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Graphical models are widely used to study biological networks. Inter-
ventions on network nodes are an important feature of many experimental
designs for the study of biological networks. In this paper we put forward
a causal variant of dynamic Bayesian networks (DBNs) for the purpose of
modeling time-course data with interventions. The models inherit the sim-
plicity and computational efficiency of DBNs but allow interventional data
to be integrated into network inference. We show empirical results, on both
simulated and experimental data, that demonstrate the need to appropriately
handle interventions when interventions form part of the design.

1. Introduction. Network inference approaches are widely used to study bi-
ological networks, including gene regulatory and signaling networks. Since pro-
cesses underlying such networks are dynamical in nature, time-course data can
help to elucidate regulatory interplay. Network inference methods for time-course
data have been investigated in the literature, with contributions including (among
many others) Hill et al. (2012), Husmeier (2003), Bansal, Gatta and di Bernardo
(2006). Scalable assays spanning multiple molecular variables continue to advance
and network inference applied to such data offers the potential to provide biologi-
cal insights over many variables at once. Inferred networks can be used to generate
testable hypotheses that are context specific in the sense of reflecting regulatory
events in the specific cells under study [Hill et al. (2012), Maher (2012)]. In dis-
ease biology, such context-specific networks can be used to shed light on disease-
specific processes and thereby inform drug targeting and personalized medicine
approaches [Akbani et al. (2014), Ideker and Krogan (2012)].

Interventions, for example, gene knockouts, RNA-interference (RNAi), gene
editing or inhibition of kinases, play an important role in experimental designs
aimed at elucidating network structure. This is due to the fact that association does
not imply causation: interventions can reveal whether a given node has a causal
influence on another as opposed to merely being co-expressed. As data acquisi-
tion costs fall, interventional time-course designs are becoming more common. It
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is important to note that in interventional designs the number of interventions is
often much smaller than the number of molecular variables (leave alone the num-
ber of possible interventions); this may be due to lack of suitable experimental
interventions or cost or both. This means that causal edges cannot simply be di-
rectly identified from corresponding interventional experiments; however, causal
inference may still be possible using a small subset of all possible interventions
[Hyttinen, Eberhardt and Hoyer (2013)].

In this paper, we put forward an approach to network inference from time-course
data with interventions. To fix ideas, we briefly introduce a data set that we study
(and describe in detail) below and that motivated the work described here. The
data comprise time-course assays of p = 48 signaling proteins in human cancer
cell lines. Experiments were carried out under four conditions: no interventions;
intervention on the AKT protein nodes; intervention on the EGFR nodes; inter-
vention on both AKT and EGFR (all interventions were carried out using drugs
that inhibit the enzymatic activity of the target, as we describe in detail below).
Intuitively, the interventional data are valuable because they give information not
only on the causal influences of the target nodes (AKT and EGFR), but also on the
wider graph structure, since causal descendants of the target nodes are expected to
change under intervention. On the other hand, since the number of interventions
carried out is small, a causal graph cannot be estimated by modeling of interven-
tions alone. Rather, a network inference approach is needed that can model the
time-course data itself as well as the changes seen under intervention and that is
the goal of the present paper.

From the perspective of causal inference [Pearl (2000, 2009)], interventional
data require special treatment because the intervention modifies the causal graph
and thereby the likelihood. We proceed within a graphical models framework,
combining ideas from Dynamic Bayesian Networks (DBNs) and Causal Bayesian
Networks [CBNs, see Definition 1.3.1 in Pearl (2000)]. We focus on continuous
data, as obtained in conventional biological time-course experiments. Interventions
are accommodated by modifying the statistical formulation for those experimen-
tal samples in which interventions were carried out, following ideas discussed in
Eaton and Murphy (2007), Pearl and Bareinboim (2014) and Pearl (2000). Specif-
ically, for experiments in which interventions are carried out, we modify the struc-
ture of the directed acyclic graph (DAG) that underlies the DBN and explore var-
ious parameterizations of the effect of the intervention. Our modeling of interven-
tions constitutes a pragmatic extension of DBNs to include causal operations that
allow analysis of mainstream experimental data. The approaches we propose can
be described in terms of CBNs and the “do” operator of Pearl (2000) applied to the
DAG underlying a DBN, as we discuss further below. We therefore refer to them
as “Causal Dynamic Bayesian Networks” (CDBNs). However, DBNs themselves
are not causal models and full formal justification of the approaches we propose
requires additional assumptions, including assumptions on the extent and form of
the effect of interventions and, for observational or partially interventional data,
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on the absence of hidden common causes. Full discussion of causal semantics is
beyond the scope of this paper, but we refer the interested reader to Pearl (2000)
for further discussion.

The remainder of the paper is structured as follows: First, a Bayesian framework
for network inference using DBNs is outlined in Sections 2.1.1 to 2.1.4. Next, the
interventional models that constitute our main focus are described in Section 2.2.
We illustrate some key points of the approach using examples in Section 2.3. Em-
pirical results appear in Section 3. We apply the methods on both simulated and
experimental protein signaling data, exploring the behavior of a number of ap-
proaches by which to model interventions, and comparing their performance with
respect to network reconstruction. We find that in the context of interventional
data, analyses that do not account for interventions do not perform well. We close
with discussion of open questions and future prospects.

An R package “interventionalDBN” for network inference using interventional
data is available on CRAN and on the author’s website: www2.warwick.ac.uk/fac/
sci/statistics/staff/academicresearch/spencer.

2. Methods. We fix ideas and notation by first reviewing the “classical” DBN
formulation (without interventions). We then go on to discuss in detail how the
likelihood can be modified to account for interventions. Taken together, this gives
an overall approach by which to perform structural network inference from time-
course data that includes interventions acting upon a subset of the nodes.

2.1. Dynamic Bayesian network model. A DBN uses a graph to describe prob-
abilistic relationships between variables through time, with associated parameters
specifying the temporal relationships. Following Friedman, Murphy and Russell
(1998), Husmeier (2003), Murphy (2002), we consider DBNs with edges forward
in time only (i.e., first-order Markov with no within-time-slice-edges) and assume
stationarity in the sense that neither network topology nor parameters change
through time (in what follows, we use “DBN” to refer to this specific class of
DBN). Then, each variable at time t depends only on its regulators at the previous
time step. Further, since the graph structure does not change with time and edges
are always forward in time, the topology can be described by a graph G with ex-
actly one vertex for each protein under study and edges understood to mean that
the child depends on the state of the parent at the previous time-step. Note that the
DBN model is in fact a DAG; the graph G introduced above can be used to con-
struct a DAG with one vertex for each variable at each time point; this is known as
the “unrolled” graph [see, e.g., Hill et al. (2012) for further details]. Operations on
DBNs can be described in terms of this underlying DAG, but the p-vertex graph G

offers a convenient summary.
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2.1.1. Statistical formulation. Let xj,c,t denote log-expression of variable j ∈
{1, . . . , p}, at time t ∈ {0, . . . , T − 1} in the time course obtained under experi-
mental conditions c ∈ C. We use X = {xj,c,t } to denote the complete data set. The
edge set of the graph G is E(G). Let γ (j) = {i : (i, j) ∈ E(G)} denote the set of
parents for node j . Then, for conditions c without intervention, the DBN model
we consider (for node j ) is

xj,c,t =
⎧⎪⎨
⎪⎩

α
(j)
1 + ∑

i∈γ (j)

xi,c,t−1β
(j)
i + εj,c,t , t > 0,

α
(j)
2 + εj,c,0, t = 0,

(1)

where β
(j)
i denotes parameters that govern the dependence on parent nodes in the

previous time step, α
(j)
1 , α

(j)
2 are intercept parameters that do not depend on the

parent set γ (j) and εj,c,t ∼ N(0, σ 2
j ) is a noise term. The use of two intercept

parameters, one for the initial time point, allows the model more flexibility to in-
corporate the effects of the parents acting on the first observation. Modeling the
initial observation also provides extra degrees of freedom, unless the experimental
design has only one unreplicated experimental condition.

2.1.2. Variable selection. Under the stationarity and Markov assumptions
above, there is a close relationship between inference concerning the DBN graph
G and variable selection for the above regression formulation. As discussed in
detail in Hill et al. (2012), exploiting this connection allows efficient inference re-
garding the graph G. Specifically, if P(i ∈ γ (j)|X) is the posterior probability that
variable i appears in the regression model for variable j above (i.e., the poste-
rior inclusion probability in the variable selection sense) and assuming a modular
graph prior P(G) (i.e., a prior that can be factorized over nodes), we have

P
(
(i, j) ∈ E(G)|X) = P

(
i ∈ γ (j)|X)

(2)
= ∑

γ∈M
I (i ∈ γ )P

(
γ (j) = γ |X)

,

where M denotes the set of all possible variable subsets and I is the indicator
function (for simplicity we assume that M does not depend on j , but it could do
so).

Thus, due to the structure of the DBN model, for estimation of posterior proba-
bilities of edges in graph G, it suffices to perform variable selection for each node
in turn, with variables at the previous time point considered as potential predictors.
To ease notational burden, we leave dependence on node j implicit in the follow-
ing sections. Let x = {xj,c,t } denote all observations for protein j ; let n (= T ×|C|)
be the total number of such observations. Then, model (1) can be written as

x = X0α + Xγ β + ε,(3)
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where Xγ denotes the matrix formed by selection of columns of X corresponding
to indices γ , ε ∼ Nn(0n, σ

2In), Nn denotes the n-dimensional multivariate Normal
distribution, 0n is the n-dimensional vector of zeros and In is the n × n identity
matrix. The design matrix is split into two parts: X0, which is the same for every
model and has parameter vector α; and Xγ , which depends on the choice of parents
given by γ and has parameter vector β . Let a be the length of α and b be the
length of β , then X0 has dimension n × a and Xγ has dimension n × b. Following
equation (1), we see that here a = 2 and X0 = [1{t>0}1{t=0}]n×2. In the absence
of interventions, observations of the parent proteins from the previous time point
form the columns of Xγ (we discuss interventions below). For the first observation,
where there are no previous observations, zeros are inserted into Xγ in the place
of the parent observations.

We can assume without loss of generality that the two parts of the design ma-
trix (X0 and Xγ ) are orthogonal, that is, XT

0 Xγ = 0a×b. This reparameterization
ensures the predictors have mean zero; for details see supplementary material
[Spencer, Hill and Mukherjee (2015)].

2.1.3. Marginal likelihood. The marginal likelihood p(x|γ ) for node j is ob-
tained by marginalizing over all model parameters, that is,

p(x|γ ) =
∫

p(x|θ , γ )p(θ |γ )dθ ,(4)

where θ = (α,β, σ ) is the full set of model parameters. We make use of widely
used parameter priors from the Bayesian literature [Denison et al. (2002)]. First,
we use improper priors for α and σ , namely, that p(α, σ |γ ) ∝ 1

σ
for σ > 0.

Note that as this prior is improper, for meaningful comparisons to be made be-
tween models in M, this prior must be the same for all of the models. Sec-
ond, we use Zellner’s g-prior for the regression coefficients so that β|(α, σ, γ ) ∼
Nb(0b, gσ 2(XT

γ Xγ )−1). Following Kohn, Smith and Chan (2001), Smith and Kohn
(1996), we set g = n. With this prior the covariance matrix for β is proportional to
(XT

γ Xγ )−1, which has some nice properties, for example, invariance to rescaling
of the columns of Xγ [Smith and Kohn (1996)]. Using standard results [Denison
et al. (2002)], the marginal likelihood is then given in closed form as

p(x|γ ) = K

(n + 1)b/2

(
xT

(
In − P0 − n

n + 1
Pγ

)
x
)−(n−a)/2

,(5)

where P0 = X0(XT
0 X0)

−1XT
0 , Pγ = Xγ (XT

γ Xγ )−1XT
γ and the normalizing con-

stant K = 1
2�(n−a

2 )π−(n−a)/2|XT
0 X0|−1.

We also wish to consider the model γ = ∅ (in which b = 0). The regression
equation is simply x = X0α + ε and the marginal likelihood is given by p(x|γ =
∅) = K(xT (In − P0)x)−(n−a)/2.
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2.1.4. Model prior. Following Scott and Berger (2010), we include a multi-
plicity correction to properly weight models in light of the number of possible
parent sets. Since there are

(p
k

)
possible models for node j with k parents, the prior

probability is chosen so that for absent prior information on specific edges we have
P(γ (j) = γ ) ∝ ( p

|γ |
)−1.

We may also wish to include existing biological knowledge in the model prior,
which we do by specifying a prior network G0, following Hill et al. (2012),
Mukherjee and Speed (2008), Werhli and Husmeier (2007). Such a prior network
is based on causal biochemistry and should be regarded as a prior on causal struc-
tures. A penalty is applied to each candidate graph G based on the number of edge
differences with the prior graph G0. That is,

P
(
γ (j) = γ |γ (j)

0

) ∝
(

p

|γ |
)−1

exp
(−λ

(∣∣γ \ γ
(j)
0

∣∣ + ∣∣γ (j)
0 \ γ

∣∣)),(6)

where γ
(j)
0 is the parent set of node j in the prior graph G0 and λ is a scalar hyper-

parameter that controls the strength of the prior. Detailed discussion of informative
priors for networks is beyond the scope of this paper; we refer interested readers
to the references above for further discussion. The prior graph used for results re-
ported in Section 3.2 is shown in Spencer, Hill and Mukherjee (2015). The prior
strength parameter was chosen subjectively to be λ = 4.

2.1.5. Computation. Combining the marginal likelihood (5) and model prior
P(γ (j)) gives the posterior P(γ (j)|x) ∝ p(x|γ (j))P(γ (j)) over parent sets (so far,
without interventions). Posterior probabilities for individual edges in the graph are
obtained directly from the posterior over parent sets by (2). As discussed in detail
in Hill et al. (2012), placing a bound m on graph in-degree, following common
practice in structural inference for graphical models [e.g., Husmeier (2003)], al-
lows exact computation of the posterior scores.

2.2. Modeling interventions. In statistical terms, interventions may alter the
edge structure of the graphical model, or model parameters, or both. Here, we dis-
cuss the modeling of interventional data as a causal extension of the DBN model
outlined above, which we call a Causal Dynamic Bayesian Network (CDBN).
For experimental conditions c that involve an intervention, Section 2.2.1 below
outlines different approaches by which to form the likelihood pc(x|G, θc) for an
interventional experiment c. We first give a general typology of interventions fol-
lowing Eaton and Murphy (2007), with extensions to accommodate the wide range
of interventions seen in biological experiments, and then go on to discuss kinase
inhibition in more detail.

It is important to note that throughout we assume that the nodes targeted by
the interventions are known and so the intervention has no additional unmodeled
effects elsewhere in the network, an assumption which is integral to the definition
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of a CBN [Pearl (2000)]. We also assume that interventions are in effect during the
entire period of the experiment (e.g., a gene that is knocked out remains knocked
out throughout). This is a reasonable assumption for mainstream interventional
designs, but for some interventions that are mediated by reversible biochemistry
this may require that the time course is of appropriate total length. Although we do
not pursue this direction in this paper, we note that since the approaches described
here provide a likelihood that incorporates interventions, they could in principle
be used to estimate the targets of interventions.

2.2.1. Approaches for modeling interventions. In a perfect intervention cer-
tain edges that the target node participates in are removed. We call an intervention
that corresponds to removal of edges leading out of the target node a perfect-out
intervention and one that corresponds to removal of edges leading into the target
node a perfect-in intervention. For example, a knockout with known target gene
j can be thought of as externally setting the transcription level of node j to zero.
This removes the causal influence of other nodes on j and therefore constitutes a
perfect-in intervention. However, since the change to j may have causal influences
on other nodes, outgoing links are allowed to remain.

When applied to a DBN, such an intervention corresponds to a compound “do”
[Pearl (2000)] that operates on multiple nodes in the underlying unrolled DAG. For
example, the knockout of gene j mentioned above would correspond to do(Xj,0 =
0, . . . ,Xj,T −1 = 0), where Xj,t is the vertex (and associated random variable) in
the unrolled graph corresponding to gene j at time t .

In a mechanism change intervention the structure of the graph remains un-
changed, but parameters associated with edges that the target participates in are
allowed to change. In a mechanism-change-out intervention, parameters are re-
estimated for the case where the target is a parent; in a mechanism-change-in in-
tervention parameters are re-estimated when the target is the child.

In a fixed-effect intervention, the effect of the inhibitor is modeled by an addi-
tional, additive parameter in the regression equation. In a fixed-effect-in interven-
tion the effect appears in the equation for the target itself, while in a fixed-effect-out
intervention the effect appears in the equations for the children of the target. These
formulations can be useful in settings where the intervention results in a change
in the average level of the target or its causal descendants. All of the intervention
models can be described within the framework of CBNs using the “do” operator of
Pearl [Pearl (2000), Pearl and Bareinboim (2014)]; for more details see Spencer,
Hill and Mukherjee (2015).

In our empirical results, we focus on a specific type of intervention, namely,
drug inhibition of kinases, as used in studies of protein signaling. This application
illustrates the need to consider the biological mechanism of the intervention in
selecting from the interventional formulations outlined above.

Kinase inhibition blocks the kinase domain of the target, removing the ability
of the target to enzymatically influence other nodes. However, such inhibitors may
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FIG. 1. Diagrammatic representation of intervention models in their “-out” forms, for variables X,
Y with directed acyclic graph X → Y; “Xi � X” denotes inhibition of variable X by an inhibitor Xi
(see text for details).

not prevent phosphorylation of the target itself. Therefore, we focus on “-out” in-
terventions for modeling kinase inhibitors. These intervention models can be used
in combination (see Figure 1) to reflect understanding of the biological action of
the interventions. The perfect and mechanism change intervention models cannot
be used together, as this would introduce a column of zeros into the design matrix.
Perfect interventions in combination with fixed-effect interventions are well suited
to modeling kinase inhibition using log-transformed data, since they capture the
blocking of enzymatic ability and also allow estimation of the quantitative effect
of inhibition on child nodes.

Any extra parameters introduced by the intervention models are handled in ex-
actly the same way as the existing regression coefficients denoted by β in equa-
tion (3). The design matrix Xγ is augmented to include the effects of the inter-
ventions in the conditions when they are active and so once the parameters have
been integrated out, the marginal likelihood takes the same form as before [equa-
tion (5)]. Regressions that include causal components can be described within the
framework of Structural Equation Models [for a comprehensive discussion see
Chapter 5 of Pearl (2000)]. Full technical details of how to apply these interven-
tions in practice are given in Spencer, Hill and Mukherjee (2015), along with a toy
example illustrating their application.

2.3. Protein data example. We now illustrate the foregoing approaches using
a simple, real data example (Figure 2) in which a known three-node network is in-
terrogated by inhibition (data courtesy Gray Lab, OHSU Knight Cancer Institute,
Portland, OR, USA). Three phospho-proteins—the receptor EGFR, phosphory-
lated on tyrosine residue #1173 (“EGFRpY1173”), and two nodes downstream of
EGFR, namely, AKTpS473 and MAPKpT202—were observed through time un-
der several experimental conditions. The conditions included the following: no in-
hibitors (green in Figure 2), with an AKT inhibitor (blue), with an EGFR inhibitor
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FIG. 2. Real data illustration of the behavior of interventional and noninterventional approaches. Data (circles; expression level vs time index) are from
a breast cancer cell line AU565 for three proteins EGFRpY1173, AKTpS473 and MAPKpT202. The data were modeled using DBN (no intervention) and
CDBN with mechanism change, perfect, fixed effect, and perfect with fixed effect interventions (the latter all in their “out” form). Fitted values are shown
as lines; inferred networks are shown in the last row, with marginal posterior edge probabilities shown in the legends. “True network” indicates what we
believe to be the correct causal graph (AKT and MAPK are known to be downstream of EGFR, these edges are verified by the interventional data shown
here).
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(red) and with both EGFR and AKT inhibition (purple). In line with the known
network, the data show a clear reduction in the observed level of AKTpS473 and
MAPKpT202 under EGFR inhibition.

To investigate the behavior of the interventional schemes described above, we
carried out network inference for these data using a CDBN with the respective
intervention scheme (in their “out” forms). We show the data itself, posterior ex-
pected fitted values obtained via model averaging (hereafter abbreviated to fitted
values) from the various models and the corresponding inferred networks. Strik-
ingly, although several of the methods fit the data reasonably well, only fixed effect
and perfect fixed effect are able to both fit the data and estimate what we believe
to be the correct network.

It is noteworthy that even in this simple example it is possible to fit the data
well while estimating a plainly incorrect network. For example, the no intervention
model fits the data (including the inhibitor time courses) reasonably well, but does
not estimate the known edges from EGFR to MAPK and AKT, despite the fact
that both MAPK and AKT change dramatically under EGFR inhibition in the very
data being analyzed. This is an example of statistical confounding that arises due
to the fact that the data are analyzed “blind”: the analysis does not know which
time course was obtained under EGFR inhibition, rendering the easily seen causal
effect of EGFR on AKT and MAPK invisible to network inference. In contrast,
the fixed-effect intervention approaches can directly incorporate this information
in the overall network inference. Note also that the inhibitors can be seen to affect
the concentration of their target proteins, most likely due to feedback mechanisms
that are represented by self-edges in the estimated network. For more discussion
about the role of the self-edge in the network, see Section 4.

3. Results.

3.1. Simulation study. We performed a simulation study to compare the net-
work inference methods with different intervention models. Data for 15 nodes
were simulated from a CDBN using a data-generating graph G∗ [see Figure S3
in Spencer, Hill and Mukherjee (2015)]. Mimicking the design of typical real pro-
teomic experiments, for each protein we simulated a small number of time points
(8) in four experimental conditions (no inhibitor; inhibition of node “A”; inhibition
of node “B”; inhibition of both node “A” and node “B”), giving n = 32 multivariate
datapoints. We sampled coefficients for the node-specific linear models uniformly
at random from the set (−1,−0.5) ∪ (0.5,1) in order to create associations of
various strengths, while avoiding associations close to zero. To simulate data un-
der in silico inhibition requires an intervention model: since each interventional
scheme also corresponds to such a data-generating model, to avoid bias, we sim-
ulated data based on all four intervention models that were considered, namely,
perfect, fixed effect, perfect with fixed effect and mechanism change (all in their
“out” forms). Network inference was then carried out as described above using
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FIG. 3. Simulated data results. Data were generated based on (a) perfect (b) fixed effect, (c) per-
fect and fixed effect and (d) mechanism change intervention models (all in their “out” form) and
analyzed using CDBNs coupled to these four intervention models, plus a classical DBN (“no in-
tervention”) and a baseline co-expression analysis (“correlations”; see text for details). Receiver
Operating Characteristic (ROC) curves for each method in each data-generating regime are shown;
the crosses correspond to the point estimate of the network obtained by thresholding marginal pos-
terior edge probabilities at 1/2.

these four intervention models plus the model with no intervention and simple,
marginal correlations between nodes (i.e., a co-expression network).

Figure 3 shows ROC curves (produced from 20 data sets for each regime) for
each combination of intervention method and the underlying model. These curves
plot true positive rates (with respect to edges in the data-generating graph) against
false positive rates across a range of thresholds on marginal posterior edge prob-
abilities. In each case and as expected, analysis under the data-generating model
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gives the best results. However, the perfect and fixed-effect model does consis-
tently well and generally performs almost as well as inference using the data-
generating model. The mechanism change model generally appears to perform
similarly to the perfect intervention model. Co-expression analysis does much less
well than all of the CDBN models. Note that even under the correct data-generating
model, in this noisy, small sample example, the area under the ROC curve can be
much lower than unity, highlighting the inherent difficulty of the network inference
problem and the challenging nature of the simulation.

3.2. Cancer cell line data.

3.2.1. Data. Phospho-protein time courses were obtained from two breast
cancer cell lines (AU565 and BT474) for 48 proteins using reverse-phase pro-
tein arrays (data courtesy Gray Lab, Knight Cancer Center, OHSU, Portland, OR;
these data form part of a larger, ongoing study covering a broad panel of breast
cancer cell lines and a larger set of proteins). Data comprised 8 time points (0.5,
1, 2, 4, 8 and 24 hours following Serum stimulation) in 4 experimental condi-
tions: no inhibitor (DMSO); EGFR inhibition by Lapatinib (“EGFRi”, at a dose of
250 nM);2 AKT inhibition by GSK690693 (“AKTi”, at 250 nM); and inhibition
by both EGFRi and AKTi (each at 250 nM). This gave n = 32 datapoints for each
protein. For further details concerning experimental protocol see Spencer, Hill and
Mukherjee (2015).

3.2.2. Cell line specific networks. The two cancer cell lines studied differ in
terms of the genetic alterations that they harbor [Neve et al. (2006)] and may differ
in terms of underlying signaling network topology. To avoid aggregating poten-
tially heterogeneous data, we analyzed the cell lines separately to obtain cell line-
specific networks. Figure 4 shows the inferred networks for the two cell lines. The
edges highlighted in green are not inferred with the conventional DBN without
interventions [the full networks inferred by the no intervention DBN are shown in
Spencer, Hill and Mukherjee (2015)]. We discuss network validity below, but note
that full validation of the cell line-specific networks requires further experimental
work and is beyond the scope of this paper.

3.2.3. Network validity. In this real data example, the true data-generating net-
works are not known. However, since the experimental design includes interven-
tions, the relevant data (EGFRi and AKTi) can be used to test the causal validity of
the estimated networks downstream of the inhibited nodes. For example, suppose
a node k changes under inhibition of AKT. This means that k is downstream of
AKT; since the observation is made under external manipulation of AKT, we can

2Lapatinib is a dual EGFR/HER2 inhibitor.
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FIG. 4. Estimated networks for cell lines AU565 and BT474. Data were analyzed using a CDBN with informative prior and perfect fixed effect out
interventions; all edges with posterior probability greater than 0.5 are shown. Highlighted edges are not present when no intervention model is used.
Proteins with no edges are not shown.
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say that k is a descendant of AKT in the underlying causal graph. Testing each
node for change under AKTi (this was done using a paired t-test at the 5% level)
gave a set DAKT of nodes downstream of AKT that could be compared against the
corresponding set of descendants from the inferred networks. This was done in an
ROC-sense in the following way for each cell line. First, we thresholded posterior
edge probabilities at τ to obtain a network Ĝτ , which then gave an estimated set of
descendants of AKT, D̂AKT(τ ). The number of true and false positives at thresh-
old τ are then |D̂AKT(τ ) ∩ DAKT| and |D̂AKT(τ ) \ DAKT|, respectively. Varying
threshold τ then gave an ROC curve assessing ability to recover causal descen-
dancy across the full range of thresholds. To ensure that our inference approach
could uncover direct associations and that our conclusions did not depend solely
on the form of this analysis, we also compared the set of significant downstream
nodes DAKT with the inferred set of direct children of AKT for each posterior
edge probability threshold. These variants of the first two ROC plots are shown in
Figure 5(c) and (d).

Figure 5(a) shows the ROC curves for each of the intervention approaches con-
sidered, combined across both inhibited proteins (EGFR and AKT) and cell lines
(AU565 and BT474). The fixed-effect approach has the highest ROC curve area
(0.830), marginally ahead of perfect fixed effect (0.823), which has the poste-
rior median network with the highest true positive rate. The perfect fixed-effect
model is compared with other methods in the literature in Figure 5(b), including
DDEPN [Bender et al. (2010)] and a Gaussian process-based method due to Äijö
and Lähdesmäki (2009), which does not explicitly model interventions. The influ-
ence of the prior network is also explored.

Due to the limited size of the data set, it is not feasible to leave out the inhibitor
data used to produce the ROC curves and still carry out network inference. The
results shown should therefore be regarded as an assessment of “causal fit” rather
than a validation of causal links. It is noteworthy that the existing approaches, in-
cluding classical DBNs, are not able to correctly estimate the causal dependencies
even for the interventions and protein levels that are present in the training data
itself.

4. Discussion. Recently, there has been interesting work on explicitly causal
methods for networks, including linear [Maathuis, Kalisch and Bühlmann (2009)]
and nonlinear [Oates and Mukherjee (2012)] models. Interventional data are im-
portant for elucidation of causal links. However, standard DBNs are not appro-
priate for modeling interventional data. By modeling interventions explicitly we
were able to extend DBNs in a causal direction. We discussed and illustrated the
issues of confounding that can arise in network inference. As we showed using
real data, nodes not linked in terms of regulation can nonetheless exhibit statisti-
cal association and thereby easily lead network inference astray. We showed how
such confounding can present a concern even with only three nodes, but the issue
becomes rapidly more severe in higher dimensions.
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FIG. 5. Real data results. Receiver Operating Characteristic (ROC) curves showing agreement of
estimated networks with changes observed under experimental intervention; the crosses correspond
to the point estimate of the network obtained by thresholding marginal posterior edge probabilities
at 1/2. Upper panels show results based on analysis of descendancy in estimated networks; lower
panels show corresponding results using direct children in estimated networks (see text for details).
Left panels compare CDBNs using various interventional models against each other; right panels
compare selected CDBNs with several existing approaches (as detailed in text).

The posterior edge probabilities that we report are not truly causal quantities. In
principle, it could be possible to instead consider causal coefficients calculated via
the do-calculus [as in Maathuis, Kalisch and Bühlmann (2009)]. However, since
interventions in time-course experiments are in fact compound do operations (ap-
plying to multiple time points and therefore multiple nodes in the unrolled DAG),
calculation of causal coefficients is more complicated than in the static DAG case,
and we are not aware of a simple way to proceed in this setting, even for the lin-
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ear models considered here. On the other hand, in contrast to static DAGs as in
Maathuis, Kalisch and Bühlmann (2009), for feed-forward DBNs of the type con-
sidered here, the underlying DAG is identifiable (i.e., the equivalence class always
contains exactly one graph). We showed empirically that the posterior edge prob-
abilities we reported provide useful information on causal edges, but we do not
currently fully understand the relationship between such measures [as used here
and in most mainstream Bayesian approaches for biological network inference, in-
cluding, among others, Husmeier (2003), Hill et al. (2012)] and the corresponding
causal coefficients, and further work in this area would be valuable. We reiterate
that causal interpretation of CDBNs requires additional assumptions that go be-
yond those needed to justify conditional independence statements. However, as
noted by Dawid (2007) in the context of static DAGs, such assumptions are gener-
ally difficult, if not impossible, to check. Therefore, empirical validation of causal
inference remains a crucial direction for future work.

Results on simulated data suggested that the “perfect-fixed-effect-out” inter-
vention scheme we proposed represents a good default choice for kinase inhibition
experiments. We conjecture that “perfect-fixed-effect-in” interventions may repre-
sent a good default approach for analysis of gene expression time-course data ob-
tained under knockouts and RNAi knockdowns, but we did not explore such data
here. We recommend that an intervention model should be chosen in line with the
mechanism of the intervention under consideration. In situations were biochemical
knowledge is insufficient, it may be possible to treat the choice of interventional
regime as a model selection problem, but we did not explore this possibility here.

The networks shown in Figure 4 reflect several features that are typical of pro-
tein signaling, including a cascade-type structure originating from the receptor
EGFR. The edges highlighted in green show the changes in the network that are
induced by modeling the interventions, and the improvement in the ROC curve in
Figure 5(a) suggests that using the perfect fixed-effect intervention model has pro-
duced a more accurate network, particularly around the inhibited proteins. Since
these edges (in green) are inferred only when the inhibition is taken into account,
they may be more likely to reflect causal information. There are more differences
between the two cell lines than might have been expected. These differences may
be real or may be due to some of the many limitations inherent to biological net-
work analyses, including experimental caveats and limitations of the inference ap-
proach and causal models. However, experimental validation of the networks is
beyond the scope of this paper.

The ROC curves in Figure 5 show the perfect fixed-effect model performs bet-
ter than several other approaches. However, the poor performance of the no inter-
vention DBN model (which is identical except for the modeling of interventions)
demonstrates that this success is not based on the network inference scheme or the
prior, but on the appropriate handling of interventions. Surprisingly, the Gaussian
process method performs better overall than DDEPN, even though the latter mod-
els interventions. This may be due to the fact that the inference is conducted over
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a relatively large network (48 proteins) and DDEPN suggests a very small set of
potential edges.

The self-edge (the edge that connects a protein to itself) has two roles in the
model. First, it can represent statistical autocorrelation in the protein time course.
Second, it can represent a (negative or positive) feedback loop, possibly via some
additional unmeasured variables. Since we integrate out the regression coefficient
to obtain the marginal likelihood, the posterior signaling network does not give any
indication of the sign of any feedback, nor the role of the self-edge. In future work
we hope to differentiate between inhibition and activation effects in the signaling
network, helping to clarify the role of the self-edges.
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SUPPLEMENTARY MATERIAL

Supplement to “Inferring network structure from interventional time-
course experiments” (DOI: 10.1214/15-AOAS806SUPP; .pdf). Additional tech-
nical information about orthogonalization, the experimental procedure and the in-
tervention models, including a toy example. Supplementary figures showing the
prior network, the “true” network used for simulations and the posterior signaling
networks without interventions.

REFERENCES

ÄIJÖ, T. and LÄHDESMÄKI, H. (2009). Learning gene regulatory networks from gene expression
measurements using non-parametric molecular kinetics. Bioinformatics 25 2937–2944.

AKBANI, R. et al. (2014). A pan-cancer proteomic perspective on the Cancer Genome Atlas. Nature
Communications 5 3887.

BANSAL, M., GATTA, G. D. and DI BERNARDO, D. (2006). Inference of gene regulatory networks
and compound mode of action from time course gene expression profiles. Bioinformatics 22 815–
822.

BENDER, C., HENJES, F., FRÖHLICH, H., WIEMANN, S., KORF, U. and BEISSBARTH, T. (2010).
Dynamic deterministic effects propagation networks: Learning signalling pathways from longi-
tudinal protein array data. Bioinformatics 26 i596–i602.

DAWID, A. P. (2007). Fundamentals of statistical causality. Research Report No. 279, Dept. Statis-
tical Science, Univ. College, London.

DENISON, D. G. T. et al. (2002). Bayesian Methods for Non-Linear Classification and Regression.
Wiley, Chichester, UK.

EATON, D. and MURPHY, K. (2007). Exact Bayesian structure learning from uncertain interventions.
Journal of Machine Learning Research: Workshop and Conference Proceedings 2 107–114.

FRIEDMAN, N., MURPHY, K. and RUSSELL, S. (1998). Learning the structure of dynamic proba-
bilistic networks. In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence
139–147. Morgan Kaufmann, San Francisco, CA.

http://dx.doi.org/10.1214/15-AOAS806SUPP


524 S. E. F. SPENCER, S. M. HILL AND S. MUKHERJEE

HILL, S. M. et al. (2012). Bayesian inference of signaling network topology in a cancer cell line.
Bioinformatics 28 2804–2810.

HUSMEIER, D. (2003). Sensitivity and specificity of inferring genetic regulatory interactions from
microarray experiments with dynamic Bayesian networks. Bioinformatics 19 2271–2282.

HYTTINEN, A., EBERHARDT, F. and HOYER, P. O. (2013). Experiment selection for causal discov-
ery. J. Mach. Learn. Res. 14 3041–3071. MR3138909

IDEKER, T. and KROGAN, N. J. (2012). Differential network biology. Mol. Syst. Biol. 8 565.
KOHN, R., SMITH, M. and CHAN, D. (2001). Nonparametric regression using linear combinations

of basis functions. Stat. Comput. 11 313–322. MR1863502
MAATHUIS, M. H., KALISCH, M. and BÜHLMANN, P. (2009). Estimating high-dimensional inter-

vention effects from observational data. Ann. Statist. 37 3133–3164. MR2549555
MAHER, B. (2012). ENCODE: The human encyclopaedia. Nature 489 46–48.
MUKHERJEE, S. and SPEED, T. P. (2008). Network inference using informative priors. Proc. Natl.

Acad. Sci. USA 105 14313–14318.
MURPHY, K. P. (2002). Dynamic Bayesian networks: Representation, inference and learning. Ph.D.

thesis, Univ. California, Berkeley. MR2704368
NEVE, R. M. et al. (2006). A collection of breast cancer cell lines for the study of functionally

distinct cancer subtypes. Cancer Cell 10 515–527.
OATES, C. J. and MUKHERJEE, S. (2012). Network inference and biological dynamics. Ann. Appl.

Stat. 6 1209–1235. MR3012527
PEARL, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge Univ. Press, Cambridge.

MR1744773
PEARL, J. (2009). Causal inference in statistics: An overview. Stat. Surv. 3 96–146. MR2545291
PEARL, J. and BAREINBOIM, E. (2014). External validity: From do-calculus to transportability

across populations. Statist. Sci. 29 579–595. MR3300360
SCOTT, J. G. and BERGER, J. O. (2010). Bayes and empirical-Bayes multiplicity adjustment in the

variable-selection problem. Ann. Statist. 38 2587–2619. MR2722450
SMITH, M. and KOHN, R. (1996). Nonparametric regression using Bayesian variable selection.

J. Econometrics 75 317–344.
SPENCER, S. E. F., HILL, S. M. and MUKHERJEE, S. (2015). Supplement to “Inferring network

structure from interventional time-course experiments.” DOI:10.1214/15-AOAS806SUPP.
WERHLI, A. V. and HUSMEIER, D. (2007). Reconstructing gene regulatory networks with Bayesian

networks by combining expression data with multiple sources of prior knowledge. Stat. Appl.
Genet. Mol. Biol. 6 47 pp. (electronic). MR2349908

S. E. F. SPENCER

DEPARTMENT OF STATISTICS

UNIVERSITY OF WARWICK

COVENTRY

CV4 7AL
UNITED KINGDOM

E-MAIL: s.e.f.spencer@warwick.ac.uk

S. M. HILL

MRC BIOSTATISTICS UNIT

CAMBRIDGE

CB2 0SR
UNITED KINGDOM

E-MAIL: steven.hill@mrc-bsu.cam.ac.uk

S. MUKHERJEE

MRC BIOSTATISTICS UNIT

AND UNIVERSITY OF CAMBRIDGE

CAMBRIDGE

CB2 0SR
UNITED KINGDOM

E-MAIL: sach@mrc-bsu.cam.ac.uk

http://www.ams.org/mathscinet-getitem?mr=3138909
http://www.ams.org/mathscinet-getitem?mr=1863502
http://www.ams.org/mathscinet-getitem?mr=2549555
http://www.ams.org/mathscinet-getitem?mr=2704368
http://www.ams.org/mathscinet-getitem?mr=3012527
http://www.ams.org/mathscinet-getitem?mr=1744773
http://www.ams.org/mathscinet-getitem?mr=2545291
http://www.ams.org/mathscinet-getitem?mr=3300360
http://www.ams.org/mathscinet-getitem?mr=2722450
http://dx.doi.org/10.1214/15-AOAS806SUPP
http://www.ams.org/mathscinet-getitem?mr=2349908
mailto:s.e.f.spencer@warwick.ac.uk
mailto:steven.hill@mrc-bsu.cam.ac.uk
mailto:sach@mrc-bsu.cam.ac.uk

	Introduction
	Methods
	Dynamic Bayesian network model
	Statistical formulation
	Variable selection
	Marginal likelihood
	Model prior
	Computation

	Modeling interventions
	Approaches for modeling interventions

	Protein data example

	Results
	Simulation study
	Cancer cell line data
	Data
	Cell line speciﬁc networks
	Network validity


	Discussion
	Acknowledgments
	Supplementary Material
	References
	Author's Addresses

