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Abstract. In this paper, we examine how various notions of independence in non-commutative probability theory arise in bi-free
probability. We exhibit how Boolean and monotone independence occur from bi-free pairs of faces and establish a Kac/Loeve
Theorem for bi-free independence. In addition, we prove that bi-freeness is preserved under tensoring with matrices. Finally, via
combinatorial arguments, we construct partial R-transforms in two settings relating the moments and cumulants of a left–right pair
of operators.

Résumé. Dans cet article, nous examinons comment diverses notions d’indépendance en théorie des probabilités non commuta-
tives se traduisent en probabilités bi-libres. Nous montrons comment l’indépendance booléenne et monotone se produisent à partir
de paires de faces bi-libres, et établissons un théorème de Kac/Loève pour l’indépendance bi-libre. En outre, nous prouvons que
l’indépendance bi-libre est préservée par tensorisation avec des matrices. Enfin, par des arguments combinatoires, nous construi-
sons deux types de R-transformations partielles, reliant les moments et les cumulants d’une paire gauche-droite des opérateurs.
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1. Introduction

In non-commutative probability theory there are several notions of independence which characterize the joint moments
of collections of algebras in terms of the individual algebras. By [17] there are precisely three symmetric notions
of independence: classical independence, free independence, and Boolean independence. In addition, there are two
antisymmetric notions of independence: monotone and anti-monotone independence. These notions of independence
have very similar theories such as the existence of cumulants and the ability to use power series transformations
describing moments of convolutions of operators. We refer the reader to [2,5,6,8,14–16,18,19] for the development of
these theories.

In [21] Voiculescu introduced the notion of bi-free independence in order to simultaneously study the left and right
reduced representations of algebras on reduced free product spaces. Instead of being an independence for collections
of algebras, which would reduce to one of the above five notions by [9,10], bi-free independence is an independence
for pairs of algebras; one designated the left algebra and the other designated the right algebra. In comparison with
the other notions of independence, the cumulants for bi-free independence, known as the (�, r)-cumulants, were
developed in [3,4,7] and a partial R-transform for a left–right pair of operators was discussed in [22].

Voiculescu noticed both classical and free independence can be viewed as specific instances of bi-free indepen-
dence. In particular, given two algebras A1 and A2 in a non-commutative probability space (A, ϕ), A1 and A2 are
classically independent if and only if (A1,C1A) and (C1A,A2) are bi-freely independent, and A1 and A2 are freely
independent if and only if (A1,C1A) and (A2,C1A) are bi-freely independent. Furthermore, given a collection of
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bi-freely independent pairs of algebras, each left algebra is classically independent from every right algebra from a
different pair, the left algebras are freely independent, and the right algebras are freely independent.

This paper investigates how other notions of independence occur inside bi-free probability, how bi-free indepen-
dence shares many properties with free independence, and partial R-transforms for left–right pairs of operators. One
can either view these results as indications that classical, free, Boolean, and monotone independence are specific
instances of bi-free independence, or as information on how bi-free independence works in specific instances in an
effort to reduce the mystery surrounding bi-free probability. There are seven sections to this paper, including this
introduction, which are structured and summarized as follows.

Section 2 reviews the notation, structures, and results from [4] necessary to discuss bi-free independence with amal-
gamation. In particular, the notions of bi-non-crossing partitions and diagrams, the bi-non-crossing Möbius function,
B-B-non-commutative probability spaces, operator-valued bi-multiplicative functions, and bi-free families of pairs of
B-faces are recalled.

Section 3 examines how classical and free independence are specific instances of bi-free independence. In particu-
lar, it is demonstrated how the moments of classical/free independent algebras occur by summing over certain subsets
of bi-non-crossing partitions. Furthermore, a bi-free Kac/Loeve theorem is developed thereby demonstrating that any
two bi-free pairs of algebras that remain bi-free after a non-trivial rotation must be bi-free central limit distributions.

Section 4 examines how (operator-valued) Boolean independence arises inside bi-free probability. To begin, The-
orem 4.4 demonstrates how Boolean independent algebras arise from bi-free pairs of algebras under mild moment
hypotheses. Furthermore, given a collection {Ak}k∈K of Boolean independent algebras, we demonstrate two different
constructions in order to obtain a family of bi-free pairs of algebras such that {Ak}k∈K embed into Boolean inde-
pendent algebras generated by the bi-free pairs of algebras. Only one of these embeddings is a homomorphism, but
the non-multiplicative embedding allows one, without knowledge of [18], to define the Boolean cumulants as spe-
cific (�, r)-cumulants. In addition, it is shown how the moments of Boolean independent algebras occur by summing
certain (�, r)-cumulants corresponding to bi-non-crossing partitions that resemble interval partitions.

Section 5 examines how (operator-valued) (anti)monotone independence arises inside bi-free probability. As in
Section 4, we demonstrate how monotonically independent algebras arise from bi-free pairs of algebras under mild
moment hypotheses and how every pair of monotonically independent algebras can be embedded into the bi-free
setting. In summary, classical, free, Boolean, and monotone independence can be realized as specific instances of
bi-free independence and the moment functions of these independences are given by summing over specific bi-non-
crossing partitions as roughly described in Table 1.

Section 6 examines matrices of bi-free pairs of algebras. Several advances in free probability, such as those of [1],
revolve around the ability to use matrices of operators to simplify the computations for the moments of the operators.
Essential to this is the fact that matrices of freely independent algebras are free with amalgamation over Mn(C) with
respect to the amplified state. Theorem 6.5 demonstrates the same holds in the bi-free setting; matrices of bi-freely
independent algebras are bi-free with amalgamation over Mn(C).

Section 7 uses the combinatorics of bi-free probability to examine partial R-transforms. The Cauchy transform and
R-transform, which have played an essential role in free probability, were first examined by Voiculescu in [20]. Subse-
quently Speicher in [16] used combinatorics to derive the relation between the Cauchy transform and the R-transform.
Furthermore, Speicher and Woroudi used similar methods in [18] to derive expressions for Boolean independence. In
Section 7 a simple, purely combinatorial proof of the partial R-transform for a left–right pair of operators constructed

Table 1
Bi-non-crossing partitions for types of independences

Independence Bi-non-crossing partitions used

Free partitions that have only left (or right) nodes

Classical partitions that have both left and right nodes but no block contains both

Boolean partitions that have both left and right nodes and every block contains both

Monotone partitions that have both left and right nodes but no block contains both and no block can connect
two left nodes if it needs to pass a right node
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in [22, Theorem 2.4] is given. Finally, using similar techniques, another partial R-transform is constructed whose
proof generalizes the proof for the Boolean transforms from [18, Proposition 2.1].

2. Background on bi-freeness with amalgamation

This section reviews the background and notation for bi-freeness with amalgamation required in the remainder of the
paper. We refer the reader to [3,4] for more details.

In general, a map χ : {1, . . . , n} → {�, r} is used to designate whether each operator from a set of n operators
should be a left or a right operator and a map ε : {1, . . . , n} → K is used to determine which algebra from a collection
of algebras indexed by K each operator is from.

2.1. Bi-non-crossing partitions

Let P(n) denote the set of partitions on n elements. Given two partitions π,σ ∈ P(n), we say that π is a refinement
of σ , denoted π ≤ σ , if every block of π (a set in π ) is contained in a single block of σ . Refinement defines a partial
ordering on P(n) turning P(n) into a lattice.

Given χ : {1, . . . , n} → {�, r}, if

χ−1({�}) = {i1 < · · · < ip} and χ−1({r}) = {ip+1 > · · · > in},
define the permutation sχ on {1, . . . , n} by sχ (k) = ik . In addition, define the total ordering ≺χ on {1, . . . , n} by
a ≺χ b if and only if s−1

χ (a) < s−1
χ (b). Notice ≺χ corresponds to, instead of reading {1, . . . , n} in the traditional

order, reading χ−1({�}) in increasing order followed by reading χ−1({r}) in decreasing order.
A subset V ⊆ {1, . . . , n} is said to be a χ -interval if V is an interval with respect to the ordering ≺χ . In addition,

min≺χ (V ) and max≺χ (V ) denote the minimal and maximal elements of V with respect to the ordering ≺χ .

Definition 2.1. A partition π ∈ P(n) is said to be bi-non-crossing with respect to χ if the partition s−1
χ · π (the

partition formed by applying s−1
χ to the blocks of π ) is non-crossing. Equivalently π is bi-non-crossing if whenever

there are blocks U,V ∈ π with u1, u2 ∈ U and v1, v2 ∈ V such that u1 ≺χ v1 ≺χ u2 ≺χ v2, then U = V . The set of
bi-non-crossing partitions with respect to χ is denoted by BNC(χ).

Note BNC(χ) inherits a lattice structure from P(n) and thus has minimal and maximal elements, denoted 0χ and
1χ respectively.

To each partition π ∈ BNC(χ) we associate a bi-non-crossing diagram as follows: place nodes along two dashed
vertical lines, labelled 1 to n from top to bottom, such that the nodes on the left line correspond to those values for
which χ(k) = � and nodes on the right line correspond to those values for which χ(k) = r . Then use lines to connect
the nodes which are in the same block of π in such a way that lines from different blocks do not cross.

Example 2.2. If χ−1({�}) = {1,2,4}, χ−1({r}) = {3,5}, and

π = {{1,3}, {2,4,5}} = sχ · {{1,5}, {2,3,4}},
then the bi-non-crossing diagram associated to π is

1

2

3

4

5

In such diagrams, the vertical lines are referred to as spines.
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2.2. The bi-non-crossing Möbius function

The bi-non-crossing Möbius function is the function

μBNC :
⋃
n≥1

⋃
χ :{1,...,n}→{�,r}

BNC(χ) × BNC(χ) → C

defined such that μBNC(π,σ ) = 0 unless π is a refinement of σ , and otherwise defined recursively via the formulae

∑
τ∈BNC(χ)

π≤τ≤σ

μBNC(τ, σ ) =
∑

τ∈BNC(χ)

π≤τ≤σ

μBNC(π, τ ) =
{

1 if π = σ ,
0 otherwise.

Due to the similarity of the lattice structures, the bi-non-crossing Möbius function is related to the non-crossing
Möbius function μNC by the formula

μBNC(π,σ ) = μNC
(
s−1
χ · π, s−1

χ · σ )
.

2.3. B-B-non-commutative probability space

To discuss bi-freeness with amalgamation, the correct abstract structures are required. For this section and the rest of
the paper, B denotes a unital algebra over C.

Definition 2.3. A B-B-bimodule with a specified B-vector state is a triple (X , X̊ ,p) where X is a direct sum of
B-B-bimodules

X = B ⊕ X̊ ,

and p : X → B is the linear map

p(b ⊕ η) = b.

Let L(X ) denote the set of linear operators on X . For each b ∈ B define the operators Lb,Rb ∈ L(X ) by

Lb(η) = b · η and Rb(η) = η · b for all η ∈X .

The unital subalgebras of L(X ) defined by

L�(X ) := {
Z ∈ L(X ) | ZRb = RbZ for all b ∈ B

}
and

Lr (X ) := {
Z ∈ L(X ) | ZLb = LbZ for all b ∈ B

}
are called the left and right algebras of L(X ) respectively.

It is important to note that L�(X ) consists of all operators in L(X ) that are right B-linear and thus are potential
operators for the left face of a pair of B-faces (see Definition 2.12).

Definition 2.4. Given a B-B-bimodule with a specified B-vector state (X , X̊ ,p), the expectation of L(X ) onto B is
the linear map EL(X ) : L(X ) → B defined by

EL(X )(Z) = p
(
Z(1B)

)
for all Z ∈ L(X ).
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It was shown in [4, Proposition 3.1.6] that EL(X ) has two essential properties; namely

EL(X )(Lb1Rb2Z) = b1EL(X )(Z)b2

for all b1, b2 ∈ B and Z ∈ L(X ), and

EL(X )(ZLb) = EL(X )(ZRb)

for all b ∈ B and Z ∈ L(X ). Based on these properties, the following abstract structures were examined.

Definition 2.5. A B-B-non-commutative probability space is a triple (A,EA, ε) where A is a unital algebra, ε :
B ⊗ Bop → A is a unital homomorphism such that ε|B⊗1B

and ε|1B⊗Bop are injective, and EA : A → B is a linear
map such that

EA
(
ε(b1 ⊗ b2)Z

) = b1EA(Z)b2

for all b1, b2 ∈ B and Z ∈A, and

EA
(
Zε(b ⊗ 1B)

) = EA
(
Zε(1B ⊗ b)

)
for all b ∈ B and Z ∈ A.

The unital subalgebras of A defined by

A� := {
Z ∈A | Zε(1B ⊗ b) = ε(1B ⊗ b)Z for all b ∈ B

}
and

Ar := {
Z ∈A | Zε(b ⊗ 1B) = ε(b ⊗ 1B)Z for all b ∈ B

}
are called the left and right algebras of A respectively. To simplify notation, Lb and Rb are used in place of ε(b ⊗ 1B)

and ε(1B ⊗ b) respectively.

In the case that B = C, one sees that (A,E, ε) is nothing more than a non-commutative probability space; that is,
a pair (A, ϕ) where A is a unital algebra and ϕ :A→ C is a unital linear map.

It is useful to compare the notion of a B-B-non-commutative probability space with the notion of a B-non-
commutative probability space used in free probability.

Definition 2.6. A B-non-commutative probability space is a pair (A,Φ) where A is a unital algebra containing B

(with 1A = 1B ) and Φ : A→ B is a unital linear map such that

Φ(b1Zb2) = b1Φ(Z)b2

for all b1, b2 ∈ B and Z ∈A.

Remark 2.7. In free probability, one is interested in the joint B-moments

Φ(b0Z1b1Z2b2 · · ·Znbn) = b0Φ(Z1b1Z2b2 · · ·Zn)bn

for Z1, . . . ,Zn ∈ A and b0, b1, . . . , bn ∈ B . Such moments can be naturally recovered in the bi-free setting. Indeed A
is naturally a B-B-bimodule via left and right multiplication by B and thus can be made into a B-B-bimodule with
specified B-vector space via p = Φ and X̊ = ker(Φ). Hence L(A) is a B-B-non-commutative probability state with

EL(A)(Z) = Φ(Z1A)

for all Z ∈ L(A).
Notice A may be viewed as a unital subalgebra of both L�(A) and Lr (A) by left and right multiplication on A

respectively. Viewing A ⊆ L�(A), one can recover the joint B-moments of elements of A from EL(A) since

EL(A)(Lb0Z1Lb1Z2 · · ·ZnLbn) = Φ(b0Z1b1Z2b2 · · ·Znbn)
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for Z1, . . . ,Zn ∈A and b0, b1, . . . , bn ∈ B .
Furthermore, given a B-B-non-commutative probability space (A,E, ε), notice (A�,E) is always a B-non-

commutative probability space with ε(B ⊗ 1B) as the copy of B . Indeed

EA(Lb1ZLb2) = EA(Lb1ZRb2) = EA(Lb1Rb2Z) = b1EA(Z)b2

for all Z ∈ A� and b1, b2 ∈ B . Furthermore, (Ar ,E) is a Bop-non-commutative probability space with ε(1B ⊗ Bop)

as the copy of Bop.

The essential property of a B-B-non-commutative probability space is its ability to be concretely represented on a
B-B-bimodule with a specified vector state.

Theorem 2.8 ([4, Theorem 3.2.4]). Let (A,EA, ε) be a B-B-non-commutative probability space. Then there exists
a B-B-bimodule with a specified B-vector state (X , X̊ ,p) and a unital homomorphism θ : A → L(X ) such that
θ(Lb1Rb2) = Lb1Rb2 ,

θ(A�) ⊆ L�(X ), θ(Ar ) ⊆ Lr (X ) and EL(X )

(
θ(Z)

) = EA(Z)

for all b1, b2 ∈ B and Z ∈A.

2.4. Operator-valued bi-multiplicative functions

For discussions on bi-freeness with amalgamation, one needs the correct notions for moment and cumulant functions
and the properties these functions have.

Given χ : {1, . . . , n} → {�, r} and a subset X ⊆ {1, . . . , n}, let χ |X : X → {�, r} denote the restriction of χ to X.
Similarly, given an n-tuple of objects (Z1, . . . ,Zn), let (Z1, . . . ,Zn)|X denote the |X|-tuple where the elements in
positions not indexed by an element of X are removed. Finally, given π ∈ BNC(χ) such that X is a union of blocks
of π , let π |X ∈ BNC(χ |X) denote the bi-non-crossing partition formed by taking the blocks of π contained in X.

Definition 2.9. Let (A,E, ε) be a B-B-non-commutative probability space. For χ : {1, . . . , n} → {�, r}, π ∈ BNC(χ),
and Z1, . . . ,Zn ∈ A, we define

Eπ(Z1, . . . ,Zn) ∈ B

recursively as follows. Let V be the block of π that terminates closest to the bottom of the bi-non-crossing diagram
associated to π . Then:

• If V = {1, . . . , n} (that is, π = 1χ ),

E1χ (Z1, . . . ,Zn) := E(Z1 · · ·Zn).

• If min(V ) is not adjacent to any spines of π , then V = {k + 1, . . . , n} for some k ∈ {1, . . . , n − 1} and

Eπ(Z1, . . . ,Zn) :=
{

Eπ |V c (Z1, . . . ,ZkLEπ |V (Zk+1,...,Zn)) if χ(min(V )) = �,
Eπ |V c (Z1, . . . ,ZkREπ |V (Zk+1,...,Zn)) if χ(min(V )) = r .

• Otherwise, min(V ) is adjacent to a spine. Let W denote the block of π corresponding to the spine adjacent to
min(V ) and let k be the smallest element of W that is larger than min(V ). If χ(min(V )) = � we defined

Eπ(Z1, . . . ,Zn) := Eπ |V c

(
(Z1, . . . ,Zk−1,LEπ |V ((Z1,...,Zn)|V )Zk,Zk+1, . . . ,Zn)|V c

)
and if χ(min(V )) = r we define

Eπ(Z1, . . . ,Zn) := Eπ |V c

(
(Z1, . . . ,Zk−1,REπ |V ((Z1,...,Zn)|V )Zk,Zk+1, . . . ,Zn)|V c

)
.
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For an example expression, see [4, Example 5.1.2]. Observe that, in the context of Definition 2.9, we ignore the
notions of left and right operators and do not specify whether each entry of Eπ is a left or right operator based on χ .
However, we are interested in making this restriction.

Definition 2.10. Let (A,E, ε) be a B-B-non-commutative probability space. The bi-free operator-valued moment
function

E :
⋃
n≥1

⋃
χ :{1,...,n}→{�,r}

BNC(χ) ×Aχ(1) × · · · ×Aχ(n) → B

is defined by

Eπ (Z1, . . . ,Zn) = Eπ(Z1, . . . ,Zn)

for each χ : {1, . . . , n} → {�, r}, π ∈ BNC(χ), and Zk ∈ Aχ(k).

In the case that B = C, recall E : A → C is a linear map denoted by ϕ. In this case, if Z1, . . . ,Zn ∈ A and
π ∈ BNC(χ) has blocks Vt = {kt,1 < · · · < kt,mt } for t ∈ {1, . . . , q}, then

ϕπ(Z1, . . . ,Zn) =
q∏

t=1

ϕ(Zkt,1 · · ·Zkt,mt
).

Definition 2.11. Let (A,E, ε) be a B-B-non-commutative probability space. The operator-valued bi-free cumulant
function

κ :
⋃
n≥1

⋃
χ :{1,...,n}→{�,r}

BNC(χ) ×Aχ(1) × · · · ×Aχ(n) → B

is defined by

κπ(Z1, . . . ,Zn) =
∑

σ∈BNC(χ)

σ≤π

Eσ (Z1, . . . ,Zn)μBNC(σ,π)

for each χ : {1, . . . , n} → {�, r}, π ∈ BNC(χ), and Zk ∈ Aχ(k).

Both the operator-valued moment and cumulant functions are special functions which [4] calls bi-multiplicative.
Bi-multiplicative functions have reduction properties which allows one to compute their values once one knows their
values on full bi-non-crossing partitions. We refer the reader to [4, Definition 4.2.1] for the rigorous definition of
a bi-multiplicative function but one may heuristically think of a bi-multiplicative function based on the notion of
a multiplicative function in free probability as follows. Given π ∈ BNC(χ) and a bi-multiplicative map Φ , each
reduction property one may apply to Φπ(Z1, . . . ,Zn) follows by

(1) viewing the non-crossing partition s−1
χ · π ,

(2) rearranging the n-tuple (Z1, . . . ,Zn) to (Zsχ (1), . . . ,Zsχ (n)),
(3) replacing any occurrences of LbZj , ZjLb, RbZj , and ZjRb with bZj , Zjb, Zjb, and bZj respectively,
(4) applying one of the properties of a multiplicative map from [12, Section 2.2],
(5) and reversing the above identifications.

Using the notion of bi-multiplicativity in the case that B = C, if Z1, . . . ,Zn ∈ A and π ∈ BNC(χ) has blocks
Vt = {kt,1 < · · · < kt,mt } for t ∈ {1, . . . , q}, then

κπ(Z1, . . . ,Zn) =
q∏

t=1

κπ |Vt

(
(Z1, . . . ,Zn)|Vt

)
.
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2.5. Bi-free families of pairs of B-faces

We are now in a position to discuss bi-freeness with amalgamation.

Definition 2.12. Let (A,EA, ε) be a B-B-non-commutative probability space. A pair of B-faces of A is a pair (C,D)

of unital subalgebras of A such that

ε(B ⊗ 1B) ⊆ C ⊆A� and ε
(
1B ⊗ Bop) ⊆ D ⊆Ar .

A family {(Ck,Dk)}k∈K of pair of B-faces of A is said to be bi-free with amalgamation over B (or simply bi-free
over B) if there exist B-B-bimodules with specified B-vector states {(Xk, X̊k,pk)}k∈K and unital homomorphisms
lk : Ck → L�(Xk) and rk : Dk → Lr (Xk) such that the joint distribution of {(Ck,Dk)}k∈K with respect to EA is equal
to the joint distribution of the images of{(

(λk ◦ lk)(Ck), (ρk ◦ rk)(Dk)
)}

k∈K

inside L(∗k∈KXk) with respect to EL(∗k∈KXk) where λk and ρk denote the left and right regular representation onto
Xk ⊆ ∗k∈KXk respectively.

The following was the main result of [4]. In that which follows, note a map ε : {1, . . . , n} → K defines an element
of P(n) whose blocks are {ε−1({k})}k∈K .

Theorem 2.13 ([4, Theorem 7.1.4 and Theorem 8.1.1]). Let (A,EA, ε) be a B-B-non-commutative probability
space and let {(Ck,Dk)}k∈K be a family of pairs of B-faces of A. Then {(Ck,Dk)}k∈K are bi-free with amalgamation
over B if and only if for all χ : {1, . . . , n} → {�, r}, ε : {1, . . . , n} → K , and

Zk ∈
{

Cε(k) if χ(k) = �,
Dε(k) if χ(k) = r ,

the formula

EA(Z1 · · ·Zn) =
∑

π∈BNC(χ)

[ ∑
σ∈BNC(χ)

π≤σ≤ε

μBNC(π,σ )

]
Eπ (Z1, . . . ,Zn) (1)

holds. Equivalently {(Ck,Dk)}k∈K are bi-free with amalgamation over B if and only if

κ1χ (Z1, . . . ,Zn) = 0

provided ε is not constant.

3. Classical and free independence in bi-free probability

This section further demonstrates how free and classical independence arise using the (�, r)-cumulants. Our attention
is restricted to the scalar setting in this section unless otherwise specified.

3.1. Free independence via (�, r)-cumulants

It is not difficult to use the (�, r)-cumulants to construct the state for which algebras are freely independent. Indeed
let {Ak}k∈K be unital subalgebras of a non-commutative probability space (A, ϕ) and let ψ be the unique state on
∗k∈KAk determined by ϕ for which {Ak}k∈K are freely independent (that is, ψ = ∗k∈Kϕ|Ak

). Then ψ can be realized
by summing up certain (�, r)-cumulants constructed from ϕ. Indeed for all ε : {1, . . . , n} → K and for all Zk ∈ Aε(k),

ψ(Z1 · · ·Zn) =
∑

π∈BNC(χ)

π≤ε

κπ (Z1, . . . ,Zn), (2)
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where χ : {1, . . . , n} → {�, r} is either constant map and π ≤ ε denotes π is a refinement of the partition with blocks
{ε−1({k})}k∈K (that is, π may be coloured via ε). Indeed the above formula holds as the (�, r)-cumulants reduce to
the free cumulants when χ is constant. Note that the above generalizes to the operator-valued setting when we restrict
each Zk to be an element of A�.

3.2. Classical independence via (�, r)-cumulants

It is also possible to use the (�, r)-cumulants to construct the state for which a pair of algebras are classically inde-
pendent. To do so, we need the following collection of bi-non-crossing partitions.

Definition 3.1. Given a map χ : {1, . . . , n} → {�, r}, a bi-non-crossing partition π ∈ BNC(χ) is said to be vertically
split if whenever V is a block of π , either V ⊆ χ−1({�}) or V ⊆ χ−1({r}). The set of vertically split bi-non-crossing
partitions is denoted by BNCvs(χ).

Notice if (A, ϕ) is a non-commutative probability space, Z1, . . . ,Zn ∈ A, and χ : {1, . . . , n} → {�, r} is such that

χ−1({�}) = {i1 < i2 < · · · < ik} and χ−1({r}) = {j1 < j2 < · · · < jm}

then

∑
π∈BNCvs (χ)

κπ (Z1, . . . ,Zn) = ϕ(Zi1Zi2 · · ·Zik )ϕ(Zj1Zj2 · · ·Zjm)

since

κπ(Z1, . . . ,Zn) = κπ |V
(
(Z1, . . . ,Zn)|V

)
κπ |V c

(
(Z1, . . . ,Zn)|V c

)
whenever V is a union of blocks of π . In particular, if A1 and A2 are unital subalgebras of A and ψ is the unique state
on A1 ∗ A2 determined by ϕ for which A1 and A2 are classically independent (that is, ψ = ϕ|A1 ⊗ ϕ|A2 ), then for all
ε : {1, . . . , n} → {1,2} and for all Zk ∈ Aε(k)

ψ(Z1 · · ·Zn) =
∑

π∈BNCvs (χε)

κπ (Z1, . . . ,Zn) =
∑

π∈BNC(χε)

π≤ε

κπ (Z1, . . . ,Zn), (3)

where χε : {1, . . . , n} → {�, r} is defined by

χε(k) =
{

� if ε(k) = 1,
r if ε(k) = 2.

In the operator-valued setting, given a B-B-non-commutative probability space (A,E, ε), unital subalgebras
A1 ⊆ A� and A2 ⊆ Ar , ε : {1, . . . , n} → {1,2}, and Zk ∈ Aε(k), it can be shown using the properties of bi-
multiplicative functions that

∑
π∈BNCvs (χε)

κπ (Z1, . . . ,Zn) = E(Zi1 · · ·Zik )E(Zj1 · · ·Zjm),

where

{i1 < i2 < · · · < ik} = χ−1
ε

({�}) and {j1 < j2 < · · · < jm} = χ−1
ε

({r}).
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3.3. The bi-free Kac/Loeve theorem

In [11, Theorem 5.3] the free Kac/Loeve theorem was proved demonstrating that any pair of freely independent
random variables for which a non-trivial rotation remained free must have been free central limit distributions; that is,
semicircular variables. Said theorem follows by the linearity of each entry of the free cumulants.

In [21, Theorem 7.4] it was shown that the bi-free central limits distributions arise precisely when all (�, r)-
cumulants of order at least three vanish. In particular, if a pair (T ,S) is a bi-free central limit distribution, then there
are four values to specify:

κ(�,�)(T , T ), κ(�,r)(T , S), κ(r,�)(S, T ) and κ(r,r)(S, S).

The following generalizes [11, Theorem 5.3] to the bi-free setting. One can use the same arguments to generalize
[11, Theorem 5.1] to the bi-free setting as well.

Theorem 3.2 (Bi-free Kac/Loeve theorem). Let (A, ϕ) be a non-commutative probability space. Suppose (T1, S1)

and (T2, S2) are bi-free two-faced families in A such that ϕ(Tk) = 0 = ϕ(Sk) for k ∈ {1,2}. For a fixed θ ∈ (0, π
2 ), let

T3 = cos(θ)T1 + sin(θ)T2, S3 = cos(θ)S1 + sin(θ)S2,

T4 = − sin(θ)T1 + cos(θ)T2 and S4 = − sin(θ)S1 + cos(θ)S2.

If (T3, S3) and (T4, S4) are bi-freely independent, then (T1, S1) and (T2, S2) must be bi-free central limit distributions
with equal second order (�, r)-cumulants.

Conversely, if (T1, S1) and (T2, S2) are bi-free two-faced families in A and are bi-free central limit distributions
with equal second order (�, r)-cumulants, then (T3, S3) and (T4, S4) are bi-freely independent.

Proof. The proof easily follows from Theorem 2.13 (or simply [3, Theorem 4.3.1]) and the linearity of the bi-free
cumulants in each entry. For m ∈ {1,2,3,4} and k ∈ {�, r}, let

Zk,m =
{

Tm if k = �,
Sm if k = r .

Suppose (T3, S3) and (T4, S4) are bi-freely independent. To see that (T1, S1) and (T2, S2) have equal second order
(�, r)-cumulants, let χ : {1,2} → {�, r} be arbitrary. Then

0 = κ1χ (Zχ(1),3,Zχ(2),4) = − cos(θ) sin(θ)κ1χ (Zχ(1),1,Zχ(2),1) + cos(θ) sin(θ)κ1χ (Zχ(1),2,Zχ(2),2).

Since θ ∈ (0, π
2 ), we obtain

κ1χ (Zχ(1),1,Zχ(2),1) = κ1χ (Zχ(1),2,Zχ(2),2).

To see all higher-order (�, r)-cumulants of (T1, S1) and (T2, S2) are zero, let χ : {1, . . . , n} → {�, r} for n ≥ 3 be
arbitrary. Then

0 = κ1χ (Zχ(1),3,Zχ(2),3, . . . ,Zχ(n−2),3,Zχ(n−1),3,Zχ(n),4)

= − cosn−1(θ) sin(θ)κ1χ (Zχ(1),1, . . . ,Zχ(n),1) + sinn−1(θ) cos(θ)κ1χ (Zχ(1),2, . . . ,Zχ(n),2)

and

0 = κ1χ (Zχ(1),3,Zχ(2),3, . . . ,Zχ(n−2),3,Zχ(n−1),4,Zχ(n),4)

= cosn−2(θ) sin2(θ)κ1χ (Zχ(1),1, . . . ,Zχ(n),1) + sinn−2(θ) cos2(θ)κ1χ (Zχ(1),2, . . . ,Zχ(n),2).

Since the matrix[− cosn−1(θ) sin(θ) sinn−1(θ) cos(θ)

cosn−2(θ) sin2(θ) sinn−2(θ) cos2(θ)

]
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has determinant − sinn(θ) cosn(θ), which is non-zero as θ ∈ (0, π
2 ), the above system of equations imply

κ1χ (Zχ(1),1, . . . ,Zχ(n),1) = 0 = κ1χ (Zχ(1),2, . . . ,Zχ(n),2).

For the converse, one can easily use the fact that (T1, S1) and (T2, S2) are bi-freely independent and bi-free central
limit distributions to show that all mixed (�, r)-cumulants of (T3, S3) and (T4, S4) of order at least three vanish.
In addition, since (T1, S1) and (T2, S2) are bi-freely independent and have equal second order cumulants, for all
χ : {1,2} → {�, r}

κ1χ (Zχ(1),3,Zχ(2),4) = − cos(θ) sin(θ)κ1χ (Zχ(1),1,Zχ(2),1) + cos(θ) sin(θ)κ1χ (Zχ(1),2,Zχ(2),2) = 0

and similarly κ1χ (Zχ(1),4,Zχ(2),3) = 0. Hence Theorem 2.13 implies (T3, S3) and (T4, S4) are bi-freely indepen-
dent. �

It is natural to ask whether Theorem 3.2 holds when the left operators undergo one rotation and the right operators
undergo a different rotation. The above computations demonstrate the following which, in general, is the best one can
hope for.

Proposition 3.3. Let (A, ϕ) be a non-commutative probability space. Suppose (T1, S1) and (T2, S2) are bi-free two-
faced families in A such that ϕ(Tk) = 0 = ϕ(Sk) for k ∈ {1,2}. For fixed θ�, θr ∈ (0, π

2 ), let

T3 = cos(θ�)T1 + sin(θ�)T2, S3 = cos(θr )S1 + sin(θr )S2,

T4 = − sin(θ�)T1 + cos(θ�)T2 and S4 = − sin(θr )S1 + cos(θr )S2.

If (T3, S3) and (T4, S4) are bi-freely independent, then (T1, S1) and (T2, S2) must be bi-free central limit distributions.

4. Boolean independence in bi-free probability

This section demonstrates how operator-valued Boolean independence arises and can be studied in the bi-free setting.
It is advised for the reader to keep the scalar case B =C in mind as things simplify slightly.

4.1. Boolean independent algebras from bi-free pairs of faces

We begin by recalling the definitions for operator-valued Boolean independent algebras.

Definition 4.1. Let A be a unital algebra containing B (with 1A = 1B ). A (possibly non-unital) subalgebra A ⊆A is
said to be a B-algebra if BAB ⊆ A.

Definition 4.2. Let (A,Φ) be a B-non-commutative probability space and let A1, . . . ,An be B-algebras contained
in A. We say that A1, . . . ,An are Boolean independent with amalgamation over B (or simply Boolean independent
over B) if

Φ(Z1 · · ·Zn) = Φ(Z1) · · ·Φ(Zn)

whenever Zm ∈ Akm are such that km �= km+1 for all m ∈ {1, . . . , n − 1}.

The following demonstrates a method for producing equations like those in Definition 4.2 by taking bi-free pairs
of B-faces and operators that are alternating products of left and right operators from the same B-face. We make the
choice of ‘left before right’ as one needs to use Bop for the ‘right before left’ option (note this second option works in
the case B =C).
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Lemma 4.3. Let {(Ck,Dk)}k∈K be bi-free pairs of B-faces in a B-B-non-commutative probability space (A,EA, ε).
Let k1, . . . , kn ∈ K be such that km �= km+1, let {qm}nm=1 ⊆ N, and let

{Tm,t }qm

t=1 ⊆ Ckm and {Sm,t }qm

t=1 ⊆ Dkm ∩A�

be such that

EA(Tm,1Tm,2 · · ·Tm,qm) = 0 = EA(Sm,1Sm,2 · · ·Sm,qm).

If

Zm = Tm,1Sm,1 · · ·Tm,qmSm,qm,

then

EA(Z1 · · ·Zn) = EA(Z1) · · ·EA(Zn).

Proof. Since {(Ck,Dk)}k∈K are bi-free pairs of B-faces, there exists B-B-bimodules with specified B-vector states
(Xk, X̊k,pk) and unital homomorphisms

αk : Ck → L�(Xk) and βk : Dk → Lr (Xk)

such that if

λk : L�(Xk) → L�

(∗m∈K(Xm, X̊m,pm)
)

and ρk : Lr (Xk) → Lr

(∗m∈K(Xm, X̊m,pm)
)

are the left and right regular representations respectively, E is the expectation of L(∗m∈K(Xm, X̊m,pm)) onto B ,

T ′
m,p = λkm

(
αkm(Tm,p)

)
, S′

m,p = ρkm

(
βkm(Sm,p)

)
and Z′

m = T ′
m,1S

′
m,1 · · ·T ′

m,qm
S′

m,qm
,

then

E
(
T ′

m,1T
′
m,2 · · ·T ′

m,qm

) = 0 for all m,

E
(
S′

m,1S
′
m,2 · · ·S′

m,qm

) = 0 for all m,

E
(
Z′

m

) = EA(Zm) for all m, and

E
(
Z′

1 · · ·Z′
n

) = EA(Z1 · · ·Zn).

Let

η0 = 1B ∈ ∗m∈K(Xm, X̊m,pm),

ηm = Z′
mη0 − E

(
Z′

m

)
η0 ∈ X̊km,

ζm = T ′
m,1T

′
m,2 · · ·T ′

m,qm
(1B) ∈ X̊km and

ωm = S′
m,1S

′
m,2 · · ·S′

m,qm
(1B) ∈ X̊km.

We claim that if

n∏
m=a+1

E
(
Z′

m

) := E
(
Z′

a+1

)
E

(
Z′

a+2

) · · ·E(
Z′

n

)

then

Z′
1 · · ·Z′

n(η0) =
n∑

a=0

ζ1 ⊗ ζ2 ⊗ · · · ⊗ ζa−1 ⊗ R[∏n
m=a+1 E(Z′

m)](ηa) ⊗ ωa−1 ⊗ · · · ⊗ ω1
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from which the lemma clearly follows. It is important to note

R[∏n
m=a+1 E(Z′

m)](ηa) ∈ X̊ka .

To see the claim, we proceed by induction on n. The case n = 1 is trivial as

Z′
1(η0) = E

(
Z′

1

) ⊕ η1 = RE(Z′
1)

(1B) ⊕ η1.

To proceed inductively, suppose the result holds for n − 1. In particular, by relabelling, we may assume that

Z′
2 · · ·Z′

n(η0) = R[∏n
m=2 E(Z′

m)](η0) +
n∑

a=2

ζ2 ⊗ ζ3 ⊗ · · · ⊗ ζa−1 ⊗ R[∏n
m=a+1 E(Z′

m)](ηa) ⊗ ωa−1 ⊗ · · · ⊗ ω2

by the induction hypothesis. For a ≥ 2, notice

Z′
1

(
ζ2 ⊗ ζ3 ⊗ · · · ⊗ ζa−1 ⊗ R[∏n

m=a+1 E(Z′
m)](ηa) ⊗ ωa−1 ⊗ · · · ⊗ ω2

)
= ζ1 ⊗ ζ2 ⊗ ζ3 ⊗ · · · ⊗ ζa−1 ⊗ R[∏n

m=a+1 E(Z′
m)](ηa) ⊗ ωa−1 ⊗ · · · ⊗ ω2 ⊗ ω1.

In addition, since {Sm,t }qm

t=1 ⊆ Dkm ∩A�, one obtains Z′
1 ∈A� so

Z′
1R[∏n

m=2 E(Z′
m)](η0) = R[∏n

m=2 E(Z′
m)]Z′

1(η0)

= R[∏n
m=2 E(Z′

m)]
(
E

(
Z′

1

) ⊕ η1
)

= (
R[∏n

m=2 E(Z′
m)]RE(Z′

1)
(1B)

) ⊕ R[∏n
m=2 E(Z′

m)](η1)

= (
R[∏n

m=1 E(Z′
m)](η0)

) ⊕ R[∏n
m=2 E(Z′

m)](η1).

Hence the claim and lemma follow. �

Lemma 4.3 easily enables the construction of B-algebras which are Boolean independent over B from bi-free pairs
of B-faces. To begin the construction, recall from Remark 2.7 that if (A,E, ε) is a B-B-non-commutative probability
space, then (A�,E) is a B-non-commutative probability space where ε(B ⊗ 1B) is the copy of B . If (C,D) is a pair
of B-faces, C′ ⊆ C, D′ ⊆ D ∩A�, and

C′D′ := {
T S | T ∈ C′, S ∈ D′}

then alg(C′D′) ⊆ A� (where alg(X) represents the (not necessarily unital) algebra generated by X). If LbC
′ ⊆ C′

and C′Lb ⊆ C′ for all b ∈ B , then it is clear that alg(C′D′) is a B-algebra contained in A�. Using Lemma 4.3, we
immediately obtain the following.

Theorem 4.4. Let {(Ck,Dk)}k∈K be bi-free pairs of B-faces in a B-B-non-commutative probability space (A,E, ε).
For each k ∈ K , let

C′
k ⊆ Ck and D′

k ⊆ Dk ∩A�

be subsets such that LbC
′
k,C

′
kLb ⊆ C′

k for all b ∈ B and

E
((

C′
k

)n) = {0} = E
((

D′
k

)n)
for all n ≥ 1. Then {alg(C′

kD
′
k)}k∈K are B-algebras in the B-non-commutative probability space (A�,E) that are

Boolean independent over B .

One may be concern that the sets Dk ∩ A� might just be scalars. Clearly this is not the case when B = C and we
show an instance in the operator-valued setting where the intersection is non-empty in Construction 4.10. In particular,
consider the following example.
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Example 4.5. Let Fn denote the free group on n generators u1, . . . , un and let ϕ be the vector state on B(�2(Fn)) cor-
responding to the point mass at the identity. If λ,ρ : Fn → B(�2(Fn)) denote the left and right regular representations
respectively, recall {(λ(uk), ρ(uk))}nk=1 are bi-free two-faced families with respect to ϕ. Hence Theorem 4.4 implies
that {

alg
({

λ
(
u

p
k

)
ρ
(
u

q
k

) | p,q ∈N
})}n

k=1

are Boolean independent with respect to ϕ and{
alg

({
λ
(
u

p
k

)
ρ
(
u

−q
k

) | p,q ∈N
})}n

k=1

are Boolean independent with respect to ϕ.

Remark 4.6. The converse of Theorem 4.4 does not hold even in the scalar setting: if {(C′
k,D

′
k)}k∈K are pairs of faces

in a non-commutative probability space (A, ϕ) with

ϕ
((

C′
k

)n) = {0} = ϕ
((

D′
k

)n)
for all n ≥ 1 and k ∈ K , then the Boolean independence of {alg(C′

kD
′
k)}k∈K and the Boolean independence of

{alg(D′
kC

′
k)}k∈K is not enough to guarantee that{(

C1A + alg
(
C′

k

)
,C1A + alg

(
D′

k

))}
k∈K

are bi-free.
For a concrete example where this converse fails, consider (M2(C), τ ) where τ is the normalized trace on M2(C).

Let

T =
[

0 1
0 0

]
, S =

[
0 0
1 0

]
,

C′
1 = D′

1 = CT , and C′
2 = D′

2 = CS. It is clear that {(C′
k,D

′
k)}k=1,2 are pairs of algebras that have the specified

properties. However, for{(
C1A + alg

(
C′

k

)
,C1A + alg

(
D′

k

))}
k=1,2

to be bi-free, one would require for any χ : {1,2} → {�, r} that

0 = κ1χ (T , S) = τ(T S) − τ(T )τ(S).

It is clear that τ(T S) = 1
2 whereas τ(T ) = τ(S) = 0 demonstrating the above line does not hold.

Remark 4.7. The main issue with Remark 4.6 is that C′
1 and D′

2 are not classically independent with respect to ϕ.
However, even the additional conditions that {C1A + C′

k}k∈K are freely independent, that {C1A + D′
k}k∈K are freely

independent, and that C1A + C′
k1

and C1A + D′
k2

are classically independent for all k1, k2 ∈ K is not enough to
guarantee that{(

C1A + alg
(
C′

k

)
,C1A + alg

(
D′

k

))}
k∈K

are bi-free.
To see the above claim, note by the operator model in [3] there exists a non-commutative probability space

(A, ϕ) and operators T1, T2, S1, S2 ∈ A such that T1, T2 are left operators, S1, S2 are right operators, and all (�, r)-
cumulants involving these operators are zero except κχ (T1, T2, S2) = 1. If C′

k = alg({Tk}) and D′
k = alg({Sk}), then{(

C1A + alg
(
C′

k

)
,C1A + alg

(
D′

k

))}
k∈{1,2}
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is not a bi-freely independent family with respect to ϕ by Theorem 2.13. However, clearly equations (2) and (3) of
Section 3 imply

ϕ
((

C′
k

)n) = {0} = ϕ
((

D′
k

)n)
for all n ≥ 1 and k ∈ K , C1A+C′

1 and C1A+C′
2 are freely independent, C1A+D′

1 and C1A+D′
2 are freely indepen-

dent, and C1A+C′
k1

and C1A+D′
k2

are classically independent for all k1, k2 ∈ {1,2}. To see that {alg(C′
kD

′
k)}k∈{1,2}

are Boolean independent, one must show that

ϕ

((
m1∏

m=1

T
p1,m

k1
S

q1,m

k1

)
· · ·

(
mn∏

m=1

T
pn,m

kn
S

qn,m

kn

))
= ϕ

(
m1∏

m=1

T
p1,m

k1
S

q1,m

k1

)
· · ·ϕ

(
mn∏

m=1

T
pn,m

kn
S

qn,m

kn

)

for all n ≥ 2, m1, . . . ,mn ∈ N, pk,m, qk,m ∈ N, and k1, . . . , kn ∈ {1,2} with km �= km+1. Notice

ϕ

(
t∏

m=1

T
pm

k S
qm

k

)
= 0

since all (�, r)-cumulants involving Tk and Sk are zero. In addition

ϕ

((
m1∏

m=1

T
p1,m

k1
S

q1,m

k1

)
· · ·

(
mn∏

m=1

T
pn,m

kn
S

qn,m

kn

))
= 0

since the above expression is a sum of products of (�, r)-cumulants where each product of (�, r)-cumulants must con-
tain at least one involving S1 and thus is zero. Similarly {alg(D′

kC
′
k)}k∈{1,2} are Boolean independent thus completing

the claim.

4.2. Bi-free Boolean systems

To examine Boolean independence over B inside bi-free probability, we restrict ourselves to the following abstract
structure.

Definition 4.8. Let {(Ck,Dk)}k∈K be bi-free pairs of B-faces in a B-B-non-commutative probability space (A,E, ε).
For each k ∈ K , let

C′
k ⊆ Ck and D′

k ⊆ Dk ∩A�

be subsets such that LbC
′
k,C

′
kLb ⊆ C′

k for all b ∈ B . We say that {(C′
k,D

′
k)}k∈K is a bi-free Boolean B-system with

respect to E if

(1) (C′
k)

2 = {0} = (D′
k)

2 for all k ∈ K ,
(2) E(C′

k(D
′
kC

′
k)

n) = {0} for all n ≥ 0 and k ∈ K , and
(3) E(D′

k(C
′
kD

′
k)

n) = {0} for all n ≥ 0 and k ∈ K .

Note Theorem 4.4 directly implies the following.

Corollary 4.9. Let {(C′
k,D

′
k)}k∈K be a bi-free Boolean B-system with respect to E. Then {alg(C′

kD
′
k)}k∈K are

Boolean independent over B with respect to E.

The reason for Definition 4.8 is the following construction showing any collection of B-algebras which are Boolean
independent over B may be realized inside a bi-free Boolean B-system.
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Construction 4.10. Let (A,Φ) be a B-non-commutative probability space. By Remark 2.7 we may view A as a B-
B-module with specified B-vector state which we denote by (A, Å,Φ) where Å = ker(Φ). Consider A ⊕ A as a
B-B-bimodule via the action

b1 · (Z1 ⊕ Z2) · b2 = (b1Z1b2) ⊕ (b1Z2b2)

for all b1, b2 ∈ B and Z1,Z2 ∈ A. Notice A ⊕ A then becomes a B-B-module with specified B-vector state via the
triple (A⊕A, Å⊕A,Ψ ) where

Ψ (Z1 ⊕ Z2) = Φ(Z1).

We need to consider some special operators in L(A⊕A). For Z ∈ A define TZ ∈ L(A⊕A) by

TZ(Z1 ⊕ Z2) = ZZ2 ⊕ 0.

Then TZ ∈ L�(A⊕A) since

TZRb(Z1 ⊕ Z2) = TZ(Z1b ⊕ Z2b) = ZZ2b ⊕ 0 = Rb(ZZ2 ⊕ 0) = RbTZ(Z1 ⊕ Z2)

for all b ∈ B and Z1,Z2 ∈ A. In addition, notice

TZLb(Z1 ⊕ Z2) = TZ(bZ1 ⊕ bZ2) = ZbZ2 ⊕ 0 = TZb(Z1 ⊕ Z2)

and

LbTZ(Z1 ⊕ Z2) = Lb(ZZ2 ⊕ 0) = bZZ2 ⊕ 0 = TbZ(Z1 ⊕ Z2)

for all b ∈ B and Z1,Z2 ∈ A. Hence LbTZ = TbZ and TZLb = TZb . Furthermore, clearly

Tz1Z1+z2Z2 = z1TZ1 + z2Tz2

for all z1, z2 ∈C and Z1,Z2 ∈A.
In addition, define S1B

∈ L(A⊕A) by

S1B
(Z1 ⊕ Z2) = 0 ⊕ Z1.

Then S1B
∈ L�(A⊕A) ∩Lr (A⊕A) since

S1B
Lb1Rb2(Z1 ⊕ Z2) = S1B

(b1Z1b2 ⊕ b1Z2b2)

= 0 ⊕ b1Z1b2

= Lb1Rb2(0 ⊕ Z1)

= Lb1Rb2S1B
(Z1 ⊕ Z2)

for all b1, b2 ∈ B and Z1,Z2 ∈A.
Let {Ak}k∈K be B-algebras contained in A that are Boolean independent over B with respect to Φ . For each

k ∈ K , we can consider a copy of (A ⊕ A, Å ⊕ A,Ψ ), denoted (Yk, Y̊k,Ψk). Let E denote the expectation of
L(∗m∈K(Ym, Y̊m,Ψk)) onto B and let

λk : L�(Yk) → L�

(∗m∈K(Ym, Y̊m,Ψm)
)

and

ρk : Lr (Yk) → Lr

(∗m∈K(Ym, Y̊m,Ψm)
)

be the left and right regular representations onto the kth term respectively. By definition the pairs of B-faces
{(λk(L�(Yk)), ρk(Lr (Yk)))} are bi-free inside the B-B-non-commutative probability space L(∗m∈K(Ym, Y̊m,Ψm)).
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For each k ∈ K and Z ∈ Ak , consider the elements

Tk,Z = λk(TZ) and Sk,1B
= ρk(S1B

).

It is elementary to verify that if for each k ∈ K

C′
k = {Tk,Z | Z ∈ Ak} and D′

k = {Sk,1B
},

then {(C′
k,D

′
k)}k∈K is a bi-free Boolean B-system in {(λk(L(Yk)), ρk(L(Yk)))}. In addition, it is clear by construction

that for a fixed k ∈ K , if Z1, . . . ,Zn ∈ Ak then

E(Tk,Z1Sk,1B
Tk,Z2Sk,1B

· · ·Tk,ZnSk,1B
) = Φ(Z1 · · ·Zn). (4)

Combining Corollary 4.9 along with Construction 4.10 we obtain the following.

Theorem 4.11. Given a collection {Ak}k∈K of Boolean independent B-algebras in a B-non-commutative probability
space (A0,Φ), there exists a bi-free Boolean B-system {(C′

k,D
′
k)}k∈K inside a B-B-non-commutative probability

space (A,E, ε) and injective B-linear maps βk : Ak → C′
kD

′
k such that

E
(
βk1(Z1) · · ·βkn(Zn)

) = Φ(Z1 · · ·Zn)

for all Zm ∈ Akm and for all km ∈ K .

Proof. Using the notation of Construction 4.10, define βk : Ak → C′
kD

′
k by

βk(Z) = Tk,ZSk,1B
.

Thus βk is linear and

βk(b1Zb2) = Tk,b1Zb2Sk,1B
= Lb1Tk,ZLb2Sk,1B

= Lb1Tk,ZSk,1B
Lb2

for all b1, b2 ∈ B and Z ∈ Ak . The result then follows from Corollary 4.9 and Equation (4). �

Although Theorem 4.11 may feel slightly unsatisfactory since the βk are, in general, not homomorphisms, the
result enables the study of Boolean independence with amalgamation through larger Boolean independent algebras.
In particular, we show in Section 4.4 that the operator-valued Boolean cumulant functions may be recovered through
the operator-valued bi-free cumulant function and Theorem 4.11. On the other hand, we note the following method for
embedding Boolean independent algebras into algebras produced by bi-free pairs of B-faces using homomorphisms.

Construction 4.12. Let (A,Φ) be a B-non-commutative probability space. Viewing (A ⊕ A, Å ⊕ A,Ψ ) as a
B-B-module with specified B-vector state as in Construction 4.10, for Z ∈ A consider the special operators
T ′

Z,U1B
∈ L(A⊕A) defined by

T ′
Z(Z1 ⊕ Z2) = 0 ⊕ ZZ2 and U1B

(Z1 ⊕ Z2) = Z2 ⊕ Z1.

Then T ′
Z ∈ L�(A ⊕ A) and U1B

∈ L�(A ⊕ A) ∩ Lr (A ⊕ A). Furthermore, T ′
z1Z1+z2Z2

= z1T
′
Z1

+ z2T
′
Z2

and
T ′

b1Zb2
= Lb1T

′
ZLb2 for all z1, z2 ∈C, b1, b2 ∈ B , and Z1,Z2,Z ∈ A.

Let {Ak}k∈K be B-algebras contained in A that are Boolean independent over B with respect to Φ . Let
(Yk, Y̊k,Ψk), E, λk , and ρk be as in Construction 4.10.

For each k ∈ K , consider the map βk : Ak → ρk(Lr (Yk))λk(L�(Yk))ρk(Lr (Yk)) defined by

βk(Z) = ρk(U1B
)λk

(
T ′

Z

)
ρk(U1B

).
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Since ρk and λk are unital homomorphisms, and since U2
1B

= IA⊕A, βk is a homomorphism. Finally, if Zm ∈ Akm with

km �= km+1 and ηm = (Zm − Φ(Zm)1B) ⊕ 0 ∈ Y̊km , then, using an inductive argument similar to that in Lemma 4.3,
we obtain for all m ∈ {1, . . . , n} that

βkm(Zm) · · ·βkn(Zn)(1B ⊕ 0) = Φ(Z1) · · ·Φ(Zn)(1B ⊕ 0) + RΦ(Zm+1)···Φ(Zn)(ηm).

Therefore

E
(
βk1(Z1) · · ·βkn(Zn)

) = Φ(Z1) · · ·Φ(Zn) = Φ(Z1 · · ·Zn).

Hence the B-algebras {βk(Ak)}k∈K are Boolean independent over B with respect to E.

4.3. Boolean bi-non-crossing partitions

To further our study of bi-free Boolean B-systems, we need to examine specific collections of bi-non-crossing parti-
tions.

Definition 4.13. A map χ : {1, . . . ,2n} → {�, r} is said to be alternating if

χ(k) =
{

� if k is odd,
r if k is even.

Given an alternating map χ , a bi-non-crossing partition π ∈ BNC(χ) is said to be Boolean if 2k − 1 and 2k are in
the same block of π for all k ∈ {1, . . . , n}. The set of Boolean bi-non-crossing partitions is denoted by BNCb(χ).

Example 4.14. For the alternating χ : {1, . . . ,6} → {�, r}, the elements of BNCb(χ) may be represented via the
following bi-non-crossing diagrams.

1
2

3
4

5
6

1
2

3
4

5
6

1
2

3
4

5
6

1
2

3
4

5
6

Remark 4.15. Note if χ : {1, . . . ,2n} → {�, r} is alternating, then BNCb(χ) is naturally isomorphic to I(n); the
lattice of interval partitions on {1, . . . , n}. Indeed define Ψ : I(n) → BNCb(χ) as follow: if

π = {{tk, tk + 1, . . . , tk+1 − 1}}m−1
k=1

for some sequence t1 = 1 < t2 < t3 < · · · < tm = n + 1, define

Ψ (π) = {{2tk − 1,2tk, . . . ,2tk+1 − 2}}m−1
k=1 .

We do not use this relation in that which follows and derive the Boolean cumulant functions independently via
BNCb(χ).

Remark 4.16. Fix χ : {1, . . . ,2n} → {�, r} alternating. It is then clear that BNCb(χ) is a sublattice of BNC(χ) with
maximal element 1χ and minimal element 0b,χ whose blocks are {{2k − 1,2k}}k∈K . As such, one can restrict μBNC
to BNCb . In particular, given π,σ ∈ BNCb(χ),

∑
τ∈BNCb(χ)

π≤τ≤σ

μBNC(τ, σ ) =
∑

τ∈BNCb(χ)

π≤τ≤σ

μBNC(π, τ ) =
{

1 if π = σ ,
0 otherwise.
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Hence there is a Möbius inversion inside BNCb(χ) by the proof of [13, Proposition 10.11]: if X� and Xr are sets and

f,g :
⋃
n≥1

⋃
χ :{1,...,2n}→{�,r}

χ alternating

BNCb(χ) × Xχ(1) × · · · × Xχ(n) → B

are such that

f (π,x1, . . . , x2n) =
∑

σ∈BNCb(χ)

σ≤π

g(σ, x1, . . . , x2n)

for all π ∈ BNCb(χ) and xk ∈ Xχ(k), then

g(1χ , x1, . . . , x2n) =
∑

π∈BNCb(χ)

f (π, x1, . . . , x2n)μBNC(π,1χ )

for all xk ∈ Xχ(k) and alternating χ : {1, . . . ,2n} → {�, r}.

4.4. Boolean cumulants via bi-free operator-valued cumulants

This section demonstrates only certain bi-free operator-valued cumulants (those corresponding to Boolean bi-non-
crossing partitions) are necessary in order to compute the joint moments of elements from bi-free Boolean B-systems.
In particular, we develop the analogue of equations (2) and (3) from Section 3 in the Boolean setting and provide an
alternate definition for the Boolean cumulant functions. All results in this section make use of the following technical
lemma.

Lemma 4.17. Let {(C ′
k,D

′
k)}k∈K be a bi-free Boolean B-system in a B-B-non-commutative probability space

(A,E, ε). Let χ : {1, . . . ,2n} → {�, r} be alternating and let ε : {1, . . . ,2n} → K be such that ε(2m − 1) = ε(2m)

for all m ∈ {1, . . . , n}. Furthermore, for each k ∈ K , let Tk ∈ C′
ε(2k−1) and let Sk ∈ D′

ε(2k). If π ∈ BNC(χ) and π ≤ ε,
then

Eπ (T1, S1, . . . , Tn, Sn) = 0

unless π ∈ BNCb(χ).

Proof. To simplify notation, let

Θπ = Eπ (T1, S1, . . . , Tn, Sn).

Notice by bi-multiplicativity that Θπ = 0 if π has any blocks of cardinality one by conditions (2) and (3) in Defini-
tion 4.8. We claim that if Θπ �= 0, then 1 and 2 must be in the same block of π . To see this, suppose otherwise that 1
and 2 are in different blocks of π . We divide the proof into two cases:

Case (1): The block V of π containing 1 contains a k with χ(k) = r . Let

m0 = min
{
m | 2m ∈ V,m ∈ {1, . . . , n}}.

Note m0 �= ∞ and m0 ≥ 2 by the assumptions in this case. Hence, since π ∈ BNC(χ),

W = {2m | m < m0} ⊆ χ−1({r})
is a non-empty union of blocks of π disjoint from V that is a χ -interval. Thus π |W is a non-crossing partition on W .
Writing W = {t1 < t2 < · · · < tq} one sees, by using conditions (1) and (3) along with the fact that right B-faces in
bi-free pairs of B-faces are freely independent over B , that

Eπ |W
(
(T1, S1, T2, S2, . . . , Tn, Sn)|W

) = 0.
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Thus Θπ = 0 by bi-multiplicativity.
Case (2): The block V of π containing 1 contains a k with k �= 1 and χ(k) = �. Let

m0 = min
{
m | 2m − 1 ∈ V,m ∈ {2, . . . , n}}.

Note m0 �= ∞ by the assumptions in this case. If m0 = 2, then ε(1) = ε(3) since π ≤ ε. Hence, since 2 /∈ V , we
obtain by bi-multiplicativity that Θπ = 0 as T1T3 = 0 by condition (1). Thus we may assume that m0 ≥ 2. Since
π ∈ BNC(χ),

W = {2m − 1 | 1 < m < m0} ⊆ χ−1({�})
is a non-empty union of blocks of π disjoint from V that is a χ -interval. Thus π |W is a non-crossing partition on W .
Writing W = {t1 < t2 < · · · < tq} one sees, by using conditions (1) and (2) of Definition 4.8 along with the fact that
left B-faces in bi-free pairs of B-faces are freely independent over B , that

Eπ |W
(
(T1, S1, T2, S2, . . . , Tn, Sn)|W

) = 0.

Thus Θπ = 0 by bi-multiplicativity.
Cases (1) and (2) show that 1 and 2 must be in the same block of π in order for Θπ to be non-zero. Suppose

we have shown that 2k − 1 and 2k must be in the same block of π for all k ∈ {1, . . . , k0 − 1} in order for Θπ to be
non-zero. We claim under this supposition that Θπ �= 0 implies 2k0 − 1 and 2k0 must be in the case block of π . To
see this, suppose 2k0 − 1 and 2k0 are in different blocks of π .

If there exists an m ∈ {1, . . . ,2k0 − 2} such that 2k0 and m are in the same block W of π , then there exists a
k ∈ {1, . . . , k0 − 1} such that

2k − 1,2k,2k + 1, . . . ,2k0 − 2,2k0 ∈ W

and W ∩ {1, . . . ,2k − 2} =∅. In this case ε(q) = ε(2k0) for all q ∈ {2k − 1,2k, . . . ,2k0 − 2} since π ≤ ε. Therefore
Θπ = 0 by bi-multiplicativity and since T2k0−2T2k0 = 0 by condition (1) of Definition 4.8.

Next, if there exists an m ∈ {1, . . . ,2k0 − 2} such that 2k0 − 1 and m are in the same block W of π , then, by
assumptions and since π ∈ BNC(χ), there exists a k ∈ {1, . . . , k0 − 1} such that

2k − 1,2k,2k + 1, . . . ,2k0 − 1 ∈ W

and W ∩ {1, . . . ,2k − 2} = ∅. In this case ε(q) = ε(2k0 − 1) for all q ∈ {2k − 1,2k, . . . ,2k0 − 2} since π ≤ ε. If
W = {2k − 1,2k, . . . ,2k0 − 1}, then, by condition (2) of Definition 4.8, by the fact that Tk, Sk ∈ A�, and by bi-
multiplicativity, one obtains Θπ = 0. If W �= {2k − 1,2k, . . . ,2k0 − 1}, one can use the previous paragraph and
arguments similar to those in cases (1) and (2) to show that Θπ = 0.

Otherwise {1,2, . . . ,2k0 − 2} has empty intersection with the blocks of π containing 2k0 − 1 and 2k0. Therefore,
by arguments identical to those in cases (1) and (2), Θπ = 0. Hence the claim and thus proof is complete. �

Note the following produces the analogue to equations (2) and (3) of Section 3 for Boolean independence.

Theorem 4.18. Let {(C′
k,D

′
k)}k∈K be a bi-free Boolean B-system with respect to E. If χ : {1, . . . ,2n} → {�, r} is

alternating, ε : {1, . . . ,2n} → K is such that ε(2m − 1) = ε(2m) for all m ∈ {1, . . . , n}, Tk ∈ C′
ε(2k−1), and Sk ∈

D′
ε(2k), then

E(T1S1 · · ·TnSn) =
∑

π∈BNCb(χ)

κπ (T1, S1, . . . , Tn, Sn). (5)

Equivalently

κ1χ (T1, S1, . . . , Tn, Sn) =
∑

π∈BNCb(χ)

Eπ (T1, S1, . . . , Tn, Sn)μBNC(π,1χ ).

Furthermore κ1χ (T1, S1, T2, S2, . . . , Tn, Sn) = 0 unless ε is constant.
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Proof. For the first claim, we notice by Definition 2.11, Equation (1) in Theorem 2.13, Remark 4.16, and Lemma 4.17
that

E(T1S1 · · ·TnSn) =
∑

π∈BNC(χ)

[ ∑
σ∈BNC(χ)

π≤σ≤ε

μBNC(π,σ )

]
Eπ (T1, S1, . . . , Tn, Sn)

=
∑

π∈BNCb(χ)

[ ∑
σ∈BNC(χ)

π≤σ≤ε

μBNC(π,σ )

]
Eπ (T1, S1, . . . , Tn, Sn)

=
∑

π∈BNCb(χ)

[ ∑
σ∈BNCb(χ)

π≤σ≤ε

μBNC(π,σ )

]
Eπ (T1, S1, . . . , Tn, Sn)

=
∑

σ∈BNCb(χ)

σ≤ε

∑
π∈BNCb(χ)

π≤σ

Eπ (T1, S1, . . . , Tn, Sn)μBNC(π,σ )

=
∑

σ∈BNCb(χ)

σ≤ε

∑
π∈BNC(χ)

π≤σ

Eπ (T1, S1, . . . , Tn, Sn)μBNC(π,σ )

=
∑

σ∈BNCb(χ)

κσ (T1, S1, T2, S2, . . . , Tn, Sn).

The second claim follows from the first by the Möbius inversion in Remark 4.16 and the third equation follows since
mixed operator-valued bi-free cumulants vanish by Theorem 2.13. �

Remark 4.19. Using Theorem 4.18, we can easily construct a new definition for the operator-valued Boolean cu-
mulant functions in terms of the operator-valued bi-free cumulant function. Let {Ak}k∈K be B-algebras in a B-non-
commutative probability space (A,Φ) that are Boolean independent over B . By Theorem 4.11 and by Theorem 4.18,
given Zm ∈ Akm we define the Boolean cumulant functions via the formula

κB(Z1, . . . ,Zn) = κ1χ (Tk1,Z1 , Sk1,1B
, . . . , Tkn,Zn, Skn,1B

).

In particular, the Boolean cumulants can be realized as (�, r)-cumulants.

5. Monotone independence in bi-free probability

This section demonstrates how operator-valued monotone independence arises and can be studied inside bi-free prob-
ability.

5.1. Monotone independent subalgebras from bi-free pairs of faces

We begin by recalling the definition of monotone independence over B .

Definition 5.1. Let (A,Φ) be a B-non-commutative probability space and let (Aλ)λ∈Λ be B-algebras contained in A.
Given a linear ordering < on Λ, the collection (Aλ)λ∈Λ is said to be monotonically independent with amalgamation
over B with respect to (Φ,<) (or simply monotonically independent over B) if

Φ(Z1Z2 · · ·Zk−1ZkZk+1 · · ·Zn) = Φ
(
Z1Z2 · · ·Zk−1Φ(Zk)Zk+1 · · ·Zn

)
whenever Zm ∈ Aλm , λk > λk−1, and λk > λk+1 (where one inequality is irrelevant when k = 1 or k = n).

Similarly, the collection (Aλ)λ∈Λ is said to be anti-monotonically independent over B with respect to (Φ,<) if
(Aλ)λ∈Λ are monotonically independent over B with respect to (Φ,>).
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We only deal with the case Λ = {1,2} equipped the natural ordering 1 < 2 in which case we simply say that A1
and A2 are monotonically independent over B .

The following demonstrates a way to construct monotonically independent B-algebras from bi-free pairs of B-faces
in the spirit of Theorem 4.4.

Theorem 5.2. Let {(C1,D1), (C2,D2)} be bi-free pairs of B-faces in a B-B-non-commutative probability space
(A,E, ε). Suppose D′

1 ⊆ D1 ∩A� and C′
1 ⊆ C1 is such that

LbC
′
1, C′

1Lb ⊆ C′
1 for all b ∈ B and E

((
C′

1

)n) = {0} for all n.

Then alg(C′
1D

′
1) and C2 are B-algebras that are monotonically independent over B in the B-non-commutative prob-

ability space (A�,E).

Proof. Recall by Remark 2.7 that (A�,E) is a B-non-commutative probability space with ε(B ⊗ 1B) as the copy
of B . Recall

ε(B ⊗ 1B) ⊆ C2 ⊆A�

so C2 is a B-algebra of A�. In addition, by the conditions on C′
1 and D′

1, it is clear that alg(C′
1D

′
1) is a B-algebra.

To show that alg(C′
1D

′
1) and C2 are monotonically independent over B , it suffices to show that

E

(
Z0

(
m1∏
k=1

T1,kS1,k

)
Z1

(
m2∏
k=1

T2,kS2,k

)
· · ·

(
mn∏
k=1

Tn,kSn,k

)
Zn

)

= E

(
LE(Z0)

(
m1∏
k=1

T1,kS1,k

)
LE(Z1)

(
m2∏
k=1

T2,kS2,k

)
· · ·

(
mn∏
k=1

Tn,kSn,k

)
LE(Zn)

)

for all n ∈ N, Z0,Z1, . . . ,Zn ∈ C2, m1, . . . ,mn ∈ N, {{Tq,k}mq

k=1}nq=1 ⊆ C′
1, and {{Sq,k}mq

k=1}nq=1 ⊆ D′
1. Let

χ :
{

1, . . . ,1 + n + 2
n∑

k=1

mk

}
→ {�, r}

be determined by the above sequence of operators; that is, χ(m) = r if m is the index of some Sq,k in the above
sequence of operators and χ(m) = � otherwise. Similarly, let

ε :
{

1, . . . ,1 + n + 2
n∑

k=1

mk

}
→ {1,2}

be determined by the above sequence of operators; that is, ε(m) = 2 if m is the index of some Zk in the above sequence
of operators and ε(m) = 1 otherwise. Therefore, since {(C1,D1), (C2,D2)} is a bi-free family,

E

(
Z0

(
m1∏
k=1

T1,kS1,k

)
Z1

(
m2∏
k=1

T2,kS2,k

)
· · ·Zn−1

(
mn∏
k=1

Tn,kSn,k

)
Zn

)

=
∑

π∈BNC(χ)

π≤ε

κπ (Z0, T1,1, S1,1, T1,2, S1,2, . . . , Tn,mn, Sn,mn,Zn).

We claim that if π ∈ BNC(χ) is such that π ≤ ε and π contains a block containing at least two indices correspond-
ing to different Zk , then

κπ (Z0, T1,1, S1,1, T1,2, S1,2, . . . , Tn,mn, Sn,mn,Zn) = 0.
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Indeed by Definition 2.11

κπ(Z0, T1,1, S1,1, T1,2, S1,2, . . . , Tn,mn, Sn,mn,Zn)

=
∑

σ∈BNC(χ)

σ≤π

Eσ (Z0, T1,1, S1,1, T1,2, S1,2, . . . , Tn,mn, Sn,mn,Zn)μBNC(σ,π).

However, due to the nature of bi-non-crossing partitions, each σ ≤ π has a block W all of whose indices are elements
of C′

1. Therefore, since E((C′
1)

n) = {0} for all n,

Eσ |W
(
(Z0, T1,1, S1,1, T1,2, S1,2, . . . , Tn,mn, Sn,mn,Zn)|W

) = 0

and bi-multiplicativity implies

Eσ (Z0, T1,1, S1,1, T1,2, S1,2, . . . , Tn,mn, Sn,mn,Zn) = 0

so the claim follows.
Therefore every π ∈ BNC(χ) which has a non-zero contribution to sum in the moment expression has the indices

corresponding to each Zk as singletons. If

χ0 :
{

1, . . . ,2
n∑

k=1

mk

}
→ {�, r}

is alternating, then by restricting to non-zero contributions in the sum and using the properties of bi-multiplicative
functions, we obtain

E

(
Z0

(
m1∏
k=1

T1,kS1,k

)
Z1

(
m2∏
k=1

T2,kS2,k

)
· · ·Zn−1

(
mn∏
k=1

Tn,kSn,k

)
Zn

)

=
∑

π0∈BNC(χ0)

κπ0(LE(Z0)T1,1, S1,1, . . . ,LE(Z1)T2,1, S2,1, . . . , Tn,mn, Sn,mnRE(Zn))

= E

(
LE(Z0)

(
m1∏
k=1

T1,kS1,k

)
LE(Z1)

(
m2∏
k=1

T2,kS2,k

)
· · ·

(
mn∏
k=1

Tn,kSn,k

)
RE(Zn)

)

= E

(
LE(Z0)

(
m1∏
k=1

T1,kS1,k

)
LE(Z1)

(
m2∏
k=1

T2,kS2,k

)
· · ·

(
mn∏
k=1

Tn,kSn,k

)
LE(Zn)

)

as required. �

Example 5.3. Let F2 denote the free group on 2 generators u1, u2 and let ϕ be the vector state on B(�2(F2)) corre-
sponding to the point mass at the identity. If λ,ρ : F2 → B(�2(F2)) denote the left and right regular representations
respectively, recall {(λ(uk), ρ(uk))}k=1,2 are bi-free two-faced families with respect to ϕ. Hence Theorem 5.2 implies
that

alg
({

λ
(
u

p

1

)
ρ
(
u

q

1

) | p ∈N, q ∈ Z
})

and alg
({

λ
(
u

p

2

) | p ∈ Z
})

are monotonically independent with respect to ϕ.

Remark 5.4. One can easily modify the example in Remark 4.7 by choosing T1, T2, S1, S2 such that all (�, r)-
cumulants involving these operators are zero except κχ(T1, T2, T2, S1, S2) = 1 to construct C′

1,C
′
2,D

′
1,D

′
2 such that

the correct algebras are classically, freely, monotonically, or Boolean independent yet{(
C1A + alg

(
C′

k

)
,C1A + alg

(
D′

k

))}
k∈{1,2}
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are not bi-free.

5.2. Embedding monotone independence into bi-free probability

This section describes a construction for which given any pair of B-algebras A1 and A2 that are monotonically
independent over B there exist C′

1,C2,D
′
1,D2 as in Theorem 5.2 such that one may view A1 ⊆ alg(C′

1D
′
1) and

A2 ⊆ C2.

Construction 5.5. Let (A,Φ) be a B-non-commutative probability space. Recall as in Construction 4.10 that we may
view A as a B-B-module with specified B-vector state, which we denote by (A, Å,Φ), and A⊕A can be made into
a B-B-module with specified B-vector state (A⊕A, Å⊕A,Ψ ) where

Ψ (Z1 ⊕ Z2) = Φ(Z1).

Let A1 and A2 be B-algebras contained in A that are monotonically independent over B with respect to Φ .
Let (Y1, Y̊1,Ψ1) denote (A ⊕ A, Å ⊕ A,Ψ ), let (Y2, Y̊2,Ψ2) denote (A, Å,Φ), let E denote the expectation of
L(∗m∈{1,2}(Ym, Y̊m,Ψk)) onto B , and let

λk : L�(Yk) → L�

(∗m∈{1,2}(Ym, Y̊m,Ψm)
)

and

ρk : Lr (Yk) → Lr

(∗m∈{1,2}(Ym, Y̊m,Ψm)
)

be the left and right regular representations onto the kth term respectively. By definition the pairs of B-faces
{(λk(L�(Yk)), ρk(Lr (Yk)))} are bi-free inside the B-B-non-commutative probability space L(∗m∈{1,2}(Ym, Y̊m,Ψm)).

Let C2 = λ2(L�(Y2)), let D2 = ρ2(Lr (Y2)), let D′
1 = {ρ1(S1B

)} ⊆ ρ1(Lr (Yk)), and let

C′
1 = {

λ1(TZ) | Z ∈ A1
} ⊆ λ1

(
L�(Y1)

)
,

where S1B
and TZ were as defined in Construction 4.10. It is clear by Construction 4.10 that C′

1,C2,D
′
1,D2 satisfy

the assumptions of Theorem 5.2. Furthermore, if one considers the unital homomorphism β2 : A2 → C2 defined by

β2(Z) = λ2(Z),

where one views Z ∈ A� for all Z ∈ A2 by left multiplication, and if one considers the linear map β1 : A1 →
alg(C′

1D
′
1) defined by

β1(Z) = λ1(TZ)ρ1(S1B
)

for all Z ∈ A1, Theorem 5.2 implies the joint distributions of elements of A1 and A2 with respect to Φ are equal to
the joint distributions of their images under β1 and β2 respectively with respect to E.

5.3. Monotone bi-non-crossing partitions

To develop the analogue of Equations (2) and (3) of Section 3 for monotone independence, we need to restrict our-
selves to specific bi-non-crossing partitions.

Definition 5.6. Let χ : {1, . . . , n} → {�, r}. A bi-non-crossing partition π ∈ BNC(χ) is said to be monotone if
π ∈ BNCvs(χ) and whenever m,p,q ∈ {1, . . . , n} are such that m < p < q , χ(p) = r , χ(m) = χ(q) = �, then m

and q are not in the same block of π . The set of monotone bi-non-crossing partitions is denoted by BNCm(χ).

Example 5.7. For χ : {1, . . . ,6} → {�, r} with χ−1({�}) = {2,3,4,6} and χ−1({r}) = {1,5}, the elements of
BNCm(χ) may be represented via the following bi-non-crossing diagrams.
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5
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Remark 5.8. For χ : {1, . . . , n} → {�, r}, let χ : {1, . . . , n} → {�, r} denote the constant function χ(k) = �. If π ∈
BNCm(χ), then π is naturally a non-crossing partition on {1, . . . , n} and corresponds to a unique element π of
BNC(χ). Let BNCm(χ) to denote the image in BNC(χ) under this map.

Theorem 5.9. Let (A,Φ) be a B-non-commutative probability space, let A1 and A2 be B-algebras contained in
A, and let Ψ be the conditional expectation on A1 ∗B A2 determined by Φ for which A1 and A2 are monoton-
ically independent over B . Viewing (A,Φ) as a B-B-non-commutative probability space via Remark 2.7, for all
ε : {1, . . . , n} → {1,2} and for all Zk ∈ Aε(k),

Ψ (Z1 · · ·Zn) =
∑

π∈BNCm(χε)

κπ (Z1, . . . ,Zn), (6)

where χε : {1, . . . , n} → {�, r} is defined by

χε(k) =
{

� if ε(k) = 2,
r if ε(k) = 1.

Proof. Fix ε : {1, . . . , n} → {1,2} and Zk ∈ Aε(k). Let W = ε−1({1}) = {q1 < q2 < · · · < qm}, q0 = 0, qm+1 = n + 1,
and Vk = {qk−1 + 1, . . . , qk − 1} for all k ∈ {1, . . . ,m + 1}. Since each Vk is a χε -interval, if χ0 : {1, . . . ,m} → {�, r}
is the constant map χ0(k) = �, then the properties of bi-multiplicative functions imply that∑

π∈BNCm(χε)

κπ (Z1, . . . ,Zn)

=
∑

σ∈BNC(χ0)

E(Zq0+1 · · ·Zq1−1)κσ (Zq1LE(Zq1+1···Zq2−1), . . . ,ZqmLE(Zqm+1···Zqm+1−1))

= E(Zq0+1 · · ·Zq1−1)E1χ0
(Zq1LE(Zq1+1···Zq2−1), . . . ,ZqmLE(Zqm+1···Zqm+1−1))

= E(LE(Zq0+1···Zq1−1)Zq1LE(Zq1+1···Zq2−1)Zq2 · · ·ZqmLE(Zqm+1···Zqm+1−1))

= Ψ (Z1 · · ·Zn). �

6. Bi-freeness when tensoring with Mn(C)

This section demonstrates how matrices of bi-freely independent algebras over B are bi-freely independent over
Mn(B).
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6.1. Free independence over Mn(B)

Let (A,Φ) be a B-non-commutative probability space. It is elementary to show that if Φn : Mn(A) → Mn(B) is the
linear map defined by

Φn

([Zi,j ]
) = [

Φ(Zi,j )
]

for all [Zi,j ] ∈ Mn(A), then (Mn(A),Φn) is a Mn(B)-non-commutative probability space. Furthermore, it is well-
known that if {Ak}k∈K are unital algebras of A containing B that are freely independent over B , then {Mn(Ak)}k∈K are
freely independent algebras over Mn(B) in (Mn(A),Φn). A proof of this result can easily be obtained using the fact
that free independence is equivalent to the moment of any alternating, centred product being zero; a characterization
that is non-existent for bi-free independence.

6.2. Matrices of B-B-non-commutative probability spaces

To proceed with the bi-free analogue of the above result, we need to understand how to interpret (Mn(C),Mn(D)) for
given a pair of B-faces (C,D).

Remark 6.1. Given a B-B-non-commutative probability space (A,EA, ε), the main issue with trying to make Mn(A)

an Mn(B)-Mn(B)-non-commutative probability space with the expectation

EMn(A)[Zi,j ] = [
EA(Zi,j )

]
is the construction of a unital homomorphism εn : Mn(B)⊗Mn(B)op → Mn(A). In the case that B =C, the range of
εn would need to include Mn(C) ⊆ Mn(A) which would imply the left and right algebras Mn(A)� and Mn(A)r are
trivial (i.e. AIn) and the discussion of bi-free independence moot.

The main issue is that Mn(A) does not correctly distinguish left and right operators. In the scalar setting, with
a non-commutative probability space (A, ϕ), any element of A is permitted to be a left or a right operator, yet, to
consider operator-valued bi-free independence, only certain operators are allowed to be left or right operators.

The procedure described below takes a B-B-non-commutative probability space (A,EA, ε) and constructs an
associated Mn(B)-Mn(B)-non-commutative probability space for which Mn(A�) and Mn(Ar ) identify with left and
right operators respectively.

Construction 6.2. Let (A,EA, ε) be a B-B-non-commutative probability space. Recall Theorem 2.8 implies there
exists a B-B-bimodule with specified B-vector state (X , X̊ ,p) so that we may view A⊆ L(X ) and

EA(Z) = p
(
Z(1B)

)
for all Z ∈ A.

To make Mn(X ) an Mn(B)-Mn(B)-bimodule, for [bi,j ] ∈ Mn(B) and [ξi,j ] ∈ Mn(X ), the left and right actions of
[bi,j ] on [ξi,j ] are defined as

L[bi,j ]
([ξi,j ]

) = [bi,j ] · [ξi,j ] =
[

n∑
k=1

bi,k · ξk,j

]
=

[
n∑

k=1

Lbi,k
(ξk,j )

]
and

R[bi,j ]
([ξi,j ]

) = [ξi,j ] · [bi,j ] =
[

n∑
k=1

ξi,k · bk,j

]
=

[
n∑

k=1

Rbk,j
(ξi,k)

]
.

Simple computations verify that these actions indeed make Mn(X ) an Mn(B)-Mn(B)-bimodule (i.e. L[bi,j ] and R[b′
i,j ]

commute, [bi,j ] → L[bi,j ] is a homomorphism, and [bi,j ] → R[bi,j ] is an anti-homomorphism). Furthermore, since

Mn(X ) = Mn(B) ⊕ Mn(X̊ )
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as direct sum of Mn(B)-Mn(B)-bimodules, (Mn(X ),Mn(X̊ ),pn) is an Mn(B)-Mn(B)-bimodule with specified
Mn(B)-vector state where pn : Mn(X ) → Mn(B) is defined by

pn

([ξi,j ]
) = [

p(ξi,j )
]
.

Therefore L(Mn(X )) is an Mn(B)-Mn(B)-non-commutative probability space with conditional expectation
EL(Mn(X )) : L(Mn(X )) → Mn(B) defined for all Z ∈ L(Mn(X )) by

EL(Mn(X ))(Z) = pn

(
Z(In,B)

)
,

where In,B ∈ Mn(B) is the unit of Mn(B).
Given a matrix [Zi,j ] ∈ Mn(A�), we may view [Zi,j ] ∈ L(Mn(X )) by defining

[Zi,j ]
([ξi,j ]

) =
[

n∑
k=1

Zi,k(ξk,j )

]

for all [ξi,j ] ∈ Mn(X ). Note [Lbi,j
] = L[bi,j ] and Mn(A�) commutes with {R[bi,j ] | [bi,j ] ∈ Mn(B)} under this repre-

sentation. Thus we may view

{
L[bi,j ] | [bi,j ] ∈ Mn(B)

} ⊆ Mn(A�) ⊆ L
(
Mn(X )

)
�
.

Moreover, note if [Zi,j ] ∈ Mn(A�), then, under this identification,

EL(Mn(X ))

([Zi,j ]
) = pn

([
Zi,j (1B)

]) = [
p
(
Zi,j (1B)

)] = [
EA(Zi,j )

]
.

Similarly, given a matrix [Zi,j ] ∈ Mn(Aop
r )op, we may view [Zi,j ] ∈ L(Mn(X )) by defining

[Zi,j ]
([ξi,j ]

) =
[

n∑
k=1

Zk,j (ξi,k)

]

for all [ξi,j ] ∈ Mn(X ). Note [Rbi,j
] = R[bi,j ] and Mn(Aop

r )op commutes with {L[bi,j ] | [bi,j ] ∈ Mn(B)} under this
representation. Thus we may view

{
R[bi,j ] | [bi,j ] ∈ Mn(B)

} ⊆ Mn

(
Aop

r

)op ⊆ L
(
Mn(X )

)
r
.

Moreover, note if [Zi,j ] ∈ Mn(Aop
r )op, then, under this identification,

EL(Mn(X ))

([Zi,j ]
) = pn

([
Zi,j (1B)

]) = [
p
(
Zi,j (1B)

)] = [
EA(Zi,j )

]
.

Hence, given pairs of B-faces {(Ck,Dk)}k∈K in a B-B-non-commutative probability space A, we can consider
the pairs of Mn(B)-faces {(Mn(Ck),Mn(D

op
k )op)}k∈K inside the Mn(B)-Mn(B)-non-commutative probability space

L(Mn(X )).

Remark 6.3. One may be slightly concerned by the necessity of using X . However, Theorem 2.8 constructs X as a
quotient of A and X is directly associated to A. In fact, in the case B = C, X = A in which case we are considering
the Mn(C)-Mn(C)-non-commutative probability space L(Mn(A)), elements of Mn(A) acting as left operators on
Mn(A) by left matrix multiplication, and elements of Mn(A) acting as right operators on Mn(A) by right multiplica-
tion coupled with the opposite action of A.

Remark 6.4. One can verify via Remark 2.7 that Construction 6.2 is an alternate way of viewing Mn(A) when A is a
B-non-commutative probability space.
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6.3. Bi-free independence over Mn(B)

Using Construction 6.2, we may now state the main result of this section.

Theorem 6.5. Let (A,E, ε) be a B-B-non-commutative probability space and let {(Ck,Dk)}k∈K be bi-free pairs of
B-faces of A. Then the pairs of Mn(B)-faces {(Mn(Ck),Mn(D

op
k )op)}k∈K are bi-freely independent over Mn(B).

To proceed with the proof of Theorem 6.5, let {Fi,j }ni,j=1 denote the canonical matrix units of Mn(C) (so
Fi,kFm,j = δk,mFi,j ). In addition, Z ⊗ Fi,j represents the n by n matrix with Z in the (i, j)th position and zeros
elsewhere and Z ⊗ 0 = 0. The following technical lemma will enable the proof of Theorem 6.5.

Lemma 6.6. Let (A,E, ε) be a B-B-non-commutative probability space and let L(Mn(X )) be as described in Con-
struction 6.2. For all χ : {1, . . . , q} → {�, r}, for all

Zk ∈
{
A� if χ(k) = �,
Ar if χ(k) = r ,

for all {ik}qk=1, {jk}qk=1 ⊆ {1, . . . , n}, and for all π ∈ BNC(χ),

Eπ (Z1 ⊗ Fi1,j1 , . . . ,Zq ⊗ Fiq,jq ) = Eπ (Z1, . . . ,Zq) ⊗ Fχ

(
(i1, . . . , iq), (j1, . . . , jq)

)
,

where the operator-valued bi-free moment functions are computed in the appropriate spaces and

Fχ

(
(i1, . . . , iq), (j1, . . . , jq)

) = Fisχ (1),jsχ (1)
· · ·Fisχ (q),jsχ (q)

∈ Mn(C).

Proof. The proof proceeds by induction on the number of blocks of π . For the base case, suppose π has precisely
one block; that is, π = 1χ . Using the operations in Construction 6.2, it is elementary to verify that

(Z1 ⊗ Fi1,j1) · · · (Zq ⊗ Fiq,jq )In,B = (
Z1 · · ·Zq(1B)

) ⊗ Fχ

(
(i1, . . . , iq), (j1, . . . , jq)

)
(where Zk ⊗ Fik,jk

acts as an element of Mn(Aχ(k))) so that

E1χ (Z1 ⊗ Fi1,j1 , . . . ,Zq ⊗ Fiq,jq ) = EL(Mn(X ))

(
(Z1 ⊗ Fi1,j1) · · · (Zq ⊗ Fiq,jq )

)
= pn

(
(Z1 ⊗ Fi1,j1) · · · (Zq ⊗ Fiq,jq )In,B

)
= p

(
Z1 · · ·Zq(1B)

) ⊗ Fχ

(
(i1, . . . , iq), (j1, . . . , jq)

)
= EA(Z1 · · ·Zq) ⊗ Fχ

(
(i1, . . . , iq), (j1, . . . , jq)

)
= E1χ (Z1, . . . ,Zq) ⊗ Fχ

(
(i1, . . . , iq), (j1, . . . , jq)

)
.

To proceed inductively, fix π ∈ BNC(χ) and suppose the result holds for all bi-non-crossing partitions with fewer
blocks than π . Let W be any block of π that is a χ -interval. By the base case

Eπ |W
(
(Z1 ⊗ Fi1,j1, . . . ,Zq ⊗ Fiq,jq )|W

)
= Eπ |W

(
(Z1, . . . ,Zq)|W

) ⊗ Fχ |W
(
(i1, . . . , iq)|W, (j1, . . . , jq)|W

)
.

For simplicity of notation, let

b = Eπ |W
(
(Z1, . . . ,Zq)|W

)
and G = Fχ |W

(
(i1, . . . , iq)|W, (j1, . . . , jq)|W

)
.

Further, let

p = max≺χ

({
k ∈ {1, . . . , q} | k ≺χ min≺χ

(W)
})

.



Independences in bi-free probability 1465

The proof is divided into two cases based on p.
Case 1: p �= −∞. Notice if Fip,jpG = δFi,j where δ ∈ {0,1}, then it is clear by the definition of ≺χ that

δFχ |Wc

(
(i1, . . . , ip−1, i, ip+1, . . . , iq)|Wc, (j1, . . . , jp−1, j, jp+1, . . . , jq)|Wc

)
= Fχ

(
(i1, . . . , iq), (j1, . . . , jq)

)
.

We need to further divide the discussion into two cases.
If χ(p) = �, notice the actions in Construction 6.2 imply

(Zp ⊗ Fip,jp )Lb⊗G = ZpLb ⊗ Fip,jpG.

Hence, by the properties of bi-multiplicative functions and the induction hypothesis,

Eπ (Z1 ⊗ Fi1,j1 , . . . ,Zq ⊗ Fiq,jq )

= Eπ |Wc

((
Z1 ⊗ Fi1,j1, . . . , (Zp ⊗ Fip,jp )Lb⊗G, . . . ,Zq ⊗ Fiq,jq

)|Wc

)
= Eπ |Wc

((
Z1 ⊗ Fi1,j1, . . . , (ZpLb ⊗ Fip,jpG), . . . ,Zq ⊗ Fiq,jq

)|Wc

)
= Eπ |Wc

(
(Z1, . . . ,ZpLb, . . . ,Zq)|Wc

) ⊗ Fχ

(
(i1, . . . , iq), (j1, . . . , jq)

)
= Eπ (Z1, . . . ,Zq) ⊗ Fχ

(
(i1, . . . , iq), (j1, . . . , jq)

)
.

Otherwise, if χ(p) = r , notice the actions in Construction 6.2 imply

Rb⊗G(Zp ⊗ Fip,jp ) = RbZp ⊗ Fip,jpG.

Hence, by the properties of bi-multiplicative functions and the induction hypothesis,

Eπ (Z1 ⊗ Fi1,j1 , . . . ,Zq ⊗ Fiq,jq )

= Eπ |Wc

((
Z1 ⊗ Fi1,j1, . . . ,Rb⊗G(Zp ⊗ Fip,jp ), . . . ,Zq ⊗ Fiq,jq

)|Wc

)
= Eπ |Wc

((
Z1 ⊗ Fi1,j1, . . . , (RbZp ⊗ Fip,jpG), . . . ,Zq ⊗ Fiq,jq

)|Wc

)
= Eπ |Wc

(
(Z1, . . . ,RbZp, . . . ,Zq)|Wc

) ⊗ Fχ

(
(i1, . . . , iq), (j1, . . . , jq)

)
= Eπ (Z1, . . . ,Zq) ⊗ Fχ

(
(i1, . . . , iq), (j1, . . . , jq)

)
.

Case 2: p = −∞. It is clear by the definition of ≺χ that

GFχ |Wc

(
(i1, . . . , iq)|Wc, (j1, . . . , jq)|Wc

) = Fχ

(
(i1, . . . , iq), (j1, . . . , jq)

)
.

Hence, by the properties of bi-multiplicative functions and the induction hypothesis,

Eπ (Z1 ⊗ Fi1,j1 , . . . ,Zq ⊗ Fiq,jq )

= (b ⊗ G)Eπ |Wc

(
(Z1 ⊗ Fi1,j1 , . . . ,Zq ⊗ Fiq,jq )|Wc

)
= (b ⊗ G)

(
Eπ |Wc

(
(Z1, . . . ,Zq)|Wc

) ⊗ Fχ |W
(
(i1, . . . , iq)|Wc, (j1, . . . , jq)|Wc

))
= (

bEπ |Wc

(
(Z1, . . . ,Zq)|Wc

)) ⊗ (
GFχ |W

(
(i1, . . . , iq)|Wc, (j1, . . . , jq)|Wc

))
= Eπ (Z1, . . . ,Zq) ⊗ Fχ

(
(i1, . . . , iq), (j1, . . . , jq)

)
.

As all cases have been covered, the inductive step and thus proof are complete. �

Proof of Theorem 6.5. To prove Theorem 6.5 it suffices to verify Equation (1) in Theorem 2.13. In addition, due to
linearity, it suffices to verify Equation (1) for elements of the form Z ⊗ Fi,j where Z is an element of a Ck or a Dk

and i, j ∈ {1, . . . , n} are arbitrary.
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Let χ : {1, . . . , q} → {�, r}, let ε : {1, . . . , q} → K , let

Zk ∈
{

Cε(k) if χ(k) = �,
Dε(k) if χ(k) = r ,

and let {ik}qk=1, {jk}qk=1 ⊆ {1, . . . , n}. Then, by Lemma 6.6 and the fact that Equation (1) of Theorem 2.13 holds for
{(Ck,Dk)}k∈K ,

EL(Mn(X ))

(
(Z1 ⊗ Fi1,j1) · · · (Zq ⊗ Fiq,jq )

)
= EA(Z1 · · ·Zq) ⊗ Fχ

(
(i1, . . . , iq), (j1, . . . , jq)

)
=

∑
π∈BNC(χ)

[ ∑
σ∈BNC(χ)

π≤σ≤ε

μBNC(π,σ )

]
Eπ (Z1, . . . ,Zq) ⊗ Fχ

(
(i1, . . . , iq), (j1, . . . , jq)

)

=
∑

π∈BNC(χ)

[ ∑
σ∈BNC(χ)

π≤σ≤ε

μBNC(π,σ )

]
Eπ (Z1 ⊗ Fi1,j1, . . . ,Zq ⊗ Fiq,jq ).

�

7. Partial multivariate R-transforms

This section uses the combinatorial approach to bi-free probability to develop some partial R-transforms for pair of
operators in the scalar setting. Note all power series in this section are power series in commuting variables.

7.1. Single variable R-transforms

We begin by recalling some notation and standard results.

Definition 7.1. Let (A, ϕ) be a non-commutative probability space and let T ∈A be an arbitrary element. For n ∈N,
let κn(T ) denote the nth free cumulant of T ; that is, in the notation of (�, r)-cumulants, κn(T ) = κ1χ (T ,T , . . . , T )

where χ : {1, . . . , n} → {�, r} is constant.
The Cauchy transform of T is the power series

GT (z) = ϕ
(
(z1A − T )−1) = 1

z
+

∑
n≥1

ϕ(T n)

zn+1
,

the R-transform of T is the power series

RT (z) =
∑
n≥0

κn+1(T )zn,

the moment series of T is the power series

MT (z) = 1 +
∑
n≥1

ϕ
(
T n

)
zn,

and the cumulant series of T is the power series

CT (z) = 1 +
∑
n≥1

κn(T )zn.
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We recall the following relations between the above series from [16]:

GT (z) = 1

z
MT

(
1

z

)
, (7)

CT (z) = zRT (z) + 1, (8)

MT (z) = CT

(
zMT (z)

)
, (9)

CT (z) = MT

(
z

CT (z)

)
. (10)

Note the traditional relation GT (RT (z)+ 1
z
) = z in [19] follows from these relations. In addition, if T and S are freely

independent, then RT +S(z) = RT (z) + RS(z).

7.2. Partial R-transform for a pair of variables

This section re-derives the partial R-transform from [22, Theorem 2.4] via combinatorics. To state [22, Theorem 2.4]
and to proceed with our proof, we make the following notation.

Notation 7.2. Let (A, ϕ) be a non-commutative probability space and let T ,S ∈ A be arbitrary elements. We view T

as a left element and S as a right element. For n,m ∈N∪ {0} with n + m �= 0, let

κn,m(T ,S) = κ1χn,m
(Z1, . . . ,Zn+m),

where χn,m : {1, . . . , n + m} → {�, r},

χn,m(k) =
{

� if k ≤ n,
r if k > n,

and Zk =
{

T if k ≤ n,
S if k > n.

The two-variable Green’s function is the power series

GT,S(z,w) = ϕ
(
(z1A − T )−1(w1A − S)−1) = 1

zw
+

∑
n,m≥0
n+m≥1

ϕ(T nSm)

zn+1wm+1
.

Further, let

RT,S(z,w) =
∑

n,m≥0
n+m≥1

κn,m(T ,S)znwm.

The function RT,S(z,w) plays a similar role as the single variable R-transform when it comes to additive convolu-
tion. Indeed, by Theorem 2.13, if (T1, S1) and (T2, S2) are bi-free two-faced pairs, then

RT1+T2,S1+S2(z,w) = RT1,S1(z,w) + RT2,S2(z,w).

Using the above notation, the following result was proved in [22] using analytic techniques.

Theorem 7.3 ([22, Theorem 2.4]). If (T ,S) is a two-faced pair in a Banach algebra non-commutative probability
space, then

RT,S(z,w) = 1 + zRT (z) + wRS(w) − zw

GT,S(RT (z) + 1/z,RS(w) + 1/w)
(11)

as holomorphic functions near (0,0) ∈C
2.
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To use combinatorics to produce a proof of Theorem 7.3, we need the following analogues of the moment and
cumulant series.

Definition 7.4. The left-then-right cumulant series of (T ,S) is the power series

CT,S(z,w) = 1 +
∑

n,m≥0
n+m≥1

κn,m(T ,S)znwm = 1 + RT,S(z,w). (12)

The left-then-right moment series of (T ,S) is the power series

MT,S(z,w) = 1 +
∑

n,m≥0
n+m≥1

ϕ
(
T nSm

)
znwm.

It is easy to verify that

GT,S(z,w) = 1

zw
MT,S

(
1

z
,

1

w

)
. (13)

Theorem 7.5. Let (A, ϕ) be a non-commutative probability space and let T ,S ∈ A be arbitrary elements. Then

MT (z) + MS(w) = MT (z)MS(w)

MT,S(z,w)
+ CT,S

(
zMT (z),wMS(w)

)
. (14)

Remark 7.6. Note Theorem 7.3 and Theorem 7.5 are equivalent. Indeed, replacing z and w with z
CT (z)

and w
CS(w)

respectively in Equation (14) produces

CT (z) + CS(w) = CT (z)CS(w)

MT,S(z/CT (z),w/CS(w))
+ CT,S(z,w)

via Equation (10). Using Equation (13),

CT (z)CS(w)

MT,S(z/CT (z),w/CS(w))
= zw

(z/CT (z))(w/CS(w))MT,S(z/CT (z),w/CS(w))

= zw

GT,S(CT (z)/z,CS(w)/w)
.

Therefore, by Equations (8) and (12),

RT,S(z,w) = CT,S(z,w) − 1

= CT (z) + CS(w) − zw

GT,S(CT (z)/z,CS(w)/w)
− 1

= (
zRT (z) + 1

) + (
wRS(w) + 1

) − zw

GT,S(RT (z) + 1/z,RS(w) + 1/w)
− 1

= 1 + zRT (z) + wRS(w) − zw

GT,S(RT (z) + 1/z,RS(w) + 1/w)

which is Equation (11).

Remark 7.7. If T and S are such that the pairs (T ,1A) and (1A, S) are bi-free, it is easy to see that Theorem 7.5
holds. Indeed, under these assumptions,

MT,S(z,w) = MT (z)MS(w) and CT,S(z,w) = CT (z) + CS(w) − 1.
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Thus, by Equation (9),

MT (z)MS(w)

MT,S(z,w)
+ CT,S

(
zMT (z),wMS(w)

) = 1 + (
CT

(
zMT (z)

) + CS

(
wMS(w)

) − 1
)

= MT (z) + MS(z).

Proof of Theorem 7.5. For n,m ∈N∪ {0} with n + m �= 0, using the Notation 7.2 notice

ϕ
(
T nSm

) =
∑

π∈BNCvs (χn,m)

κπ (Z1, . . . ,Zn+m) +
∑

π∈BNC(χn,m)

π /∈BNCvs (χn,m)

κπ (Z1, . . . ,Zn+m)

= ϕ
(
T n

)
ϕ
(
Sm

) +
∑

π∈BNC(χn,m)

π /∈BNCvs (χn,m)

κπ (Z1, . . . ,Zn+m).

Let

Θn,m =
∑

π∈BNC(χn,m)

π /∈BNCvs (χn,m)

κπ (Z1, . . . ,Zn+m).

Notice Θ0,m = Θn,0 = 0 for all n,m �= 0. Otherwise, for n,m ∈ N, note every partition π ∈ BNC(χn,m)\BNCvs(χn,m)

must have a block W such that

W ∩ {1, . . . , n} �=∅ and W ∩ {n + 1, . . . , n + m} �=∅

(that is, π has a block with both left and right indices). Let Vπ denote the block of π with both left and right indices
such that min(Vπ ) is smallest among all blocks W of π with both left and right indices.

Rearrange the sum in Θn,m by first choosing t ∈ {1, . . . , n}, s ∈ {1, . . . ,m}, and V ⊆ {1, . . . , n + m} such that

V� := V ∩ {1, . . . , n} = {u1 < u2 < · · · < ut } and

Vr := V ∩ {n + 1, . . . , n + m} = {v1 < v2 < · · · < vs},

and then sum over all π ∈ BNC(χn,m) \ BNCvs(χn,m) such that Vπ = V . If one defines u0 = 0, v0 = n, ut+1 =
n + 1, and vs+1 = n + m + 1, the fact that π ∈ BNC(χn,m) \ BNCvs(χn,m) implies if Vπ = V then no block of π

contains indices from both intervals (uk1 , uk1+1) and (uk2 , uk2+1) when k1 �= k2, from both intervals (vk1 , vk1+1) and
(vk2 , vk2+1) when k1 �= k2, and from both intervals (uk1 , uk1+1) and (vk2 , vk2+1) unless k1 = t and k2 = s. In particular,
examining all π such that Vπ = V , each (t + s + 1)-tuple consisting of bi-non-crossing partitions on each of the sets
(uk, uk+1) for k ∈ {0,1, . . . , t − 1}, (vk, vk+1) for k ∈ {0,1, . . . , s − 1}, and (ut , ut+1) ∪ (vs, vs+1) occurs precisely
once. Since rearranging the sum gives

Θn,m =
n∑

t=1

m∑
s=1

∑
V

V�={u1<u2<···<ut }
Vr={v1<v2<···<vs }

∑
π∈BNC(χn,m)

π /∈BNCvs (χn,m)

Vπ=V

κπ (Z1, . . . ,Zn+m)

and since the right most sum equals

κt,s(T , S)ϕ
(
T n−ut Sm−vs

) t∏
k=1

ϕ
(
T uk−uk−1−1) s∏

k=1

ϕ
(
Svk−vk−1−1),
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we obtain Θn,m equals

∑
t∈{1,...,n}

i0,i1,...,it∈{0,1,...,n}
i0+i1+···+it=n−t

∑
s∈{1,...,m}

j0,j1,...,js∈{0,1,...,m}
j0+j1+···+js=m−s

κt,s(T , S)ϕ
(
T i0Sj0

) t∏
k=1

ϕ
(
T ik

) s∏
k=1

ϕ
(
Sjk

)
.

Using the above, notice

MT,S(z,w) = 1 +
∑
n≥1

ϕ
(
T n

)
zn +

∑
m≥1

ϕ
(
Sm

)
wm +

∑
n,m≥1

ϕ
(
T nSm

)
znwm

= MT (z)MS(w) +
∑

n,m≥1

Θn,mznwm.

By rearranging the remaining sum on the right to collect each κt,s(T , S) term, we obtain∑
n,m≥1

Θn,mznwm

=
∑
s,t≥1

κt,s(T , S)MT,S(z,w)MT (z)tMS(w)sztws

=
( ∑

s,t≥1

κt,s(T , S)
(
zMT (z)

)t(
sMS(w)

)s
)

MT,S(z,w)

= (
CT,S

(
zMT (z), sMS(w)

) − CT

(
zMT (z)

) − CS

(
wMS(w)

) + 1
)
MT,S(z,w)

= (
CT,S

(
zMT (z), sMS(w)

) − MT (z) − MS(w) + 1
)
MT,S(z,w).

By combining these equations and applying simple algebraic manipulations, the result follows. �

7.3. Partial R-transform for bi-free Boolean systems

This section develops an additional partial R-transform in a specific context which provides a more general result than
that of [18, Proposition 2.1] for Boolean independent algebras.

To produce such a partial R-transform, the technique from Section 7.2 are utilized along with some simple combi-
natorics. We begin with the following notation and definitions.

Definition 7.8. Let χ : {1, . . . , n} → {�, r} and let m ∈ N∪ {0}. For θ ∈ {�, r}, we say that χ starts with θ precisely m

times if

(1) m = n and χ(k) = θ for all k, or
(2) m < n, χ(k) = θ for all 1 ≤ k ≤ m, and χ(m + 1) �= θ .

Similarly, we say that χ ends with θ precisely m times if

(1) m = n and χ(k) = θ for all k, or
(2) m < n, χ(k) = θ for all n − m < k ≤ n, and χ(n − m) �= θ .

Let Sm,θ denote all χ : {1, . . . , n} → {�, r} over all n ∈ N such that χ starts with θ precisely m times and let Em,θ

denote all χ : {1, . . . , n} → {�, r} over all n ∈N such that χ ends with θ precisely m times.

Definition 7.9. Let (A, ϕ) be a non-commutative probability space and let T ,S ∈ A be arbitrary elements. We view
T as a left element and S as a right element. For χ : {1, . . . , n} → {�, r}, we define

ϕχ(T ,S) = ϕ(Z1 · · ·Zn) and κχ (T ,S) = κχ(Z1, . . . ,Zn),
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where

Zk =
{

T if χ(k) = �,
S if χ(k) = r .

Define Lχ = |{k | χ(k) = �}| and Rχ = |{k | χ(k) = r}|.
The commutative moment series of (T ,S) is the power series

Mc
T,S(z,w) = 1 +

∑
n≥1

∑
χ :{1,...,n}→{�,r}

ϕχ(T ,S)zLχ wRχ .

For m ∈N∪ {0} and θ ∈ {�, r}, the θ -starting of length m moment series of (T ,S) is the power series

M
m,θ
T ,S (z,w) =

∑
χ∈Sm,θ

ϕχ (T ,S)zLχ wRχ .

Similarly, the θ -ending of length m cumulant series of (T ,S) is the power series

C
m,θ
T ,S (z,w) =

∑
χ∈Em,θ

κχ (T ,S)zLχ wRχ .

Theorem 7.10. Let (A, ϕ) be a non-commutative probability space and let T ,S ∈ A be arbitrary elements such that
ϕ(T n) = ϕ(Sn) = 0 for all n ≥ 1. Then

Mc
T,S(z,w) = 1 +

∑
m≥1

C
m,�
T ,S (z,w)

(
1 +

∑
k≥0

(
m + k

k

)
M

k,r
T ,S(z,w)

)

+
∑
m≥1

C
m,r
T ,S (z,w)

(
1 +

∑
k≥0

(
m + k

k

)
M

k,�
T ,S(z,w)

)
. (15)

Remark 7.11. Both Theorem 7.5 and Theorem 7.10 have embedded conditions which reduce the combinatorics of
bi-non-crossing partitions. Indeed Theorem 7.5 requires all left operators occur before all right operators which
enables a collection of κn,m(T ,S) terms. Similarly, the proof of Theorem 7.10 uses the condition ϕ(T n) = ϕ(Sn) = 0
to determine the coefficient of each κχ (T ,S).

Proof of Theorem 7.10. First, consider a fixed χ : {1, . . . , n} → {�, r}. Using the notation in Definition 7.9, notice

ϕχ(T ,S) =
∑

π∈BNCvs (χ)

κπ (Z1, . . . ,Zn) +
∑

π∈BNC(χ)

π /∈BNCvs (χ)

κπ (Z1, . . . ,Zn)

= ϕ
(
T Lχ

)
ϕ
(
SRχ

) +
∑

π∈BNC(χ)

π /∈BNCvs (χ)

κπ (Z1, . . . ,Zn)

=
∑

π∈BNC(χ)

π /∈BNCvs (χ)

κπ (Z1, . . . ,Zn).

Notice ϕχ(T ,S) = 0 if Lχ = 0 or Rχ = 0. Otherwise, by repeating arguments similar to those used in Theorem 7.5
(i.e. summing over all π with the same first block Vπ with both left and right nodes) along with the fact that ϕ(T k) =
ϕ(Sk) = 0 for all k ≥ 1, we see that if

χ−1({�}) = {i1 < i2 < · · · < iLχ } and χ−1({r}) = {j1 < j2 < · · · < jRχ },
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then

ϕχ(T ,S) =
Lχ∑
t=1

Rχ∑
s=1

κχ |
V

χ
t,s

(T , S)ϕχ |
(V

χ
t,s )c

(T , S),

where

V
χ
t,s = {i1, i2, . . . , it } ∪ {j1, j2, . . . , js}.

Using the above, and the fact that ϕ(T k) = ϕ(Sk) = 0 for all k ≥ 1, we see that

Mc
T,S(z,w) = 1 +

∑
n≥1

∑
χ :{1,...,n}→{�,r}

Lχ∑
t=1

Rχ∑
s=1

κχ |
V

χ
t,s

(T , S)ϕχ |
(V

χ
t,s )c

(T , S)zLχ wRχ .

Equation (15) then follows from the above equation since if θ1, θ2 ∈ {�, r} are such that θ1 �= θ2, if m1,m2 ∈ N ∪ {0}
with m1 �= 0, if χ1 ∈ Em1,θ1 , and if χ2 ∈ Sm2,θ2 , then the number of χ : {1, . . . , n} → {�, r} such that χ |V χ

t,s
= χ1 and

χ |(V χ
t,s )

c = χ2 for some t, s is precisely
(
m1+m2

m2

)
(the number of ways to uniquely arrange last m1 nodes of χ1 valued

θ1 with the first m2 nodes of χ2 valued θ2). �

Remark 7.12. Repeating the proof of Theorem 7.10, one can easily see [18, Proposition 2.1]. Indeed for T = TZ and
S = S1 as in Construction 4.10, we see that ϕχ(T ,S) = 0 unless χ is alternating. Thus only alternating χ need be
considered in the proof of Theorem 7.10. It is then clear that for

κχ |
V

χ
t,s

(T , S)ϕχ |
(V

χ
t,s )c

(T , S)

to be non-zero, t = s is required as T 2 = S2 = 0 and ϕ(ST ST S · · ·) = 0. In this case, by Remark 4.19,

κχ |
V

χ
t,t

(T , S)ϕχ |
(V

χ
t,t )

c
(T , S) = κB,n(Z)ϕ

(
Zn−t

)
,

where κB,n(Z) is the nth Boolean cumulant of Z. Therefore, by collecting terms, we see that

1 +
∑
n≥1

ϕ
(
Zn

)
(zw)n = 1 +

∑
k≥1

∑
χ :{1,...,2k}→{�,r}

χ alternating

ϕχ(T ,S)(zw)k

= 1 +
∑
k≥1

k∑
t=1

κB,k(Z)ϕ
(
Zk−t

)
(zw)k

= 1 +
(∑

k≥1

κB,k(Z)(zw)n
)(

1 +
∑
n≥1

ϕ
(
Zn

)
(zw)n

)

which is precisely the formula of [18, Proposition 2.1].
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