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Abstract. The moment Lyapunov exponent is computed for the solution of the parabolic Anderson equation with an (1 + 1)-
dimensional time–space white noise. Our main result positively confirms an open problem posted in (Ann. Probab. (2015) to
appear) and originated from the observations made in the physical literature (J. Statist. Phys. 78 (1995) 1377–1401) and (Nuclear
Physics B 290 (1987) 582–602). By a link through the Feynman–Kac’s formula, our theorem leads to the evaluation of the ground
state energy for the n-body problem with Dirac pair interaction.

Résumé. Nous calculons les moments de l’exposant de Lyapunov de la solution de l’équation d’Anderson parabolique avec un
bruit blanc en espace–temps en dimension (1 + 1). Notre résultat principal confirme un problème ouvert posé dans (Ann. Probab.
(2015) à paraître) et basé sur des observations faites dans la littérature physique (J. Statist. Phys. 78 (1995) 1377–1401) et (Nuclear
Physics B 290 (1987) 582–602). À travers la formule de Feynman–Kac, notre théorème permet l’évaluation de l’état fondamental
pour le problème à n-corps avec interaction de Dirac par paires.
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1. Introduction

We start with the (1 + 1)-dimensional parabolic Anderson equation

{
∂u
∂t

(t, x) = 1
2Δu(t, x) + λẆ(t, x)u(t, x),

u(0, x) = u0(x),
(1.1)

where Ẇ (t, x) ((t, x) ∈ R
+ × R) is a time–space white noise defined as a centered generalized Gaussian field with

the co-variance function

Cov
(
Ẇ (s, x), Ẇ (t, y)

) = δ0(s − t)δ0(x − y)(s, x), (t, y) ∈ R
+ ×R

and λ > 0 is a constant. Throughout the paper we assume in (1.1) that u0(·) is deterministic with

0 < inf
x∈Ru0(x) ≤ sup

x∈R
u0(x) < ∞. (1.2)
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The reader is referred to Dalang [9] and Walsh [18] for the mathematical set up of the system (1.1). This paper is
mainly concerned about the evaluation of the moment Lyapunov exponent

lim
t→∞

1

t
logE

(
u(t, x)n

)
for all integers n ≥ 1. Since the Equation (1.1) is solved in the mild sense under the Dalang–Walsh’s regime,
Eu(t, x) = Eu0(x + B(t)) where B(t) is an 1-dimensional Brownian motion with B(0) = 0. Consequently, the mo-
ment Lyapunov exponent is equal to 0 for n = 1. So the problem remains only for n ≥ 2.

A mathematical reduction by Feynman–Kac’s formula (see Theorem 1.2 and its proof) relates this problem to the
computation of

En(θ) = sup
g∈Fn

{
θ

∑
1≤j<k≤n

∫
Rn

δ0(xj − xk)g
2(x)dx − 1

2

∫
Rn

∣∣∇g(x)
∣∣2 dx

}
, θ > 0, (1.3)

where we adopt the notation x = (x1, . . . , xn) and where Fn is the class of the infinitely smooth and rapidly decreasing
(at infinity) functions g on R

n with ‖g‖2 = 1. The variation En(θ) appears as the ground state energy (or, the principal
eigenvalue) of the n-body problem (see, e.g., [12] for the general background of the n-body problem) characterized
by the Schrödinger Hamiltonian

Hn = 1

2

n∑
j=1

Δj + θ
∑

1≤j<k≤n

δ0(xj − xk).

Based on a physical method known as Bethe ansatz, Kardar ([14], Section 2.2) made a conjecture that

En(θ) = θ2

24
n
(
n2 − 1

)
, n = 2,3, . . . (1.4)

by proposing the ground state wave function (principal eigenfunction) as

g0(x) = exp

{
−θ

∑
1≤j<k≤n

|xj − xk|
}
,

where x = (x1, . . . , xn) ∈ R
n. With the convention that d

dz
|z| = sgn(z) and d2

dz2 |z| = 2δ0(z) (z ∈ R) and with a formal
computation, Kardar is able to claim that

(Hng0)(x) = θ2

24
n
(
n2 − 1

)
g0(x).

In addition to the non-smoothness in the super planes xj = xk (1 ≤ j < k ≤ n), a worse problem of g0(·) is that it does
not vanish at infinity and does not belong to L2(Rn). Nevertheless, Kardar’s expository argument provides insight as
what to expect.

An attempt for rigorous treatment was made by Bertini and Cancrini [2] who claimed the Feynman–Kac type
moment formula

Eu(t, x)n = 2 exp

{
tλ4 n(n2 − 1)

24

}
�

(
tλ2

(
n(n2 − 1)

12

)1/2)
(1.5)

under the uniform initial condition u0(x) = 1, where �(·) is the distribution function for 1-dimensional standard nor-
mal distribution. Unfortunately, Equation (1.5) is correct only for n = 2 – the error in Bertini–Cancrini’s computation
comes from an incorrect use of Skorokhod’s lemma. To disprove (1.5), notice that (see (3.1) with u0(x) = 1 for the
left-hand side) the left and right-hand sides are the generating functions (in λ2) of the random variables

∑
1≤j<k≤n

∫ t

0
δ0

(
Bj (s) − Bk(s)

)
ds and

(
n(n2 − 1)

12

)1/2∣∣B(t)
∣∣,
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respectively, where B(t) is an 1-dimensional Brownian motion with B(0) = 0. On the other hand, these two random
variables are distributed differently when n ≥ 3, simply because they have different expectations

n(n − 1)

2
√

π
t and

(
n(n2 − 1)

6π

)1/2

t.

To compute the expectations of the local times appearing on the left-hand side, here we have used the fact that
B(s) ≡ (Bj (s) − Bk(s))/

√
2 is a Brownian motion so

∫ t

0
δ0

(
Bj (s) − Bk(s)

)
ds = 1√

2

∫ t

0
δ0

(
B(s)

)
ds

d= 1√
2

∣∣B(t)
∣∣,

where “
d=” follows the well-known identity in law between the Brownian local time and the reflected Brownian

motion.
Despite of the mistake, some later development in this area suggests that the Bertini–Cancrini’s idea is asymptot-

ically close to the truth. The author ([6], Proposition 3.3, see also Remark 3.1 below for a short alternative proof)
recently pointed out that

lim
n→∞n−3 logEu(t, x)n = 1

24
λ4, ∀t > 0, x ∈R (1.6)

which shows that the Bertini–Cancrini’s idea can be approached by the high moment asymptotics.
Recently, Joseph, Khoshnevisan and Mueller [13] post an open problem conjecturing that

lim
t→∞

1

t
logEu(t, x)n = 1

24
n
(
n2 − 1

)
λ4 (1.7)

for all integers n = 2,3, . . . . If confirmed, it indicates that the Bertini–Cancrini’s idea can also be approximated by
the long-term asymptotics. Finally, Bertini and Cancrini [2] deserve the credit for their idea of using Tanaka’s formula
in the moment computation for (1.1) which plays an essential role in our paper.

The parabolic Anderson equation given in (1.1) has become increasingly important partially due to its connection
the Kardar–Parisi–Zhang’s equation (KPZ equation) (see [15] and [16] for the physical background)

∂h

∂t
(t, x) = 1

2

∂2h

∂x2
(t, x) + 1

2

(
∂h

∂x
(t, x)

)2

+ λẆ(t, x), (t, x) ∈R
+ ×R (1.8)

through the Hopf–Cole’s transform u(t, x) = exp{h(t, x)} (here we take risk of over-simplification – see [10] for
detail), and to the monumental work by Hairer [10] in the study of the KPZ equation. In the wake of the historic
breakthrough of the KPZ equation, it is the time to set the record straight by giving a rigorous proof of (1.4) and by
answering the open problem (1.7).

Theorem 1.1. (1.7) holds for every n = 2,3, . . . , and x ∈ R.

In their celebrated paper [1], Amir, Corwin and Quastel remark ([1], p. 472) that the main physical prediction on
the long term asymptotic laws for the KPZ equation is based on the exact computation of moment Lyaponov exponent
for the parabolic Anderson equation (1.1). To see how the physical prediction is made, we start with the problem of the
quenched Lyapunov exponent. From his physical derivation of (1.4), Kardar ([14], Section 3.3) infers that a version of
(1.7) holds even for the fractional n, especially for the small n > 0 and carries out the following heuristic computation

lim
t→∞

1

t
E logu(t, x) = lim

t→∞
1

t
lim

n→0+
1

n

{
Eu(t, x)n − 1

}

= lim
t→∞ lim

n→0+
1

nt

(
exp

{
nt

(
n2 − 1

)λ4

24

}
− 1

)
= −λ4

24
.
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Kardar’s prediction about the above limit turns out to be right, as later proved by Bertini and Giacomin [3] who state
that under the initial condition u0(x) = exp{w(x)} with w(x) (x ∈ R) being a bilateral Brownian motion,

lim
t→∞

1

t

∫
Rd

ϕ(x) logu(t, x)dx = −λ4

24

∫
R

ϕ(x)dx in L2(Ω,A,P) (1.9)

for every ϕ ∈ C∞
0 (R). More than what is stated in (1.9), Bertini and Giacomin [3] actually establish the second

moment bound

E

{∫
Rd

ϕ(x) logu(t, x)dx + λ4t

24

∫
R

ϕ(x)dx

}2

≤ Ct2/3 (1.10)

which was later developed by Amir, Gorwin and Quastel ([1], Corollary 1.3) into a law of the second order claiming
that for any fixed x ∈R, under the initial condition u0(·) = δx(·) the process

t−1/3
{

logu(t, x) + λ4t

24

}

weakly converges, as t → ∞, to the GUE Tracy–Widom distribution, i.e., the limiting distribution of the scaled and
centered largest eigenvalue of the Gaussian unitary random matrices (the coefficient λ = 1 in [1] – we put λ here
for the purpose of comparison). Under the Hopf–Cole’s transform u(t, x) = exp{h(t, x)}, it leads to the second order
fluctuation law for the KPZ equation (1.8) [1].

Here we try to learn from Kardar’s view for making further predictions. We begin with the simple observation that
(1.7) can be re-written as

lim
t→∞

1

t
logE exp

{
n

(
logu(t, x) + λ4t

24

)}
= λ4n3

24
, n = 1,2, . . . . (1.11)

A natural question is whether or not this remains true when n is replaced by any non-negative number. An even more
exciting question is what if n is replaced by a positive and deterministic function ϕ(t) that goes to zero with a proper
rate as t → ∞. In particular, we replace n by

ϕ(t) = θ

(
l(t)

t

)1/3

,

where θ > 0 is an arbitrary constant and l(t) ↑ ∞ (t → ∞) is slowly varying. In view of (1.11), we have reason to
believe that

lim
t→∞

1

l(t)
logE exp

{
θ

(
l(t)

t

)1/3(
logu(t, x) + λ4t

24

)}
= λ4θ3

24
, θ > 0. (1.12)

In light of Gärtner–Ellis theorem (see, e.g., [5], Theorem 1.2.4, p. 11), we expect that

lim
t→∞

1

l(t)
logP

{
logu(t, x) + λ4t

24
≥ at1/3l(t)2/3

}
= − sup

θ>0

{
aθ − λ4θ3

24

}
= −4

√
2

3λ2
a3/2

for any a > 0. The likelihood of such result is indicated by the weak convergence obtained by Amir, Gorwin and
Quastel ([1], Corollary 1.3). We leave it to future investigation.

We point out the papers [8] and [6] on the quenched spatial asymptotics for log max|x|≤R u(t, x) as R → ∞, which
is substantially relevant to the high moment asymptotics given in (1.6).

Finally, we refer the interested reader to [7], Theorem 6.1, for the precise moment Lyapunov exponents in the
setting of fractional noise and of weak solution.

The limit given in (1.7), denoted by γn, satisfies γn/n < γn+1/(n + 1) (n = 1,2, . . .), the relation that defines
intermittency. It suggests that in the long run, the space is dominated by the areas where u(t, x) is low with a few
exceptional “isolated island” where u(t, x) achieves high peaks. See [4] for details about the notion of intermittency.
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Theorem 1.2. For every n = 2,3, . . . and θ > 0 (1.4) holds.

2. An inequality in number theory

Let b1, . . . , bn be distinct real numbers and 1i,j (1 ≤ i, j ≤ n and i 
= j ) be numbers which are equal to 0 or 1 and
assume that 1i,j = 1j,i for all 1 ≤ i, j ≤ n with i 
= j . Our goal in this section is to prove the following proposition.

Proposition 2.1.

n∑
j=1

(∑
i 
=j

sgn(bi − bj )

)2

= 1

3
n
(
n2 − 1

)
, (2.1)

n∑
j=1

(∑
i 
=j

sgn(bi − bj )1i,j

)2

≤ 1

3
n
(
n2 − 1

)
. (2.2)

The equality (2.1) has been noted in Kardar [14] and Bertini–Cancrini [2]. We include it here for the reader’s
convenience. By permutation invariance

n∑
j=1

(∑
i 
=j

sgn(bi − bj )

)2

=
n∑

j=1

(∑
i 
=j

sgn(bσ(i) − bσ(j))

)2

for any permutation σ on {1, . . . , n}. Here we pick σ to make bσ(1) > · · · > bσ(n). Consequently,

n∑
j=1

(∑
i 
=j

sgn(bi − bj )

)2

=
n∑

j=1

(
(n − 1) − 2(j − 1)

)2 = n(n2 − 1)

3
.

Inequality (2.2) appears to be new. Its proof is much harder than expected. The idea is to transform the problem
into some matrix computations. Given an n × n matrix A = (ai,j ), write sj (A) as the sum of the entries in the j th
column of A. Set

β(A) =
n∑

j=1

(
n∑

i=1

ai,j

)2

=
n∑

j=1

sj (A)2.

For any 1 ≤ j < i ≤ n, let C(i, j) denote the n × n skew-symmetric matrix with the (i, j)-entry equal to −1, the
(j, i)-entry equal to 1 and other entries equal to 0.

Lemma 2.2. Let 1 ≤ j < i ≤ n. For any (n × n) skew-symmetric matrices M and N satisfying M = N + C(i, j) and
si(M) − sj (M) ≥ 1, β(M) ≥ β(N).

Proof. Clearly, si(C(i, j)) = 1 and sj (C(i, j)) = −1. Hence,

si(M) = si(N) + si
(
C(i, j)

) = si(N) + 1, sj (M) = sj (N) + sj
(
C(i, j)

) = si(N) − 1.

Thus, si(M) − sj (M) = si(N) − sj (N) + 2.
Let S(NC(i, j)) be the sum of all entries of the (n × n)-matrix NC(i, j). Notice that the j th column of the n × n-

matrix NC(i, j) is the negative of the ith column of N , and the ith column of NC(i, j) is the j th column of N . The
other columns of NC(i, j) are 0. Consequently,

S
(
NC(i, j)

) = −si(N) + sj (N) = 2 − (
si(M) − sj (M)

)
.
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Let α be the (n × 1)-matrix with all entries equal to 1. We have that

αT NC(i, j)α = S
(
NC(i, j)

) = 2 − (
si(M) − sj (M)

)
. (2.3)

In addition, β(M) = ‖αT M‖2 = ‖αT (N + C(i, j))‖2, β(N) = ‖αT N‖2 and ‖αT C(i, j)‖2 = 2. By the skew-
symmetry of C(i, j), therefore,

β(M) = β(N) + 2 + 2αT NC(i, j)T α = β(N) + 2 − 2αT NC(i, j)α

= β(N) + 2
(
si(M) − sj (M)

) − 2 ≥ β(N). (2.4)
�

Proof of (2.2). By permutation invariance, we may assume that b1 > b2 > · · · > bn. So the (n × n)-matrix M0 =
(sgn(bi − bj )) becomes a skew-symmetric matrix with the entries in the upper-triangle equal to 1, the entries in
the lower-triangle equal to −1, and the entries on the diagonal equal to zero (for this we need the agreement that
sgn(0) = 0). According to (2.1),

β(M0) = 1

3
n
(
n2 − 1

)
.

Let (i1, j1), . . . , (ik, jk) be the zeros of 1i,j with i1 > j1, . . . , ik > jk and set

Mk = M0 −
k∑

l=1

C(il, jl).

A crucial observation is that Mk can be obtained by killing all lower triangle entries with labels (i1, j1), . . . , (ik, jk) and
their upper-triangle reflections in M0, i.e., replacing them by 0. Therefore, all we need is to show that β(M0) ≥ β(Mk).
To apply Lemma 2.2, we proceed in k steps, killing one symmetric pair at a time.

A subtle issue is the order of our steps. In order to validate the condition si(·)− sj (·) ≥ 1 posted in Lemma 2.2, we
re-label the entries (i1, j1), . . . , (ik, jk) so that i1 − j1 ≤ · · · ≤ ik − jk . Then we define

Ml = Ml−1 − C(il, jl), l = 1, . . . , k.

Clearly, the definition of Mk here is consistent with how Mk was defined before the re-labeling. We now show that
under this arrangement, one can do even better than what is required by Lemma 2.2. In fact, we claim that

sil (Ml−1) − sjl
(Ml−1) ≥ 2, l = 1, . . . , k. (2.5)

Let 1 ≤ l ≤ k be fixed and notice that Ml−1 is transformed from M0 by killing the symmetric pairs{
(il, j1), (j1, i1)

}
, . . . ,

{
(il−1, jl−1), (jl−1, il−1)

}
one pair at a time, in l − 1 steps. Before the steps are taken,

sil (M0) − sjl
(M0) = 2(il − jl).

Under our arrangement, there is no simultaneous killing of column-il and column-jl entries in the first l − 1 steps.
Hence, each step results in exactly one of the three consequences:

(1) A killing occurs in the column ii .
(2) A killing occurs in the column jl .
(3) There is no killing in the il th column and in the jl th column.

In any one of the first l − 1 steps, the worst thing is that the quantity

sil (·) − sjl
(·) (2.6)
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decreases by 1 (otherwise the quantity either remains unchanged or increases by 1). It happens only when a “+1”-entry
in the il-column is killed, or when a “−1”-entry in the jl-column is killed. Therefore,

sil (Ml−1) − sjl
(Ml−1) ≥ 2(il − jl) − H+

l−1 − H−
l−1,

where H+
l−1 and H−

l−1 are, respectively, the number of the positive killings in the il th column and the number of the
negative killings in the jl th column among the first l − 1 steps. Since the positive entries are located in the upper
triangle region and negative entries are located in the lower triangle region, the positive killings can only happen at the
locations (j1, i1), . . . , (jl−1, il−1) and the negative killings can only happen at the locations (i1, j1), . . . , (il−1, jl−1).
Hence,

H+
l−1 = #{1 ≤ b ≤ l − 1; ib = il} and H−

l−1 = #{1 ≤ b ≤ l − 1; jb = jl}.

For any 1 ≤ b ≤ l − 1 with ib = il , we have that jb < ib = il and jb 
= jl . Further, il − jb = ib − jb ≤ il − jl or, jb ≥ jl .
In summary, we have that jb ∈ [jl + 1, il − 1] if il − jl ≥ 2 (so the integer interval [jl + 1, il − 1] 
= ∅). The same
argument also shows that {1 ≤ b ≤ l − 1; ib = il} = ∅ when il − jl = 1. In the case when il − jl ≥ 2, for any distinct
1 ≤ b, b′ ≤ l − 1 with ib = ib′ = il , we have that jb 
= jb′ . Consequently, H+

l−1 ≤ il − jl − 1 regardless il − jl = 1 or
il − jl ≥ 2. A similar argument gives that H−

l−1 ≤ il − jl − 1. Thus,

sil (Ml−1) − sjl
(Ml−1) ≥ 2(il − jl) − (il − jl − 1) − (il − jl − 1) ≥ 2.

So we have (2.5).
Applying Lemma 2.2 to M = Ml−1 and N = Ml we have β(Ml−1) ≥ β(Ml) for l = 1, . . . , k. This leads to

β(M0) ≥ β(Mk). �

For possible future reference, we remark that the inequality in (2.2) can be sharpened to the following form:

n∑
j=1

(∑
i 
=j

sgn(bi − bj )1i,j

)2

≤ 1

3
n
(
n2 − 1

) − 2 · #
{
(i, j);1 ≤ j < i ≤ n,1i,j = 0

}
. (2.7)

Indeed, (2.7) follows from an obvious modification of (2.4) which gives β(Ml−1) ≥ β(Ml) + 2 for l = 1, . . . , k under
(2.5). On the other hand, (2.7) cannot be strengthened into equality. Take n = 3 and b1 > b2 > b3, 11,3 = 13,1 = 0 and
1i,j = 1 for other (i, j). Then the left-hand side of (2.7) is 2 while the right-hand side is 6.

3. Proof of Theorem 1.1

By the moment representation ([11], Theorem 5.3),

Eu(t, x)n = E

(
exp

{
λ2

∑
1≤j<k≤n

∫ t

0
δ0

(
Bj (s) − Bk(s)

)
ds

} n∏
j=1

u0
(
x + Bj (t)

))
, (3.1)

where B1(s), . . . ,Bn(s) are i.i.d. 1-dimensional Brownian motions starting at 0 and the time integrals represent the
Brownian local times. In view of the assumption (1.2), all we need is to show that for any θ > 0

lim
t→∞

1

t
logE exp

{
θ

∑
1≤j<k≤n

∫ t

0
δ0

(
Bj (s) − Bk(s)

)
ds

}
= θ2

24
n
(
n2 − 1

)
. (3.2)

The lower bound for (3.2) essentially follows from the strategy developed by Bertini and Cancrini [2], which is
included here for the reader’s convenience. Applying Tanaka’s formula ([17], Theorem 1.2, p. 207) to the Brownian
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motion (Bj (s) − Bk(s))/
√

2 gives

∣∣∣∣Bj (t) − Bk(t)√
2

∣∣∣∣
= 1√

2

∫ t

0
sgn

(
Bj (s) − Bk(s)

)
d
(
Bj (s) − Bk(s)

) +
∫ t

0
δ0

(
Bj (s) − Bk(s)√

2

)
ds

= 1√
2

∫ t

0
sgn

(
Bj (s) − Bk(s)

)
d
(
Bj (s) − Bk(s)

) + √
2
∫ t

0
δ0

(
Bj (s) − Bk(s)

)
ds. (3.3)

Consequently,

∫ t

0
δ0

(
Bj (s) − Bk(s)

)
ds ≥ 1

2

∫ t

0
sgn

(
Bk(s) − Bj (s)

)
d
(
Bj (s) − Bk(s)

)
and therefore,

∑
1≤j<k≤n

∫ t

0
δ0

(
Bj (s) − Bk(s)

)
ds

≥ 1

2

∑
1≤j<k≤n

∫ t

0
sgn

(
Bk(s) − Bj (s)

)
d
(
Bj (s) − Bk(s)

)

= 1

2

n∑
j=1

∫ t

0

(∑
k 
=j

sgn
(
Bk(s) − Bj (s)

))
dBj (s).

As a process in t , the n-summation on the right-hand side is a continuous martingale. By (2.1), it has a deterministic
quadratic variation

∫ t

0

n∑
j=1

(∑
k 
=j

sgn
(
Bk(s) − Bj (s)

))2

ds = t
n(n2 − 1)

3
.

Consequently ([17], Theorem 1.6, p. 170),

n∑
j=1

∫ t

0

(∑
k 
=j

sgn
(
Bk(s) − Bj (s)

))
dBj (s)

d= B

(
t
n(n2 − 1)

3

)
,

where B(t) is an 1-dimensional Brownian motion with B(0) = 0.
Therefore,

E exp

{
θ

∑
1≤j<k≤n

∫ t

0
δ0

(
Bj (s) − Bk(s)

)
ds

}

≥ E exp

{
θ

2
B

(
t
n(n2 − 1)

3

)}
= exp

{
θ2

8

n(n2 − 1)

3
t

}
. (3.4)

This leads to the lower bound

lim inf
t→∞

1

t
logE exp

{
θ

∑
1≤j<k≤n

∫ t

0
δ0

(
Bj (s) − Bk(s)

)
ds

}
≥ θ2

24
n
(
n2 − 1

)
. (3.5)



1494 X. Chen

We now consider the upper bound. Applying Skorokhod’s lemma ([17], Lemma 2.1, p. 222) to Equation (3.3) with

z(t) = ∣∣Bj (t) − Bk(t)
∣∣ and a(t) = 2

∫ t

0
δ0

(
Bj (s) − Bk(s)

)
ds

gives that for any 1 ≤ j < k ≤ n∫ t

0
δ0

(
Bj (s) − Bk(s)

)
ds = 1

2
sup
s≤t

∫ s

0
sgn

(
Bk(u) − Bj (u)

)
d
(
Bj (u) − Bk(u)

)
.

Set

Bj,k(t) = 1√
2

∫ t

0
sgn

(
Bk(u) − Bj (u)

)
d
(
Bj (u) − Bk(u)

)
.

Consequently,

∑
1≤j<k≤n

∫ t

0
δ0

(
Bj (s) − Bk(s)

)
ds = 1√

2

∑
1≤j<k≤n

sup
s≤t

Bj,k(s)

= 1√
2

sup
s∈[0,t]A

∑
1≤j<k≤n

Bj,k(sj,k) = 1√
2

sup
s∈[0,t]A

G(s), (3.6)

where G(s) is a multi-parameter process given as

G(s) =
∑

1≤j<k≤n

Bj,k(sj,k), s = (sj,k;1 ≤ j < k ≤ n) ∈ (
R

+)A
and we adopt the notations

A = {
(j, k);1 ≤ j < k ≤ n

}
, s = (sj,k;1 ≤ j < k ≤ n).

Notice that the quadratic variation of Bj,k(t) is∫ t

0

[
sgn

(
Bk(s) − Bj (s)

)]2 ds = t.

Consequently ([17], Theorem 1.6, p. 170), Bj,k(t) is a Brownian motion. In spite of that, we are not able to show
that {G(s); s ∈ [0, t]A} is a Gaussian field. Our strategy is parameter discretization. Let the integer m ≥ 1 be large
but fixed and let 0 = t0 < t1 < · · · < tm = t be a uniform partition. Set Πm = {1, . . . ,m}A and partition [0, t]A into
m#A small #(A)-dimensional boxes Bπ labeled by π ∈ Πm such that Bπ is a A-product of the intervals of the form
[ti−1, ti] (i = 1, . . . ,m). By (3.6)

E exp

{
θ

∑
1≤j<k≤n

∫ t

0
δ0

(
Bj (s) − Bk(s)

)
ds

}

= E exp

{
θ√
2

max
π∈Πm

sup
s∈Bπ

G(s)
}

≤
∑

π∈Πm

E exp

{
θ√
2

sup
s∈Bπ

G(s)
}
. (3.7)

Let the box Bπ be fixed and write

Bπ =
∏

(j,k)∈A
[sj,k, tj,k] = [sπ , tπ ].
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By Hölder’s inequality,

E exp

{
θ√
2

sup
s∈Bπ

G(s)
}

≤
(
E exp

{
pθ√

2
G(sπ )

})1/p(
E exp

{
qθ√

2
sup
s∈Bπ

(
G(s) − G(sπ )

)})1/q

,

where p,q > 1 are fixed conjugate numbers with p close to 1. Using Hölder’s inequality again,

E exp

{
qθ√

2
sup
s∈Bπ

(
G(s) − G(sπ )

)}

≤
∏

(j,k)∈A

(
E exp

{
qn(n − 1)θ

2
√

2
sup

s∈[sj,k,tj,k]
(
Bj,k(s) − Bj,k(sj,k)

)})2/(n(n−1))

= E exp

{
qn(n − 1)θ

2
√

2

√
t

m

∣∣B(1)
∣∣} ≤ 2 exp

{
1

16

(
qn(n − 1)θ

)2 t

m

}
.

In addition, notice that

G(sπ ) = 1√
2

∑
1≤j<k≤n

∫ sj,k

0
sgn

(
Bk(u) − Bj (u)

)
d
(
Bj (u) − Bk(u)

)

= 1√
2

n∑
j=1

∑
k 
=j

∫ sj,k

0
sgn

(
Bk(u) − Bj (u)

)
dBj (u)

= 1√
2

n∑
j=1

∑
k 
=j

∫ t

0
sgn

(
Bk(u) − Bj (u)

)
1[0,sj,k](u)dBj (u)

= 1√
2

n∑
j=1

∫ t

0

(∑
k 
=j

sgn
(
Bk(u) − Bj (u)

)
1[0,sj,k](u)

)
dBj (u).

Here we extend the definition of sj,k as sj,k = sk,j for j > k.
By Ito’s formula,

E exp

{
pθ√

2
G(sπ ) − (pθ)2

8

n∑
j=1

∫ t

0

(∑
k 
=j

sgn
(
Bk(u) − Bj (u)

)
1[0,sj,k](u)

)2

du

}
= 1.

By (2.2), for each 0 ≤ u ≤ t

n∑
j=1

(∑
k 
=j

sgn
(
Bk(u) − Bj (u)

)
1[0,sj,k](u)

)2

≤ 1

3
n
(
n2 − 1

)
.

Consequently,

n∑
j=1

∫ t

0

(∑
k 
=j

sgn
(
Bk(u) − Bj (u)

)
1[0,sj,k](u)

)2

du ≤ t
n(n2 − 1)

3
.

Thus,

E exp

{
pθ√

2
G(sπ )

}
≤ exp

{
(pθ)2

24
n
(
n2 − 1

)
t

}
.
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Summarizing our steps since (3.7),

E exp

{
θ

∑
1≤j<k≤n

∫ t

0
δ0

(
Bj (s) − Bk(s)

)
ds

}

≤ 2m(n(n−1))/2 exp

{
1

16
q
(
n(n − 1)θ

)2 t

m

}
exp

{
pθ2

24
n
(
n2 − 1

)
t

}
. (3.8)

So we have

lim sup
t→∞

1

t
logE exp

{
θ

∑
1≤j<k≤n

∫ t

0
δ0

(
Bj (s) − Bk(s)

)
ds

}

≤ q(n(n − 1)θ)2

16m
+ pθ2

24
n
(
n2 − 1

)
.

Letting m → ∞, and then p → 1+ on the right-hand side leads to the upper bound

lim sup
t→∞

1

t
logE exp

{
θ

∑
1≤j<k≤n

∫ t

0
δ0

(
Bj (s) − Bk(s)

)
ds

}
≤ θ2

24
n
(
n2 − 1

)
. (3.9)

Finally, (3.2) follows from (3.5) and (3.9).

Remark 3.1. A slight modification of the above argument also leads to an alternative proof of (1.6), which is equivalent
to

lim
n→∞n−3 logE exp

{
θ

∑
1≤j<k≤n

∫ t

0
δ0

(
Bj (s) − Bk(s)

)
ds

}
= θ2

24
t (θ, t > 0) (3.10)

under the initial condition (1.2). Indeed, the lower bound for (3.10) follows from (3.4). As for the upper bound, the
only thing we need to revise in the approximation (3.8) is to allow m to grow with n in a proper rate. An easy choice
is to let m = n2.

4. Proof of Theorem 1.2

In view of (3.2), all we need is to show that

lim
t→∞

1

t
logE exp

{
θ

∑
1≤j<k≤n

∫ t

0
δ0

(
Bj (s) − Bk(s)

)
ds

}
= En(θ). (4.1)

This claim brings no surprise as it is a typical consequence of the Feynman–Kac’s theory on the Markovian semi-
group. The only technical obstacle is the singularity of Dirac function. For this reason we first replace δ0(·) by a nice
function. More specifically, by Theorem 4.1.6, p. 99, [5]

lim
t→∞

1

t
logE exp

{
θ

∑
1≤j<k≤n

∫ t

0
pε

(
Bj (s) − Bk(s)

)
ds

}

= sup
g∈Fn

{
θ

∑
1≤j<k≤n

∫
Rn

pε(xj − xk)g
2(x)dx − 1

2

∫
Rn

∣∣∇g(x)
∣∣2 dx

}
(4.2)

for every ε > 0, where pε(·) is the density of B(ε), and x = (x1, . . . , xn) ∈R
d .
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By Fourier inversion

∑
1≤j<k≤n

∫ t

0
pε

(
Bj (s) − Bk(s)

)
ds

= 1

2π

∫ ∞

−∞
exp

{
−ε

2
|ξ |2

}[∫ t

0

( ∑
1≤j<k≤n

exp
{
iξ

(
Bk(s) − Bj (s)

)})
ds

]
dξ.

Hence, for any integer m ≥ 1,

E

[ ∑
1≤j<k≤n

∫ t

0
pε

(
Bj (s) − Bk(s)

)
ds

]m

= 1

(2π)m

∫
Rm

∫
[0,t]m

ds1ξ1 · · · dsm dξm exp

{
−ε

2

m∑
l=1

|ξl |2
}

×
(
E

m∏
l=1

∑
1≤j<k≤n

exp
{
iξl

(
Bk(s) − Bj (s)

)})

≤ 1

(2π)m

∫
Rm

∫
[0,t]m

ds1ξ1 · · · dsm dξm

(
E

m∏
l=1

∑
1≤j<k≤n

exp
{
iξl

(
Bk(s) − Bj (s)

)})

= E

[ ∑
1≤j<k≤n

∫ t

0
δ0

(
Bj (s) − Bk(s)

)
ds

]m

,

where the inequality follows from the fact that

E

m∏
l=1

∑
1≤j<k≤n

exp
{
iξl

(
Bk(s) − Bj (s)

)}
> 0.

By Taylor’s expansion, we have that

E exp

{
θ

∑
1≤j<k≤n

∫ t

0
pε

(
Bj (s) − Bk(s)

)
ds

}

≤ E exp

{
θ

∑
1≤j<k≤n

∫ t

0
δ0

(
Bj (s) − Bk(s)

)
ds

}
. (4.3)

In view of (4.2), therefore,

lim inf
t→∞

1

t
logE exp

{
θ

∑
1≤j<k≤n

∫ t

0
δ0

(
Bj (s) − Bk(s)

)
ds

}

≥ sup
g∈Fn

{
θ

∑
1≤j<k≤n

∫
Rn

pε(xj − xk)g
2(x)dx − 1

2

∫
Rn

∣∣∇g(x)
∣∣2 dx

}
.

Letting ε → 0+ on the right-hand side leads to the lower bound

lim inf
t→∞

1

t
logE exp

{
θ

∑
1≤j<k≤n

∫ t

0
δ0

(
Bj (s) − Bk(s)

)
ds

}
≥ En(θ). (4.4)
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To establish the upper bound we first claim that for any θ > 0

lim sup
ε→0+

lim sup
t→∞

1

t
logE exp

{
θ

∑
1≤j<k≤n

∫ t

0
(δ0 − pε)

(
Bj (s) − Bk(s)

)
ds

}
≤ 0. (4.5)

Indeed, for any t1, t2 > 0, by Markov property,

E exp

{
θ

∑
1≤j<k≤n

∫ t1+t2

0
(δ0 − pε)

(
Bj (s) − Bk(s)

)
ds

}

≤ E exp

{
θ

∑
1≤j<k≤n

∫ t1

0
(δ0 − pε)

(
Bj (s) − Bk(s)

)
ds

}

× sup
xj,k

E exp

{
θ

∑
1≤j<k≤n

∫ t2

0
(δ0 − pε)

(
xj,k + Bj (s) − Bk(s)

)
ds

}
.

Similar as (4.3), one can prove that

E exp

{
θ

∑
1≤j<k≤n

∫ t2

0
(δ0 − pε)

(
xj,k + Bj (s) − Bk(s)

)
ds

}

≤ E exp

{
θ

∑
1≤j<k≤n

∫ t2

0
(δ0 − pε)

(
Bj (s) − Bk(s)

)
ds

}

for any xj,k ∈R (1 ≤ j, k ≤ n). Therefore, we conclude that

E exp

{
θ

∑
1≤j<k≤n

∫ t1+t2

0
(δ0 − pε)

(
Bj (s) − Bk(s)

)
ds

}

≤ E exp

{
θ

∑
1≤j<k≤n

∫ t1

0
(δ0 − pε)

(
Bj (s) − Bk(s)

)
ds

}

×E exp

{
θ

∑
1≤j<k≤n

∫ t2

0
(δ0 − pε)

(
Bj (s) − Bk(s)

)
ds

}
.

This leads to the following inequality:

E exp

{
θ

∑
1≤j<k≤n

∫ t

0
(δ0 − pε)

(
Bj (s) − Bk(s)

)
ds

}

≤
(
E exp

{
θ

∑
1≤j<k≤n

∫ 1

0
(δ0 − pε)

(
Bj (s) − Bk(s)

)
ds

})t

for any t > 1. Consequently, the claim (4.5) follows from the obvious fact that

lim
ε→0+ E exp

{
θ

∑
1≤j<k≤n

∫ 1

0
(δ0 − pε)

(
Bj (s) − Bk(s)

)
ds

}
= 1.

Finally, the requested upper bound follows from (4.2), (4.5) and a standard procedure of the exponential approxi-
mation by Hölder’s inequality.
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