Figure 5(a) reports the posterior distribution of C in which the dashed vertical
line represents the true value CTRUE = 4. The posterior mode C� = 4 recovers the
truth. We then find the posterior point estimates of Z, w and p0 conditional on C�

as described in Section 2.3. We compared pTRUE
st with the posterior estimates p̂st =

p�
0w

�
t0+∑C�

c=1 w�
tcz

�
sc. Figure 5(b) shows the histogram of the errors (p̂st −pTRUE

st ).
Fitting appears to be great as (p̂st − pst ) centers at 0. Figure 5(c) and (d) show
heatmaps for Z�

C and w�
C (given C� = 4). The estimate Z�

C in Figure 5(c) places
SNV 86–90 into haplotypes 3 and 4. The latter are two identical haplotypes. This
may be because wTRUE

t3 for haplotype c = 3 is small for almost all the samples.
The weights for the two dominant subclones, w�

tc for c = 1,2, are close to the
simulation truth, and w�

tc for c = 3,4 are closer to the average of wTRUE
tc , c = 3,4.

For comparison, we implemented PyClone [Roth et al. (2014)] with the same
simulated data. We used the infinite beta-binomial mixture model in PyClone as-
suming that the copy number at mutation positions is known. Figure 6(a) shows
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(a) Posterior distribution of C (b) Histogram of p̂st − pTRUE
st

(c) Heatmap of Z�
C with C� = 4 (d) Heatmap of w�

C with C� = 4 and Z�
C

FIG. 5. Posterior inference for the simulated data.

the estimated variant allelic prevalence for each mutation for each sample under
PyClone. Columns are samples and rows are SNVs. The white horizontal lines
separate the estimated SNV clusters. PyClone identified four clusters of SNVs:
cluster 1 with SNV 1–20, cluster 2 with SNV 21–85, cluster 3 with SNV 86–90 in
cluster 3, and cluster 4 with SNV 91–100.

The estimated cluster 1 includes the SNVs that under the simulation truth ap-
pear in all the true haplotypes or in true haplotypes 2–3; cluster 2 includes the
SNVs from true haplotypes 3–4; cluster 3 includes SNVs from true haplotype 4;
and cluster 4 includes SNVs that appear in none of the true haplotypes. Figure 6(b)
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(a) Heatmap of cellular prevalence (b) Mean prevalence for each cluster

FIG. 6. Estimated cellular prevalence of four SNV clusters over samples by PyClone for the simu-
lated data.

shows estimated mean cellular prevalence of each cluster across the 30 samples.
In summary, the reconstruction under PyClone is reasonable, but stops short of re-
covering the true subclones, which cannot possibly be represented as the assumed
nonoverlapping clusters.

Finally, we carried out another simulation to the sensitivity of the proposed
inference to different assumptions on experimental noise. In particular, we con-
sidered experimental noise that varies across SNVs, as it could arise from poten-
tial bias or errors in data preprocessing, including sequencing bias, mapping bias,
errors in variant calling etc. Details of the simulation study are reported in the
supplementary material [Lee et al. (2015)]. Briefly summarized, in the simulation
truth we replaced the error term εt0 in (2) by an SNV-specific term εts . But we
continued to fit the model with the common εt0, as in (2). We still find reasonable
posterior inference.

For details, refer to the supplemental material.

4. Pancreatic cancer data. We analyzed NGS data obtained from exome se-
quencing of five samples of pancreatic ductal adenocarcinoma (PDAC) patients
at NorthShore hospital. PDAC is a particularly aggressive tumor with median
survival of less than a year. We extracted genomic DNA from each tissue and
constructed an exome library from these DNA using Agilent SureSelect capture
probes. The exome library was then sequenced in paired-end fashion on an Il-
lumina HiSeq 2000 platform. About 60 million reads—each 100 bases long—
were obtained. Since the SureSelect exome was about 50 Mega bases, raw (pre-
mapping) coverage was about 120-fold. We then mapped the reads to the human
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(a) Nst (b) nst /Nst

FIG. 7. Pancreatic cancer data: The left panel shows a histogram of the total number of mapped
reads, Nst , and the right panel shows a histogram of the empirical fractions, nst /Nst .

genome (version HG19) [Church et al. (2011)] using BWA [Li and Durbin (2009)]
and called variants using GATK [McKenna et al. (2010)]. Post-mapping, the mean
coverage of the samples was between 60 and 70 fold.

A total of nearly 115,000 SNVs and small indels were called within the exome
coordinates. We restricted our attention to SNVs (i) that occur within genes that
are annotated to be related to PDAC in the KEGG pathways database [Kanehisa
et al. (2010)], (ii) that make a difference to the protein translated from the gene,
and (iii) that exhibit significant coverage in all samples. This filtering left us with
S = 118 SNVs.

In summary, using the earlier introduced notation, the data record the read
counts (Nst ) and mutant allele read counts (nst ) of S = 118 SNVs from T = 5 tu-
mor samples. Figure 7 shows a summary of the data. The large Nst values make the
binomial likelihood very informative. For the prior specification, we let r = 0.2,
α = 1, a = 1, a0 = 1, a00 = 5 and b00 = 95. We generated bst from Be(25,975)

for the minimal training set. We ran a MCMC posterior simulation over 35,000 it-
erations, discarding an initial transient of 10,000 iterations. Figure 8(a) shows the
marginal posterior distribution for C. The posterior mode is C� = 4.

The posterior point estimate of Z conditional on C� is shown in Figure 8(b)
and the corresponding posterior point estimate of w in Figure 8(c). Here, green
represents a variant sequence and red represents a reference sequence. We find
that each sample has two or three two dominant haplotypes, that is, two green
columns for each row in the heatmap. Haplotypes 2, 3, 4 are shared by different
sets of the five samples. For example, sample 2 has a large-scaled abundance level
for haplotypes 1, 2 and 3. Sample 4 is mainly dominated by haplotypes 1 and 3.

These results indicate that while tumors are unique, there are haplotypes that
do recur across different patients. The results also clearly show that each tumor
(in this data) is made of more than one haplotype: usually two or three dominant
haplotypes and other minor types. To our knowledge, this is the first attempt to
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(a) p(C|data) (b) Z� with C� = 4

(c) w� with C� = 4 and Z�

FIG. 8. Pancreatic cancer data: The posterior distribution of C in (a), the heatmaps of Z� and w�

with C� = 4 in (b) and (c), respectively. Note that for c = 0, p�
0z�

t0 is illustrated in the first column of
panel (c).

analyze the internal clonal composition of multiple PDAC tumor samples based
on NGS data.

For comparison, we also evaluated tumor heterogeneity for the same pancreatic
cancer data using PyClone [Roth et al. (2014)]. The results are shown in Figure 9.
The posterior estimated clustering includes 24 SNV clusters, shown in panel (a).
The estimated mean cellular prevalences of each cluster across the five samples are
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(a) Heatmap of cellular prevalence (b) Mean prevalence for each cluster

FIG. 9. Pancreatic cancer data: Estimated cellular prevalence of SNV clusters over samples by
PyClone.

shown in (b). The estimated mean cellular prevalences vary substantially across
samples.

5. Lung cancer data. We record whole-exome sequencing for four surgically
dissected tumor samples taken from the same patient with lung cancer. The same
bioinformatics preprocessing and analysis were carried out as in the previous pan-
creatic cancer example. We obtained SNVs and filtered them based on criteria
similar to the previous example, leaving us in the end with S = 101 SNVs for the
four intra-tumor samples.

We estimated the proposed Bayesian feature allocation model with the same
hyperparameters as in the previous PDAC data analysis. Figure 10 summarizes
the inference results. Panel (a) shows the marginal posterior distribution for C,
identifying a posterior mode at C� = 3, that is, three distinct haplotypes. Panel (b)
shows the posterior point estimate, Z�

C , conditional on C� = 4. The figure shows
which SNVs are included for each of the three haplotypes. Haplotype 3 contains
the smallest number of mutations (green bars), implying that haplotype 3 might be
the parental tumor cells. Haplotypes 1 and 2 are descendants of haplotype 3 with
additional somatic mutations. Phylogenetically, a simple lineage can be hypothe-
sized, with haplotype 3 as the parent of haplotype 1 and/or haplotype 2. Haplotype
2 possesses a large number of new somatic mutations, potentially representing a
type of aggressive tumor cell. Panel (c) presents the posterior point estimate of w,
w� with C� and Z�. Examining haplotypes 1–3, we found that, interestingly, all
four tumor samples share similar values of w�

t , implying a lack of spatial hetero-
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(a) p(C|data) (b) Z� with C� = 3

(c) w� with C� = 3 and Z�

FIG. 10. Lung cancer data: The posterior distribution of C in (a), the heatmaps of Z� and w� with
C� = 3 in (b) and (c), respectively. Note that for c = 0, p�

0z�
t0 is illustrated in the first column of

panel (c).

geneity across the tumor samples. In other words, these samples all possess the
inferred three tumor haplotypes in panel (b) with a similar composition.

Again, for comparison we also used PyClone [Roth et al. (2014)] with the lung
cancer data. The results are shown in Figure 11. The estimated clustering identi-
fied six clusters of mutations. The mean prevalences within a mutation cluster are
similar across samples.
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(a) Heatmap of cellular prevalence (b) Mean prevalence for each cluster

FIG. 11. Lung cancer data: Estimated cellular prevalence of SNV clusters over samples by Py-
Clone.

6. Conclusions. Tumors are heterogeneous tissues. The traditional way to
identify this heterogeneity has been to sequence multiple samples from the tumor.
Using such data to study the coexistence of genetically different subpopulations
across tumors and within a tumor can shed light on cancer development. Identi-
fying subpopulations within a tumor can lead to clinically important insights. For
example, Landau et al. (2013) found that a chemotherapy affects subclonal hetero-
geneity in chronic lymphocytic leukemia. They also observed that the presence of
a certain subpopulation may adversely affect clinical outcome.

We have proposed a model-based approach based on a feature allocation model.
The feature allocation model allows us to impute inference about different com-
ponents of tumor tissues based on NGS data. The identified components are not
necessarily unique because there might be other possible solutions which can lead
to the same hypothetical mutation frequencies. Instead of reporting a single solu-
tion, the proposed approach provides a full probabilistic description of all possible
solutions as a coherent posterior probability model over C, Z and w.

A number of extensions are possible for the present model. First, the number of
SNVs examined in this paper was relatively limited (about 100), although the total
number of SNVs that were found in the whole exome of a tissue is on the order
of about 50,000. Other than computational complexity, there is no bar in principle
on expanding the model to analyze the whole SNV complement of the exome. It
could also be instructive to quantify the cellular diversity of the tumor based on
findings from various regions of the exome.

Another important extension of the model is in the basic representation of sub-
clones and haplotypes. The current model uses a binary matrix to record whether a
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variant sequence for an SNV is present or absent in a haplotype. A variation of the
model could instead record for each subclone whether an SNV is absent (zsc = 0),
heterozygous (zsc = 1) or homozygous (zsc = 2). That is, Z would become a tri-
nary matrix. Other extensions of the model are to consider each SNV position to
have four possible bases, A,C,G,T , to introduce dependence among mutations or
to formally model the noise in variant calling. Each of these extensions is currently
in development. For example, incorporating explicit error probabilities in variant
calls is possible. Similar to our previous work [Ji et al. (2011)], we could replace
the binomial likelihood (1) in the proposed model with a Bernoulli likelihood, for
each read, where the probability associated with a read depends on quality scores
of base calling and read mapping. We will consider this extension as future work.

Tumor genome sequencing projects have typically looked for specific genes
to be mutated or not. The inherent assumption here, so far unproven, is that the
overall effect of carcinogenesis could be explained by a handful of changes in
a small number of genes. Our model takes the opposite approach and allows us
to examine the whole genome (or exome) and, by considering VAF patterns, to
construct reasonable models for the tissue. We believe this holistic approach to the
analysis might provide more robust conclusions and biomarkers than the gene-by-
gene approach.

SUPPLEMENTARY MATERIAL

Supplement to “A Bayesian feature allocation model for tumor hetero-
geneity” (DOI: 10.1214/15-AOAS817SUPP; .pdf). The supplementary material
includes the second simulation study.
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