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REGRESSION BASED PRINCIPAL COMPONENT ANALYSIS FOR
SPARSE FUNCTIONAL DATA WITH APPLICATIONS TO

SCREENING GROWTH PATHS

BY WENFEI ZHANG AND YING WEI
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Growth charts are widely used in pediatric care for assessing childhood
body size measurements (e.g., height or weight). The existing growth charts
screen one body size at a single given age. However, when a child has multi-
ple measures over time and exhibits a growth path, how to assess those mea-
sures jointly in a rigorous and quantitative way remains largely undeveloped
in the literature. In this paper, we develop a new method to construct growth
charts for growth paths. A new estimation algorithm using alternating regres-
sions is developed to obtain principal component representations of growth
paths (sparse functional data). The new algorithm does not rely on strong dis-
tribution assumptions and is computationally robust and easily incorporates
subject level covariates, such as parental information. Simulation studies are
conducted to investigate the performance of our proposed method, including
comparisons to existing methods. When the proposed method is applied to
monitor the puberty growth among a group of Finnish teens, it yields inter-
esting insights.

1. Introduction. In pediatric practice, height, weight and other body size
measurements are frequently examined for infants, children and adolescents in
order to ensure their healthy growth. The most commonly used tools are growth
charts, also known as reference centile charts. The fundamental purpose of growth
charts is to identify percentile ranks of individuals with respect to their correspond-
ing reference populations, and to screen out subjects with extreme ranks, either too
high or too low, for further medical investigations. The conventional growth charts
consist of a series of percentile curves for a certain measurement over ages. Those
percentile curves are estimated from a reference population using penalized like-
lihood methods introduced in Cole (1988) and Cole and Green (1992). They are
used to identify individual percentile ranks at specific ages. Lately, several meth-
ods, including Thompson and Fatti (1997), Scheike, Zhang and Juul (1999), Wei
et al. (2006) and Chen and Müller (2012), were proposed to further incorporate
prior information and subject level covariates into growth charts. In these meth-
ods, the reference percentiles are estimated by conditioning on not only target
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FIG. 1. An example of an abnormal growth pattern. The dots represent the growth path for a
subject. The curves are the percentile curves at quantile levels 0.05, 0.25, 0.50, 0.75 and 0.95. The x

axis represents ages. The y axis represents weights.

ages but also prior measurements and other important variables, such as prognos-
tic and parental information. The resulting growth charts are hence called condi-
tional growth charts. Thompson and Fatti (1997) assumed a multivariate normal
distribution for the measurements and the covariates at all time points and used
the maximum likelihood estimator for the mean and variance functions. Scheike,
Zhang and Juul (1999) considered a longitudinal regression model accounting for
the previous measurement adjacent to the current measurement and the duration
in between. To avoid a particular distributional assumption, Wei et al. (2006) pro-
posed a semi-parametric quantile regression model to construct conditional growth
charts.

Both conventional and conditional growth charts screen only one single mea-
surement at a time. However, due to common clinical practice, each individual has
its measurements collected longitudinally and exhibits a growth path over time.
A growth path may not be normal even if each of its measurements is within the
normal ranges of both conventional and conditional growth charts. For example,
as shown in Figure 1, this subject starts at the 90th percentile in weight at the
age of 0.5, and gradually declines to the 15th percentile around the age of 2.5.
Although such a slow decline in the growth path should be alerting, it cannot be
recognized by conventional growth charts, because all its measurements are within
the normal ranges. It cannot be detected by conditional growth charts either, since
the changes from the preceding measurements are not large enough.

Therefore, screening entire growth paths may bring new insights into growth
screening. However, existing screening methods for growth paths are mostly em-
pirical, relying heavily on personal experiences of medical providers [Legler and
Rose (1998)]. Rigorous quantitative screening methods for entire growth paths
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remain largely undeveloped. Hence, in this paper, we propose a new statistical
method to construct growth charts that enable the screening of entire growth paths.

Growth charts are estimated from a reference growth data set, which is collected
from a representative sample in a target population, and consists of longitudinal
body size measurements. Most reference growth data share the following charac-
teristics. First, each growth path is only observed at sparse and irregularly spaced
time points with possible measurement errors. Therefore, statistical tools devel-
oped for multivariate and functional data are directly applicable, as the former
requires a fixed measurement schedule and the latter requires densely observed
data on each growth path. Second, the distributions of body size measurements
are unlikely to follow certain parametric distributions. Therefore, likelihood based
parametric approaches are often undesirable in such applications.

Considering the characteristics of reference growth data, we develop a two-step
procedure for identifying percentile ranks of growth paths. In the first step, we
propose a novel regression based principal component analysis (PCA) algorithm
that is tailored specifically for reference growth data. In the second step, we con-
struct the multivariate quantile contours of the resulting component scores, which
can be used to identify percentile ranks of growth paths. The proposed PCA al-
gorithm can also incorporate covariates, which in turn enables the screening of
growth paths conditioned on individual characteristics.

The rest of this paper is organized into the following structure: In Section 2
we elaborate on the proposed screening method, including the general model set-
tings and notation in Section 2.1, the introduction of the proposed regression based
principal component analysis in Section 2.2, the construction of growth charts for
screening growth paths in Section 2.3, and the extension of incorporating covari-
ates in Section 2.4. In Section 3 we provide examples of applying the proposed
method in the field of pediatrics. In Section 4 we present the numerical investiga-
tion of our method. In Section 5 we include discussions and conclusions on the
important findings.

2. Methods.

2.1. Settings and notation. A reference growth data set consists of N sub-
jects and their longitudinal measurements {Yij , Tij }i=1,...,N,j=1,...,mi

. Here mi is
the number of measurements for the ith subject, and Yij is the j th observation for
the ith subject measured at the time of Tij , Tij ∈ T . We assume that each longitu-
dinal growth path is observed from the following model:

Yij = Yi(Tij ) + εij , Tij ∈ T ,(1)

where Yi(t)’s are the underlying growth paths, εij ’s, and independent of Yi(t)’s,
are i.i.d. random errors with mean zero and constant variance σ 2. εij can be viewed
as the measurement error associated with Yij , and we implicitly assume that mea-
surement errors do not depend on magnitudes of measurements and measurement
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times. Such assumptions are reasonable for reference growth data. For example,
the weight measurement error due to a weight scale is usually related neither to
the weight itself nor to the time when the weight is taken.

By the Karhunen–Loève theorem in Loeve (1978), the true growth paths Yi(t),
if smooth and continuous, can be written as

Yi(t) = U(t) +
∞∑

k=1

rikφk(t),(2)

where U(t) = E{Yi(t)} is the population mean function, φk(t)’s are principal com-
ponent functions, which are continuous pair-wise orthogonal functions on T with∫
T φk(t)

2 dt = 1, and rik’s are principal component scores, which are uncorrelated
random variables with mean 0 and variance λk , where λ1 ≥ λ2, . . . . This decom-
position provides the basis of PCA for functional data.

We further assume Yi(t) can be well approximated by the first K principal com-
ponent functions, that is, Yi(t) ≈ U(t)+∑K

k=1 rikφk(t). This approximation is bio-
logically plausible, since the biological growth process is mainly driven by several
growth hormones, as mentioned in Zhang (2012). As each growth hormone deter-
mines a particular growth pattern, the observed growth path is the result of their
joint actions. Therefore, with the kth component function φk representing a cer-
tain growth pattern, the component score rik measures the extent to which φk(t)

contributes to the individual growth path Yi(t). The biological meaning of compo-
nent functions φk(t) and scores rik is also exemplified in Section 3.1. This way,
the distribution of the growth paths, Yi(t)’s, are fully determined by their compo-
nent scores. Consequently, the growth charts for Yi(t) can be constructed based on
the joint distribution of the first K component scores. To estimate the component
functions of Yi(t) from the reference growth data, we proposed a regression based
PCA algorithm in Section 2.2.

The following notation will be used to illustrate our proposed method: L2(T ) is
the set of square integrable functions defined on the time interval T . Denote ‖ · ‖2

as the L2 norm for functions in L2(T ), that is, ‖f ‖2 =̂ ∫
T {f (t)}2 dt , ∀f (t) ∈

L2(T ). The inner product of two functions f1(t) and f2(t) in L2(T ) is defined
as 〈f1, f2〉 =̂ ∫

T f1(t)f2(t) dt . When 〈f1, f2〉 = 0, we say that f1(t) and f2(t) are
orthogonal to each other, denoted as f1 ⊥ f2.

2.2. Regression based principal component analysis for growth data. Refer-
ence growth data can be considered as sparse functional data due to the sparse
and irregular data structure. There exists a few PCA methods for sparse functional
data, including Yao, Müller and Wang (2005), James, Hastie and Sugar (2000) and
Peng and Paul (2009). Yao, Müller and Wang (2005) involved the estimation of
high-dimensional covariance matrices, as well as their inverses, which may not be
computationally stable. James, Hastie and Sugar (2000) provided a stable max-
imum likelihood estimation (MLE) algorithm under the assumption of Gaussian
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process. Peng and Paul (2009) implemented the same model from James, Hastie
and Sugar (2000) using an improved fitting procedure. However, the distribution
assumption of the MLE methods may not be satisfied by reference growth data. In
this section, we propose a regression based PCA algorithm which is computation-
ally stable, not relying on strong distribution assumptions, and easily incorporates
covariates. Without loss of generality, and to simplify the notation, we assume in
this section that the population mean U(t) in (2) is 0. For nonzero U(t), we can
get its nonparametric estimation and subtract it from Yi(t). The algorithm can be
applied to the remaining part as discussed in Remark 1.

The proposed algorithm is based on the fact in Graves, Hooker and Ramsay
(2009) that, given φl(t), 1 ≤ l < k, and rik’s, the kth component function φk(t) is
the minimizer of the objection function

E
∥∥Yi(t) − rikφk(t)

∥∥2
,(3)

subject to the constraints that ‖φk‖2 = 1 and φk ⊥ φl,∀1 ≤ l < k. And given φk(t),
the component score is

rik = 〈Yi,φk〉 = arg min
r

∥∥Yi(t) − rφk(t)
∥∥2

.(4)

These optimizations provide a theoretical basis for estimating φk(t) and rik itera-
tively and sequentially.

Naturally, a sample version of the objective function (3) can be constructed by

1∑N
i=1 mi

N∑
i=1

mi∑
j=1

∣∣Yij − rikφk(Tij )
∣∣2.

Moreover, to estimate φk(t), we approximate it through B-spline approxima-
tions, that is, there exists a αk ∈ R

�N , such that φk(t) ≈ π(t)T αk , where π(t) =
{π1(t), . . . , π�N

(t)}T are �N B-spline basis functions given the specific knots and
order. de Boor (1978) showed that any smooth function can always be well ap-
proximated by a B-spline representation with a sufficient number of knots. The
selection of knots and order in practice is discussed in Remark 5. With the above
approximations, we have the following working objective function:

DL2(αk,Rk) = 1∑N
i=1 mi

N∑
i=1

mi∑
j=1

∣∣Yij − rikπ(Tij )
T αk

∣∣2,
(5)

s.t. ‖π(t)T αk‖2 = 1 and π(t)T αk ⊥ π(t)T αl ,∀1 ≤ l < k,

where Rk = (r1k, . . . , rNk)
T is the vector of the kth component scores.

In what follows, we present a sequential and iterative algorithm to estimate αk

and Rk in (5). Our proposed alogrithm is inspired by the iterative least square
method in Wold (1966), which was used to conduct multivariate PCA. A similar
algorithm in alignment with robust regressions was studied in Chen, He and Wei
(2008). However, our algorithm is the first attempt to implement such an iterative
algorithm in PCA for sparse functional data.
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Estimating the 1st component. The algorithm starts with estimating the 1st

component (α1,R1). We use α
(ν)
1 and R

(ν)
1 for the estimates of α1 and R1 at the

νth iteration. The algorithm includes the following steps:

Step 1: Initial values. Generate R1 with each of its elements following uniform

(0,1) distribution and denote it as R
(0)
1 .

Step 2: Alternating regressions. Continue from the νth iteration step with R
(ν)
1 .

We obtain α
(ν+1)
1 by

α
(ν+1)
1 = arg min

α∈R�N

1∑N
i=1 mi

N∑
i=1

mi∑
j=1

∣∣Yij − r
(ν)
i1 π(Tij )

T α
∣∣2,(6)

and then standardize α
(ν+1)
1 by

α
(ν+1)
1√

‖π(t)T α
(ν+1)
1 ‖2

. The resulting α
(ν+1)
1 satisfies

‖π(t)T α
(ν+1)
1 ‖2 = 1. Next we update the component scores R

(ν+1)
1 by

r
(ν+1)
i1 = arg min

r∈R

mi∑
j=1

∣∣Yij − rπ(Tij )
T α

(ν+1)
1

∣∣2, i = 1,2, . . . ,N.(7)

Here (7) involves N separate regressions. Continue iterations until the following
two conditions are satisfied:

1. The differences of R
(ν)
1 and R

(ν+1)
1 , α

(ν)
1 and α

(ν+1)
1 are less than some small

value δ1 for all their elements;
2. The change in the objective function DL2(α1,R1) between two consecutive

iterations does not exceed a small value δ2.

Step 3: Solutions. We denote the resulting estimates from step 2 as the α̂1

and R̂1, which are the estimates for α1 and R1.

It is easy to see that the objective function DL2(α1,R1) is monotonically nonin-
creasing at each iterative step, and the algorithm will converge to a local minimizer.

Estimating the kth component with k > 1. When we move to the kth compo-
nent (αk,Rk) with k > 1, we need to solve the constrained objective function (5).
A numerical algorithm directly incorporating such constraints is not straightfor-
ward. However, if subtracting

∑k−1
l=1 r̂ilπ(Tij )

T α̂l from Yij , and denoting the re-

sulting residuals as ξ
(k−1)
ij , we then have the following alternative but equivalent

objective function:

1∑N
i=1 mi

N∑
i=1

mi∑
j=1

∣∣ξ (k−1)
ij − rikπ(Tij )

T αk

∣∣2,(8)

subject to the only constraint ‖π(t)T αk‖ = 1. The equivalence between (8) and (5)
comes from the fact that the component function φk(t) is also the minimizer of
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E‖Y (k−1)
i (t)−〈Y (k−1)

i , φk〉φk(t)‖2, where Y
(k−1)
i (t) is Yi(t)−∑k−1

l=1 〈Yi,φl〉φl(t).
The new objective function (8) of (αk,Rk) is the same in format as the one for
(α1,R1). Therefore, estimating (αk,Rk) can be achieved in a similar fashion as
(α1,R1). The only difference is at each iteration step, we need to orthogonalize
πT (t)αk against the previously estimated πT (t)α̂l,∀l < k to further improve the
computational stability. The numerical details of orthogonalization are provided
in Remark 4. When the observations of the growth paths are sufficiently dense,
the orthogonality holds automatically without the orthogonalization step. The con-
vergence and nonincreasing property also hold for each k. The R program for the
proposed algorithm is provided in the supplemental documents Zhang and Wei
(2015).

At last, to determine the number of necessary components K , we propose a
model adequacy measure that is an analog of R2 from Croux et al. (2003). It mea-
sures the total variability explained by the first K components, that is,

R2(K) = 1 −
∑N

i=1
∑mi

j=1{Yij − ∑K
k=1 r̂ikπ(Tij )

T α̂k}2∑N
i=1

∑mi

j=1 Y 2
ij

.(9)

We stop the estimation algorithm when R2(K) is sufficiently large. The PCA ap-
proximation of Yi(t) can be returned as Ŷi(t) = ∑K

k=1 r̂ikπ(t)T α̂k .

REMARK 1. The above estimation algorithm assumes that U(t) = 0, hence,
one needs to properly center the growth paths Yi(t)’s before using the algorithm.
We propose to estimate the mean function U(t) =̂E{Y(t)} using nonparametric
methods, such as B-spline smoothing and local polynomial smoothing, which pro-
vide uniform consistent estimators of the population mean as shown in Hansen
(2008), de Boor (1978) and Fan and Gijbels (1996). Therefore, the algorithm can
be applied to centered data Y ∗

ij = Yij − Û (Tij ), where Û (t) is the estimate of U(t).
Here Y ∗

ij are asymptotically equivalent to the truly centered data as proved in Han
and Lim (2010).

REMARK 2. In step 2 of our proposed algorithm, we standardize α
(ν)
k by

α
(ν)
k√

‖π(t)T α
(ν)
k ‖2

in each iteration. The standardization step is to meet the constraint

that ‖π(t)T αk‖2 = 1. It does not alter the value of objection function DL2(αk,Rk)

since rikα
T
k = rikcc

−1αT
k for any nonzero real number c.

REMARK 3. The proposed algorithm can also be used to obtain singular
value decomposition of functional data. Let Y(t) = {Y1(t), . . . , YN(t)}T , R =
(R1,R2, . . .), and �(t) = {φ1(t), φ2(t), . . .}, then the decomposition (2) can be
written as Y(t) = R�(t). If we further decompose R = UD, where D is a
diagonal matrix, we yield the singular value decomposition for Y(t), that is,
Y(t) = UD�(t). This step can be easily incorporated to the algorithm, but fur-
ther decompositions of R are out of interest in our context.
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REMARK 4. Let W = ∫
π(t)π(t)T dt , where π(t) = {π1(t), . . . , π�N

(t)}T
are the given B-spline basis functions. W is a �N × �N matrix. Each element
of W is the inner product of two basis functions, which can be calculated
from numerical integrations. Since W is a positive-definite matrix, it can be
decomposed as the cross-product of W1/2. In this way, π(t)T αk ⊥ π(t)T αl is
equivalent to (W1/2αk)

T (W1/2αl) = 0. The orthogonalization of W1/2αk against
{W1/2αl}k−1

l=1 can be achieved through Gram–Schmidt orthonormalization from
Trefethen and Bau (1997), which projects W1/2αk into the orthogonal space
spanned by {W1/2αl}k−1

l=1 , obtains the projection as W1/2α
proj
k , and hence has

α
proj
k as the orthogonalized αk . In each of the iterative steps, we implement such

orthogonalization to update α
(ν)
k , which makes the final solution of α̂k satisfy

π(t)T α̂k ⊥ π(t)T α̂l, l < k.

REMARK 5. In practice, we choose the knots of B-spline basis functions to
be q − 1 equally spaced quantiles of pooled time points, that is, 1

q
, 2

q
· · · q−1

q
th

quantiles. In this way, the B-spline basis functions are determined by q and order.
Since there are only two parameters, it is straightforward to choose them by 5-fold
cross-validation using AIC or BIC criterion. Based on our numerical experience,
the results are not sensitive to the exact locations of knots.

REMARK 6. The proposed algorithm has a lack of consistency of results for
the estimated principal component functions and scores under the sparsity setting
in this paper. A weak asymptotic result for the principal component functions un-
der restrictive assumptions exists.

2.3. The construction of growth charts for growth paths. Through the pro-
posed PCA algorithm, we can approximate Yi(t) as Û (t) + ∑K

k=1 r̂ikπ(t)T α̂k .
Hence, the percentile ranks of Yi(t) can be identified by estimating the multivari-
ate quantiles of (̂ri1, . . . , r̂iK). Multivariate quantiles consider the joint distribution
of components scores and bring additional insights in screening growth patterns.
The individual percentile ranks determined by component scores enable the com-
parisons among subjects, which can be useful for pediatric practice. For example,
subject A is at the 95th percentile and subject B is at the 97th percentile. Using
the percentile ranks, a pediatrician can prioritize the work by examining the health
status of subject B first, since subject B is more likely to have health issues given
its higher percentile rank.

Due to the lack of natural ordering in a multidimensional space, there is no uni-
versally preferred definition of multivariate quantiles, but various ideas have been
developed in the literature. For example, Liu, Parelius and Singh (1999) and Zuo
and Serfling (2000) used multivariate quantile functions based on the half-space
depth functions. Other approaches have been given by Parzen (1979), Abdous
and Theodorescu (1992), Hettmansperger, Nyblom and Oja (1992), Chaudhuri
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(1996), Koltchinskii (1997), Chakraborty (2003), McDermott and Lin (2007) and
Wei (2008). Serfling (2002) presented a nice survey of multivariate quantile func-
tions and outlined the probabilistic properties that a multivariate quantile function
should have.

In our case, the joint distribution of (̂ri1, . . . , r̂iK) is unlikely to follow a certain
parametric distribution due to the complexity of sparse functional data. Therefore,
we propose to determine their multivariate quantiles nonparametrically using Wei
(2008), since this method is also motivated from growth chart problems, and mea-
suring the spatial “outlyingness” of an observation relative to a center, which is the
essential part of growth chart studies. Wei (2008) converts the component scores
into the polar coordinate system and builds the quantile contours by nonparamet-
rically regressing the radiuses with respect to the angles at various quantile levels.
Then, by building a sequence of nested multivariate quantile contours of the K

component scores, our growth chart can be constructed and used to determine the
percentile ranks of growth paths.

Suppose we want to use our constructed growth chart to screen a growth path of
a new subject, including m∗ observed measurements, {T∗j , Y∗j }m∗

j=1. We first obtain
its component scores {r∗1, . . . , r∗K} by the following least square regression:

min
r1,...,rK∈R

1

m∗

m∗∑
j=1

∣∣∣∣∣Y∗j − Û (T∗j ) −
K∑

k=1

rkφ̂k(T∗j )

∣∣∣∣∣
2

,(10)

where Û (t) and φ̂k(t) are estimated from the reference growth data. By the es-
timated component scores, this subject can then be located on the constructed
growth chart. If it stays outside an extreme quantile contour, such as the 0.95th
quantile, we say that its growth path is more unusual than at least 95% of its peers,
hence it can be singled out for further clinical investigations.

2.4. Incorporating covariate effects. Since incorporating subject level infor-
mation, such as parental information and ethnicity, can enhance screening perfor-
mance, we extend our proposed method to include a covariate X. Suppose the ref-
erence growth data consist of {(Yij , Tij ,Xi), i = 1, . . . ,N, j = 1, . . . ,mi}, where
Xi is the covariate of the ith subject. We assume that the measurement Yij is ob-
served from

Yij = Yi(Tij ,Xi) + εij ,

where Yi(t, x) is the underlying growth path for the ith subject, and depends on
both age t and covariate x. By extending the Karhunen–Loeve decomposition, we
can write

Yi(t, x) = U(t, x) +
∞∑

k=1

rikφk(t, x), t ∈ T ,(11)
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where U(t, x) is the mean function, φk(t, x)’s are pair-wise orthogonal component
functions, and rik’s are individual component scores with respect to φk(t, x). Fol-
lowing similar ideas in Section 2.2, we extend the working objective function (5)
as follows:

Dx(rik,αk) =̂ 1∑N
i=1 mi

N∑
i=1

mi∑
j=1

∣∣Yij − rikπ(Tij )
T αkμ(Xi)

∣∣2 s.t.,(12)

∫ {
π(t)T αkμ(x)

}2
dt = 1;(13)

∫ {
π(t)T αkπ(x)

}{
πT (t)αlμ(x)

}
dt = 0 ∀1 ≤ l < k.(14)

Here π(t)T αkμ(x) provides the approximation of φk(t, x), where π(t) is the B-
spline basis functions for t as in Section 2.2, μ(x) = {μ1(x), . . . ,μ�x (x)}T is a
set of covariate functions, and αk becomes a �N × �x matrix instead of a vec-
tor. The simplest choice of covariate functions μ(x) is (1, x)T , which implic-
itly assumes the component functions are linear in x for any given t . If the lin-
earity assumption does not hold, one could consider including quadratic terms
of x or even choosing μ(x) as B-spline basis functions to avoid any paramet-
ric assumption. Since π(t)T αkμ(x) is still a linear function of αk , we can im-
plement the similar iterative algorithm in Section 2.2 by alternatively updating
αk and rik . The major differences in each iteration come from the standard-
ization and orthogonalization of π(t)T αkμ(x) in order to meet constraints (13)
and (14), details of which are provided in Zhang (2012). Similarly, the covari-
ate adjusted algorithm is conducted sequentially, and stopped when reaching an
appropriate number of components K , which is determined by the extended R2,

that is, 1 −
∑N

i=1
∑mi

j=1{Yij−∑K
k=1 r̂ikπ(Tij )T α̂kμ(Xi)}2∑N

i=1
∑mi

j=1(Yij )2
. Then the underlying growth path

Yi(t,Xi) can be well approximated by the first several component functions, and
hence determined by its component scores. Therefore, the growth chart for screen-
ing growth path can be constructed and implemented in a similar fashion as the
one described in Section 2.3.

3. Application examples.

3.1. Growth charts for screening pubertal growth paths. In this section we il-
lustrate our proposed screening method using part of a Finnish national growth
data set from Pere (2000). The data consist of longitudinal height measures of
553 girls (ages 9–16) and 518 boys (ages 11–19) during puberty, as shown in
Figure 2. The median number of measurements for each subject is 6. The anal-
ysis is stratified by gender. We apply the proposed regression based PCA using
quadratic B-splines with internal knots 11 and 13.56. The resulting first two com-
ponent functions are plotted in Figure 3 for girls and Figure 4 for boys. In both
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FIG. 2. Part of a Finnish national growth data from Pere (2000). The data include the longitudinal
height measurements for 553 girls (left) from ages 9 to 16 and 518 boys (right) from ages 11 to 19.
The y-axis is height and the x-axis is age. The dots are the observed height measurements.

cases, they count for 90% variability of the growth paths based on the proposed
R2 measure (9).

In both genders, we find that the first component function φ1(t) reflects the
overall growth scale, while the second one φ2(t) coincides well with the puberty
growth velocity pattern. The second component function increases rapidly starting
around age 11 and stabilizes after age 15 for girls [Figure 3(b)], while a similar
patten is found between age 14 and age 18 for boys [Figure 3(b)]. This difference
in φ2(t) is biologically reasonable since the puberty of boys begins later than girls.
Therefore, the corresponding principal component scores have a nice biological
interpretation. A subject with a higher ri1 tends to be taller than most of his or
her peers, while a subject with a higher ri2 may experience rapid pubertal growth.
The growth charts are constructed based on the first two component scores, as
shown in Figure 5(a) for girls and Figure 5(b) for boys. Such charts provide a

FIG. 3. The estimated first two component functions φ̂1(t) (a) and φ̂2(t) (b) for girls.
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FIG. 4. The estimated first two component functions φ̂1(t) (a) and φ̂2(t) (b) for boys.

convenient visual tool for screening potentially unusual growth patterns. In both
figures, the x axis represents the first component score and the y axis represents
the second ones. Bivariate quantile contours at quantile levels 0.5, 0.75 and 0.95
are added to determine the individual percentile ranks. The individuals staying
outside the 0.95th quantile contour have more outlying component scores than
at least 95% of their peers. Hence, they will be screened out for further clinical
investigations.

FIG. 5. The bivariate plot of the first two component scores for girls (a) and boys (b). The x axis
represents the first component score and the y axis represents the second component score. The
contours from inside to outside are the bivariate quantile contours at quantile levels 0.5, 0.75 and
0.95. The points labeled “A” and “B” in (a) are two selected girls whose first two component scores
fall outside the 0.95th quantile contour. (a) The growth chart for girls. (b) The growth chart for boys.
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FIG. 6. The observed growth paths of two extreme girls, girl A (a) and girl B (b) in Figure 5(a).
The black dots are the original height measurements, and the dashed lines are the estimated growth
paths. The gray background curves are all the growth paths from the Finnish growth data for girls.

To illustrate the screening performance of our constructed growth charts, we se-
lect two girls, A and B, who are outside the 0.95th quantile contour in Figure 5(a),
and further examine their growth paths as shown in Figure 6. In Figure 6, the black
dots are the original height measurements, and the dashed lines are the estimated
underlying growth path Yi(t). The gray curves in the background are all the growth
paths from the data. According to Figure 5(a), girl A has small component scores
in both directions, while girl B has an average first component score, but a very low
second component score. Consequently, as shown in Figure 5, girl A is shorter and
slower than most of her peers; girl B has normative height, but apparently fails to
gain enough height during her puberty. In both cases, the unusual growth patterns
detected by our proposed growth charts are confirmed by empirical observations
of the growth paths.

Comparison to existing growth charts. As we illustrate in the Introduction,
screening entire growth paths may bring new insights in monitoring human growth.
The outlying girl C in Figure 5(a) is one example. Figure 7 provides the observed
growth path of girl C. Her height starts around the median at the age of 9 and
gradually increases to the upper percentile by the age of 16.

We first screen each of her measurements (black dots) using conventional
growth charts and conditional growth charts. Specifically, following conventional
growth charts from Wei et al. (2006), we estimate the 0.025th and 0.975th per-
centiles that are conditioned only on her ages (squares in Figure 7). And following
conditional growth charts from Wei et al. (2006), we estimate the same reference
percentiles conditioned on both her ages and prior measurements (triangles in Fig-
ure 7).

As shown in Figure 7, all of her height measurements are within the normal
ranges of both conventional and conditional growth charts. Therefore, when these
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FIG. 7. The observed growth path of one extreme girl (girl C) in Figure 5(a). The black dots are the
original height measurements and the dashed line is the estimated growth path. The gray background
curves are all the growth paths from the Finnish growth data for girls. The squares are the estimated
0.975th (open squares) and 0.025th (solid squares) quantiles from the unconditional growth chart.
The triangles are the estimated 0.975th (open squares) and 0.025th (solid squares) quantiles from
the conditional growth chart.

two growth charts are used to screen her height one at a time, each of her height
measurements is considered as normative. However, when we screen her entire
growth path using the proposed method, girl C is screened out by the 0.95th quan-
tile contour since her second component score appears unusually large. It is con-
sistent with the fact that she has been growing fast consecutively over her entire
puberty. This example shows that the proposed method provides informative in-
sights on growth pattern by considering entire paths.

3.2. Growth charts conditioned on mother’s height. Parental heights usually
have strong associations with their children’s growth. In this section we incorpo-
rate mother’s height into the model and examine the pubertal growth of the Finnish
teenage girls. The data set used here is a subset of girls’ data in Section 3.1, includ-
ing 444 girls with mother’s height information available and at least 5 measure-
ments between ages 9 and 16. To make the comparisons, we apply our proposed
method, both with covariate and without covariate, to the data. We choose μ(x)

to be μ(x) = (1, x)T . Under this parameterization, U(t, x) = U1(t) + xU2(t),
φ1(t, x) = φ11(t) + xφ12(t), and φ2(t, x) = φ21(t) + xφ22(t). The unknown func-
tions U1(t), U2(t), φ11(t), φ12(t), φ21(t) and φ22(t) are all approximated using
quadric B-splines with internal knots equal to 1/3 and 2/3 quantiles of pooled
times.
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FIG. 8. (a) The estimated mean functions from the covariate adjusted model (dashed lines) and the
model without covariate (solid line). The dashed lines are the estimated mean functions conditioned
on six different mother’s heights. The lines from the lightest gray to the darkest gray represent 150 cm,
155 cm, 160 cm, 165 cm, 170 cm and 175 cm, respectively. (b), (c) The estimated first two component
functions from the covariate adjusted model (dashed lines) and the model without covariate (solid
lines). (a) Estimated location functions. (b) φ̂1(t) for girls. (c) φ̂2(t) for girls.

We use a bootstrap to test whether the covariate associated functions U2(t),
φ12(t) and φ22(t) are equal to zero at any t , which is essentially testing whether
the corresponding B-spline coefficients are equal to 0. More details can be found
in Zhang (2012). The resulting p-values indicate that the mother’s height is sig-
nificantly related to U(t, x) (p-value ≤ 0.0001), while φ1(t, x) and φ2(t, x) are
insignificant (p-values equal to 0.72 and 0.59). We hence simplify the covariate
adjusted model to

Yi(t,Xi) ≈ U1(t) + xU2(t) + ri1φ11(t) + ri2φ21(t).

In Figure 8(a), the solid line is the estimated mean function without considering
mother’s height, and the dash lines are the expected growth paths conditioned on
six different mother’s heights which are 150 cm, 155 cm, 160 cm, 165 cm, 170 cm
and 175 cm (from darkest gray to the lightest grey), respectively. Covariate ad-
justed mean functions show that with the increase of mother’s height, the expected
body sizes and growth rates both tend to increase as well. We also observe the
expected growth path conditioned on 160 cm is close to the expected growth path
of the whole population. The explanation is that the average of mother’s height in
this data set is 161.6 cm, which is close to 160 cm. As shown in Figures 8(b)–(c),
the estimated component functions from both models are very close to each other.
However, due to the difference in the mean functions, the distributions of individ-
ual component scores are fairly different between the two models. Figure 9 plots
the bivariate quantile contours estimated from two sets of component scores. We
say that Figure 9(a) is the covariate adjusted growth chart for puberty growth paths
and Figure 9(b) is the marginal one.

Two girls, D and E, are selected from the sample and placed against the two
growth charts. The growth path of girl D is considered as unusual in the marginal
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FIG. 9. The bivariate plots of the first two component scores for the covariate adjusted model (a)
and the model without covariate (b). The x axis represents the first component score and the y axis
represents the second component score. The contours from inside to outside are the bivariate quantile
contours at quantile levels 0.5, 0.75 and 0.95.

growth chart, but not in the covariate adjusted one. In contrast, the growth path
of girl E is only considered as unusual in the covariate adjusted growth chart, but
not in the marginal one. Figures 10 and 11 provide their growth paths (black solid
lines and dots) for further investigations. In Figure 10(a), we compare the target

FIG. 10. The observed growth path of girl D in bivariate plots Figure 9. The black dots are the
original height measurements. The gray background curves in (a) are all the growth paths from this
data set. The gray background curves in (a) are the growth paths of the individuals with mother’s
height from 153 cm to 155 cm.
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FIG. 11. The observed growth path of girl E in bivariate plots Figure 9. The black dots are the
original height measurements. The gray background curves in (a) are all the growth paths from this
data set. The gray background curves in (a) are the growth paths of the individuals with mother’s
height from 154 cm to 158 cm.

paths to all the growth paths in the sample (gray curves), while in Figures 10(b),
we compare them only to those (gray curves) who have similar mother’s heights
(±2cm). We find that girl D has grown unusually slow from ages 12 to 16 com-
pared to others in the entire sample. That explains why girl D has an unusually low
second component score in the marginal growth chart. However, if one restricts to
those whose mothers have heights around 155 cm, her slow puberty growth is less
extreme, as we observe more similar slow growth patterns in this subset. Subject
E has normative body sizes and growth rates according to the marginal growth
chart, but has excessive growth based on the covariate adjusted chart. Examining
her growth path in Figure 11, we find that she has consecutive years of fast growth
from ages 12 to 15. This fast growth appears to be more extreme when being com-
pared to those whose mothers have similar heights. In this case, we would have
missed the excessive growth of girl E if we did not take her mother’s height into
consideration. These examples show that incorporating subject level information,
especially parental information, might lead to improvements in screening growth
paths.

4. Numerical investigations.

4.1. Finite sample performance. In this section we present a numerical sim-
ulation study to illustrate the finite sample performance of the proposed PCA
method in comparison to the alternative Yao, Müller and Wang (2005) and MLE
methods. For MLE methods, we use the fpca R package based on Peng and Paul
(2009) since it provided an improved fitting of James, Hastie and Sugar (2000).
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We consider the following model to generate the simulation data:

Yij = Yi(Tij ) = U(Tij ) + ri1φ1(Tij ) + ri2φ2(Tij ) + εij ,

where φ1(t), φ2(t) and U(t) are chosen to be the estimated functions for girls in
Section 3.1. We consider the following two distributions for (ri1, ri2). In setting 1,
we generate them from the empirical distribution of the estimated first two compo-
nent scores for girls in Section 3.1. In setting 2, we generate them from a bivariate
normal distribution with sample means and covariance estimated from the first
two component scores for girls in Section 3.1. Both settings try to mimic growth
paths of the Finnish data for girls, while a more restrictive parametric assumption
is made in setting 2. For each of the above two settings, we generate 20 Monte
Carlo samples. Each sample includes N = 500 random curves. Each one consists
of mi = 6 observations with the observed time Tij uniformly distributed on [9,16].

For each sample, we use the proposed method, Yao, Müller and Wang (2005),
and the MLE method to conduct PCA. We first estimate U(t) using nonparametric
regression and then apply the three methods to the centered data Y ∗

ij = Yij −Û (Tij )

to estimate component functions. The selection of tuning parameters for all three
algorithms is described as the following. Because both our method and the MLE
method from Peng and Paul (2011) use B-spline functions to represent compo-
nent functions, we choose the same set of basis functions for both methods, that
is, the quadratic B-spline basis functions with the 1/3th and 2/3th quantiles of the
pooled times as the internal knots. Yao, Müller and Wang (2005) relied on estimat-
ing the variance and covariance by two-dimensional local polynomial smoothing.
Its smoothing parameters are determined by minimizing the AIC type criterion,
that is, N × log{ 1

N

∑N
i=1

1
mi

∑mi

j=1(Yij − Ŷij )
2} + 2p, where p is the number of

parameters and Ŷij is the predicted Yij . All codes for the simulations are written
in R language and run under R version 3.0.0 on a machine with Intel(R) Xeon(R),
CPU 3.20 GHz and 16 GB RAM. On average, the running time to conduct PCA
for one Monte Carlo sample is 17 seconds for our proposed method, 18 seconds
for the MLE method, and 30 seconds for Yao, Müller and Wang (2005).

To evaluate the estimation performance of the three methods, we calculate rel-
ative integrate squares errors (RISE) for both φ1(t) and φ2(t), where RISE for

estimating a target function g(t) is defined as ‖g(t)−ĝ(t)‖2

‖g(t)‖2 , and ĝ(t) is the estimate.
RISE can be considered as noise to signal measurements. The integrations in RISE
are evaluated using the left Riemann sum [Thomas, Finney and Weir (1988)] with
the equal partition of the whole interval into 100 small intervals. Table 1 provides
the summary of RISEs under both settings. As shown in Table 1, all three methods
perform well in estimating component functions, although Yao, Müller and Wang
(2005) have slightly larger means and standard deviations.

We further evaluate the estimation errors of component scores rik among the
three methods. For each Monte Carlo sample, we calculate relative mean square

error (RMSE), defined as
∑N

i=1(rik−r̂ik)
2/N

s2(rik)
, where r̂ik is the estimator of rik and
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TABLE 1
The summary of RISEs for the three sparse functional PCA methods

Means (standard deviations) of RISE

Yao et al. (2005) The MLE method The proposed method

Setting 1: (ri1, ri2) ∼ Empirical distribution
RISE of φ1(t) 0.0061 (0.0017) 0.0003 (0.0003) 0.0004 (0.0005)
RISE of φ2(t) 0.0955 (0.0545) 0.0022 (0.0009) 0.0020 (0.0015)

Setting 2: (ri1, ri2) ∼ Bivariate normal distribution
RISE of φ1(t) 0.0052 (0.0018) 0.0003 (0.0003) 0.0004 (0.0003)
RISE of φ2(t) 0.1076 (0.0872) 0.0023 (0.0012) 0.0027 (0.0014)

s2(rik) is the sample variance of rik . RMSE measures the fraction of variance un-
explained caused by estimation errors. Yao, Müller and Wang (2005) involve the
estimation of the individual covariance matrix and its inverse, which can be singu-
lar or close to singular. When it happens, it can deviate the estimation of compo-
nent scores rik . To make a fair comparison, we exclude the top 5% extreme square
errors in the calculation of RMSE for Yao, Müller and Wang (2005). RMSEs under
both settings are summarized in Table 2. All three methods work well for the 1st
component with average RMSEs less than 5%. For the 2nd component scores, the
average RMSEs for both our proposed method and the MLE method increase but
still less than 20%, while the RMSEs for Yao, Müller and Wang (2005) tend to be
slightly larger.

TABLE 2

The summary of relative mean square errors (RMSE)
∑N

i=1(rik−r̂ik)
2/N

s2(rik)
for the three sparse

functional PCA methods

Means (standard deviations) of RMSE

Yao et al. (2005)∗ The MLE method The proposed method

Setting 1: (ri1, ri2) ∼ Empirical distribution
RMSE of ri1 0.05 (0.04) 0.01 (0.01) 0.02 (0.01)
RMSE of ri2 0.69 (0.47) 0.13 (0.02) 0.17 (0.03)

Setting 2: (ri1, ri2) ∼ Bivariate normal distribution
RMSE of ri1 0.07 (0.05) 0.01 (0.01) 0.02 (0.01)
RMSE of ri2 0.87 (0.63) 0.14 (0.03) 0.17 (0.04)

∗Note: Yao et al. (2005) involve the estimation of the individual covariance matrix and its inverse,
which can be singular or close to singular. When it happens, it can deviate the estimation of com-
ponent scores rik . To make a fair comparison, we exclude the top 5% extreme square errors in the
calculation of RMSE for Yao et al. (2005).
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FIG. 12. (a), (b) The selected outlying curves under different combinations of A and B. The back-
ground gray curves are simulated curves from one Monte Carlo sample.

4.2. Screening power. To illustrate how sensitive the proposed method is in
identifying outlying growth paths compared to the conventional and conditional
growth charts, we simulate Monte Carlo samples from setting 1 as the reference
growth data and build the three types of growth charts accordingly. We then sim-
ulate outlying growth paths Zi(t) from Zi(t) = Yi(t) + A(t − 9) + B . Here Yi(t)

follow the correct model from setting 1, and A(t − 9)+B is a linear contaminated
term, where A provides the slope deviation and B represents the location shift. We
choose A from (−4,−2,−1,0,1,2,4) and B from (−20,−12,−4,0,4,12,20).
For each (A,B) combination, we generate 100 curves with 6 observations Zij =
Zi(Tij ) + εij each. Figure 12 shows the selected outlying curves (dashed lines)
under several combinations of A and B . The background gray curves are from
one simulated sample. The simulated curves become more outlying with the in-
crease of either |A| or |B|. Following the procedure in Section 2.3, we locate the
simulated outlying curves in the growth charts and screen out those outside the
95th percentile contours. We also screen each of the measurements from the simu-
lated outlying curves using the conventional and conditional growth charts. Specif-
ically, following the conventional growth chart from Wei et al. (2006), we estimate
the 2.5th and 97.5th percentiles that are conditioned only on ages. And follow-
ing the conditional growth chart from Wei et al. (2006), we estimate the same
reference percentiles conditioned on both the ages and prior measurements. Us-
ing the conventional and conditional growth charts, we screen out the curves with
more than one measurement outside the range between the corresponding 2.5th
and 97.5th percentiles. Table 3 and Table 4 summarize the percentages of curves
that are screened out by the growth charts, including both means and standard de-
viations over 20 Monte Carlo samples. The results illustrate that all three growth
charts are effective in identifying outlying growth paths when both the location
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TABLE 3
The means of the percentages of outlying curves Zi(t) that are screened out by the 95th percentile contours from the proposed growth chart, the 2.5th

and 97.5 percentiles from the conventional growth chart, and the 2.5th and 97.5 percentiles from the conditional growth chart for different combinations
of A (slope deviation) and B (location shift)

Means of percentages: The proposed method/The conventional growth chart/The conditional growth chart

B = −20 B = −12 B = −4 B = 0 B = 4 B = 12 B = 20

A = −4 100/100/100 98.8/100/100 95.9/98/99.3 93.9/94.3/98.4 91.3/89.2/96.9 86.9/77.1/92.5 87.6/83/84.9
A = −2 99.4/100/97.2 94.9/96.8/88.9 76.4/73.2/74.5 63.9/51.7/65.6 51.9/33.6/57.2 45/46.4/42.9 67.2/85.2/34.9
A = −1 98/99.2/82.7 77.8/84.2/65 40.2/39.2/45.3 24.2/20.6/36.2 18.9/15.8/28.6 33.7/50/22.1 73.8/90.3/24.4
A = 0 86.9/95.5/64.6 46.5/62.8/44.3 11.7/15.6/28.6 5.9/9.4/12.8 10.8/19.2/22.1 47/65/24.6 86.9/95.1/31.4
A = 1 69.5/89/64 28.1/48.2/52.1 12.2/14.2/45.5 16.7/22.8/44.5 31.4/43.2/44.7 74.4/86.1/48.4 96/98.9/53.4
A = 2 60.6/83.7/78.8 37/42.5/76.5 39.5/34.3/75.8 52.1/55/76.4 67.2/75.2/77.9 91.6/97.2/80.7 99/99.7/82.8
A = 4 80.3/82.5/96.1 81.3/76.8/96.4 88/90.4/97.7 91.9/95.3/98 95.2/98.3/98.1 99.1/99.8/98.6 100/100/98.7

TABLE 4
The standard deviations of the percentages of outlying curves Zi(t) that are screened out by the 95th percentile contours from the proposed growth
chart, the 2.5th and 97.5 percentiles from the conventional growth chart, and the 2.5th and 97.5 percentiles from the conditional growth chart for

different combinations of A (slope deviation) and B (location shift)

Standard deviations of percentages: The proposed method/The conventional growth chart/The conditional growth chart

B = −20 B = −12 B = −4 B = 0 B = 4 B = 12 B = 20

A = −4 0.2/0/0 1.1/0.2/0.2 2.2/1.4/0.8 3.1/2.6/1.4 3.4/3.5/1.7 3.9/5.2/2.6 3.2/4.4/5.7
A = −2 0.8/0/2.4 2.5/1.8/5.1 6.1/7.6/5.8 7.6/7.3/7 7.5/5.9/7.3 7.6/5.9/7.1 5.9/4/8.3
A = −1 1.4/0.8/9.1 6.4/4.5/8.9 7.4/6.7/7.2 7.1/5.4/6.3 7.2/3.6/4.5 7.7/5.7/6.1 6.4/2.9/8.6
A = 0 4.5/1.8/8.6 9.2/6/7.4 4/4.1/4.7 2.8/3.1/4.7 3.7/4.5/4.3 7.7/4.7/7.6 5.7/2.1/11.9
A = 1 12/3/8.8 9.8/6.8/8.1 5.4/4/5.3 5.5/4.4/4.6 8.6/4.9/4.4 9.8/4/9.7 3.4/1.2/14.6
A = 2 14.9/3.4/6.9 12.1/7/6 10.3/4.4/4.8 11.8/5.3/4.5 10.9/3.8/5.3 4.3/1.4/7.8 1.3/0.7/10.1
A = 4 6.5/3.8/1.7 5.3/5.6/1.6 4.2/2.6/1.9 3.2/2/1.9 2/1.2/1.9 1.1/0.6/1.7 0.2/0/1.7
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shift and slope deviation are very extreme (B = −20 and A = −4). The conven-
tional growth chart is most sensitive in screening out big location shifts (A = 0 and
B = −20,−12,12,20). The conditional growth chart works the best for detecting
dramatic slope deviations (B = 0 and A = −4,−2,4,2). The proposed growth
chart works the best for identifying the unusual growth pattern combining mod-
erate location shift and slope deviation (B = −4 and A = −2). Among the three
growth charts, the proposed method has the most reasonable type I errors (the re-
sults when A and B are both 0) with mean 5.8% (9.8% for the conventional growth
chart and 12.8% for the conditional growth chart).

5. Conclusion and discussion. This paper develops a new statistical method
to construct growth charts for screening entire growth paths. By considering en-
tire growth paths, the proposed growth charts bring more informative insights into
monitoring pediatric growth. When our constructed growth chart is applied to the
Finnish growth data for monitoring puberty growth, it shows more effective perfor-
mance in detecting possible unusual growth patterns compared to existing growth
charts. Besides pediatrics, our proposed method can also be applied to other areas,
such as monitoring CD4 lymphocyte counts of uninfected children born to HIV-1-
infected women in HIV research, and helping determine the gene frequencies of
the most common mutations in the HFE gene in genetics research.

The proposed method also contributes to the statistical methodologies. First, it
provides a new way to rank longitudinal/sparse functional data. It approximates
the sparse and irregularly spaced functional data through PCA and represents
each individual using the resulting components scores. Then the percentile rank of
each individual can be identified by applying multivariate methods to components
scores. Second, the proposed regression based PCA algorithm provides a new way
to conduct PCA for sparse functional data. As shown in Section 4.1, this algorithm
is more computationally stable than Yao, Müller and Wang (2005) by avoiding in-
verting the high-dimensional variance–covariance matrix. In terms of estimating
component functions, the proposed method is comparable with the MLE method
[Peng and Paul (2009)]. The difference between the proposed method and MLE
methods is essentially the difference between least square regression and MLE
estimator. However, the regression framework has its own advantages over the
likelihood approaches. For example, one can replace the mean regressions with
robust regressions when the data are contaminated with outliers. In addition, with
minor modifications, the proposed regression based algorithm can also be used to
conduct other types of functional decomposition such as singular value decom-
position for functional data. By supporting various regression models and various
decompositions, the proposed method can be extended to a rich family of lower
dimension approximations for sparse functional data. Incorporating covariates and
conducting variable selections are also straightforward under the regression frame-
work. Our PCA algorithm estimates the mean and component functions nonpara-
metrically. If there are additional recourses indicating certain parametric forms are
more suitable, the efficiency of our method can be further improved.
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SUPPLEMENTARY MATERIAL

Supplement to “Regression based principal component analysis for sparse
functional data with applications to screening growth paths” (DOI: 10.1214/
15-AOAS811SUPP; .zip). R programs for the proposed algorithm and an example
of constructing the proposed growth chart.
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