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Abstract. We investigate the problem of the rate of convergence to equilibrium for ergodic stochastic differential equations driven
by fractional Brownian motion with Hurst parameter H > 1/2 and multiplicative noise component o. When ¢ is constant and for
every H € (0, 1), it was proved by Hairer that, under some mean-reverting assumptions, such a process converges to its equilibrium
at a rate of order t—% where « € (0, 1) (depending on H). The aim of this paper is to extend such types of results to some
multiplicative noise setting. More precisely, we show that we can recover such convergence rates when H > 1/2 and the inverse
of the diffusion coefficient o is a Jacobian matrix. The main novelty of this work is a type of extension of Foster—Lyapunov like
techniques to this non-Markovian setting, which allows us to put in place an asymptotic coupling scheme without resorting to
deterministic contracting properties.

Résumé. Cet article est consacré a la vitesse de convergence a 1’équilibre pour des équations différentielles stochastiques multi-
plicatives dirigées par un mouvement brownien fractionnaire (fBm). Dans le cas additif, i.e. lorsque le coefficient « diffusif » o est
constant et non dégénéré, cette question a été étudiée par Hairer qui, sous des hypotheses de contraction du coefficient de dérive en
dehors d’un compact, a établi par des méthodes de couplage qu’un tel processus converge a 1’équilibre a une vitesse dominée par
Ct™%, ot € (0, 1) dépend de I'indice de Hurst H du fBm. L’objectif de notre travail est d’étendre ce type de résultat au cadre
multiplicatif. Plus précisément, nous montrons que si H > 1/2 et si o~ ! est une matrice jacobienne, alors le résultat précédent reste
vrai avec des bornes identiques sur la vitesse de convergence. La principale nouveauté de ce travail réside dans le développement
de techniques de type Foster—Lyapounov dans ce cadre non markovien, nous permettant de mettre en place un schéma de couplage
similaire a [9] sans faire appel a des propriétés de contraction déterministes.
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1. Introduction

Stochastic differential equations (SDEs) driven by a fractional Brownian motion (fBm) have been introduced to model
random evolution phenomena whose noise has long range dependence properties. Indeed, beyond the historical mo-
tivations in Hydrology and Telecommunication for the use of fBm (highlighted e.g. in [14]), recent applications of
dynamical systems driven by this process include challenging issues in Finance [8], Biotechnology [17] or Biophysics
[12,13].

The study of the long-time behavior (under some stability properties) for fractional SDEs has been developed by
Hairer [9], Hairer and Ohashi [10], and by Hairer and Pillai [11] (see also [1,5,7] for another setting called random
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dynamical systems and [2,3] for some results of approximations of stationary solutions) who introduced a suitable
notion of stationary solutions for these a priori non-Markov SDE’s and extended some of the tools of the Markovian
theory to this setting. In particular, criteria for uniqueness of the invariant distribution are provided in the three above
papers in different settings, namely: additive noise, multiplicative noise with H > 1/2 and multiplicative noise with
H € (1/3,1/2) (in an hypoelliptic context), respectively.

When uniqueness holds for the invariant distribution, a challenging question is that of the rate of convergence to
this equilibrium. In [9], the author proved that in the additive noise setting, the process converges in total variation to
the stationary regime with a rate upper-bounded by Cyr~©~#) for any ¢ > 0, with

= (1.1)

{% if He(, D\ (1),
H(1—-2H) ifHe (0,11

But, to the best of our knowledge, no result of rate of convergence exists in the multiplicative setting. The aim of the
current paper is to extend the results of [9] to the multiplicative setting when H > 1/2.
More precisely, we deal with an R¢-valued process (X 1)r>0 Which is a solution to the following SDE

dX, =b(X,)dt +o(X,)dB,, (1.2)

where b : R — R and o : RY — My 4 are (at least) continuous functions, and where Ml 4 is the set of d x d real
matrices. In (1.2), (B;);>0 is a d-dimensional fractional Brownian motion with Hurst parameter H € (%, 1), H-fBm
for short. Note that under some Holder regularity assumptions on the coefficients (see e.g. [4,16] for background),
(strong) existence and uniqueness hold for the solution to (1.2) starting from xo € R¥.

Introducing the Mandelbrot—Van Ness representation of the fractional Brownian motion,

0
B, =aH/ ()12 @AW, sy —dW,), 120, (13)

—00

where (W;);cr is a two-sided R4-valued Brownian Motion and ay is a normalization coefficient depending on
H, (X, (Bs+1)s<0)r>0 can be realized through a Feller transformation (Q;);>0 on the product space RY x Wa s
(6 €(1/2,H) and 6 + § € (H, 1)) whose definition is recalled in (2.1) (we refer to [10] for more rigorous back-
ground on this topic). In particular, an initial distribution of this dynamical system is a distribution 1.9 on RY x W s.
In probabilistic words, an initial distribution is the distribution of a couple (Xo, (Bs)s<o) wWhere (B;)s<o is an R4-
valued H-fBm on (—o0, 0].

Then, such an initial distribution is classically called an invariant distribution if it is invariant by the transformation
Q; for every t > 0. However, the concept of uniqueness of invariant distribution is slightly different from the clas-
sical setting. Actually, we say that uniqueness of the invariant distribution holds if the stationary regime, that is, the
distribution Qpu of the whole process (X f‘),zo with initial distribution u, is unique; in other words, this concept of
uniqueness corresponds to the classical one up to identification by the equivalence relation: i ~ v <= Qu ~ Qv,
see [10] for background. In harmony with the previous concept, coupling two paths issued of o and p, where the
second one denotes an invariant distribution of (Q;);>0, consists (classically) in finding a stopping time 7, such that
(X fﬁfrm),zo =X f F1,,)1>0- Thus, a rate of convergence in total variation can be deduced from bounds established on
P(ts0 > 1), 1> 0.

Now, let us briefly recall the coupling strategy of [9]. First, one classically waits that the paths get close. Then, at
each trial, the coupling attempt is divided in two steps. First, one tries in Step 1 to stick or cluster the positions within
an interval of length 1. Then, in Step 2, one tries to ensure that the paths stay clustered until +00. Actually, oppositely
to the Markovian case where the paths stay naturally together after a clustering (by putting the same noise on each
coordinate), the main difficulty here is that, due to the memory, staying together is costly. In other words, this property
can be ensured only with help of a non trivial coupling of the noises. We thus talk of asymptotic coupling. If one of
the two previous steps fails, we will begin a new attempt but only after a (long) waiting time which is called Step 3.
During this step, we again wait for the paths to get close, but also wait for the memory of the coupling cost to become
sufficiently small, in order to start a new trial only after a weak influence of the past is granted.

In the previous construction, the fact that o is constant is fundamental to ensure the two following properties:
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e If two fBms B! and B? differ by a drift term, then two solutions X' and X2 of (1.2) respectively directed by B!
and B? also differ by a drift term. This allows in particular to use Girsanov Theorem to build the coupling in Step 1.

e Under some “convexity” assumptions on the drift away from a compact set, two paths X! and X? directed by the
same fBm (or more precisely, by two slightly different paths) get closer and the distance between the two paths can
be controlled deterministically.

In the present paper, o is not constant and the two above properties are no longer valid. The challenge then is to
extend the applicability of the previous coupling scheme to such a situation. The replacement of each of the above
properties requires us to deal with different (though related) difficulties. In order to be able to extend the Girsanov
argument used in Step 1 to a non constant o, we will restrain ourselves to diffusion coefficients for which some
injective function of two copies of the process differs by a drift term whenever their driving fBm do. A natural
assumption on ¢ granting the latter property is that x — o ~!(x) is (well-defined and is) a Jacobian matrix. This will
be the setting of the present paper.

As concerns a suitable substitution of the second lacking property, a natural (but to our knowledge so far not
explored) idea is to attempt to extend Meyn—Tweedie techniques (see e.g. [6] for background) to the fractional setting.
More precisely, even if the paths do not get closer to each other deterministically, one could expect that some Lyapunov
assumption could eventually make the two paths return to some compact set simultaneously. The main contribution
of the present paper is to incorporate such a Lyapunov-type approach into the study of long-time convergence in the
fractional diffusion setting. As one could expect, compared to the Markovian case, the problem is much more involved.
Actually, the return time to a compact set after a (failed) coupling attempt does not only depend on the positions of the
processes after it, but also on all the past of the fBm. Therefore, in order that the coupling attempt succeeds with lower-
bounded probability, one needs to establish some controls on the past behavior of the fBms that drive the two copies of
the process, conditionally to the failure of the previous attempts. This point is one of the main difficulties of the paper,
since, in the corresponding estimates, we carefully have to take into account all the deformations of the distribution
that previously failed attempts induce. Then, we show that after a sufficiently long waiting time, conditionally on
previous fails the probability that the two paths be in a compact set and that the influence of past noise on the future
be controlled, is lower-bounded. Bringing all the estimates together yields a global control of the coupling time and a
rate of convergence which is similar to the one in [9] in the additive noise case.

We notice that the application of the previous ideas to fractional SDE with more general diffusion coefficients can
be considered. This would in particular require to extend a part of our computations and estimates to a framework
where less regularity is available. Such an extension remains by the moment open.

In Section 2 we detail our assumptions and state our main result, namely Theorem 2.1. The scheme of its proof,
based on the previous described coupling strategy, is then given. The proof of Theorem 2.1 is achieved in Sections 3,
4 and 5, which are outlined at the end of Section 2.

2. Assumptions and main result

We begin by listing a series of notations and definitions.

e The scalar product and the Euclidean norm on R are respectively denoted by (|) and | - |.

e The non explicit constants will be usually denoted by C and may change from line to line.

e The space C([0, +00), RY) denotes the space of continuous functions on [0, +00) endowed with the topology of
uniform convergence on compact spaces.

e For some given a, b € R, with a, b, L%([a, b], R?) denotes the space of Lebesgue-measurable functions such that

b
lgla.pr.2 =1/ [, 18($)|>ds < +oo.

e For some positive 6 and 6 such that 8 € (1/2, H) and 0 4§ € (H, 1), Wj 5 denotes the Polish space Wy s which
is the completion of C°((—o0, 0], R) (the space of C*°-functions f : (—oo, 0] — R? with compact support and
f(0) =0) for the norm

I £llw,s = sup 7) = /()] @2.1)

—oco<s<t<0 |t — S|0(1 + |l‘|(s + |S|8).
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e For some real numbers a < b and for 6 € (0, H), we denote by Ce([a, b], Rd) the set of functions f : Ry — R4
such that
[f () — f(s)]

< 400
a<s<t<b (t _5)0

a,b __
I fllg™ =

e Leto :RY — My 4 be a C'-function and y € (0, 1]. We say that o is (1 + y)-Lipschitz if forevery i, j € {1, ..., d},
the following norm is finite:

2.2)

Voi,j(x) = Voi j ()]
loi jll14+y = sup [Voy j(x)| + sup — o
xeRd x,yeRd |)C - y|

where for a given C!-function f :R? - R, Vf = O, fooe s Oy ).
e We also denote by & Q(RY) the set of Essentially Quadratic functions, that is C'-functions V : R — (0, 0o) such
that V'V is Lipschitz continuous,

1%
liminf$>0, and |VV|<CVV,
X

where C is a positive constant. Note that these assumptions ensure that inf V = min V is positive and that /V is
Lipschitz continuous (since it has a bounded gradient) which in turns implies that V' is subquadratic.

Now, let us introduce the assumptions:

(Hyp): b is alocally Lipschitz and sublinear function and o is a bounded (1 + y)-Lipschitz continuous function with
1
ye(g—1,11

This condition ensures existence and uniqueness of solutions for (1.2). Note that the condition on the derivative of
o only plays a role for uniqueness and in particular, is not fundamental for what follows. However, for the sake of
simplicity, we choose to assume this assumption throughout the paper.

Now, we turn to some more specific assumptions (Hy) and (H). The first one is a Lyapunov-stability assump-
tion:

(Hp): There exists a function V : R? — R of £Q(R?), there exist some positive Bo and k¢ such that
VxeRY,  (VV@x)|b(x)) < Bo—koV (x).

Remark 2.1. The above assumption will be used to ensure that the paths live with high probability in a compact set of
R (depending of the coercive function V). Note that in the classical diffusion setting, such a property holds with some
less restrictive Lyapunov assumptions. Here, the assumptions essentially allow us to consider only (attractive) drift
terms whose growth is linear at infinity. On the one hand, due to (Hy), one can not consider drift terms with (strictly)
superlinear growth at infinity and on the other hand, assumption (Hy) combined with the fact that V is subquadratic
implies more or less that b can not have (strictly) sublinear growth at infinity (this would be possible if V had an
exponential growth). These restrictions are mainly due to the lack of martingale property for the integrals driven by

fBms.

Then, when the paths are in this compact set, one tries classically to couple them with positive probability. But,
as mentioned before, the specificity of the non-Markovian setting is that the coupling attempts generate a cost for the
future (in a sense made precise later). In order to control this cost (or, more precisely, in order that we can couple the
paths using suitably controlled drift terms) we need the following assumption:

(Hp): Vx € RY, o (x) is invertible and there exists a C'-function & = (h1, ..., hg) : R¢ — R¥ such that the Jacobian
matrix VA = (0x; hi)i, je(1,....qy satisfies Vh(x) = o~ !(x) and such that V# is a locally Lipschitz function

on RY.

.....
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Remark 2.2.
e Under (Hy) and (Hy), h is a global Cl—dl:[feomorphism from R? 10 RY. Indeed, under these assumptions, Vh is
invertible everywhere and x +— [(VR)Y()]! = o (x) is bounded on RY. The property (Which will be important in

the sequel) then follows from the Hadamard-Lévy theorem (see e.g. [18]).

o As mentioned before, the main restriction here is to assume that x +— o ! (x) is a Jacobian matrix. However, there is
no assumption on h (excepted smoothness). In particular, o ~" does not need to bounded. This allows us to consider
for instance some cases where o vanishes at infinity.

Let us exhibit some simples classes of SDEs for which (Hy) is fulfilled. First, it contains the class of non-
degenerated SDEs for which each coordinate is directed by one real-valued fBm. More precisely, if for every
ief{l,...,d},

dX!=bi(X],....X)dt +0o;(X},....,X?)dBl,

where o; : RY — R is a C! positive function, Assumption (Hp) holds. Next, let us also remark that, since V(Ph) =
PV h for any square matrix P, the following equivalence holds:

dhasin (Hp) st Vh= o' «— 3Jhasin (H3) and an invertible matrix P s.t. o = pPVh.
Thus, assumption (Hy) also holds true if:
ox)= PDiag(ol(xl, cesXd)s . 0q(x, .. ,xd)),

where P is a given invertible d x d-matrix and for everyi € {1, ...,d} o; is as before.

We can now state our main result. One denotes by L((X 10y,20) the distribution of the process on C([0, +00), R%)
starting from an initial distribution po and by Qu the distribution of the stationary solution (starting from an invariant
distribution w). The distribution fig(dx) denotes the first marginal of wo(dx, dw).

Theorem 2.1. Let H € (1/2, 1). Assume (Hy), (Hy) and (Hy). Then, existence and uniqueness hold for the invariant
distribution p (up to equivalence). Furthermore, for every initial distribution (1o for which there exists r > 0 such that
f |x|"xo(dx) < oo, for each € > O there exists C > 0 such that

HE((X;?S)SE()) - Q“HTV < Cst_(l/S—S)_

Remark 2.3. In the previous result, the main contribution is the fact that one is able to recover the rates of the
additive case. Existence and uniqueness results are not really new. However, compared with the assumptions of [10],
one observes that when x +— o1 (x) is a Jacobian matrix (assumption which does not appear in [10]), our other
assumptions are slightly less constraining. In particular, b is assumed to be locally Lipschitz and sublinear (instead
of Lipschitz continuous) and, as mentioned before, x +— o~ 1(x) does not need to bounded. Finally, remark that (Hy)
is slightly different from the assumption on the drift of [9] which is a contraction condition out of a compact set: for
any x,y, (b(x) —b(y)|x —y) < Bo — kolx — y|2. This means that even in the constant setting, our work can cover
some new cases. For instance, if d =2 and b(z) = —z — p cos(6;)z+ (where p € R, 0, is the angle of z and z* is its
normal vector), assumption (Hy) holds with V(z) =1 + |z|2 whereas one can check that the contraction condition is
not satisfied if p > 2.

2.1. Scheme of coupling

As explained before, the proof of Theorem 2.1 is based on a coupling strategy similar to that of [9]. Let (B,l) teRr and
(B,2) reR denote two fractional Brownian motions with Hurst parameter H > 1/2. Then, denote by (X ,1, X ,2), a couple
of solutions to (1.2):

{dx}:b(x})dero(x})dBl, 23)

dX?=b(X?)dt + o (X?)dB?
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with initial conditions (X, (Btl)[fo) (x}, (B,z),fo). We denote by (F;);>0 the usual augmentation of the filtration

(o (le , BSZ, (X}, x %)) s<t)1>0. To begin the coupling procedure without “weight of the past,” we will certainly assume
that

1 2
(Bt )150 = (Bt )th
and that the initial distribution jz of (X', X?) is of the form
f(dx, dw) = pi(w, dx))p2(w, dx2)Py (dw), (2.4)

where Py denotes the distribution of a fBm (B;);<o on W, 5 and the transitions probabilities (1 (-, dx1) and w2 (-, dx2)
correspond respectively to the conditional distributions of Xé and X(% given (Btl)fgo. The processes (Btl),eR and
(Btz),eR can be realized through the Mandelbrot—Van Ness representation (see (1.3)) with the help of some two-
sided Brownian motions respectively denoted by W' and W2 In particular, the filtration (F;) >0 1s also generated by
(@ (W, W2, (X, X§)s<)r=0-

Furthermore, we will assume in all the proof that on [0, 00), w! and W2 (resp. B! and B?) differ by a (random)
drift term denoted by gy, (resp. gp):

dW?=dW! + g,(t)dt and dB*=dB) + gp(1)dt. (2.5)

Note that the functions g,, and gp are linked by some inversion formulas (see [9], Lemma 4.2 for details).
The idea is to build g, (resp. gg) in order to stick X! and X?. We set

oo :=inf{t > 0, X{ = X7 Vs > t}.

As usual, this coupling will be achieved after a series of trials. As mentioned in the introduction, each trial is decom-
posed in three steps:

e Step 1: Try to couple the positions with a controlled cost (in a sense made precise below).

e Step 2 (specific to non-Markov processes): Try to keep the paths fastened together.

e Step 3: If Step 2 fails, wait a sufficiently long time in order that in the next trial, Step 1 be achieved with a controlled
cost and with (uniformly lower-bounded away from 0) probability. During this step, we suppose that g,,(¢) = 0.

Let us make a few precisions:

e We denote by 79 > 0 the beginning of the first trial and by tz, k > 1, the end of each trial. If 7y = +00, the coupling
tentative has been successful. Otherwise, ti is the end of Step 3 of trial k. We will assume that

vVt € (—o0, 19], th = W,2 a.s. or equivalently that g, (r) = gp(t) =0 on [—o0, 10].

e About Step 1 and the “controlled cost”: Step 1 is carried out on each interval [tx_1, Tx—1 + 1]. The “cost” of
coupling is represented by the function g,, that one needs to build on [t4_1, Tx—1 + 1] in order to get X*! and X*?
stuck together at time 131 + 1. Oppositely to the Markovian case, this cost does not only depend on the positions
of X %ki ,and X %ki , but also on the past of the Brownian motions, which have a (strong) influence on the dynamics
of B! and B2. This is the reason why one needs in Step 3 to wait enough before beginning a new attempt of
coupling.

In [9], the “controlled cost” concept is called “admissibility” (see Definition 5.6). Here, we slightly modify it and
we will say that one is in position to attempt a coupling if the system is (K, o)-admissible. We define this concept
below but need before to introduce notations. For 7 > 0 and a measurable function g : R — R, we denote by Rrg
the function defined (when it makes sense) by

0 f1/2-H (T _ gyH=1/2

(Rrg)(t)zﬁw P g(s)ds, te(0,400).
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Let g,, be the (random) function defined by (2.5). For a positive time 7, we denote by g; the function defined by
gty =gy(t+71),teR.
The following definition is relative to a fixed 6 € (1/2, H).

Definition 2.1. Let K and o be some positive constants and t denote stopping time with respect to (F;);cr. We say
that the system is (K, o)-admissible at time 7 if T(w) < +00 and if (X} (w), X2(0), (W (@), W (®)):<¢) satisfies:

+00 2
sup f (1 +0*|(Rrgl) (0| dr <1 (2.6)
7>0J0
and
1 2 1 2
X @)| <K, [X;@|<K, = ¢ro(W(@)<K and ¢ (W ()<K, 2.7
where g9 = HTfe and for a given positive ¢,
ol H-1/2 H-1/2 ~1
frew) = sup | = P |
r<s<t<t+11l =8 J—c0

If these two conditions hold, we will show that the coupling attempt is successful with lower-bounded probability.
Thus, we will need to ensure that at each time 1y, the (K, o)-admissibility also holds with lower-bounded probability.
We set Qg o.r = Qéy, N Q%(J where

+o00
Q.= {a),r(a))<+oo, sup/ (1+t)2“|(RTg;)(t)|2dr5 1} (2.8)
T>0J0

and

Q%(,r ={o, T1(®) < +00, |Xl| <K,

X <K, 00 (W') <K, 0.6y (W?) < K}. 2.9)

The novelty here is the event defined in (2.9). Since, contrarily to the additive noise case, we are not able to reduce
here the distance between the positions deterministically, we ask X*' and X*? to be in the compact set B(0, K) =
{y, |y| < K} with positive probability. The same type of assumption is needed on the past of the fractional Brownian
motion (which is represented by the functionals ¢ ¢, (W7), j =1,2). Note that, oppositely to the event Q}”, which
comes from [9], Q%()T can certainly not have a probability equal to 1. We will attempt the coupling on [tx_1, Tx—1 + 1]
only if w € Qg o.7,_,. Otherwise, we set g,, (1) =0 on [tx—1, Tk—1 + 1] (and, in this case, we certainly say that Step 1
fails).

e If Step 1 fails (which includes the case where one does not attempt the coupling), one begins Step 3 (see below).
Otherwise, one begins Step 2. Step 2 is in fact a series of trials on some intervals I, with length

|| = 228, (2.10)

where c; is a constant larger than one which will be calibrated later on. More precisely, one successively tries to
keep X land X2 as being equal on intervals [tx—1 + 1 + ¢ Zﬁ;ll % i+ 14 Zﬁ:l 2K (with the convention
> & =0). The exponential increase of the length of the intervals will be of first importance to ensure the success
of Step 2.

e If Step 2 fails at trial £ with £ > 0 (£ = 0 corresponds to the case where Step 1 fails), one begins Step 3. We denote
by r,?, the beginning of Step 3. As mentioned before, the aim on this interval is to wait a sufficiently long time in
order to be in an (K, o)-admissible state with positive probability (Step 3 ends at time 7, i.e. at the beginning of
the next attempt). This has two natural consequences. On the one hand, one assumes that

gw(®)=0 on [r,f, ], so that wl— er3 =W - W123 on [11(3, ). 2.1D
k k
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On the other hand, the waiting time will strongly depend on the length of Step 2. Longer is Step 2, longer is the
waiting time. We set

Agk.¢ = {at trial k, Step 2 fails after £ attempts}. (2.12)
We assume in the sequel that
Vo € Are,  w— 1 = A3(L, k) with A3, k) = c3ar2P’, (2.13)

where c3 > 2¢2, B € [1, +00) and (ax)«>1 is an increasing deterministic sequence. We will calibrate these quantities
later (see Proposition 4.5). At this stage, we can however remark a useful property for the sequel: conditionally to
Ak.¢, the length of each step is deterministic. We are now ready to begin the proof. In Section 3, we focus on Steps
1 and 2 and prove that we can achieve the coupling scheme in such a way that for every positive K and «, the
probability of coupling can be lower-bounded by a constant which does not depend on k. Then, in Section 4, we
focus on the (K, o)-admissibility condition. In particular, we show that for K large enough, (2.9) holds with high
probability (which does not depend on k). Finally, in Section 5, we prove Theorem 2.1.

3. Lower-bound for the successful-coupling probability

In this section, we detail the construction of Steps 1 and 2 with the aim of proving that if the system is (K, «)-
admissible at time 7¢_1, then the probability that Aty := 7% — 74— be infinite (i.e. that the coupling be successful)
can be lower-bounded. The main result of this section is the next proposition.

Proposition 3.1. Let H > 1/2. Assume that (Hy) and (Hy) hold. Then, for every K > 0 and o € (0, H), Steps 1
and 2 can be achieved in such a way that there exists 8o and 81 in (0, 1) such that for every k > 1, 89 < P(At, =
+00|QK ,5_;) < 1 — 81. Furthermore, 81 can be chosen independently of K .

The (uniform) upper-bound is almost obvious. Actually, at the beginning of Step 1, it is always possible (if necessary)
to attempt the coupling with probability 1 — 81 only (and to put W' = W? otherwise). This upper-bound may appear
of weak interest but in fact, it will play an important role in Section 4.

The lower-bound is a consequence of the combination of equation (3.15) with Lemmas 3.1 and 3.4 below.

3.1. Step 1

Lemma 3.1. Assume that (Hy) and (Hz) hold. Let K and o denote two positive constants and 6 € (1/2, H) be fixed.
Then, for each k > 1, (WY, W2) can be built on [ti—1, Ti—1 + 1] in such a way that the following properties hold:

(a) There exists 8y > 0 depending only on K, o and 6 € (1/2, H) such that for all k > 0,
1 2 g
P(X‘Ek,]-ﬁ-l = X‘[k,]-‘rl |QK’0"1’k—l) = 60'

(b) There exists Cx > 0 such that f;’:lﬂ lgw($)|*>ds < Cxk a.s.

(c) If Step 1 is successful, t — gp(t) isa c! -function on [tx—1, Txk—1 + 1] such that

sup |gp(®)|<C and Vte[l/2,1], gp(t+1—1)=0,
t€(0,1]

where C is a deterministic constant which does not depend on k.

Proof. (a) The proof of this statement is divided in five parts:
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(1) Let8 € (1/2, H) and set gy = #. Let K be a positive constant. Then, there exists a deterministic constant
depending only on 6, K and K denoted C (K, K) such that

Vo e Qg N {[WHTLET <K, Sup [Xg_ps(@)] < CK, K.
€[y,

The proof of this property (whose arguments are close to some in the next sections) is given in Appendix A. Notice
that C(K, K) > K since |X%k_l+,| <K on Q%(Jk—]'

(i1) Building a function gp to couple (X ,1) and (X,z) at time 11 + 1: First, note that this step is strongly based on
assumption (H3) and that the construction is a modified version of Lemma 5.8 of [9]. For a given past on (—oo, Tx—1]
and a given innovation path (W', , . W2 . Dreo.n= (i) + WL wa(t) + W2 _ )iejo.1) of C/27# ([0, 1], R)?

(note that w (0) = wa(0) =0), set (x"' (1), x"2(1)) = (X} ,,_,. X7, ).t €[0,1]. Let then (B;", B;");ef0,1] :=

(Bt]+rk,1a Btzﬂki1 )tef0,1] denote the corresponding fBMs, defined as in (1.3).
The aim now is to build, conditionally to Qk 4 , and (Xlkil , X%H, wh Wz),grkfl), a function on [0, 1] de-

noted by g, such that whenever w> (t) = w;(¢) + f(; gn(s)ds for every t € [0, 1], then x™! (1) = x"2(1). In fact, it is

more convenient to build an associated function fj, such that d B;"> = dB,"" + fu(t) dt (see (2.5) for background).
With the previous notations, we see from assumption (H3) and a change of variable formula for Holder functions

with exponent larger than 1/2 (see e.g. [20], Theorem 4.3.1) that such a function f} should satisfy, for every ¢ € [0, 1],

t

t
h(x“’z(t))—h(x“"(t))=h(x2)—h(x1)+/ Vhb(x“’z(u))—Vhb(xwl(u))du—i—/ fr(u)du, (3.1)
0 0

where x; = x"(0), i =1, 2. The idea is then to build t — f;(¢) as an adapted process such that the distance between
h(x™2(t)) and h(x™! (¢)) decreases to O in the interval [0, 1]. Due to the fact that V# is only supposed to be locally
Lipschitz continuous, such a construction will indeed be possible with a controlled cost only if (x™!(¢));¢[0,1] lies in
a compact set of R?.

For a given a > K, we thus introduce a “localizing” C!-diffeomorphism @, : R? — @, (RY) with the following
properties:

D\ 50.0) =1 50.a)» Pl =a+1 andJanorm | [ on Mg q such that [V | < 1.

We set h, := h o w, and introduce a system (y; 1), yaz(t)),zo companion to (h(x™'(t), h(x"2(t));>0 defined by
(74(0), Y2(0)) = (ha(x1), ha(x2)) = (ha(x™1(0)), hya(x2(0))) and

{ dyl(t) = (Vhaba) (W~ (v} (1)) dt +dB}"",
dy2(t) = (Vhabo) (= (y2(1))) dt + (d B + fu(t)dt),

vyhere by i R? — R4 is a localization of b, i.e. a Lipschitz bounded continuous function such that b,(x) = b(x) on
B(0, a) and fj, is the function defined as follow. For a given a, we set

Oh, (1)
lon, ()]

fn(®) = —«{ pn, (1) — k2 (With the convention

P .
=0ifp=0]), 3.2
Tl e ) G-

where a and «; are positive numbers to be fixed, pp, is the unique solution starting from pj, (0) = h,(x2) — hg(x1) to
the equation:

dpp,

o= Fa(t. o1, ) (33)
with

Ph, (1)

V1on, O

Fu(t, p) = (Vhaba) (h™ (yg (1) + p(0)) — (Vhaba) (B (yh (1)) — ki on, () — k2
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and

a |(Vhaba) (W' (2)) = (Vhaba) (™' (1)
sup .

K = (3.4)
V1, y2€RY ly2 = y1l

Observe that «{ is finite for each a > 0 since h~" is Lipschitz continuous on R? and V4, and b, are bounded Lipschitz
continuous. Moreover, pp, (¢) is uniquely defined (at least) on some maximal interval [0, #p) such that 0 < #yp < co and
lon, (t)] > 0 on [0, tp). Since by definition of Kf one has

Vi € [0, 10), 12,

d|pn, ()
— . <) t
= k2| o, (1)

the function ¢ — |pp, (7) 12 is non-increasing and, by a standard computation, we see that #o <2/, (0)/«2. Moreover,
pn, can then be globally defined in a unique way such that

1on, O —20)* if t <2./pn, 0)/k2,
[Pra )] = {0 if 1> 2./pn. (0)/k2. (33)

Hence, fj, (and thus yg) is well-defined on [0, 00). It follows from this construction that ya2 (1) — ya1 (t) = pn, (t). Now
set

ta := 1 Adnf{z, max(|x™"1 (1), |x"2(1)]) > a}.
We observe from (3.1) that, since A, (x) = h(x) and by (x) = b(x) on B(0, a), one has
Vi<ta, yaO)=h(x"(0)., i) =h(x"2@®) and () =h(x"0) = h(x" (1)) GO

(notice also that#z;, > 0 on Qg ¢, sincea > K). Set now K= SUP, e B(0.K) |h(x2) —h(x1)| and, forevery M > K,

Ay = {wl eC'27% (10,1, RY) : wy (0) =0and sup |x"'(t)| <M.Yo € ., | }
t€[0,1]

We are going to show that, for suitably chosen a =a(M, K) > K and «3 := 4K ,itholds on Qg o 7, , that
Ywy € Ay, Ve €[1/2,1], x"' (1) =x"2(1). 3.7

From (3.6), the definition of t,, the decrease of |py, | and the fact that |pp, (0)] < K on K,a,7_1» WE get on that
event that

VYwi € Ay, sup |h(x"2(1))| <hm +K,
1€[0,1]

with Ay = SUP, ¢ 3(0.a1) 11 (X)]. Since h is an homeomorphism, h=Y (B, hy + K)) is a compact set and so

C(M,K) :=sup{|x| : |h(x)| < hy + K} < +00. We deduce that, for a = a(M, K) := max{M,C(M,K)} + 1 it
holds on Qg 4 7,_, that:

Yw; € Ay, Vt €10,1], max(|x"1(#)], [x"2()]) <a, hencet, = 1.

Thus, for all wy € Ay, identities (3.6) hold for all ¢ € [0, 1] on the event Qg o, ,. The choice k» = 4vVK then
ensures that 2./ (0) /2 < 1/2 which, by the previous, yields (3.7).
This also certainly implies that, on the event Qg 4 7, , onhas f;,(z) =0on [1/2, 1] for all w; € Ay (this fact will

be used in Step 2). From now on, we will assume that fj, is defined by (3.2) with a =a(M, K) and «p = 4VEK.
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(iii) About fj, and gj: let w € Qg o, , and wy € C%_gg ([0, 11, R%) and consider the C'-function ( f;, (t))ze10.1]
built above. Given this function, let us recall how one defines a function (g (¢));¢[0,1] Which is such that

dw? =dw! +gy(t)dt on[0,1] = dB/™ =dB" + fu(t)dt on]0, 1].

The function gp of (2.5) being known on (—oo, t;—1], one can define it on (—o0, 741 + 1] by setting gp(t) = frn(t —
Tk—1) on [Tx—1, Tk—1 + 1]. By an inversion formula (see (4.11a) of [9]), one obtains a unique g,, on (—oo, Tx—1 + 1]
(where g, is defined in (2.5)). Then, g, can be defined by g, (¢) = g (t + Tr—1) = gff*‘(t), t € [0, 1]. In fact, it can

be shown (see proof of Lemma 5.9 of [9] for details) that the function g is given by

t
gh(r>=CRog$1<z)+aH%< fo <r—s>1/2—Hfh<s)ds), re 11, (3.8)

Note that, thanks to the (K, o)-admissibility condition and to the differentiability of fj,, the function g; is measur-
able and integrable on [0, 1]. We can thus define ¢ : C!/?~%¢ ([0, 1], RY) — C1/2=# ([0, 1], RY) by

t
(P(wl)t:wl(t)+/() gn(s)ds, 1€[0,1]. (3.9

Using again that w; ya1 is continuous from Cl/2—¢e (10, 11, Rd) to Ce([O, 1], Rd), one can check that the mapping
¢ is measurable on C!/27%0 ([0, 1], R?). Furthermore, it is bijective with measurable inverse v defined as follows: for
a given wy, denote by (ya (t))t>0 the solution to dya (t) = (Vhgby)(h™ l(ya (¢))) +dB,;” starting from x,. One thus

defines p,,, as the solution t0 d = F (t, pn, (t)) with initial value py, (0) = pp, (0) and

Fu(t, p) = (Vhabo) (h (52(0))) — (Vhaba) (™' (32(0) — p)) + fu() dt,
where

Ju(6) = = pn, (1) = szﬁ“i(t)~

o1, (0]

Then, in a similar way as above we can define v (w,) as the unique w; € C'/2=¢ ([0, 11, R?) such that (B"! )rel0,1]
satisfies dB,"! = dB,"* — fh(t) dt. By similar arguments as for ¢, i is measurable under (Hg). Furthermore,
denoting )7; ) = ﬁg(t) — pn, (), one can check that the construction ensures that if w, = @(w;) (and sym-
metrically if wy = ¥ (w2)), pon, = pn, and (y;,yg) = (j)i,&g) and it follows that ¢ oy = ¥ o ¢ = I; on
cl/2= ([0, 1], RY).

(iv) Control of the function g, and Girsanov: For w € Qg o7, and w; € c?(|o, 11, Rd), consider the explicit
expression of g given by (3.8).

By (2.6), the L?-norm of ((Rog;’l)(t)),e(o,l] is bounded by 1. As concerns that of the second term in (3.8),
it follows from Lemma 5.1 of [9] that it is enough to bound f;,(0) and |df}/dt|. For the sake of simplicity,
we set pp = pp, With the choice of a of the end of (i). Since pj is built in such a way that |px(¢)| < |on (0)|
one can check that there exists a deterministic constant C depending on K, M and 6 such that |f;,(0)] < C
and

d
IO < e (lon®)| + |Vor@]) <

vt € [0, 1], ‘

We deduce that for every positive M and K, there exists another finite constant C (M, K) such that

1
Vo € Qi a7, Ywi € CY ([0, 11, RY), /\gh(s)\zds<é(M,K). (3.10)
0



514 J. Fontbona and F. Panloup

This allows us to apply Girsanov Theorem on [0, 1]. More precisely, denoting by Py the Wiener measure and
by ¢*Pw the image measure of Py by the mapping ¢, one deduces from Girsanov Theorem that ¢*Pyw (dw) =
Dy (w)Pw (dw) where

1 1 1
D¢<w)=exp< /0 (gn(®)ldw(s)) = 5 /0 }gh(s>|2ds>. 3.11)

We can now make explicit the coupling strategy.

(v) Construction of (W!, W2) on [tx_1, Tk—1 + 1]. First, we recall that we set W,1 = W,2 on [tx—1, Tk—1 + 1]
if we Q‘K o (in this case, attempting a coupling would generate a too important cost for the future). Now, if
€ Qg 4,7, the construction follows the lines of [9] but with the specificity that the construction of gj, leads to a
successful coupling only on a subset of C1/27¢¢ ([0, 1], RY).

More precisely, for positive measures p; and pp with densities D; and D, with respect to another mea-
sure w, denote by w1 A pp the measure defined by (u; A w2)(dw) = Di(w) A Da(w)u(dw). With the help
of the function ¢ introduced in (iii) (see (3.9)), we define a non-negative measure P; on Ccl/2=# ([0, 1], R9)2
by

P—l P P
1—2901 w AP Py,

where ¢ and ¢, are the functions defined on c?(o, 1], Rd) by
or(w) = (w,pw)) and  p2(w) = (¢~ (w), w).
By construction,
P Pw(dwy, dwy) = 1{(¢—1(w),w)}(w17 w2) Dy (w)Pw (dw),
where D,, is defined by (3.11). This implies that P; satisfies

1
Py (dwi. dw)) = 11, (01 w2)(Dy(w) A1) Py (dw). (3.12)

Write S(wi, wy) = (wo, wy) and denote by f:l the “symmetrized” non-negative measure induced by Py, 131 =
P; + S*P;. We then define the coupling (W, Wtz) = (W,I_Hk_1 —wl w2 - Wrzk_.) as follows:

Th—1" " IFTh—1
) 2131 + A*(PW — HTf)l) =P +P

with A(w) = (w, w), IT{(wy, wy) = w; and P, = S*P; + A*(Pw — HTf’l). Using (3.12), we check that for nonneg-
ative functions f,

~ 1
b < 5 / (f (o™ W) Dyw) + fw)) Py (dw) < By (f),

hence P, is the sum of two positive measures. Thanks to the symmetry property of P; and to the fact that IT; o A is
the identity, one can also check that the marginals of Py + P, are both equal to Py .

(vi) Lower-bound for the probability of coupling: by construction, conditionally on Qg 4 7, and (X %ki X %ki iy

wh Wz),frkfl), under the subprobability P; the coupling is successful on the event Ay x ¢(Apy). In other words,
if we assume that (W', W?) is realized with the previous coupling construction, we have

P(X;H-H = X%kfl'i'l'QK’aka—l) z HIAMX(/’(AM)PIHTV‘
By (3.12) and Lemma C.1. of [15] (applied to p =2, 1 = ¢*Pw, uo =Py and X = Ajy) we have

[ car Do ()P (dw)]?
4-/(0(AM) Dy(w)3Py (dw)”

114, xpaPrliTV =
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We will now show that M can be chosen in such a way that the above quantity is bounded away from O independently
of k € N. On the one hand, by exhibiting an exponential martingale and by using (3.10), we have

1
/ D¢(w)3]P’W(dw)§< sup exp<3/ ygh(s)|2ds))
©(Apm) wep(Am) 0

1 32 1
< oo [ (o) =5 [ lenrPats )wiauy

<exp(3C(M, K)).

On the other hand,
f Dy (w)Py (dw) = Pw (Ap).
w(Am)

For the choice
M :=C(K,K),
we get from (i) that
{w iy, <K} CAu.

As a consequence, we have fAM Dy (w)Pw (dw) > Pw ({w, ||w||(1)’/12_89 <K}) and

&y —

4exp(3C(C(K, K), K))

Py ({w, [w]%! < K)1?
||1AM><<p(AM)P1||TVZ[ w ({w, w]| hl >0

which concludes the proof.

(b) When Step 1 is successful, this property follows from (3.10). If Step 1 is not attempted (and thus fails) since

wE Qck,a,rk,l’ W!=W?2on [tx_1, Ti1 + 1] so that g,, is null on [tx_1, Tx—1 + 1]. If Step 1 is attempted and fails,

it follows from the above construction of the coupling that w; = wy or wy = go_l(w 1) with w; € Ay Then, since
the control of the functions fh (defined in (iii)) and its derivative are similar to that of fj in (iv), we deduce that the
L2-norm of g, (1) = gw (¢ + Tx—1) can be also bounded in a similar way.

(c) When Step 1 is successful, gg(t + tx—1) = f(¢) on [0, 1] and the boundedness of f;, follows from that of p,
which is proved in (ii). [l

3.2. Step 2

As explained before, Step 2 is a series of trials on some intervals I, of length ¢22¢ (the first one of length 2c;, the
second one of length 4c;, ...). We denote by s , the left extreme of each interval I,. More precisely, for every k > 1,
we define (sk ¢)¢>0 by

Sk,0=Sk1=Tk—1+1 andforevery £ > 1 s; ¢41 =Sk¢+ 2t (3.13)

Also denote by £, the (first) trial after time 7x—; where Step 2 fails. The case £;; =0 and ¢; = +o0 correspond
respectively to the failure of Step 1 and to the success of Step 2. For given positive & and K, we set

Bre:=Qk.ar_, N{€>12}, k=1,¢>0. (3.14)
With this definition,
+00
Pt = +00|QK.an ) =P(X},_ 1 =X 1|Qk ) [ [PBrelBro-1). (3.15)

=1
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Consequently, the aim now is to lower-bound P (B ¢|Bk ¢—1). This is the purpose of Lemma 3.4. The proof is (once
again) based on a coupling argument, which is given in the next lemmas:

Lemma 3.2. Let K and b be positive numbers.

(1) Then, there exist M > 0, ,0,; and ,ol% € (0, 1) such that for every a € [—b, b], we can build a random variable
(U, Up) with values in R2 such that

LU =LU)=NO,1), pp<PUs=U+a)<p;, P(lUr—Ull<M)=1

and on the event {Uy = Uy + a}, |Up| < M;, and |Us| < Mh hold a.s., where M;, < % + b.
(i) Furthermore, if b € (0, 1), the previous statement holds with M, < max{4b, —21og(b/8)}, pf =1—>band pg =
1-2
2

Remark 3.1. In order to ensure the (K, a)-admissibility condition at the next trials, one needs to control the incre-
ments of W' and W? during Step 2. In particular, when Step 2 fails, we will need the probability of success to be not
too large. This explains the property of domination of the probability of success P(Uy = Uy +a) (and P(W? = W' +g)
in the next result) which may appear of poor interest. For the same reason, we give in the following result an explicit
construction of W' and W? during Step 2.

Proof of Lemma 3.2. (ii) is almost the statement of Lemma 5.13 of [9]. The only new points are the deterministic
control of |U1| and |U;| on the event {U, = U; + a} and the domination of the probability of success by ,ol% =1- %
With the notations of [9], the first property follows from the construction of the measure N3 which is such that for
every a € [—b, b), the support of Nj is included in [—M;, /2, My /2 — a] x [—M}p/2 — a, My, /2]. For the second one,
it is enough to note that the probability of success introduced in Lemma 5.13 of [9] and denoted by N3(L3) is a
non-decreasing continuous function of M and equal to O if M} = 0. Thus, the domination of this probability can be
obtained by reducing sufficiently the value of M.

On the other hand, (i) is in some sense a rough version of (ii). Its proof can also be done by following the
lines of the lemma of [9] and by checking that for every b > 0, we can choose M, large enough such that
infe(—pp) N3(L3) > 0. ([l

The following lemma is a slightly modified version of Corollary 5.14 of [9].

Lemma 3.3. Let T and b be positive numbers and g € L*>([0, T], R) with llgll2.10,77 < b.
(1) There exists My > 0, ,og, ,OZ € (0, 1) and a couple of Wiener processes Wl w?) defined in [0, T'] such that

t
pggﬂ»<wz w! +/ g(s)ds,te[o,T])gp,% and ]P’(||W2—W1||2,[O’T]SMb)zl. (3.16)

Furthermore, there exists a triple (U1, U2, V) of standard normally distributed random variables and a Brownian
motion W such that Uy, Up) and (V, W) are independent,

fé g(s)ds

+W,, tel0,Tlfori=1,2, (3.17)
llgll2,0,7]

W =(U"+V)
and moreover |U;| < My := % + b on the event {W,2 = th + fot g(s)ds,t €[0,T]}.
(i1) Furthermore, if b € (0, 1), the previous statement holds with M, = max{4b, —2log(b/8)}, pé =1-—>band ,013 =
1-2
3

Proof. (i) Let (fx)r>1 denote a complete orthonormal basis of L%([0, T1,R) with f; =g/ llgll2,10,77- In some prob-
ability space (€', F', ) let (Uy, Uy) be a couple of random variables satisfying the properties of Lemma 3.2(i) and
(&x)x>2 be a sequence independent of (U}, Us) of i.i.d. random variables with £(&2) = A (0, 1). Defining fori = 1,2
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the process W/ := Wi (1{9.11), ¢ > 0, where W' : L2([0, T],R) — W/ (L?([0, T],R)) C L*(Q/, F',P') is the isometry
of Hilbert spaces such that Wi( f1=U “and Wi( fx) = &k, k > 2, one easily checks (by computing covariances) that

Wi =U; Josds +Z§k/ Ji(s)ds

"llgla.g0.7) P

and that (Wt[ ) is a standard Brownian Motion. It follows from Lemma 3.2(i) and from the previous construction that
(3.16) holds. Furthermore, introducing artificially a last standard normally distributed random variable V independent
of o (U1, Ua, &, k > 2), we can write W' as follows

fot g(s)ds

+ W, tel0,T],
llgll2, 0,71

W/ =(U; +V)
where W, := —V fot g(s)ds/lglla0.71+ D r=0 &k fOt fi(s) ds is a standard Brownian motion independent of (U, U).

Finally, the boundedness property of U; on {W[2 =Ww!+ fé g(s)ds,t € [0, T]} again follows from that obtained in
Lemma 3.2(i).
(ii) The proof is identical using the properties of Lemma 3.2(ii) instead of those of (i). [l

Before stating the key lemma for Step 2 (below), let us introduce some notations. Owing to the one-to-one corre-
spondence between g,, and g g, there is a unique choice for function g, in [tx—1 + 1, 0c0) which ensures that gz () =0
after tx—1 + 1 (or equivalently that B,1 = Bt2 after tx—1 + 1). We denote it by gs in the next lemma (see the proof for
an explicit expression of gg).

Lemma 3.4. Let K > 0 and assume that o € (0, H). There exists a constant Cx > 1 which does not depend on k
such that,

+00 5
/ (140> |gs(tet + 1 +1)|"dt < Ck.
0

Then, (W1, W3) can be constructed during Step 2 in such a way that for all k and ¢,
<P(Bi1lBro) < pg and V=2, (1= pg2 %) <PBrelBre—1) < (1 - px27*") (3.18)

where ,0[1(, ,0% € (0, 1) do not depend on k and ,0?{ = c{“«/ Ck . In particular, if cp = C}g(h)

if2§€i<+ooonehas

s ,o;’{ =1 and in this case,

Sk, gr+1 % 2 % Skt 2 —2al
f lgw @ dr < (2(€; +3))* and veel2,... 61}, / |guw(®)|"dr <27,
N S,

1. p* —
I\(Zk k-1

whereas if £} =1, one has fs;klz |guw()|?dt < C, for Cl a finite constant.
Remark 3.2. The lower-bounds obtained in (3.18) ensure the strict positivity of P(ty = +00|Qk o,7,_,). The other
properties will be needed for the sequel. Note that co can be chosen in such a way that the involved quantities do not
depend on K exceptif £ = 1.

Proof. We first remark that if at a positive stopping time 7 one has X lTl =X %1 , then (X ,1) and (X [2) remain equal on
[Ty, T>] (where T, > T is a second stopping time) if and only if gg(¢) = 0 on (T, 7T2]. By Lemma 4.3 in [9], and its
proof, this condition is satisfied if and only if

Vie (0, T —Til, gu(t+T)=gst+T):=Rogh ).
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The interesting point is that the above function is Fr, -measurable (the context is thus different from Step 1, where the
function denoted by g, was defined in a dynamic way). In particular, by conditioning on Fy, , one can write:

141
P(Br¢|Br,e-1) =E(Q(Roguw ke + ), 2Y),
where for positive 7 and a (deterministic) measurable function g on [0, +00) we denote
Q(g, T)=P (V1 €[0,T], W} =W, +¢®)

for (Wl, Wz) a given couple of Brownian motions on [0, T]. By Lemma 3.3, if || g|l{0,77,2 < b < bo, we can build the
couple (Wl, Wz) in such a way that Q(g, T) > (1 — b) Vv p where p depends only on by.

Following carefully the proof of Lemma 5.12 of [9] (see in particular (5.36) therein), one deduces from Lemma 3.1
((b) and (c)) and Condition (2.6) that on By o,

+0o0 |
/ (140> Rogu" " (1) dr < Ck
0

for some positive constant Cg . Without loss of generality, we can assume that Cg > 1. This yields the first property
of the lemma and this easily implies that for every £ > 1,

Sk, 0+1
/ |gs@)|” du < b?
)

Sk, ¢

with by = /Cg and by = cga JCg272tif £ > 2. It remains to apply Lemma 3.3 ((i) for £ = 1 and (ii) for £ > 2) to
Sp p*

obtain (3.18). Finally, the bound for fskk'eikH lgw (t)|2 dt follows from the value of M}, given by Lemma 3.3. O
"k

4. About the (K, o)-admissibility condition

In this section, we assume that Steps 1 and 2 are carried out as described previously, and the aim is to ensure that the
system is (K, o’)-admissible with positive probability at all times 7. This is the purpose of the next proposition:

Proposition 4.1. Let (X,], X%),Zo denote a solution to (2.3) with initial condition i satisfying i(|x1|” + |x2]") < 400
for some r > 0. Assume (Hy), (Hy) and (Hz). Let @ € (0, 1/2). Assume that for each K > 0, ¢ defined in (2.10)
satisfies c; = C Il</ Q) (where Ck is a constant greater than 1 defined in Lemma 3.4) and that for every k > 1 and £ > 0,
A3 (L, k) introduced in (2.13) is defined by A3(£, k) = c3a; 2P with B > (1—20) ", ar = ¢ for some (arbitrary) fixed
¢ > 1, and c3 an appropriate constant depending on the previous parameters (see Proposition 4.5 and Remark 4.2
for details). Then, for every ¢ > 0, there exists K. > 0 such that for every k > 0,

P(Qk, a5 |k <4+00)>1—¢.
The proof of this proposition is divided into two parts corresponding respectively to Conditions (2.6) and (2.7).

The first concerns the coupling function g,, and the proof corresponding to this condition easily follows from [9] (see
Section 4.4 for details).

Remark 4.1. In the sequel of this section, we always assume that o is a fixed number in (0, 1/2) and that co = C
These facts are not recalled again in each statement.

1/Qa)
K .

The lower-bound for the second condition is obtained in the next subsections.
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4.1. (K, a)-admissibility and Lyapunov
We denote in what follows
&={u <00} (={r1<o00,..., 7 <00}).
We want to prove that for every ¢ > 0, there exists K, > 0 such that
P(Q%(g,rklgk) >1-e

But since for every events Ay, Ay, Az and A4, P(ﬂ?zl Aj) > Z?:l P(A;) — 3, it is enough to prove that for every
& > 0, there exists K, > 0 such that for j =1, 2,

P(¢reo (W) < Kel&k) = 1—e, j=1,2 4.1)
and
P(|X | <Kel&)=1—e, j=1.2. 4.2)

Since the arguments to prove (4.1) are contained in those needed for the (4.2), we defer the proof of the former to
the Appendix (see Appendix B) and we only focus on the second statement. The proof of this property is based on a
Lyapunov-type argument: owing to the Markov inequality, it is obvious that (4.2) will be true if one exhibits a positive
function W : R? — R such that lim|y | o0 W(x) = +00 and for which there exists a finite positive constant C such
that for every k € NU {0} and for every K > 0,

E(W(X])I&)<C. j=1.2. (4.3)

Note that since the construction of Step 1 depends on K, the independence of C with respect to K is primordial. To
this end, we first introduce the following contraction assumption depending on 6 € (1/2, H).
H'{(#): There exists a subquadratic continuous function ¥ : R? R?% satisfying limy| 100 W(x) = +00 and
Jp € (0, 1) and C > 0 such that a.s., Vx € R9,
0,1
V(X)) <p¥(x)+C(1+1IBlly")-

In the previous assumption, (X;);>o denotes a solution to (1.2) and subquadratic means that there exists C > 0 such
that for every x € RY, Y(x)<C(l+ |x|2). In Section 4.2, we will prove that, under the Lyapunov assumption (Hy),
H'{ () is true. As detailed in the next proposition, H'{(#) leads to (4.3) if the following condition, which will be
proved in Section 4.3, is also true:

H'»(0): For every p € (0, 1), there exists C,, > 0 such that for every k e Nand K >0

Aty
E[Z pA‘L’k—M||B||;k—]+u—l,fk—]+u|gk:| < Cp.

u=1

Proposition 4.2. Let 0 € (1/2, H) and assume H'{(0). Let (X}, X?),zo denote pair of solutions to (2.3) with initial
condition i satisfying [L(‘-Ifz(xl) + W2(xp)) < 400. Forx1,x; € RY, set

0(x1, x2) :=inf{u € N, p" (W (x}) + ¥ (x2)) < 1}. 4.4)

Assume that (ty)g>1 is built in such a way that, H'5(0) holds, that for every k > 1, P(E|Ek—1) > 81 > 0 (where 8 is
a positive number which does not depend on k) and that Aty > %. Then, there exists a positive constant C such
that for every k e NU {0} and K > 0,

E(W(X)I&)<C, j=1,2.
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Remark 4.2.

log(81/2)

Togp > One can thus

o Under the assumptions of Proposition 4.1, At > c¢3 (see (2.13)). To ensure that Aty >

i log(81/2)
choose c3 large enough in order that c3 > ogp -

o By the elementary inequalities lu+v|P < |u|P? +|v|? and |u|P < C(1+|u|) for p € (0, 1), one remarks that if H'1(0)
holds for \V, it also holds for WP if p < 1. Since WV is subquadratic, it follows that one can assume without loss of
generality that W2 (x) < C(1 + |x|") for some given r > 0. This explains the assumption fi(|x1|" + |x2|") < 400 in
Proposition 4.1.

Proof. By H'1(#) and an induction
Aty
i i - =1, T L
W(X)) < pAHW (XS )+ C Y p (L BT,
(=1
First, since Aty > %, we deduce that pAfk < %‘ Thus,

) S ) +00 Aty B
E[\P(X.{k)|5k] < %E[W(X%k—l)w]‘] + CZ:OM + CE[ZpArk—Z”B”gk]JrK I’Tk1+6|5kj|-
u=0 =1

Since & C Er—1 and P(E|Ek_1) = 61, E[W(Xik,l)lé’k] < Sl_lE[lI/(Xikfl)wk_l]. It follows that

Aty
. 1 . C —
E[w(xj)ie] = SB[V (G IS ]+ 7 + CE[E AR 1] i 1”"“+Zlﬁk}.
=1

Assumption H'»(#) combined with an induction then yields

sup B[ (X} 61] < B[ (] 6] + G

where C’p neither depends on k and j nor on the starting condition fi. Noticing that & = €2, it remains to bound
E[W(X {O)]. By the definition of 7¢ (which is Fg-measurable) and the Cauchy—Schwarz inequality,
X i\71/2 1/2
Ea[w(x1,)] = 3 Ba[w2 (x0)]  (tro = ) 2. @5)

u=0

On the one hand, checking that for ¢ > 0, there exists C; > 0 such that for all u, v of R, lu + v|2 <1+ 8)|M|2 +
C, |v|2, one deduces from H'1 () that there exists 0 < p < 1 and C 5 such that for every starting point x,

- 2
w2(X)) < 5w (x) + C5(1+ I BIS) .

Thus, it again follows from an induction and from the stationarity of the increments of the fBm that

C..
1 _’oﬁE[(l +11BIS)?] < +o0,

Ea[w?(xi)] < f W2 )2 (dx ) +

since f ‘I’z(x]‘)ﬂj (dxj) < +o00. It remains to control the queue of 9. We have

2 2
1
fto=u) <Y L (p“wxj) > 5) <2y p" / W (x;)fij(dxj) < Cp". (4.6)
Jj=1 j=1



Rate of convergence to equilibrium of fractional driven stochastic differential equations with some multiplicative noise 521
Plugging the previous inequality in yields the boundedness of E;[W (X io)]. |
As a consequence, it remains now to prove H'1(#) and H'»(#). This is the purpose of the next subsections.
4.2. Proof of H'1(0)
Proposition 4.3. Assume (Hy). Then, H'{(0) holds for every 0 € (%, H) with W = V@0-D/4,

Proof. The proof is divided in four steps. In all of them, we assume that 0 <s <t < 1.
Step 1. We prove the following statement: there exists C > 0 such that

| X §C<|XSI+C(I—S)+

t
/ o(Xu)dB,

) a.s. 4.7

Actually, using that b is a sublinear function,

1X:| <1 X5+ Ct—5)+

t
/ o(Xy,)dB,

1
+/ | X, |du.
S

The result then follows from Gronwall lemma (note that the time-dependence of the Gronwall constant does not
appear since s, ¢ € [0, 1]).

Step 2. Control of the Holder norm of X in a small (random) interval: Let 0 € (1/2, H). We show that there exist
some positive constants ¢y and C such that for every 0 <s <t < 1, satisfying co(1 + ||B||g’l)(t —s)? < %,

IXI5" < c(IBIS" + (1+ X1t —)'70). 4.8)

Let us prove this property. Owing to the classical controls of Young integrals (see e.g. [19], inequality (10.9)), for
every (p, q) € (0, 11* with p + ¢ > 1, there exists C p.q > 0 such that for every p-Holder and ¢-Holder functions f
and g (respectively), forevery 0 <s <t <1,

t
/ F@dg@) — ) (8() — )| < Cpgll FIS 1810 @ — 5)PH. (4.9)

Applying the previous inequality with p = g = 6 and using that o is Lipschitz continuous and bounded, we deduce
that forevery 0 <s <u <v <t <1,

<CIBllg @ —w)? (1X15" v —u) + o ]le)

fva(Xw)dBw

< CIBIY v —w? (IXI5" (=) + 0 ]loo)- (4.10)

By (4.7) and what precedes, we also have
v
/|b<Xr)|drSC(v—u>(1+|Xs|+||B||2’1(r—s>9(1+||X||i;’<r—s)9)).
u

Using the previous inequalities, we deduce that

IX15 < c(IBly' + (1 +1Xs) @ — )0+ CIx 15 1BIY (7 — 5)°

and (4.8) follows.
Step 3. Control of sup | X, | in a small (random) interval: let 6 € (1/2, H). There exists C > 0 such that for every
0<s<t<1satisfying co(1+ || Bllo)(t — )% < 1

sup |X,| < C(1+1X;]). “4.11)

s<u<t
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Actually, using that ||B||2’1 (t — 5)? < (2¢9)~!, we deduce from (4.10) that for every 0 <s <t <1 satisfying co(1 +
0.1 9 _1
IBllg )@ —s)" <3

t
/ o(Xy)dB,| <C(IXI5 (r — )7 +1).

Using again that ||B||2’1 (t — )Y < (2¢co) 1, it follows from (4.8) that

t
/ o(Xy)By

Then, it is enough to plug this control in (4.7) to obtain (4.11).
Step 4. Use of the Lyapunov assumption. Let V be such that assumption (Hj) holds. Let 6 € (1/2, H). Then, there
exists p € (0, 1) and C > 0 such that for every x € R,

<C(1+(1+1Xs) — ).

4/(20-1)

V(X1) < pV(x)+C(1+Blls) (4.12)

Let us prove this statement. By e.g. [20] (see Theorem 4.3.1) and assumption (Hy),

t t
SV = V) + [TV + V() dut [ STV (Xl (X,)dB)

t
< V(Xy) + Bo(t — ) + [ U= (VV (X,)|o (Xy)dBy). (4.13)

N

Using that the functions VV and ¢ are Lipschitz continuous, that o is bounded and that u > €0 is bounded and
Lipschitz continuous on [0, 1], we obtain that for every 0 <u <v <1,

eIV (X,) — e0“IVVe(X,)| < C((1+ | VV X)) (1Xe — Xul) + [VV (X)) | (v — w)).

By (4.9), it follows that

t
/ eKO(u—s)(VV(Xu)|g(XM) dBu)

=c((1+ sup [VVXD|) (XI5 + @ = 9'=) @ =) + [TV X[ IBIY ¢ = 5)°.

vels,t]

From now on, assume that (1 + ||B||g’] (t —s5)%) < 2co)~ L. By (4.11) and the fact that 1 + |[VV (x)| < C1(1 + |x]) <
Cz«/V(x), we have

14 sup [VV(Xy)| < CyV(X)).

vEls,t]

Owing to (4.8) and to some reductions implied by the previous inequality, we obtain

<C(VX)IBIY (t =)™ +VVXDIBIY (2 —5)°).

o (Xy)dBy)

t
/ U (VY (X,)
N

Set 6 := %(0 — %) (so that 2(0 — 0) = % + 6). By the inequality |xy| < %(le2 + 1y,

1 5 ) 5
VVEXDIBIY =)0 < St )20V (X + (IBIS) ¢ — %)
and on the other hand,

VX)IBIY (¢t =)0 < (¢ =)DV X)IBIY (1 — )1/
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Now, we set

—1/6

n=co(1+1B13") " A (1+1BIS") (4.14)
in order that forevery 0 <s <t <1 suchthatr —s <n,
o1 +IBI ) <5 and (IBIST)2 0~ < 1.
For such s, ¢, we finally obtain (using that 1/2 > 6 and that 200 — é) = % +6),
fﬂmwﬂwixmwawdm)sca—w”“ﬁmxo+5, (4.15)
s

where $ is a positive constant. Plugging this control into (4.13), we deduce: for every 0 <s <t < 1 suchthatf —s <1,

V(X)) <e VX)) (1+C(t — )" /2) + B,

where ,3 = Bon + B. Using that e70* <1 — kou + ("02”)2 in a right neighborhood of 0 and that % +6 > 1, we can find
ug € [0, 1] (depending on kg, € and C) such that

Yu € [0, ugl, e_’“)”(l + Cu1/2+9) <1- %u.

Thus, for every 0 <s <t <1 such thatt —s <7 :=n A uy,
Ko A
V(Xy) < (1 - 70 _S)>V(Xs) +B.

In particular, applying this control on [k7, ((k + 1)) A 1] for k € {0, ..., L%J} yields

L1/7] L/n—k

L1/n]
Ko -~ Ko -
VX <(1-— Vv 1—— .
( n_< 2n) uy+§:< Zn) B
k=1
It follows from standard computations that
Ko | - 28
V(X)) <exp| == +71|V(x)+—.
2 Kom
We can assume without loss of generality that ug < ko/4 so that
exp(—% + ﬁ) < e F0/4 = p.

Finally, since 2/6 > 1/, one can check that there exists C > 0 such that

L 1/6
it =c(+isigh).
Since 2/6 = 294—_1, this concludes the proof of Step 4.

To prove the proposition, it remains now to set W = V7 and to apply the inequality |u + v|? < [u|? 4 |v|? (which
holds for every real numbers u, v and p € (0, 1]) with p = 6. U



524 J. Fontbona and F. Panloup
4.3. Proof of H'2(0)

The main result of this section is Proposition 4.4. Before, we need to establish several lemmas related to the control
of the past of the fBm.
Let j € {1, 2}. We recall that for every 0 <s < 1,

. . s . t )
B,]—B‘{:oaH</ (t—r)H_l/z—(s—r)H_l/derj—i—/ (t—r)H_l/de,]).
—0o0 S
This can be rewritten
. . Ls]—1 . . . .
B/ — B! :aH</ (t =712 — (s = )H=V2aWw! 4Ty (s, 1, W) = Ta(s, 1, W) + T3 (s, 1, Wf)),
—00
where, setting h =t — s,
) s—h .
Fl(s,t,Wf)=/ =)= — (s —=12aw/,
Ls]—1
S .
Fz(s,t,W])z/ (s =) 12aw!,
s—h
t .
F3(s,t,W’)=f t—nH12aw;].
s—h

Let k > 1. Assume that t,_1 < +o00 and that 741 <s <t < [s] + 1. Setting 7_; = —00, we choose to decompose
the first right-hand side member with respect to the sequence (7x)x>—1:

Ls]—1 , k ;
/ (6 =2 (s = 2aW] = 37 Ai(s. 1. W)

e ¢]

m=0
with
ST = H 2 (s =) H 2 AW ifme (0, k- 1),
Am,k(s’t7 W/)Z ]
SET = H2 — (s = H2aw] itm =k,

Note that for i = 1,2, 3, I'; is related to the local behavior of the fBm whereas for m =0, ..., k, Ay is a memory
term. The idea of the sequel of the proof is to bound ||B||g’”'H (u € {tk—1, ..., 1x}) through the study of the I'; and

the A, x. With a slight abuse of notation, we will sometimes write

T (s, t, W/)]

,b |Am,k(s7 t5 WJ)'
w7 and [Aplgt = sup T
—S|

F.j a,b _
” i ”9 sup a<s<t<b |t —S|9

a<s<t<b |t

(4.16)

The starting point of the study of the A, i is the following lemma:

Lemmad4.1. Leta <b <s <t.Let W be a two-sided Brownian motion. Then,

1

t—s

b
/ t =12 — (s - r)”—‘/de,)

_ 1 [b _
<@t—-a 3/2|Wb—Wa|+5/ (s =32 \W, — Wy dr.
a
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Proof. By an integration by parts,
b
f (t —=)H712 (s = P12 gw,
a
=(t—a)12 (s =))W, — W)

b
+ (y - %) / ((t = P32 — (s — ) H=32) (W, — Wy dr. @.17)

a

On the one hand, by the elementary inequality (1 4+ x)” > 1 + x for every x € (—1,0] and p € (0, 1], we remark that

0<(t-—a)2_ (s—a)ti-1/2

N H-1)2
:(t—a)H_1/2<1— (1+ : t) >
t—a

<(t—s)(t—a)f2

On the other hand, by the inequality (1 + x)” > 14 px for x > 0 and p < 0, we obtain similarly
3
(s—rHA32 ¢ -3 < (E — H) (t—s)(s —r)H2,
The result follows (using that (3/2 — H)(H — 1/2) <1/2). O

In the next lemma, we propose to bound some quantities which are related to those which appear in the previous
lemma on some sub-intervals of [7,,_1, T,;,] where m € N. With the notations introduced in (2.13) and in (3.13), we
set

1 2 1 4
7191 =Tn_1, T, =Tm—1+142c2, T =Sm.ez, NV Ty r,fl =Smex+1 and T

= Tm.

Since c3 defined in (2.13) satisfies ¢3 > 2c¢3, Step 3 is longer than 2¢; and i +— r,’,; is non-decreasing. Furthermore,
1:,,01 is the beginning of Step 1, 1,111 denotes the end of the first trial of Step 2 (or some time during Step 3) if Step 1
is successful (resp. if Step 1 fails). If Step 1 and the first trial of Step 2 are successful, ‘L’,%l and r,ﬁ correspond to the
beginning and to the end of the failed trial of Step 2. If £}, € {0, 1}, 7} =12 =7,

Note that rn11 is defined as the end of the first trial of Step 2, instead of the end of Step 1 as it could be expected.
Without going into the technical details, let us remark that this particular cutting of the interval is due to the dependence
in K (which appears in the (K, «r)-admissibility condition) of the probability of success of the first trial of Step 2 (and
that this dependence does not appear for the next trials, see Remark 3.2 for background) and that, in view of assumption

H'»(0), it is of first importance that the next results be obtained independently of K.

Lemma 4.2. Assume that there exists 81 > 0 such that for all m € N and K > 0 P(E,,411En) = 81 > 0. Then, for
every p>1and ¢ € (0, 1), there exists Cp ¢ s, € Rj_ such that for everym e N, i €{0,...,3}, j € {1,2} and K > 0,

LA , 3 . 4 P
@) E[(/% (142 —7) (3/2+8)(Wr]:'n+1 — W,f)\dr) ‘Em} <Cpes - (4.18)
(i) If 7, # Tt
E[|(z,' = fr‘}l)_(l/Zﬁ)(WT’;,-nH ~ W 1En] < Cpee- (4.19)

Remark 4.3. The proof of this lemma could be shortened by using some rougher arguments similar to those of the
proof of Proposition 4.4 below (see (4.36)). However, the arguments given here do provide an understanding of what
implies the conditioning by {t,, < +00}, or in other words, to how the distribution of the Wiener process is deformed
by the coupling attempt. To this end and when it is possible (especially in the case i = 1), we thus choose an approach
by which we try to make explicit these distortions.
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Proof. (i) By a change of variable, for every i € {0, 1, 2, 3},
LA - -
/ (et =) Wi i dr = (e — ).
T m

i
m

where for a given ¢ > 0,
Cc . .
H;(c) =f ¢! +u)_1/2|WTJ,-+1 - er,.H [v(du) withv(dr)=(1+u)"""*du.
0 m m U

Noticing that v([0, c]) < ¢~ !, we deduce from Jensen inequality that for every p > 1,

1 p—1 c . .
(Hi (o))" < (g) /0 (1 +u)~P/>1-¢ W-r’,.+1 — WZHLM P du. (4.20)

Now, we focus successively on cases i =0, 1, 2, 3:

i = 0: In this case, 1:,}1 — r,(,), is deterministic and is equal to ¢ := 1 4+ 2¢». Using that &,, C &,,—1 and the Cauchy-

Schwarz inequality, we have for every u € [0,c] and m > 1,

E(W), = W), [P 1€n-1]"/?
IED(gm |Cc/‘m—l)l/2

Bf[Wey, = Wey o |"1Em] <
But, conditionally on {t,,_1 < 400}, (WTJ;"_l = W,J;,H ,u > 0) is a Brownian motion independent of 7,,_; so that

o —u

E”Wr]’z’;rl - Wj'+1 ‘2[7'5”171] =ul.

Then, since P(&,,|E—1) > 81, one deduces that

sup uPPE[|W/ — W/ |P1E] <872 4.21)
ME[O,E] Tm Ty —U
Plugging this control into (4.20) yields the result when i =0 with C), ¢ 5, = 81_1/28’1’.

i=1:1f ¢ €{0, 1,2}, r,}, = r,%,. Otherwise, we first write &, = | A.¢ where A, ¢ = Bfn,e N By e—1. We recall
that A, o corresponds to the failure of Step 1 and for every € > 1, A, ¢ is the event that Step 2 failed after exactly £
trials.

With the notations introduced in (3.13), we recall that on A,, ¢, r,}l = S,,2 and 'L’n21 = Sm,¢. By (4.20), it is enough
to show that for every £ > 3,

Sm, 0 —Sm,2 . .
/ (1 +u)_p/2_]_8E[|(W‘!l11,l - W"]Inl—u)‘p'Am’e] du S vag"sl’ (422)
0 ,

where C, . 5, does not depend on k, m, £ and K. With the notations of Lemma 3.4, we know that on the event A
with £ > 2, we have forallv e {1,...,¢ — 1},

t
Vt € [Sm.vs Smv1]s W3=W,1+/ gs(s)ds,
Sm,v

where gg is a F, ,+1-measurable function (defined in Lemma 3.4). Moreover, by Lemma 3.3(ii), which can be ap-
plied with b = 27" (owing to Lemma 3.4 and Remark 4.1), W/, j =1, 2 can be realized as follows on [sy v, Sm,v+11;

S5, 8s(s)ds N

vVt € [Smvs Smov+1]s W;] = (U;n’v + Vm,v)
’ ||gS||[sm,v,s,,,,v+1],2

t—=Sm2°
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where (Wﬂ)tio is a standard Brownian motion, (Vi y)v>1 is a sequence of i.i.d. normally distributed random vari-
ables, and

—Qv

1
Voe{2,....0—1},Yo € Ay, |U;'””(w)|5§max{22“”,—2log< >}+2°‘”sc1og(2°‘”),

where C does not only depend on «. Furthermore, (W’”),>o and (Viu,y)v>1 are independent of (U v

Us""), and gs.
In particular, (W,’")tzo and (Vj,,»)y>1 are independent of A,, ¢. Set sm’U =Smv V (Sme —u). The above properties

imply that for every u € [0, S ¢ — Sm 2],

, 1 e gs(s) ds | ”
n | Ame] < CpE log(2") ==t——— | An.e
[| Sme Sm[ ui " ] ; ”gS”[Sm,vySm.erl]vz "
¢ mv+1 gS(S)dS 14
L C,E EUAEL el N
= IIgSII[sm,U,sm_UH]l
p
+Cp H Sm, € SmZ ;lnn(’ —Sm,2— u’ ] (423)

We focus successively on each term of the right-hand side of the above inequality. First,

-wr |”]=ul?E[|U|P], (4.24)

[| Sm, € —Sm,2 Sm—Sm,2—U

where U stands for a normally distributed random variable.
For the first right-hand side member term of (4.23), we deduce from the Cauchy—Schwarz inequality that

-1 f n11+1 |gS(S)|dS —1 1/2 /01 mv+1 |gS(S)|dS 1/2
DRI iy e R 3/ L
= lgslism vsmori12 — \i2 o N85 v sm 04112

Using that v — log(2%?) is non-decreasing and that

2
mu 1
</ : |gs(S)|dS> < (Smot1 —S,”;,v)(IlgsII[sm,v,s,,,,vH],z)z, (4.25)
su

m,v

we deduce that

—1
Z log(2*"))
v=2

Using that for all £ > 3, sy, ¢ — Sm2 = 22871 with ¢, > 1, one deduces that for every positive p and ¢, there exists
Cp,e such that for every £ > 3, \/Zlog(Z"‘z) <Cpe(Smye — sm,z)s/” (we recall that « is a fixed number of (0, 1/2)).
As a consequence, the first right-hand side member term of (4.23) satisfies for every u € [0, $p,¢ — i 2]

S gs(s) ds

< VElog(2*)u' .
”gS”[sm vsSm,v+11,2

|gs<s>|ds>P

”gS”[Sm vsSmv41152

[(Z log(2*?)

where C p ¢ 1s the constant defined above. Finally, for the second right-hand side member term of (4.23), let us define
(X ) by

Am,e] < Cpe(Sme — Sm2)’ul’?, (4.26)

mv)v =2

m L+l g(s) dS
Yoel2,... t—1), X4, = Vm,vm,
Sm,vsSm,v+11,
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Since (Viu.»)v>1 is centered and independent of gs and A,y 1, it follows that (Xm v)e;; is a sequence of martingale
increments under P(:|.A,, ¢). By the Doob inequality and (4.25), we deduce that,

Srun,v-H
i
Z Vm,v Am,f:|

-1 =1, oo gs(s)ds \2\ "%
8 [} SYR DYy O 7
v=2 ||gS ||[S/71,Ussm,v+1]s2 v=2 ”gs || [Sm‘l/ssm.v+l]72

-1 /2
<Gy (Z(s,‘;,vﬂ - s::,,v)) < Cpu’?. (4.27)

v=2

gs(s)ds |P

By (4.24), (4.26) and (4.27), we obtain that there exists C . € R% such that forallm € N, £ > 2, j € {1, 2} and
u €10, sm,e — Sm,21,

[| Sm. € 3m — u|p|~Am Z] < Cp.e(Sm,e — Sm, 2)81417/2 (4.28)

The results follows by plugging this inequality into (4.22).

i = 2: Here, we consider the interval where Step 2 fails. With the previous notations, 72 = sy,.¢ and T, = s ¢+1
on A, ¢ when £ > 2. By a similar strategy as in the case i = 1 (see in particular (4.22) and (4.28)), it is enough to
show that there exists C), . such that forallm e N, £>0, j € {1,2} and u € [0, 5,041 — Sm,¢],

1”1 Am,e] < Cpe(Smea1 — Sme) uP’. (4.29)

[| Sm,e+1 S,,, (41U

When £ =0,1, 7) — 'Cn21 = 0 so that the property is obvious. Let us consider the set 5,, ¢(—1 defined by (3.14). From

s Ly Y

the very definition, Ay, ¢ C Bye—1.
By Holder inequality applied with some p > 1 and ¢ > 1 such that 1/p 4+ 1/g = 1, we have

E[|W, . — 5mi+1 V1A ] <E[|W, . - W/ |pﬁ|Bm,Z—1]]/ﬁ]P)(~Am,Z|Bm,£—l)1/éil-

Sm,e+1—U

On the one hand, we deduce from the independence of the increments of the Brownian motion that

|PP|B ]l/ﬁ:up/ZEUU'pﬁ]l/ﬁ’

[| Sme4+1 Sm£+1 u

where U stands for a normally distributed random variable. On the other hand, by (3.18),
P(Amj |Bm,£—l) = P(Brcn,i |Bm,£—1) > 2—015—1 )

Then, for each ¢ € (0, 1), inequality (4.29) follows by setting g = (1 — &)~ U(sothat 1 — 1 =¢).
3

i = 3: This corresponds to Step 3. The key point here is that the increments of the Browman motion after t,, are
independent of the previous coupling attempt so that, denoting by A3(m, £), the length of Step 3 under A,, ¢, we have

i b4 2
E[[Ws, = We,- el 1] = E] WT/31+A3(m,z) - er,i+A3(m,z>—u| ]=Cpur’?. (4.30)

The result then follows similarly to the case i = 1 (see (4.22)).
(ii) This result can be easily derived from the controls established previously. More precisely, cases i =0, 1,2, 3
can be viewed as particular cases of (4.21), (4.28), (4.29) and (4.30). (Il

In the next lemma, we adopt the convention ), = 1. Also, let us recall that by (2.13), Aty > c3ax > ax since
¢3 > 2cy > 1 (and that ¢c; > 1 by Remark 4.1).

Lemma 4.3. Let ¥ satisfy [W(x))i1(dxi) + [ W(x2)i2(dx) < +00 and assume that o is defined in terms of
this function as in (4.4). Assume that there exists §1 > 0 such that for every m > 1 and K > 0, P(E,|En—1) = 81 €
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(0, 1). Then, for j = 1,2 and for every p € (0,1) and ¢ € (0,1 — H), there exists C such that for every k > 1,
mel0,...,k—1}and K >0,

(4.31)

k—1 H—1+
:| < C(Zl=m+l ar) 8.

1 .
E[ sup —— Akl (s, 1, W) |E P =m)
1

(5,0), 71 <s<t<s+1 T =5

As a consequence, if ap = ¢* where ¢ € (1, 400), there exists A € (0, 1) and C > 0 such that for every integers m
and k withm <k

1 .
E[ sup —— Akl (s, 1, Wf)|€k:| <CAF . (4.32)

(5.0 T <s<t<s+1L— S

Remark 4.4.

e The assumption on the moments of [i is only necessary for the case m = 0 which corresponds to the interval
[—o0, T9]. Due to the memory, g is not independent of the past of the Brownian Motion before ty. But the assump-
tion on [1 leads to a control of the queue of Ty which is sufficient to overcome the non-independence property.

e The fact that the quality of the estimate strongly decreases with m — k may appear surprising. The main problem
is that we do not have a sharp idea of the distribution of L(W; — Wy, |, tu—1 <t < Ty) conditionally to the event
{At; < 400, m <l <k} and thus, we compensate this failure by some Holder-type inequalities.

e The second statement says that if one waits sufficiently between each trial, the influence of the past decreases
geometrically with m. Note that this waiting time increases geometrically. This may be a problem for the sequel
and the fact that ¢ can be chosen arbitrarily close to 1 will be of first importance.

Proof. First, note that if (4.31) is true, (4.32) easily follows: let ¢ > 1 and let y; € (0, +00) be such that ¢ = 8;”. It

is now sufficient to remark that for every m € {1, ...,k — 2},
k—1 H—1+e¢
( Z ae) Sl—p(k—m) < SEVI(I—H—é‘)—ﬂ)(k_m)
l=m+1

and to choose for instance ¢ = (1 — H)/2 and p = M A % so that

1-H 1
y(—H—e)—pz 01y
4 2
Let us now prove (4.31). We consider three cases:
Case 1: k>3 and m € {1,...,k —2}. m € N. In harmony with Lemma 4.2, we decompose [t,_1, T;,] in four

intervals [‘L’,l;l, ‘E,ifl ],i €{0, 1,2, 3}, and also cut A, x (which does not depend on & in this case) in four parts denoted
by Om.i:

i+l

Vie1.23) st W)= [T @-nt oo R aw),

i
Tm

By Lemma 4.1,

| ' o g+l
|G (s, 1, W) < (1 =)W, — Woisi| + —/_
t—s moom 2y

(s — I \w, — W,iti|dr.

If ip_1 <s <t,since At; > gy for all [, we get

k—1 k—1
t_T’l'lzmaX( ) al’TVl’”lJrl_Tl;I) and Vre[r,. ], s—rzmax< > ag,1~|—'[rln+l—r>_

l=m+1 l=m+1
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Thus, for every ¢ € (0,1 — H),
1 k—1 H—-1+¢
sup —|pmi(s. . W) =Cl D a Em,e.i»
(5,1), T—1 <s <t <s+1 t—s L=m+1

where

ritl

X L _ . . 1 m
e = (e = o) wl w5 [

[x]

i
Tm

(Lo =) W] —wi [ dr.

The interesting point is that Z,, . ; does not depend on k. Furthermore, by Lemma 4.2, forevery p > 1,e € (0,1 — H)
andi €{0,1,2,3},

E[|Emci1”1En]"7 < C,

where C does only depend on p, ¢ and H. Set &, , = 21'3:0 8m,e.i- Summing up the previous controls (on i), we

deduce from Holder inequality that for every p > 1 and g > 1 such that % + 5 =1,

OSE[ sup L|Am,k(s,l, Wj)||5k:|
(5.0, 1 <s<t<s+1L— S

k—1

H—1+¢
sE[|Em,g|P|5m]””< 3 ae) P(EklEm) /17!

L=m-+1

1\ =1/ k=m) [ k=1 H-le
§C<E> ( > ag) ) (4.33)

l=m+1

The result follows in this case by noticing that for every p € (0, 1), there exists g € (1, +00) such that p =1 —1/gq.
Case 2: k > 2 and m = k — 1. It corresponds to the integral on the interval [tx_>, Tx—; — 1]. The proof is almost
identical using the controls

t—r,’;121+r,i,+1/\(rk_1—1)—t;1 and

Vre[t, i Ao = D], s—r=1+t Ao =D -1

We do not detail it.

Case 3: k > 1 and m = 0. It corresponds to the integral on the interval (—oo, 7p] if k¥ > 2 and (—o0, 19 — 1] if
k = 1. For the sake of simplicity, we only consider the case k > 2. Note that on this interval W! = W?2. We then write
W only. By Lemma 4.1 and the fact that limps_, 4~ M~Y2=ew_,, =0, we have

1 1 [% _
— [Aoxs 1, W)’SE/ (s =)W, — Wyl dr
—00
so that

1
sup —|A0,k(s9tv W)|

foy<s<t<|s|+1 T —S

| k—1 H—1+¢ 0

—00
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where ¢ € (0,1 — H). Let p > 1. As remarked previously, one has no information about the joint law of 7 and wi.
We compensate this failure by a rough argument. Using Cauchy—Schwarz inequality,

T0 P
E,{(/ (1+to—r)_1/2_8|Wr—Wro|dr>:|
—00
+00 u 2p1/2
521@[(/ (1+u—r)3/28|W,—Wu|dr> } Pa(to=u)"/?.
u=1 —%°

Thanks to the stationarity of the increments of the Brownian motion, we deduce from a change of variable that

u 2p +o0 2p
E (/ (1+u—r)_3/2_8|W,—Wu|dr) }SE[(/ (l+r)_3/2_S|W,|dr> ]:: Cp.
—00 0

Using that for every p > 1 and ¢ > 0,

[ (W
IES].II)(’.(1_~_7{_?)/2 < 400,

Lr>1

we deduce that C), is finite. It remains to show that Z 1 Pi(to = u)'/? < 4-00. This property has already been
proved in (4.4). |

Proposition 4.4. Assume that Step 1 and 2 are carried out as described in Section 3. Let V satisfy [ W (x1)fi1(dx1)+
f W (x2)n2(dxa) < +00 and assume that 1y is defined in terms of this function as in (4.4). Assume there exists 51 > 0
such that for every m > 1, P(E,,|En—1) > 81 € (0, 1) and that for every k > 1, ay defined in (2.13) satisfies ay = gk
with ¢ > 1. Then, H'2(0) holds for every 6 € (1/2, H).

Proof. First, thanks to a change of variable and to the decomposition introduced at the beginning of the current
Section 4.3, we have

Atg

Z)OAU u”B”rk 1+u—1,7— 1+u<z Z ,OU‘ M‘A kHu lLu

m=1u=t;_1+1

+Z Z Pl 1A P (4.34)

m=1lu=t,_1+1

where we used the notations introduced in (4.16). Thus, the idea is to bound each term of the right-hand side. First,
forevery m € {0, ...,k — 1}, forevery u € {tj—1, ..., Tk},

[Anly ™ < sup

Tp—1 <s<t<[s]|+1 r—s

|Am k(S,t, Wj)|

Since the right-hand side member does not depend on u, we deduce that for every m € {0, ...,k — 1}

+00
|Ami(s. . W) Y p". (4.35)

w=0

Z P Al s sup

u=ti_1+1 Th— 1<S<’<LSJ+1t_s

Thus, by Lemma 4.3, it follows that for every m € {0, ...,k — 1}

C _
s 5 prelaglyie | 1S an

u=tr—1+1
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where A € (0, 1). As a consequence,

C

k—1 Tk
n—ul|| AJ u—Lu
IE|:Z Z P ¢ HAm,kHQ |gki| = (1—p)(1— A)

m=1u=t,_1+1

Keeping in mind inequality (4.34), it remains to bound, independently of k and K, the terms involving A x and ',
m =1, 2, 3. The strategy is different since these terms depend on the path between t,_; — 1 and 7%. Let us begin by
Ak k- By a change of variable,

Tk ] At—1 )
> A = 3 oz where Z = A
Uu=tp_1+1 v=0

Note that Z; o = 0. On the event A ¢, one knows that Aty is deterministic. Denote it by A(k, £). Decomposing the
event &, it follows that

T ‘ Ak.0)
E|: > p”‘_”||Ai’k||Z_1’u|5k:|=Z > pAEOTIVELZy | Ak P (Ak e |€0).

u=tx_1+1 >0 v=I

Using that Ay ¢ C & C E—1 and Cauchy—Schwarz inequality, we remark that

E(Z{ 1E—1]"*

E[ Zio| Ak e IP(Ax, o1& < E[Z2 6] PP (Ax el€0) ' < S lg o P AkelE0 " (4.36)
But P(&|E—1) > &1 > 0 and using Lemma 3.4, we have for every £ > 2,
P( A ¢|E) = % <87 "PBre—11E—D)P(B 4 |Bre—1) < 871272 4.37)
so that
Tk
E[ )R PV IIZ‘I’”I&} =Csip iggE[Zé,ulﬁk—l]” ’ (4.38)
u=tp_1+1

where Cs, , is a finite constant depending only on §; and p. Set &g = (H —6)/2. Using that (W, ¢, _,—1 —We,_—1)u>0
is independent of F7, | _1, we obtain for every v € N, for every k € N,

E[Z{ |&—1] <E[(F.(W,, 0 <u < ))*],

where W is a standard Brownian Motion and F,, : C1/?27% ([0, v], R?) — R defined by
1

Fy(wy,0<u<v)= sup
v+1<s<r<v+2 t—s

v
/ t+1-n2— (s +1-r)""12duw,|.
0
By Lemma 4.1, for every v > 1,
_ _ 1 v _ _
FU<WM,0§usv)svH—3/2|WU|+5/ (vt 1 — =52\, — W, |dr.
0

Denote by (Wu)ue[o, 1] the rescaled Brownian motion defined by W, = /oW, By a change of variable, for every
v=>1,

_ - 1 ! - -
Fo(W, 0<u < v) < Wy | + 5/ O+ 1= o) 52|, — W) du,
0
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Checking that

1 -1
3
Yo >1, fﬁ(v+1—uv)H_5/2du§<§—H> ,
0

one deduces that

. 2 . -\
supE[Z¢ & §]E|:<|W1|+7 sup |W, —W1|> }
vzlf [Zi.. ] 3/2_Hue[01i)l] !

By plugging this inequality into (4.38), this concludes the study of Ay k.
As concerns I';, i =1, 2,3, one deduces with a similar strategy as before that it is enough to show that for i =
1,2,3,
E[|Gi(W,,0<u<2)['] <C, (4.39)

where, setting h =1t — s,

s—h
Gi(w)= sup —/ (t —r)H12 (s — P12 qu, |,
1§s<t§2(t_s)6 0
1 )
Go(w) = sup —9/ (s—r)H_l/zdw,‘ and
1<s<t<2 (t—s) s—h

t
G3(w)= sup ﬁ/h(t—r)ﬂl/zdwr'.

1<s<t<2

By Lemma 4.1, we have
s 172 12
/ =12 — (s =12 dw, < Jws_p — wol(t —s)
0

s—h
+<r—s>9/ (s —h —r)H=0732 1w, —wy_y|dr,
0

where in the second line, we used that for every r € [0, s — h], s —r > s —h —r and s — r > h. We deduce that

, H-6
Giw) < C(1+wlfj_,,) withey = — (4.40)

and (4.39) follows for i = 1. By an integration by parts, one also checks that

S 1 N
/ (s =" dw,| < wits_,, (h’”g +(H —5) / (s — =321 /2o dr)
s—h s—h

H— 0,2
<Ch Eguw”l/g_gg-

The previous control also holds for G3(w) and since H — &g > 0, it follows that (4.39) is also true for i =2, 3. O
4.4. Condition (2.6)

Proposition 4.5. Let « € (0,1/2) and assume that for every k > 1 and € > 0, A3(£,k) = c3a2Pt with
B> (- 20()_1, ay = gk with an arbitrary ¢ > 1. Then, for each K > 0, there is a choice of c3 such that, for
every k > 0, condition (2.6) is a.s. satisfied at time T} on the event {ty < 400}. In other words, for every k > 0,
P(Q) |t < 400) = 1.

o, Tk
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Proof. For every k > 0, set
+00 , 5 172
Uy = sup(/ (L+*[(Rrg) @) dt) )
T>0\J0

Since gy, is null on (—o0, 9], ug = 0. Following carefully the proof of Lemma 5.15 in [9] (see (5.8) therein for
notation), we check that there exists C > 0 such that for every k > 1,

3 Na=1/2 /) s e —Tid 12
T T k,OF+1
Up — Ug—1 §C<7k & ) <f ‘ (1+f)2a|gw(fk—1+f)|2df>

0

P —
12— / s, pesy—Th s 12
c * k7 +1
< C<—2g"‘2‘<ﬁ‘“‘k> (/ ¢ (140 |gu (T +z)|2dr) :
c3 0

where we used (2.13) and (3.13) in the second inequality (by Remark 4.1, ¢, = (Cx)V/ @0y But by Lemmas 3.1(b)
and 3.4, for all K > 0 and « € (0, H), there exists C > 0 such that

Sp ¥4 —Th— 1/2 .
(/ ce 1(l+t)2°‘|gw(rk_1+t)|2dt> < C(1+ 276D (¢5 1 1)),
0

By the condition 8 > (1 — 2a)~! which ensures that (8 — 1)(% — o) > «a, it follows that for every K > 0 and
a € (0, 1/2), there exists another constant C > 0 (depending on H, K, o and ) such that

12—«
C2 —k
Vk >0, uk+1—uk§C(—g ) .
C3

Choosing c3 large enough in order that C Zkzl(% ¢ K1/2= < 1 yields supgsouk < L. |

5. Proof of Theorem 2.1

Let « € (0, 1/2). We enforce the assumptions of Proposition 3.1 and 4.1. Assume that X! and X? have initial dis-
tributions o and p respectively, where p denotes an invariant distribution. First, denoting by [ its first marginal,
we recall that f |x|"x(dx) < +oo for any positive r (see Proposition 4.6 of [10] if b is Lipschitz continuous or
Proposition 3 of [3] otherwise). It is therefore enough to show that for any initial condition ji of (X', X?) satisfying
A(lx1]" + |x2]") < +oo for some r > 0, for each & > 0 there is C; > 0 such that P(tse > 1) < Cpr—(1/878),

Set k* :=inf{k > 1, A1, = +00}. We have

+o0 +o0
t t
P(t50 > 1) :IP’(‘[O + ZAfklk*>k > l‘) < P(‘[o > 5) +P<Z ATl > E) 5.1

k=1 k=1

Taking W such that W(x) < C(1 + |x|") (which is possible by Remark 4.2), by an argument similar to that of (4.6) we
deduce the existence of C > 0 and yp > 0 such that

t
]P’(ro > 5) < Cexp(—yot).

Now, let us focus on the second term on the right-hand side of (5.1) and let p € (0, «/B8) C (0, 1). By the Markov
inequality and the elementary inequality |u + v|P < |u|P + |v|P,

+00 ¢ C +00
P(/; Aty lprsg > 5) =5 ZE[|ATk|p|1{k*>k}]

=~
—_

3

ct
)

IA

E[E[|Afk|p|1{Ark<+oo} |-7:rk,1]1rk,1<+oo]'

~

k

Il
<
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Let us bound deterministically the above conditional expectations. On the one hand, if Step 1 fails (including the case

where w € Q?(,a,rk_l ), ATy = 1 4+ c3¢* where ¢ > 1 can be chosen arbitrarily. On the other hand, by Lemma 3.4, we

have for every £ > 2,
P(Ak ¢l Fr,, N {Ti—1 < +oo}) <27%

Since by construction, Aty < C k2Bt (with B > (1 —2a)"!) on Ak ¢, this yields

+00
E[|Atk|”[1{ag <to0) | Fry N{Tee1 < +00}] < Cs*P (Z 2“”"“”) <cg.

=1
Thus, for every p € (0, a(1 — 2a)),
+00 ¢ C +00
P(Z At =g > 5) < t_P ngpp(k* >k — 1)
k=1 k=1
But
k—1 k—1
P(k*>k—1)=[ [ PEnlEn-1) =[] (1 = P(E1En-1))
m=1 m=1

and by Propositions 3.1 and 4.1 the latter applied with (for instance) ¢ = 1/2, we have for every m > 1,

é
P(£p€,|gm—1) >P(At, = +OO|QK,0{,‘EW,_1)IP(QK,0{,‘[,,,_1 [Em—1) = an

where &g is a positive number depending on K7 7. It follows that

S k—1
P(k*>k—1)§<1—?0> :

As a consequence,
+00 +00 5o\ <!
ngpP(k*>k—1)§Z§pk(1—5> < +00
k=1 k=1

if ¢ is chosen in such a way that ¢? < (1 — %")_1 (this is possible since ¢ is an arbitrary number greater than 1).
Finally, for every « € (0, 1/2), for every p € a(1 — 2a), there exists C > 0 such that P(to, > t) < Ct~P. To conclude
the proof, it only remains to optimize in «.

Appendix A: Control of (X tl)te[Tk,Tk+1] under (K, «)-admissibility

We show the first point of the proof of Lemma 3.1. Let K and K denote some positive constants. Let w € Qg 4 7,

and assume that | W! ||r]"’t:'Irl < K with gy = #. First, we bound || B ||;k’tk+1. With the notations introduced at the
760

beginning of Section 4.3,

7%—1
||Bl||;k,fk+l / k (t—r)H_l/z—(S—r)H_l/de,I

—00

< sup
T <s<t<t+1 I—s

3

T, T+ 1

+ ) T lge ™
m=1
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The first right-hand side term is bounded by K since w € Qg 4,7, . As concerns that of the second line, we deduce
from the end of the proof of Proposition 4.4 (see e.g. (4.40)) that

Vm e {l1,2,3}, ||Fm||;k,rk+1 < C(l + ” wl ”Ik/;i;;—i_l)

Under the assumptions, || W' ||fk/§'_’zz < K ((K, a)-admissibility) and || W! ||§"/’27f;1 < K. It follows that

me(1,2.3), |B}" <cp (A1)

where C ¢ is a finite deterministic constant which does not depend on .

In order to conclude the proof, it is now enough to bound sup, (g, 171Xz +¢| with respect to | X ikl and || B! ||g" Sans

This point is a classical property of fractional driven SDE but we prove it for the sake of completeness. First, note that
Steps 1, 2 and 3 of the proof of Proposition 4.3 still hold under the assumptions of Lemma . Set F(x) = 1 + |x|?. Let

7 <s <t <1+ | such that ¢o(1 + || B! Ing’tkH) < 1/2. By the change of variable formula,

t t
F(Xt):F(Xs)+/ (VFIb)(Xu)dqu/ (VF(X.)lo(X,)dB,)

<FX)(1+C@t—s))+

t
/ (VF(X)lo (X dBY)|.

where in the second line, we used that (V F|b)(x) < C F(x) (since b is a sublinear function) and Step 3 of the proof of
Proposition 4.3. The functions VF and o being Lipschitz continuous and o being also bounded, we obtain similarly
to Step 4 of the proof of Proposition 4.3 (see (4.15)) that if r — s < n defined by (4.14) (replacing 0 and 1 by 7 and
T + 1 respectively),

t
f (VF(X)lo (X dBY)| < C(t — )Y F(Xy) + .

Then, it follows that for every 7y <s <t <t + l suchthatr —s <p
F(X) < F(X)(1+C@t—s5))+ 8.
An iteration of this inequality on the sequence (tx + £1)¢>1 yields

-1

1 4 2 u
Ve | o] FXni) < F(Xo)(14Cn) +B) (1+Cn)
u=0

< exp(C)(F(ka) + C%) < exp(C)(F(Xg) + CA(1+ | BV D)y,

where in the last inequality, we used that n > ((1 + || B!|jg)®% % +1)~1/ 0, Applying again Step 3 of the proof of Propo-
sition 4.3 yields the existence of another constant C (which does not depend on k) such that

sup  F(X,) < C(F(Xe) +B(1+ | B 7)Y, (A2)
teltg, e +1]

The result follows since, by (A.1), the right-hand side is bounded by a deterministic constant depending only on K,
K and 0 on the set Qg 4.7, N{||W! ||I’72Tf;] <K}
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Appendix B: Proof of (4.1)

It is enough to prove that there exists C > 0 such that for every k and K, E[¢y, , (WJ (w))|E] < C. The fact that

§

is bounded by a constant which does not depend on k follows from Lemma 4.3. More precisely, if k > 1 this property
is a consequence of (4.32) combined with the fact that {(s,¢), s <s <t <t + 1} C{(s,1), k1 <s <t <s+ 1}. If
k = 0, it corresponds to Case 3 of the proof of Lemma 4.3. For the second part, if k > 1, we deduce from Cauchy—
Schwarz inequality that

1 -[k,] .
E[ sup [ (t—r)Hfl/z—(s—r)Hfl/derj
—00

(s.Dy<s<t<g4+11—S

L w7t ] <ELW 1700 18] B E-n .

But using that (W;);e[¢,—1,7,] is independent of & _; and that P(E;|Ex—1) = &1, it follows that

Efw 11,55 18] < Cosy 2,

where Cg :=E[(||W/ ||(1)}12—59)2] < +o00. This concludes the proof.
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