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A CONSISTENCY ESTIMATE FOR KAC’S MODEL OF ELASTIC
COLLISIONS IN A DILUTE GAS

BY JAMES NORRIS1

University of Cambridge

An explicit estimate is derived for Kac’s mean-field model of colliding
hard spheres, which compares, in a Wasserstein distance, the empirical ve-
locity distributions for two versions of the model based on different numbers
of particles. For suitable initial data, with high probability, the two processes
agree to within a tolerance of order N−1/d , where N is the smaller particle
number and d is the dimension, provided that d ≥ 3. From this estimate we
can deduce that the spatially homogeneous Boltzmann equation is well posed
in a class of measure-valued processes and provides a good approximation
to the Kac process when the number of particles is large. We also prove in
an appendix a basic lemma on the total variation of time-integrals of time-
dependent signed measures.

1. Kac process. Kac [8] proposed in 1954 a random process to model the
dynamics of a dilute gas. The process models the velocities of N particles in Rd

as they evolve under elastic collisions. The case d = 3 is of main interest, but we
will allow any d ≥ 2. Since no account is taken of particle positions, any physical
justification for the model relies on assumptions of spatial homogeneity and rapid
mixing. It is thus impossible to give a physical meaning to the number of particles
N . Yet, on the mathematical side, we have to make a choice. Hence it is of interest
to show consistency for sufficiently large values of N .

Kac’s process depends on a choice of collision kernel B . This is a finite mea-
surable kernel B(v, dσ) on Rd × Sd−1 which is chosen to model physical char-
acteristics of the gas. The collision kernel specifies the rate for collisions of pairs
of particles with incoming relative velocity v and outgoing direction of separation
σ . Since collisions are assumed to conserve momentum and energy, for a pair of
particles with pre-collision velocities v and v∗, and hence relative velocity v − v∗,
the post-collision velocities v′ = v′(v, v∗, σ ) and v′∗ = v′∗(v, v∗, σ ) are determined
by the direction of separation through

v′ + v′∗ = v + v∗, v′ − v′∗ = |v − v∗|σ.

We will often write u for the direction of approach, given by u = (v−v∗)/|v−v∗|.
We assume throughout that, for all u ∈ Sd−1, B(u, ·) is a probability measure,
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supported on Sd−1 \{−u,u}, and that the following standard scaling and symmetry
properties hold. For λ ∈ [0,∞) and u ∈ Sd−1, and for any isometry R of Sd−1, we
have

B(λu, ·) = λB(u, ·), B(Ru, ·) = B(u, ·) ◦ R−1.(1)

Our main results require further that the map u �→ B(u, ·) is Lipschitz on Sd−1 for
the total variation norm on measures on Sd−1. Then there is a constant κ ∈ [1,∞)

such that, for all v, v′ ∈ Rd ,∥∥B(v, ·) − B
(
v′, ·)∥∥ ≤ κ

∣∣v − v′∣∣.(2)

Here and throughout, we denote the total variation norm by ‖ · ‖. The Boltzmann
sphere S is the set of probability measures μ on Rd such that2

〈v,μ〉 =
∫
Rd

vμ(dv) = 0,
〈|v|2,μ〉 = ∫

Rd
|v|2μ(dv) = 1.

For N ∈ N, write SN for the subset of S of normalized empirical measures of the
form N−1 ∑N

i=1 δvi
. The Kac process with collision kernel B and particle number

N is the Markov chain in SN with generator G given on bounded measurable
functions F by

GF(μ) = N

∫
Rd×Rd×Sd−1

{
F

(
μv,v∗,σ ) − F(μ)

}
μ(dv)μ(dv∗)B(v − v∗, dσ ),

where

μv,v∗,σ = μ + N−1{δv′ + δv′∗ − δv − δv∗}.
The choice of state-space SN is possible because in each collision the number of
particles, the momentum v + v∗ and the energy |v|2 + |v∗|2 are conserved. There
is no Kac process on S1 because this set is empty. For N ≥ 2, the transition rates
of the Kac process are bounded by 2N on SN . Hence, by the elementary theory
of Markov chains, given any initial state μN

0 ∈ SN , there exists a Kac process
(μN

t )t≥0 in SN starting from μN
0 , the law of this process is unique, and almost

surely it takes only finitely many values in any compact time interval.
It is of special interest to model particles colliding as hard spheres. Under plau-

sible physical assumptions, this leads, by a well-known calculation, to the choice
of kernel B(v, dσ) ∝ |v| sin3−d(θ/2) dσ , where θ ∈ [0, π] is given by cos θ = u ·σ
and dσ is the uniform distribution on Sd−1. It is straightforward to check that (1)
and (2) hold in this case for all d ≥ 2. Indeed, for d = 3, we can take κ = 1, and the
dynamics have a particularly simple description: for every pair of particles (v, v∗),
at rate |v − v∗|/N , consider the sphere with poles at v and v∗; choose randomly a
new axis for the sphere, label the poles v′ and v′∗ and replace v and v∗ by v′ and v′∗.

2Here, on the left-hand side, and where convenient below, we use v to denote the identity function

on Rd .
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Consider the set F of functions f on Rd such that∣∣f̂ (v)
∣∣ ≤ 1,

∣∣f̂ (v) − f̂
(
v′)∣∣ ≤ ∣∣v − v′∣∣

for all v, v′, where3

f̂ (v) = f (v)/
(
1 + |v|2)

.

Define a distance function W on S by

W(μ,ν) = sup
f ∈F

〈f,μ − ν〉.

Then W makes S into a complete separable metric space. This is shown in Sec-
tion 9, along with the convergence of a natural approximation scheme by random
samples in (S,W). Our first main result is the following consistency estimate for
Kac processes with different numbers of particles. We make no assumption on the
joint law of the processes. They could, for example, be independent.

THEOREM 1.1. Assume that the collision kernel B satisfies conditions (1)
and (2). Let ε ∈ (0,1], λ ∈ [1,∞), p ∈ (2,∞) and T ∈ [0,∞). Then there exist
constants α(d,p) > 0 and C(B,d, ε, λ,p,T ) < ∞ with the following property.
Let N,N ′ ∈ N with N ≤ N ′, and let (μN

t )t≥0 and (μN ′
t )t≥0 be Kac processes in

SN and SN ′ such that 〈|v|p,μN
0

〉 ≤ λ,
〈|v|p,μN ′

0
〉 ≤ λ.(3)

Then, with probability exceeding 1 − ε, for all t ∈ [0, T ], we have

W
(
μN

t ,μN ′
t

) ≤ C
(
W

(
μN

0 ,μN ′
0

) + N−α)
.

We have not found a way to prove a similar estimate for p = 2. This is consistent
with the current theory for the spatially homogeneous Boltzmann equation where
also, for p = 2, there is no quantitative stability estimate. We can improve the rate
of convergence at the cost of a stronger moment condition.

THEOREM 1.2. Assume further that (μN
t )t≥0 and (μN ′

t )t≥0 are adapted as
Markov processes to a common filtration. For p > 8 and d ≥ 3, we can take
α = 1/d in Theorem 1.1. Also, for p > 8 and d = 2, we can replace N−α in Theo-
rem 1.1 by N−1/2 logN .

The theorems could be considered as providing a measure of accuracy for a
Monte Carlo scheme, using say N computational particles, for the evolution of a
Kac process having a much larger number of particles N ′.

3The notation is chosen as a reminder of the shape of the weight function 1/(1 + |v|2).
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The rates of convergence in Theorem 1.2 are known to be optimal for the con-
vergence of sample empirical distributions in Wasserstein distance. Indeed, there
is no discrete approximation scheme for a smooth measure which achieves a rate
better than N−1/d . So it seems unlikely that the rates in can be improved in this
context. Our need for the condition p > 8 can be traced to the stochastic convo-
lution estimates in Section 7. We show in Section 9 that, for laws in S having a
finite pth moment, their sample empirical distributions converge in the metric W

with optimal rates if p > 3d/(d − 1), but this can fail if p < 3d/(d − 1). This
makes it plausible that some moment condition beyond p > 2 is necessary for the
conclusions of Theorem 1.2, but we do not know whether this is so.

By combining Theorem 1.2 with Proposition 3.1 below, we obtain the following
estimate.

THEOREM 1.3. For d ≥ 3, for all ε ∈ (0,1] and all τ, T ∈ (0,∞) with τ ≤ T ,
there is a constant C(B,d, ε, τ, T ) < ∞ such that, for all N,N ′ ∈ N with N ≤
N ′ and any Kac processes (μN

t )t≥0 in SN and (μN ′
t )t≥0 in SN ′ , with probability

exceeding 1 − ε, for all t ∈ [τ, T ], we have

W
(
μN

t ,μN ′
t

) ≤ C
(
W

(
μN

τ ,μN ′
τ

) + N−1/d)
.

Note that τ can be arbitrarily small, and we obtain here the optimal rate N−1/d

without the supplementary moment condition (3). Thus it is only for the initial
evolution of the processes that consistency may rely on a such a moment condition.

We have avoided so far any mention of the Boltzmann equation, which clas-
sically is the starting point for kinetic theory. We shall show in our other main
results, Theorem 10.1 and Corollaries 10.2 and 10.3, that the consistency estimate
leads quickly to existence and uniqueness of measure solutions for the spatially
homogeneous Boltzmann equation, and convergence to such solutions of the Kac
process in the large N limit. Indeed, we obtain a more precise estimate of this
convergence than was previously known. This was the original motivation for our
work.

In the next two sections, we identify martingales of the Kac process, and we
derive some moment estimates. The difference of two Kac processes, with the
same collision kernel but different numbers of particles, satisfies a noisy version of
a linearized Boltzmann equation. In Section 4 we develop a representation formula
for solutions of this equation in terms of an auxiliary branching process, which we
call the linearized Kac process. We use coupling arguments for this process to
develop some estimates. The proof of Theorem 1.1 is given in Section 5.

We develop in Section 6 some further continuity estimates for the linearized Kac
process, and in Section 7 some maximal inequalities for stochastic convolutions
appearing in the representation formula. These are then used in Section 8 to prove
Theorem 1.2. The relation of our estimates to prior work on the Kac process and
the spatially homogeneous Boltzmann equation is discussed in Section 10. The
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final section is a self-contained appendix, proving a basic result on the evolution
of signed measures, which is used in Sections 4 and 10.

2. Martingales of the Kac process. We compute the martingale decomposi-
tion for linear functions of the Kac process (μN

t )t≥0. Set E = Rd ×Rd × Sd−1 ×
(0,∞). Denote by m the un-normalized empirical measure on E of the set of all
random vectors (V ,V∗,�,T ) such that there is a collision at time T in the particle
system (μN

t )t≥0 of a velocity pair (V ,V∗) with direction of separation �. Denote
by m̄ the random measure on E given by

m̄(dv, dv∗, dσ, dt) = NμN
t−(dv)μN

t−(dv∗)B(v − v∗, dσ ) dt.

Define a random signed measure MN on (0,∞) ×Rd by specifying, for bounded
measurable functions f on (0,∞) ×Rd , the integral4

M
N,f
t =

∫ t

0

〈
fs, dMN

s

〉 = ∫
(0,t]×Rd

f (s, v)MN(ds, dv)

= 1

N

∫
E

{
fs

(
v′) + fs

(
v′∗

) − fs(v) − fs(v∗)
}

(4)

× 1(0,t](s)(m − m̄)(dv, dv∗, dσ, ds).

Then, by standard results for Markov chains, the process (M
N,f
t )t≥0 is a martin-

gale. We use the same notation also in the case where f has no dependence on the
time parameter. Define for finite measures μ,ν on Rd a signed measure Q(μ,ν)

on Rd by specifying, for bounded measurable functions f of compact support in
Rd , the integral〈

f,Q(μ,ν)
〉 = ∫

Rd×Rd×Sd−1

{
f

(
v′) + f

(
v′∗

) − f (v) − f (v∗)
}

(5) × μ(dv)ν(dv∗)B(v − v∗, dσ ).

Then the martingale decomposition for (〈f,μN
t 〉)t≥0 is given by

〈
f,μN

t

〉 = 〈
f,μN

0
〉 + M

N,f
t +

∫ t

0

〈
f,Q

(
μN

s ,μN
s

)〉
ds.(6)

We note for later use the following estimates. First, by Doob’s L2-inequality,5

E
(
sup
s≤t

∣∣MN,f
s

∣∣2)

≤ 4

N2E

∫
E

{
fs

(
v′) + fs

(
v′∗

) − fs(v) − fs(v∗)
}21(0,t](s)m̄(dv, dv∗, dσ, ds)(7)

≤ 128‖f ‖∞t/N.

4We will sometimes write fs for f (s, ·).
5For the same calculation in a general setting, see, for example, [2], Proposition 8.7.
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Next, for the total variation measure |MN | of MN , we have

E

∫
(0,t]×Rd

(
1 + |v|2)∣∣MN(ds, dv)

∣∣
≤ E

∫
E

(
4 + 2|v|2 + 2|v∗|2)

1(0,t](s)(m + m̄)(dv, dv∗, dσ, ds)

(8)

= E

∫ t

0

∫
Rd×Rd

(
8 + 4|v|2 + 4|v∗|2)|v − v∗|μN

s (dv)μN
s (dv∗) ds

≤ 24E
∫ t

0

〈
1 + |v|3,μN

s

〉
ds.

We used |v − v∗| ≤ |v| + |v∗| and the fact that μN
s ∈ S for the second inequality.

Finally, for any interval (s, s′] during which (μN
t )t≥0 does not jump, there is no

contribution to the left-hand side of (8) from m, so the same calculation yields the
following pathwise estimate:

∫
(s,s′]×Rd

(
1 + |v|2)∣∣MN(dr, dv)

∣∣ ≤ 12
∫ s′

s

〈
1 + |v|3,μN

r

〉
dr.(9)

3. Moment estimates for the Kac process. We derive some moment in-
equalities for the Kac process, which we shall use later. The basic arguments
are standard for the Boltzmann equation and are applied to the Kac process
in [13], Lemma 5.4. We have quantified the moment-improving property and
added some maximal inequalities. We begin with the Povzner inequality. For all
p ∈ (2,∞), there is a constant β(B,p) > 0 such that, for all v, v∗ ∈ Rd and for
u = (v − v∗)/|v − v∗|,∫

Sd−1

{∣∣v′∣∣p + ∣∣v′∗
∣∣p − |v|p − |v∗|p}

B(u, dσ)

(10)
≤ −β

(|v|p + |v∗|p) + β−1(|v||v∗|p−1 + |v|p−1|v∗|).
Here is a proof for the class of collision kernels we consider. Note first that

∣∣v′∣∣p + ∣∣v′∗
∣∣p ≤ (|v|2 + |v∗|2)p/2

(11)
≤ |v|p + |v∗|p + C(p)

(|v||v∗|p−1 + |v|p−1|v∗|).
It suffices by symmetry to consider the case |v∗| ≤ |v|. Set y = |v − v∗|(u + σ)/2,
then v′ = v∗ +y and |y|2 = |v −v∗|2t , where t = (1+u ·σ)/2. Note that t ∈ (0,1)

for B(u, ·)-almost all σ . We use the inequalities |v′| ≤ |y| + |v∗| and |v − v∗| ≤
|v| + |v∗| to see that, for all δ ∈ (0,1],∣∣v′∣∣2 ≤ (1 + δ)|y|2 + (

1 + δ−1)|v∗|2 ≤ (1 + δ)2t |v|2 + 2
(
1 + δ−1)|v∗|2.



A CONSISTENCY ESTIMATE FOR KAC’S MODEL 1035

From this inequality and a similar one for |v′∗|2, we deduce that, for some C(p) <

∞, ∣∣v′∣∣p ≤ (1 + δ)p+1tp/2|v|p + C(p)δ−1|v∗|p,∣∣v′∗
∣∣p ≤ (1 + δ)p+1(1 − t)p/2|v|p + C(p)δ−1|v∗|p.

Then ∣∣v′∣∣p + ∣∣v′∗
∣∣p − |v|p − |v∗|p

(12)
≤ −β(δ, t)

(|v|p + |v∗|p) + C(p)δ−1(|v||v∗|p−1 + |v|p−1|v∗|),
where β(δ, t) = (1 − (1 + δ)p+1(tp/2 + (1 − t)p/2))+/2. Set β(δ) = (δ/C(p)) ∧∫
Sd−1 β(δ, t)B(u, dσ). Then we obtain (10) for u with β = β(δ) by integrat-

ing (12). But β(δ) does not depend on u by the symmetry condition (1) and
β(δ) > 0 for all sufficiently small δ, so we are done.

PROPOSITION 3.1. Let (μN
t )t≥0 be a Kac process with collision kernel B

satisfying (1). Let p ∈ [2,∞) and q ∈ (2,∞) with p ≤ q . There exists a constant
C(B,p,q) < ∞ such that, for all t ≥ 0, we have

E
(〈|v|q,μN

t

〉) ≤ C
(
1 + tp−q)〈|v|p,μN

0
〉
.(13)

Moreover, there is a constant C(B,q) < ∞ such that, for all t ≥ 0,

E
(
sup
s≤t

〈|v|q,μN
s

〉) ≤ (1 + Ct)
〈|v|q,μN

0
〉
,(14)

and there is a constant C(B,p,q) < ∞ such that, for all t ≥ 0,

E
(
sup
s≤t

〈
1 + |v|p,

∣∣μN
s − μN

0

∣∣〉) ≤ C
(
t + tq−p)〈|v|q,μN

0
〉
.(15)

PROOF. By the Povzner inequality, there are constants β(B,q) > 0 and
C(B,q) < ∞ such that, for all v, v∗ ∈ Rd ,∫

Sd−1

{∣∣v′∣∣q + ∣∣v′∗
∣∣q − |v|q − |v∗|q}

B(v − v∗, dσ )

≤ −β|v − v∗|(|v|q + |v∗|q) + β−1|v − v∗|(|v||v∗|q−1 + |v|q−1|v∗|)
≤ −β

(|v|q+1 + |v∗|q+1) + C
(|v|q(

1 + |v∗|) + (
1 + |v|)|v∗|q)

.

Set fq(t) = E(〈|v|q,μN
t 〉) and fq,p(t) = fq(t)/f

∗
p , where f ∗

p = supt≥0 fp(t).
Since 〈|v|q,μ〉 ≤ Nq/2 for all μ ∈ S , we have fq(t) ≤ Nq/2 < ∞ for all t . The
process (〈|v|q,μN

t 〉)t≥0 makes jumps of size {|v′|q + |v′∗|q − |v|q − |v∗|q}/N at
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rate NμN
t−(dv)μN

t−(dv∗)B(v − v∗, dσ ) dt . Hence

fq(t) = fq(0)

+E

∫ t

0

∫ {∣∣v′∣∣q + ∣∣v′∗
∣∣q − |v|q − |v∗|q}

μN
s (dv)μN

s (dv∗)B(v − v∗, dσ ) ds

≤ fq(0) − 2β

∫ t

0
fq+1(s) ds + 2C

∫ t

0
fq(s) ds.

By Hölder’s inequality, we have fq(t)q−p+1 ≤ fq+1(t)
q−pfp(t), so we deduce

that

fq,p(t) ≤ fq,p(0) − 2β

∫ t

0

(
fq,p(s)

)1+1/(q−p)
ds + 2C

∫ t

0
fq,p(s) ds

which implies by standard arguments that, for some C(B,p,q) < ∞ and all t ≥ 0,
we have

fq,p(t) ≤ C
(
1 + fq,p(0) ∧ tp−q)

.(16)

Now f ∗
2 = 1, so by taking p = 2, we obtain (13), for the cases p = 2 and p = q .

In particular, this shows that f ∗
p ≤ C〈|v|p,μN

0 〉 for all p, so (16) implies (13) also
for p ∈ (2, q).

Consider the process (At )t≥0 starting from 0 which jumps by {|v||v∗|q−1 +
|v|q−1|v∗|}/N when (〈|v|q,μN

t 〉)t≥0 jumps by {|v′|q + |v′∗|q − |v|q − |v∗|q}/N .
Then

E(At ) = E

∫ t

0

∫
Rd×Rd

{|v||v∗|q−1 + |v|q−1|v∗|}|v − v∗|μN
s (dv)μN

s (dv∗) ds

≤ 4
∫ t

0
fq(s) ds.

Now sups≤t 〈|v|q,μN
s 〉 ≤ 〈|v|q,μN

0 〉+C(q)At for all t , where C(q) is the constant
from (11). Hence we obtain (14) by taking expectations and using the case p = q

of (13) to estimate fq .
The process (〈1 + |v|p, |μN

t − μN
0 |〉)t≥0 jumps by at most {4 + |v′|p + |v′∗|p +

|v|p + |v∗|p}/N at each jump of (μN
t )t≥0. Consider the process (Bt )t≥0 start-

ing from 0 which jumps by {1 + |v|p + |v∗|p}/N at the same times. Then
〈1 + |v|p, |μN

s − μN
0 |〉 ≤ 2pBt whenever s ≤ t and

E(Bt ) = E

∫ t

0

∫
Rd×Rd

{
1 + |v|p + |v∗|p}|v − v∗|μN

s (dv)μN
s (dv∗) ds

≤ 6
∫ t

0
fp+1(s) ds.

So (15) follows from (13). �
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4. Linearized Kac process and representation formula. In this section we
introduce a branching process of signed particles in Rd which may be considered
as a linearization of the Kac process. A particular case of this process allows us
to write a representation formula for the difference of two Kac processes (μN

t )t≥0

and (μN ′
t )t≥0. We use coupling arguments to obtain continuity estimates for the

branching process, which are later used to control μN
t − μN ′

t . The representation
formula rests only on the fact that (μN

t − μN ′
t )t≥0 solves the linear equation (25)

below. It seems possible that the same conclusions can be reached by a direct
analysis of this equation, but we have not done this.

The branching process will have “positive” and “negative” particles, making
the following general notation convenient. Given a set V , we denote by V ∗ the
signed space V × {−1,1} = V − ∪ V +, by π the projection V ∗ → V and by π±
the bijections V ± → V . Note that ∗ does not signify the dual space. From now on,
we set V =Rd .

The data for our branching process are an initial time s ∈ [0,∞) and an initial
type v ∈ V ∗, together with a process (ρt )t≥0 of measures on Rd such that, for all t ,

〈1, ρt 〉 ≤ 1,
〈|v|2, ρt

〉 ≤ 1.(17)

The case ρt = (μN
t + μN ′

t )/2 will be of main interest later. Consider the
continuous-time branching particle system6 with types in V ∗ where each parti-
cle of type v in V ±, at rate 2ρt (dv∗)B(v − v∗, dσ ) dt for v∗ ∈ Rd and σ ∈ Sd−1,
dies and is replaced by three particles v′(v, v∗, σ ) and v′∗(v, v∗, σ ) in V ± and
v∗ in V ∓. More properly, the rate is 2ρt (dv∗)B(π(v) − v∗, dσ ) dt and the off-
spring are (v′(π(v), v∗, σ ),1), (v′∗(π(v), v∗, σ ),1) and (v∗,−1) when v ∈ V +,
and (v′(π(v), v∗, σ ),−1), (v′∗(π(v), v∗, σ ),−1) and (v∗,1) when v ∈ V −. We
assume throughout that, for all t ≥ 0,∫ t

0

〈|v|3, ρs

〉
ds < ∞.(18)

We will show that (18) ensures there is no explosion; that is, the time Tn of the
nth branching event tends to ∞ almost surely. So the process is well defined for
all time by the specification of its branching rates, and consists at all times t ≥ s

6The dynamics of the branching process can be motivated as follows. Fix a large integer N , and
suppose that (Nρt )t≥0 evolves as an unnormalized Kac process on N particles. Consider the per-
turbed process obtained by introducing one additional particle of velocity v at time s, where the
pairwise collision rules are unchanged and where transitions are coupled as far as possible with the
original. The discrepancy between the original and the perturbed systems will grow over time ap-
proximately as the branching process (�∗

t )t≥s , a “negative” particle in V − corresponding to one
present in the original system but removed by collision in the perturbed system. Formally, the ap-
proximation becomes exact as N → ∞. We do not rely on this. The construction of (�∗

t )t≥s does
not require (ρt )t≥0 to be a Kac process.
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of a finite number of particles. Write (�∗
t )t≥s for the associated process of un-

normalized empirical measures on V ∗. We call this process the linearized Kac
process in environment (ρt )t≥0 starting from v at time s.

Set �t = �∗
t ◦ π−1. Then (�t)t≥s is itself the empirical process of a branching

process in V , in which we forget the book-keeping exercise of giving a sign to each
particle. Write E(s,v) for the expectation over (�∗

t )t≥s to recall that �∗
s = δv and

that this is not the full expectation in the case that (ρt )t≥0 is itself random. Given
an initial type v ∈ Rd , without a sign, we will by default start the process (�∗

t )t≥s

with the positive type (v,1).

PROPOSITION 4.1. There is almost surely no explosion in the branching
construction described above. Moreover, for all p ∈ [2,∞), there is a constant
c(p) < ∞ such that, for all v0 ∈ Rd and all t ≥ s, we have

E(s,v0)

〈
1 + |v|p,�t

〉 ≤ (
1 + |v0|p)

exp
{
c(p)

∫ t

s

〈
1 + |v|p+1, ρr

〉
dr

}
.

In particular we can take c(2) = 8.

We will reserve the notation c(p) for this constant throughout. We will also use
throughout the notation

�̃t = �+
t − �−

t , �±
t = �∗

t ◦ π−1± .

Thus �+
t and �−

t are random measures on Rd , which are the empirical distribu-
tions of positive and negative particles, and �̃t is a random signed measure on Rd .
Note that �t = �+

t + �−
t . By Proposition 4.1, we can define, for any s, t ≥ 0 with

s ≤ t , a linear map Est on the set of measurable functions of quadratic growth on
Rd by

Estf (v) = E(s,v)〈f, �̃t 〉.
Note that, by the Markov property, we have EstEtu = Esu. We will write fst for
Estf and sometimes just fs when the value of t is understood. We will use the
same notation for functions f of polynomial growth, whenever (ρt )t≥0 has suf-
ficient moments for this to make sense using Proposition 4.1. We base our main
argument on the following representation formula, which is proved at the end of
this section.

PROPOSITION 4.2. In the case where ρt = (μN
t + μN ′

t )/2 for all t , we have

〈
f,μN

t − μN ′
t

〉 = 〈
f0t ,μ

N
0 − μN ′

0
〉 + ∫ t

0

〈
fst , dMN

s

〉 − ∫ t

0

〈
fst , dMN ′

s

〉
.

We will use the following two estimates expressing continuity of the linearized
Kac process in its initial data. Write ‖f ‖ for the smallest constant such that
|f̂ (v)| ≤ ‖f ‖ and |f̂ (v) − f̂ (v′)| ≤ ‖f ‖|v − v′| for all v, v′ ∈ Rd . Thus f ∈ F
if and only if ‖f ‖ ≤ 1.
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PROPOSITION 4.3. Assume condition (2). Then

‖Estf ‖ ≤ 3
(
1 + 6κ(t − s)

)
exp

{∫ t

s
8
〈
1 + |v|3, ρr

〉
dr

}
‖f ‖.

PROPOSITION 4.4. For all v ∈ Rd and all s, s′ ∈ [0, t] with s ≤ s ′, we have∣∣Estf (v) − Es′t f (v)
∣∣

≤ 5
(
1 + |v|3)

exp
{∫ t

s
8
〈
1 + |v|3, ρr

〉
dr

}
‖f ‖

∫ s′

s

〈
1 + |v|3, ρr

〉
dr.

PROOF OF PROPOSITION 4.1. Consider first the case p = 2 and s = 0. Fix
v0 ∈ Rd , and consider the branching particle system (�t)t<ζ starting from δv0

at time 0 and run up to explosion ζ = supn Tn. Note that, at a branching event
with colliding particle velocity v∗, the total number of particles in the system
increases by 2, and the total kinetic energy increases by |v′|2 + |v′∗|2 + |v∗|2 −
|v|2 = 2|v∗|2. Hence 〈1 + |v|2,�t 〉 makes jumps of size 2(1 + |v∗|2) at rate
2|v − v∗|�t−(dv)ρt (dv∗) dt . Set Sn = inf{t < ζ : 〈1 + |v|2,�t 〉 ≥ n}, and set

g(t) = E(0,v0)

〈
1 + |v|2,�t∧Sn

〉
.

Note that Sn ≤ Tn. We use the estimate(
1 + |v∗|2)|v − v∗| ≤ 2

(
1 + |v|2)(

1 + |v∗|3)
to see that∫

Rd×Rd

(
1 + |v∗|2)|v − v∗|�t(dv)ρt (dv∗) ≤ 2m3(t)

〈
1 + |v|2,�t

〉
,

where m3(t) = 〈1 + |v|3, ρt 〉. Hence, by optional stopping, the process

〈
1 + |v|2,�t∧Sn

〉 − ∫ t∧Sn

0
8m3(s)

〈
1 + |v|2,�s

〉
ds

is a supermartingale. On taking expectations, we obtain

g(t) ≤ 1 + |v0|2 + E(0,v0)

∫ t∧Sn

0
8m3(s)

〈
1 + |v|2,�s

〉
ds

≤ 1 + |v0|2 +
∫ t

0
8m3(s)g(s) ds

so g(t) < ∞ and then

g(t) ≤ (
1 + |v0|2)

exp
{∫ t

0
8m3(s) ds

}
.

The right-hand side does not depend on n, so we must have Sn → ∞ almost surely
as n → ∞. Hence Tn → ∞ almost surely, and the claimed estimate follows by
monotone convergence.
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For p ∈ (2,∞), there is a constant C(p) < ∞ such that∣∣v′∣∣p + ∣∣v′∗
∣∣p + |v∗|p − |v|p ≤ (|v|2 + |v∗|2)p/2 + |v∗|p − |v|p

(19)
≤ C(p)

(|v|p−2|v∗|2 + |v∗|p)
and then, for another constant c(p) < ∞,

2|v − v∗|(2 + ∣∣v′∣∣p + ∣∣v′∗
∣∣p + |v∗|p − |v|p) ≤ c(p)

(
1 + |v|p)(

1 + |v∗|p+1)
.(20)

The argument used for p = 2 then gives the desired estimate in the case s = 0. The
argument is the same for s ≥ 0. �

We now describe a coupling of linearized Kac processes starting from different
initial velocities, constructed to branch at the same times and with the same sam-
pled velocities v∗ and angles σ , as far as possible. To simplify, we begin without
the signs. Define sets

V0 = Rd ×Rd, V1 = Rd × {1}, V2 = Rd × {2}(21)

which we treat as disjoint. Consider the continuous-time branching process in
V0 ∪ V1 ∪ V2 with the following branching mechanism. For each particle (of type)
(v1, v2) ∈ V0, there are three possible transitions. First, at rate 2B(v1 − v∗, dσ ) ∧
B(v2 − v∗, dσ )ρt (dv∗) dt for v∗ ∈ Rd and σ ∈ Sd−1, the particle (v1, v2) dies and
is replaced by three particles (v∗, v∗), (v′

1, v
′
2) and (v′

1∗, v′
2∗) in V0. Here we are

writing v′
k for v′(vk, v∗, σ ) and v′

k∗ for v′∗(vk, v∗, σ ) for short. Call this a coupled
transition. Second, at rate 2(B(v1 − v∗, dσ ) − B(v2 − v∗, dσ ))+ρt (dv∗) dt , the
particle (v1, v2) dies and is replaced by four particles v∗, v′

1 and v′
1∗ in V1 and v2

in V2. Third, at rate 2(B(v1 − v∗, dσ ) − B(v2 − v∗, dσ ))−ρt (dv∗) dt , the particle
(v1, v2) dies and is replaced by v∗, v′

2 and v′
2∗ in V2 and v1 in V1. The second and

third will be called decoupling transitions. Finally, for k = 1,2, each particle vk in
Vk , at rate 2B(vk − v∗, dσ )ρt (dv∗) dt , dies and is replaced by three particles, v∗,
v′
k and v′

k∗ in Vk . It is easy to check, by the triangle inequality, that in each coupled
transition, we have |v′

1 − v′
2| ≤ |v1 − v2| and |v′

1∗ − v′
2∗| ≤ |v1 − v2|.

Fix v1, v2 ∈ Rd , and suppose we start with one particle (v1, v2) ∈ V0 at time 0.
Write (�0

t , �
1
t , �

2
t )t≥0 for the empirical process of particle types on V0 ∪ V1 ∪ V2.

Then, inductively, �0
t is supported on pairs (u1, u2) with |u1 −u2| ≤ |v1 − v2|. For

k = 1,2, write pk for the projection to the kth component V0 → Rd , and write πk

for the bijection Vk → Rd . Define a measure �k
t on Rd by

�k
t = �0

t ◦ p−1
k + �k

t ◦ π−1
k .

It is straightforward to check that (�1
t )t≥0 and (�2

t )t≥0 are copies of the Markov
process (�t)t≥0 starting from δv1 and δv2 , respectively.

For k = 0,1,2, consider the signed space V ∗
k = V −

k ∪ V +
k = Vk × {−1,1}.

The process (�0
t , �

1
t , �

2
t )t≥0 lifts in an obvious way to a branching process
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(�
0,∗
t , �

1,∗
t , �

2,∗
t )t≥0 in V ∗

0 ∪ V ∗
1 ∪ V ∗

2 starting from ((v1, v2),1) in V +
0 , where the

“v∗” offspring switch signs, just as in (�∗
t )t≥0. By lift we mean that �t = �∗

t ◦π−1

for the projection π :V ∗
k → Vk . We write E(0,v1,v2) for the expectation over this

process. For k = 1,2, set

�
k,∗
t = �

0,∗
t ◦ p−1

k + �
k,∗
t ◦ π−1

k .

Then (�
k,∗
t )t≥0 is a linearized Kac process with environment (ρt )t≥0 starting from

(vk,1).

LEMMA 4.5. Assume condition (2). Then

E(0,v1,v2)

〈
1 + |v|2,�1

t + �2
t

〉
≤ 6κt

(
2 + |v1|2 + |v2|2)|v1 − v2| exp

{∫ t

0
8
〈
1 + |v|3, ρs

〉
ds

}
.

Moreover, for all p ∈ (2,∞), there is a constant C(p) < ∞ such that

E(0,v1,v2)

〈
1 + |v|p,�1

t + �2
t

〉
≤ C(p)κt

(
1 + |v1|p + |v2|p)|v1 − v2| exp

{∫ t

0
c(p)

〈
1 + |v|p+1, ρs

〉
ds

}
.

PROOF. The decoupling transition (u1, u2) → (u′
1, u

′
1∗, v∗;u2) occurs at rate

2�0
t−

(
d(u1, u2)

)(
B(u1 − v∗, dσ ) − B(u2 − v∗, dσ )

)+
ρt (dv∗) dt

and increases 〈1 + |v|2,�1
t + �2

t 〉 by 4 + 2|v∗|2 + |u1|2 + |u2|2. On adding the
rate for the other decoupling transition (u1, u2) → (u1;u′

2, u
′
2∗, v∗), we see that a

decoupling transition which increases 〈1 + |v|2,�1
t + �2

t 〉 by 4 + 2|v∗|2 + |u1|2 +
|u2|2 occurs at total rate

2�0
t−

(
d(u1, u2)

)∥∥B(u1 − v∗, ·) − B(u2 − v∗, ·)
∥∥ρt (dv∗) dt.

By condition (2),∥∥B(u1 − v∗, ·) − B(u2 − v∗, ·)
∥∥ ≤ κ|u1 − u2| ≤ κ|v1 − v2|

for all pairs (u1, u2) in the support of �0
t for all t . Hence the drift of 〈1+|v|2,�1

t +
�2

t 〉 due to decoupling transitions is no greater than

6κ|v1 − v2|〈2 + |u1|2 + |u2|2,�0
t−

〉
.

On the other hand, by the same estimates used in Proposition 4.1, the drift of
〈1 + |v|2,�1

t + �2
t 〉 due to branching of uncoupled particles is no greater than

8m3(t)
〈
1 + |v|2,�1

t− + �2
t−

〉
.
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Hence the following process is a supermartingale:

〈
1 + |v|2,�1

t + �2
t

〉 − 6κ|v1 − v2|
∫ t

0

〈
2 + |u1|2 + |u2|2,�0

s

〉
ds

−
∫ t

0
8m3(s)

〈
1 + |v|2,�1

s + �2
s

〉
ds.

Set g(t) = E(0,v1,v2)(〈1+|v|2,�1
t +�2

t 〉). Since �0
t ◦p−1

k ≤ �k
t , by Proposition 4.1

E(0,v1,v2)

〈
2 + |u1|2 + |u2|2,�0

t

〉 ≤ (
2 + |v1|2 + |v2|2)

exp
{∫ t

0
8m3(s) ds

}
.

Then

g(t) ≤ 6κ
(
2 + |v1|2 + |v2|2)|v1 − v2|

∫ t

0
exp

{∫ s

0
8m3(r) dr

}
ds

+
∫ t

0
8m3(s)g(s) ds,

and the first of the claimed estimates follows by Gronwall’s lemma. For p > 2, a
straightforward modification of this argument, using |v′|p + |v′∗|p ≤ C(p)(|v|p +
|v∗|p) and (20), leads to the second estimate. �

PROOF OF PROPOSITION 4.3. For all f ∈ F and all v, v′ ∈Rd , we have∣∣f (v)
∣∣ ≤ 1 + |v|2, ∣∣f (v) − f

(
v′)∣∣ ≤ (

2 + |v|2 + ∣∣v′∣∣2)∣∣v − v′∣∣.
To see the second inequality, note that∣∣f (v) − f

(
v′)∣∣ = ∣∣(1 + |v|2)

f̂ (v) − (
1 + ∣∣v′∣∣2)

f̂
(
v′)∣∣

≤ (
1 + |v|2)∣∣f̂ (v) − f̂

(
v′)∣∣ + ∣∣|v|2 − ∣∣v′∣∣2∣∣∣∣f̂ (

v′)∣∣
≤ (

1 + |v|2 + |v| + ∣∣v′∣∣)∣∣v − v′∣∣
and then symmetrize. We write the proof for the case ‖f ‖ = 1 and s = 0. Set
f0 = E0t f . By Proposition 4.1, for all v ∈Rd ,

∣∣f0(v)
∣∣ ≤ (

1 + |v|2)
exp

{∫ t

0
8m3(s) ds

}
.(22)

We have

f0(v1) − f0(v2) = E(0,v1,v2)

(〈
f ◦ p1 − f ◦ p2, �̃

0
t

〉 + 〈
f ◦ π1, �̃

1
t

〉 − 〈
f ◦ π2, �̃

2
t

〉)
.

So, since |u1 − u2| ≤ |v1 − v2| for all (u1, u2) ∈ supp�0
t ,∣∣f0(v1)−f0(v2)

∣∣ ≤ E(0,v1,v2)

(〈
2+|u1|2 +|u2|2,�0

t

〉|v1 −v2|+ 〈
1+|v|2,�1

t +�2
t

〉)
.
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By Proposition 4.1,

E(0,v1,v2)

〈
2 + |u1|2 + |u2|2,�0

t

〉
≤ E(0,v1)

〈
1 + |v|2,�t

〉 + E(0,v2)

〈
1 + |v|2,�t

〉
≤ (

2 + |v1|2 + |v2|2)
exp

{∫ t

0
8m3(s) ds

}
.

We combine this with Lemma 4.5 to obtain∣∣f0(v1) − f0(v2)
∣∣ ≤ (1 + 6κt)

(
2 + |v1|2 + |v2|2)|v1 − v2| exp

{∫ t

0
8m3(s) ds

}
,

which implies that∣∣f̂0(v1) − f̂0(v2)
∣∣ ≤ 3(1 + 6κt)|v1 − v2| exp

{∫ t

0
8m3(s) ds

}
and in conjunction with (22) gives the claimed estimate. �

PROOF OF PROPOSITION 4.4. It will suffice to consider the case ‖f ‖ = 1.
Write fs = Estf . Let (�t)t≥s and (�′

t )t≥s′ be independent linearized Kac pro-
cesses starting from δv0 at times s and s′, respectively. Write T for the first branch
time of (�t)t≥s and V∗,V ′,V ′∗ for the velocities of the new particles formed in
(�t)t≥s at time T . By the Markov property of the branching process and using
Proposition 4.1, on the event {T ≤ s′},∣∣E(〈

f, �̃t − �̃′
t

〉|T ,V∗,V ′,V ′∗
)∣∣

= ∣∣fT

(
V ′) + fT

(
V ′∗

) − fT (V∗) − fs′(v0)
∣∣

≤ (
4 + |v0|2 + |V∗|2 + ∣∣V ′∣∣2 + ∣∣V ′∗

∣∣2)
exp

{∫ t

s
8m3(r) dr

}
while

E
(〈
f, �̃t − �̃′

t

〉|T > s′) = 0.

Now |V ′|2 + |V ′∗|2 = |v0|2 + |V∗|2, so∣∣fs(v0) − fs′(v0)
∣∣ = ∣∣E〈

f, �̃t − �̃′
t

〉∣∣
≤ E

((
4 + 2|v0|2 + 2|V∗|2)

1{T ≤s′}
)

exp
{∫ t

s
8m3(r) dr

}
,

and, using the inequality |v − v∗|(4 + 2|v|2 + 2|v∗|2) ≤ 5(1 +|v|3)(|1 +|v∗|3), we
have

E
((

4 + 2|v0|2 + 2|V∗|2)
1{T ≤s′}

)
≤

∫ s′

s

∫
Rd

|v0 − v∗|(4 + 2|v0|2 + 2|v∗|2)
ρr(dv∗) dr

≤ 5
(
1 + |v0|3) ∫ s′

s
m3(r) dr,
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so ∣∣fs(v0) − fs′(v0)
∣∣ ≤ 5

(
1 + |v0|3)

exp
{∫ t

s
8m3(r) dr

}∫ s′

s
m3(r) dr. �

PROOF OF PROPOSITION 4.2. Recall that now ρt = (μN
t + μN ′

t )/2 and
m3(t) = 〈1 + |v|3,μN

t + μN ′
t 〉/2. In particular m3(t) ≤ 1 + (N ′)3/2 < ∞ for all t .

Set M = MN − MN ′
, and write M± for the positive and negative parts of the

signed measure M on [0,∞) × Rd . Consider a branching particle system in V ∗,
with the same branching rules as (�∗

t )t≥s above, but where, instead of starting with
just one particle at time s, we initiate particles randomly in the system according
to a Poisson random measure on [0,∞) × V ∗ of intensity

θ(dt, dv) =
{

δ0(dt)μN
0 (dv) + M+(dt, dv), on [0,∞) × V +,

δ0(dt)μN ′
0 (dv) + M−(dt, dv), on [0,∞) × V −.

We use the same notation as above for the empirical measures associated to the
branching process, and signify the new rule for initiating particles by writing now
E for the expectation. Define, for t ≥ 0, a signed measure λt on Rd by

λt = E(�̃t ) =
∫
[0,t]×V

E(s,v)(�̃t )θ(ds, dv).(23)

Then, by Proposition 4.1,

〈
1 + |v|2, |λt |〉 ≤ exp

{∫ t

0
8m3(s) ds

}∫
[0,t]×Rd

(
1 + |v|2)∣∣θ(ds, dv)

∣∣
and, by estimate (8),∫

[0,t]×Rd

(
1 + |v|2)∣∣θ(ds, dv)

∣∣
≤ 〈

1 + |v|2,μN
0 + μN ′

0
〉 + ∫

[0,t]×Rd

(
1 + |v|2)∣∣M(ds, dv)

∣∣ < ∞.

We see in particular that 〈1 + |v|2, |λt |〉 is bounded on compacts in t .
Under E(s,v), the pair of empirical processes of positive and negative particles

(�+
t ,�−

t )t≥s evolves as a Markov chain, which makes jumps (δv′ + δv′∗ − δv, δv∗)
at rate 2�+

t−(dv)ρt (dv∗)B(v − v∗, dσ ) dt and makes jumps (δv∗, δv′ + δv′∗ − δv) at
rate 2�−

t−(dv)ρt (dv∗)B(v−v∗, dσ ) dt . So, using Proposition 4.1 for integrability,
under E(s,v), for any bounded measurable function f , the following process is a
martingale:

〈f, �̃t 〉 −
∫ t

s

〈
f,2Q(ρr, �̃r)

〉
dr, t ≥ s.

Taking expectations and setting fst (v) = Estf (v) = E(s,v)〈f, �̃t 〉, we obtain

fst (v) = f (v) +
∫ t

s

〈
f,2Q

(
ρr,E(s,v)(�̃r)

)〉
dr.(24)
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Then

〈f,λt 〉 =
∫
[0,t]×V

E(s,v)〈f, �̃t 〉θ(ds, dv)

= 〈
f0t ,μ

N
0 − μN ′

0
〉 + ∫ t

0
〈fst , dMs〉

= 〈
f,μN

0 − μN ′
0

〉 + 〈f,Mt 〉 +
∫ t

0

〈
f,2Q(ρr, λr)

〉
dr.

Here, we used (23) for the first equality, and for the third we substituted for f0t

and fst using (24) and then rearranged the integrals using Fubini to make λr , as
given by (23), appear on the inside. Since f is an arbitrary bounded measurable
function, we have shown that

λt = (
μN

0 − μN ′
0

) + Mt +
∫ t

0
2Q(ρs, λs) ds.(25)

Note the estimate of total variation,∥∥Q(ρt , λt )
∥∥ ≤ 4

∫
Rd×Rd

|v − v∗|ρt (dv)|λt |(dv∗) ≤ 6
〈
1 + |v|2, |λt |〉.

For the second inequality, we used 〈1, ρt 〉 = 〈|v|2, ρt 〉 = 1 and 2|v − v∗| ≤ 2 +
|v|2 + |v∗|2. For any interval (s, t] on which neither (μN

t )t≥0 nor (μN ′
t )t≥0 jump,

using estimate (9), we deduce that

〈
1 + |v|2, |Mt − Ms |〉 ≤ 24

∫ t

s
m3(r) dr.

On the other hand 〈
1 + |v|2,

∫ t

s

∣∣Q(ρr, λr)
∣∣dr

〉
→ 0

as t ↓ s, for all s ≥ 0. Hence from equation (25) we deduce that (1 + |v|2)λt is
right continuous in total variation.

Set λ′
t = μN

t − μN ′
t , and note from (6) that (λ′

t )t≥0 also satisfies (25). We sub-
tract to see that δt = λt − λ′

t satisfies

δt =
∫ t

0
2Q(ρs, δs) ds.

Set νt = 2Q(ρt , δt ). Then ‖νt‖ ≤ 12〈1 +|v|2, |δt |〉 and, on any interval (s, t] when
neither (μN

t )t≥0 nor (μN ′
t )t≥0 jump,

‖νt − νs‖ = ∥∥2Q(ρs, λt − λs)
∥∥ ≤ 12

〈
1 + |v|2, |λt − λs |〉.

The process of signed measures (νt )t≥0 is thus locally bounded and right con-
tinuous in total variation. Hence the measure

∫ T
0 |νt |dt + |νT | is finite, and νt is

absolutely continuous with respect to this measure for all t ∈ [0, T ].
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We apply Lemma A.1, with μ0 = 0, to obtain a measurable map σ : [0,∞) ×
V → {−1,0,1} such that δt = σt |δt | and |δt | = ∫ t

0 σsνs ds. Set σ̌s(v) = (1 +
|v|2)σs(v). Then〈

1 + |v|2, |δt |〉
=

∫
E

2
{
σ̌s

(
v′) + σ̌s

(
v′∗

) − σ̌s(v) − σ̌s(v∗)
}

× 1(0,t](s)B(v − v∗, dσ )ρs(dv∗)δs(dv) ds

≤
∫ t

0

∫
Rd×Rd

4
(
1 + |v∗|2)|v − v∗|ρs(dv∗)|δs |(dv) ds

≤
∫ t

0
4
〈
1 + |v|2, |δs |〉m3(s) ds.

But
∫ t

0 m3(s) ds < ∞, so δt = 0, for all t . �

5. Proof of Theorem 1.1. We will write the proof for d ≥ 3, leaving the minor
modifications necessary for d = 2 to the reader. Fix p ∈ (2,∞) and λ ∈ [1,∞).
Suppose that (μN

t )t≥0 and (μN ′
t )t≥0 are Kac processes in SN and SN ′ , respectively,

with 〈|v|p,μN
0 〉 ≤ λ and 〈|v|p,μN ′

0 〉 ≤ λ. Set ρt = (μN
t + μN ′

t )/2. Fix t ∈ [0, T ]
and a function ft ∈F . Define a random function f on [0, T ] ×Rd by

f (s, v) = fs(v) = E(s∧t,v)〈ft , �̃t 〉,
where (�∗

t )t≥s is a linearized Kac process in environment (ρt )t≥0. Note that we
have extended f as a constant in time from t to T . We have, by Proposition 4.2,

〈
ft ,μ

N
t − μN ′

t

〉 = 〈
f0,μ

N
0 − μN ′

0
〉 + ∫ t

0

〈
fs, dMN

s

〉 − ∫ t

0

〈
fs, dMN ′

s

〉
.(26)

Write mq(t) = 〈1 + |v|q, ρt 〉, as above. By Proposition 3.1, for q < p + 1, there is
a constant C(B,p,q) < ∞ such that

E

∫ T

0
mq(s) ds ≤ C

(
T p+1−q + T

)
λ.(27)

Set

A = 3(1 + 6κT ) exp
{∫ T

0
8m3(s) ds

}
.(28)

By Proposition 4.3, for all s ≤ t , we have

‖fs‖ ≤ A(29)

so 〈
f0,μ

N
0 − μN ′

0
〉 ≤ AW

(
μN

0 ,μN ′
0

)
.(30)
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The main step of the proof is to bound the second and third terms on the right
in (26), uniformly in t ∈ [0, T ] and ft ∈ F . We will derive estimates for the second
term, which then apply also to the third, because N ≤ N ′. The notation conceals
the fact that the integrand fs depends on the terminal time t . Worse, fs depends on
(μN

r + μN ′
r )s≤r≤t , so is anticipating, and martingale estimates cannot be applied

directly even at the individual time t .
For p ≥ 3, set β = 1 and Z = supt∈[0,T ] m3(t). By Propositions 3.1 and 4.4, we

have E(Z) ≤ 1 + (1 + CT )λ and, for all v ∈Rd and s, s′ ∈ [0, T ] with s ≤ s ′,∣∣fs(v) − fs′(v)
∣∣ ≤ A′(1 + |v|3)(

s′ − s
)β

,(31)

where

A′ = 5Z exp
{∫ T

0
8m3(s) ds

}
.(32)

For p ∈ (2,3), set β = (p − 2)/2, and set

Z = 2 sup
t∈[1,T ]

m3(t) + ∑
�∈N

2(β−1)�+1β−1 sup
t∈[2−�,2−�+1]

m3(t).

By Proposition 3.1, there is a constant C(B,p) < ∞ such that, for t ≤ T ,

E
(

sup
s∈[t,T ]

m3(s)
)

≤ C
(
tp−3 ∨ T

)
λ

so

E(Z) ≤ Cλ

(
T + ∑

�∈N
2(β−1)�2−�(p−3)

)
= Cλ

(
T + 1/

(
2β − 1

))
.(33)

Note that m3(t) ≤ (βtβ−1 + 1)Z/2 for all t ≤ T , so for s ≤ s′ ≤ T with s ′ − s ≤ 1,∫ s′

s
m3(t) dt ≤ ((

s′ − s
)β + (

s′ − s
))

Z/2 ≤ (
s′ − s

)β
Z.

Hence, by Proposition 4.4, (31) remains valid for p ∈ (2,3), provided s ′ − s ≤ 1
and β and Z have their new meanings.

Fix r ∈ (0,1] and R ∈ [1,∞) such that T/r and R/r are integers, and set
n = (T /r) × (R/r)d . Set B(R) = (−R,R]d . There exist s1, . . . , sn ∈ [0, T ) and
v1, . . . , vn ∈ B(R) such that B1 ∪· · ·∪Bn = (0, T ]×B(R), where Bk = (sk, vk)+
(0, r] × (−r, r]d . Write

f =
n∑

k=1

akf
(k) + g,

where ak is the average value of f̂ on Bk and f (k)(s, v) = 1̌Bk
(s, v) = (1 +

|v|2)1Bk
(s, v). Then∫ t

0

〈
fs, dMN

s

〉 = n∑
k=1

akM
(k)
t +

∫ t

0

〈
gs, dMN

s

〉
,(34)
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where

M
(k)
t =

∫ t

0

〈
f (k)

s , dMN
s

〉
.

Now, by (29), for all k, we have |ak| ≤ A and, for v, v′ ∈ Bk ,∣∣f̂s(v) − f̂s

(
v′)∣∣ ≤ A

∣∣v − v′∣∣ ≤ 2
√

dAr.

By (31), we have, for (s, v) ∈ Bk ,(
1 + |v|2)∣∣f̂s(v) − ak(v)

∣∣ ≤ A′(1 + |v|3)
rβ,

where ak(v) is the average value of f̂ on (sk, sk + r]× {v}. Hence, for (s, v) ∈ Bk ,∣∣gs(v)
∣∣ = (

1 + |v|2)∣∣f̂s(v) − ak(v) + ak(v) − ak

∣∣
≤ A′(1 + |v|3)

rβ + 2
√

dA
(
1 + |v|2)

r.

On the other hand, |gs(v)| ≤ A(1 + |v|2) for all v ∈ Rd \ B(R).
Set Qt = QN

t = ∑n
k=1 |M(k)

t |2. Then∣∣∣∣∣
n∑

k=1

akM
(k)
t

∣∣∣∣∣ ≤ A
√

nQt .(35)

Fix q ∈ (3,p + 1). Note that, for s ∈ (0, T ],
n∑

k=1

{
f (k)

s

(
v′) + f (k)

s

(
v′∗

) − f (k)
s (v) − f (k)

s (v∗)
}2

≤ 4
n∑

k=1

{ ˇ̌1Bk

(
s, v′) + ˇ̌1Bk

(
s, v′∗

) + ˇ̌1Bk
(s, v) + ˇ̌1Bk

(s, v∗)
}

= 4
{ ˇ̌1B(R)

(
v′) + ˇ̌1B(R)

(
v′∗

) + ˇ̌1B(R)(v) + ˇ̌1B(R)(v∗)
}

≤ CR(5−q)+(
1 + |v|q−1 + |v∗|q−1)

for some constant C < ∞, depending only on d and q . So, by Doob’s L2-
inequality,

E
(
sup
t≤T

Qt

)
≤ 4

N2

n∑
k=1

E

∫
E

{
f (k)

s

(
v′) + f (k)

s

(
v′∗

) − f (k)
s (v) − f (k)

s (v∗)
}2

× 1(0,T ](s)m̄(dv, dv∗, dσ, ds)(36)

≤ CR(5−q)+

N
E

∫ T

0

〈|v|q,μN
s

〉
ds.

On the other hand∣∣∣∣
∫ t

0

〈
gs, dMN

s

〉∣∣∣∣ ≤ C
(
A′rβR(4−q)+ + Ar + AR3−q) ∫ T

0

〈
1 + |v|q−1,

∣∣dMN
s

∣∣〉(37)
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and

E

∫ T

0

〈
1 + |v|q−1,

∣∣dMN
s

∣∣〉

≤ 2

N
E

∫
E

{
4 + ∣∣v′∣∣q−1 + ∣∣v′∗

∣∣q−1 + |v|q−1 + |v∗|q−1}
(38)

× 1(0,T ](s)m̄(dv, dv∗, dσ, ds)

≤ CE

∫ T

0

〈|v|q,μN
s

〉
ds.

We combine (26), (27), (28), (30), (32), (33), (34), (35), (36), (37) and (38)
to see that, for all ε ∈ (0,1], there is a constant C < ∞, depending only on
B,d, ε, λ,p, q and T , such that, for all N,N ′ ∈ N with N ≤ N ′, with probabil-
ity exceeding 1 − ε, we have, for all t ∈ [0, T ],

W
(
μN

t ,μN ′
t

) ≤ C
(
W

(
μN

0 ,μN ′
0

) +
√

R(5−q)+n/N + rR(4−q)+ + R3−q)
.

An optimization over q , r and R now shows the existence of an α(d,p) > 0 for
which the estimate claimed in Theorem 1.1 holds.

For large p, the reader may check the optimization yields a value for α(d,p)

close to 1/(d +3). The proof given can be varied by replacing the one-step discrete
approximation by a chaining argument. See the proof of Proposition 9.2 for this
idea in a simple context. This gives α(d,p) = 1/(d + 1) for p sufficiently large.
We omit the details because Theorem 1.2 gives a stronger result. Here d + 1 is
the dimension of space–time, reflecting the fact that we maximize over a class of
functions on [0, T ] ×Rd . This is wasteful because, in fact, we only need to maxi-
mize over a certain process of functions (fs : s ∈ [0, t]) associated to t ∈ [0, T ] and
f = ft and then over a class of functions f on Rd . In the next three sections, we
exploit the structure of the process (fs : s ∈ [0, t]) to obtain an improved bound.

6. Continuity of the linearized Kac process in its environment. We showed
in Propositions 4.3 and 4.4 that the linearized Kac process is continuous in its
initial data. For the proof of our main estimate with optimal rate N−1/d , we will
need also continuity in the environment. The following notation will be convenient.
For p ∈ [2,∞) and a function f on Rd , we will write f̂ (p) for the reweighted
function f̂ (p)(v) = f (v)/(1 + |v|p) and write ‖f ‖(p) for the smallest constant
such that, for all v, v′ ∈Rd , we have∣∣f̂ (p)(v)

∣∣ ≤ ‖f ‖(p),
∣∣f̂ (p)(v) − f̂ (p)(v′)∣∣ ≤ ‖f ‖(p)

∣∣v − v′∣∣.
Denote by F(p) the set of all functions f on Rd with ‖f ‖(p) ≤ 1. We earlier wrote
F for F(2) and ‖f ‖ for ‖f ‖(2). We will use the cases p = 2 and p = 3. Suppose
that (ρ1

t )t≥0 and (ρ2
t )t≥0 are processes of measures on Rd , both satisfying (17).
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Given t ≥ 0 and a function f of quadratic growth on Rd , define for s ∈ [0, t] and
v ∈ Rd , and for j = 1,2,

E
j
stf (v) = E(s,v)

〈
f, �̃

j
t

〉
,

where (�
j,∗
t )t≥s is a linearized Kac process with environment (ρ

j
t )t≥0 starting

from v at time s. We will use the following notation:

dp(t) = 〈
1 + |v|p,

∣∣ρ1
t − ρ2

t

∣∣〉, m̄p(t) = 〈
1 + |v|p,ρ1

t + ρ2
t

〉
.

PROPOSITION 6.1. For all p ∈ [2,∞), there is a constant C(p) < ∞ with the
following properties. Let f be a function on Rd with |f (v)| ≤ 1 + |v|p for all v.
Then, for all s, t ≥ 0 with s ≤ t and all v ∈ Rd , we have∣∣E1

stf (v) − E2
stf (v)

∣∣
≤ C(p)

(
1 + |v|p+1)

exp
{
C(p)

∫ t

s
m̄p+2(r) dr

}∫ t

s
dp+1(r) dr.

Assume that the collision kernel satisfies condition (2). Then C(p) may be chosen
so that

∥∥E1
stf − E2

stf
∥∥
(p+1) ≤ C(p)κ‖f ‖(p) exp

{
C(p)

∫ t

s
m̄p+2(r) dr

}∫ t

s
dp+1(r) dr.

Our first step toward a proof of Proposition 6.1 is to describe a coupling of
(�

1,∗
t )t≥0 and (�

2,∗
t )t≥0 when both process start from v at time 0. For this, we

take as type space the set V̂0 ∪ V̂1 ∪ V̂2, where V̂j = Rd × {j} for j = 0,1,2.
Particles with types in V̂0 are called coupled, the others are uncoupled. Consider
the branching process with the following branching transitions. For a particle v

in V̂0, there are three possible transitions. First, at rate 2(ρ1
t ∧ ρ2

t )(dv∗)B(v −
v∗, dσ ) dt , we replace v by three particles v∗, v′ and v′∗ in V̂0. Second, at rate
2(ρ1

t − ρ2
t )+(dv∗)B(v − v∗, dσ ) dt , we replace v by three particles v∗, v′ and v′∗

in V̂1 and one particle v in V̂2. Third, at rate 2(ρ2
t − ρ1

t )+(dv∗)B(v − v∗, dσ ) dt ,
we replace v by one particle v in V̂1 and three particles v∗, v′ and v′∗ in V̂2. The
second and third are called uncoupling transitions. The transitions for uncoupled
particles are as in the original branching process; that is, for j = 1,2 and v in V̂j , at

rate 2ρ
j
t (dv∗)B(v − v∗, dσ ) dt we replace v by particles v∗, v′ and v′∗, also in V̂j .

For v ∈ Rd and s ≥ 0, and for j = 0,1,2, write �̂
j
t for the un-normalized empirical

distribution of particles in V̂j when we initiate the branching process with a single

particle v in V̂0 at time s. Define analogously the lifted processes (�̂
j,∗
t )t≥s in V̂ ∗

j .
For j = 1,2, set

�̂
j,∗
t = �̂

0,∗
t ◦ π̂−1

0 + �̂
j,∗
t ◦ π̂−1

j ,



A CONSISTENCY ESTIMATE FOR KAC’S MODEL 1051

where π̂j is the bijection V̂ ∗
j → V ∗. It is straightforward to check that (�̂

j,∗
t )t≥s is

a linearized Kac process with environment (ρ
j
t )t≥0 starting from v in V + at time s.

We have burdened the notation with hats so that we can later refer simultaneously
to this coupling and to the coupling for two different starting points.

LEMMA 6.2. For all p ∈ [2,∞), there is a constant C(p) < ∞ such that

E(0,v0)

〈
1 + |v|p, �̂1

t + �̂2
t

〉
≤ C(p)

(
1 + |v0|p+1)

exp
{∫ t

0
C(p)m̄p+2(s) ds

}∫ t

0
dp+1(s) ds.

PROOF. The process 〈1 + |v|p, �̂1
t + �̂2

t 〉 starts at 0 and makes jumps both
at uncoupling transitions and due to the branching of uncoupled particles. Un-
coupling transitions occur at rate 2B(v − v∗, dσ )�̂0

t−(dv)|ρ1
t − ρ2

t |(dv∗) dt and
result in jumps of 4 + |v′|p + |v′∗|p + |v|p + |v∗|p . Uncoupled particles branch at
rate 2B(v − v∗, dσ )(�̂1

t−(dv)ρ1
t (dv∗) + �̂2

t−(dv)ρ2
t (dv∗)) dt and result in jumps

of 2 + |v′|p + |v′∗|p + |v∗|2 − |v|p . We use the inequalities

4 + ∣∣v′∣∣p + ∣∣v′∗
∣∣p + |v|p + |v∗|p ≤ C(p)

(
1 + |v|p + |v∗|p)

and (
1 + |v|p + |v∗|p)|v − v∗| ≤ C(p)

(
1 + |v|p+1)(

1 + |v∗|p+1)
to see that the drift of 〈1+|v|p, �̂1

t +�̂2
t 〉 due to uncoupling transitions is no greater

than C(p)dp+1(t)〈1 + |v|p+1, �̂0
t−〉. On the other hand, inequalities (19) and (20)

show that the drift of 〈1 + |v|p, �̂1
t + �̂2

t 〉 due to branching of uncoupled particles
is no greater than c(p)m̄p+1(t)〈1+|v|p, �̂1

t− + �̂2
t−〉. Hence the following process

is a supermartingale:

〈
1 + |v|p, �̂1

t + �̂2
t

〉 − C(p)

∫ t

0

〈
1 + |v|p+1, �̂0

s

〉
dp+1(s) ds

− c(p)

∫ t

0

〈
1 + |v|p, �̂1

s + �̂2
s

〉
m̄p+1(s) ds.

On taking expectations, we obtain

g(t) ≤
∫ t

0

{
C(p)fp+1(s)dp+1(s) + c(p)m̄p+1(s)g(s)

}
ds,

where g(t) = E(0,v0)〈1 + |v|p, �̂1
t + �̂2

t 〉 and fp(t) = E(0,v0)〈1 + |v|p, �̂0
t 〉. By

Proposition 4.1, we have

fp+1(t) ≤ (
1 + |v0|p+1)

exp
∫ t

0
c(p + 1)m̄p+2(s) ds,
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so, for some constant C(p) < ∞,

g(t) ≤ C(p)
(
1 + |v0|p+1)

exp
{
C(p)

∫ t

0
m̄p+2(r) dr

}∫ t

0
dp+1(s) ds. �

The second ingredient needed for Proposition 6.1 is a coupling of four linearized
Kac processes, with environments (ρ1

t )t≥0 and (ρ2
t )t≥0 and with starting points v1

and v2. We will specify this coupling in detail, at the cost of some heaviness of
notation, the understanding of which may be guided by the thought that the cou-
pling is the obvious one for typed branching at different rates and is an elaboration
of the couplings described in the case of a single environment or a single starting
point above. To define the coupled processes, we consider a type space which is
the disjoint union of nine sets,

(V00 ∪ V01 ∪ V02) ∪ (V10 ∪ V11 ∪ V12) ∪ (V20 ∪ V21 ∪ V22).

Here, for k = 0,1,2, we take V0k = Vk as at (21) and, for j = 1,2, we take Vjk =
Vk ×{j}. The first index refers to the environment, a 0 indicating a particle present
in the branching process in both environments. The second index refers to the
starting point.

The branching rules for a particle (v1, v2) in V00 are as follows. There are
nine possible transitions. First, at rate 2(ρ1

t ∧ ρ2
t )(dv∗)(B(v1 − v∗, dσ ) ∧ B(v2 −

v∗, dσ )) dt (for all v∗ ∈ Rd and all σ ∈ Sd−1), we replace (v1, v2) by three par-
ticles (v∗, v∗), (v′

1, v
′
2) and (v′

1∗, v′
2∗) in V00. As above, we are writing v′

k for
v′(vk, v∗, σ ) and v′

k∗ for v′∗(vk, v∗, σ ). Second, at rate 2(ρ1
t − ρ2

t )+(dv∗)(B(v1 −
v∗, dσ ) ∧ B(v2 − v∗, dσ )) dt , we replace (v1, v2) by three particles (v∗, v∗),
(v′

1, v
′
2) and (v′

1∗, v′
2∗) in V10 and one particle (v1, v2) in V20. Third, at rate

2(ρ1
t ∧ ρ2

t )(dv∗)(B(v1 − v∗, dσ ) − B(v2 − v∗, dσ ))+dt , we replace (v1, v2) by
three particles v∗, v′

1 and v′
1∗ in V01 and one particle v2 in V02. Fourth, at rate

2(ρ1
t − ρ2

t )+(B(v1 − v∗, dσ ) − B(v2 − v∗, dσ ))+ dt , we replace (v1, v2) by three
particles v∗, v′

1 and v′
1∗ in V11, one particle v2 in V12 and one particle (v1, v2) in

V20. The second and third transitions each have an obvious counterpart by swap-
ping 1 and 2, while there are three variants of the fourth transition by swapping 1
and 2 in the environment or in the collision intensity or in both.

On leaving V00, either the coupling with respect to environment is broken, or
that with respect to the starting points. This corresponds to transitions on the one
hand to V1k or V2k for some k, or on the other hand to Vj1 or Vj2 for some j ,
respectively. Once the environment coupling is broken, a particle branches as in
the starting point coupling, while if the starting point coupling is broken, a particle
branches as in the environment coupling. Thus the transitions in Vjk for j = 1,2
are as described above for Vk , while those in Vjk for k = 1,2 are as described
above for V̂j .

For j, k = 0,1,2, write (�
jk
t )t≥0 for the empirical distribution of particles in

Vjk when we initiate the branching process just described with a single particle
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(v1, v2) in V00 at time 0. Write qjk for the bijection Vjk → Vk . For k = 1,2, write
pjk for the projection (v1, v2, j) �→ (vk, j) :Vj0 → V̂j , and write q̂jk for the bijec-
tion Vjk → V̂j . Note that π̂j ◦ pjk = pk ◦ qj0 on Vj0 and π̂j ◦ q̂jk = πk ◦ qjk on
Vjk for j = 0,1,2 and k = 1,2. For j, k = 1,2, set

�
j0
t = �00

t ◦ q−1
00 + �

j0
t ◦ q−1

j0 , �
jk
t = �0k

t ◦ q−1
0k + �

jk
t ◦ q−1

jk

and

�̂0k
t = �00

t ◦ p−1
0k + �0k

t ◦ q̂−1
0k , �̂

jk
t = �

j0
t ◦ p−1

jk + �
jk
t ◦ q̂−1

jk ,

and set

�
jk
t = �

j0
t ◦ π−1

k + �
jk
t ◦ p−1

k = �̂0k
t ◦ π̂−1

0 + �̂
jk
t ◦ π̂−1

j .

It can be checked that (�
jk
t )t≥0 is a copy of the branching process (�t)t≥0 starting

from vk at time 0 in the environment (ρ
j
t )t≥0. Moreover (�

j0
t , �

j1
t , �

j2
t )t≥0 is a

copy of the starting point coupling in environment (ρ
j
t )t≥0, and (�̂0k

t , �̂1k
t , �̂2k

t )t≥0

is a copy of the environment coupling with starting point vk . As in the earlier

constructions, we lift to processes (�
jk,∗
t )t≥0 in the signed spaces V ∗

jk = V −
jk ∪

V +
jk = Vjk × {−1,1}, initiating with a particle (v1, v2) in V +

00 and with the ‘v∗’

particles switching signs. Then, for j, k = 1,2 the associated process (�
jk,∗
t )t≥0

in V ∗ is a linearized Kac process with environment (ρ
j
t )t≥0 starting from vk .

LEMMA 6.3. For all p ∈ [2,∞), there is a constant C(p) < ∞ such that

E(0,v1,v2)

〈
1 + |v|p,�11

t + �12
t + �21

t + �22
t

〉
≤ C(p)κ

(
1 + |v1|p+1 + |v2|p+1)|v1 − v2| exp

{
C(p)

∫ t

0
m̄p+2(s) ds

}

×
∫ t

0
dp+1(s) ds.

PROOF. It will suffice by symmetry to consider 〈1 + |v|p,�11
t 〉. The process

〈1 + |v|p,�11
t 〉 makes jumps due to uncoupling transitions from V01 and V10 and

also directly from V00, and it makes further jumps due to the branching of particles
in V11. Jumps of 3 + |v′

1|p + |v′
1∗|p + |v∗|p occur at rate

2B(v1 − v∗, dσ )�01
t−(dv1)

(
ρ1

t − ρ2
t

)+
(dv∗) dt

+ 2
(
B(v1 − v∗, dσ ) − B(v2 − v∗, dσ )

)+
�10

t−(dv1, dv2)ρ
1
t (dv∗) dt

+ 2
(
B(v1 − v∗, dσ ) − B(v2 − v∗, dσ )

)+
�00

t−(dv1, dv2)
(
ρ1

t − ρ2
t

)+
(dv∗) dt.
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Jumps of 1 + |v1|p occur at rate

2B(v1 − v∗, dσ )�01
t−(dv1)

(
ρ1

t − ρ2
t

)−
(dv∗) dt

+ 2
(
B(v1 − v∗, dσ ) − B(v2 − v∗, dσ )

)−
�10

t−(dv1, dv2)ρ
1
t (dv∗) dt

+ 2
(
B(v1 − v∗, dσ ) − B(v2 − v∗, dσ )

)−
�00

t−(dv1, dv2)
(
ρ1

t − ρ2
t

)+
(dv∗) dt.

Jumps of 2 + |v′|p + |v′∗|p + |v∗|p − |v|p occur at rate

2B(v − v∗, dσ )�11
t−(dv)ρ1

t (dv∗) dt.

Fix a starting point (v1, v2) in V00. Recall that �00
t and �10

t are supported on pairs
(u1, u2) with |u1 − u2| ≤ |v1 − v2|. We use the inequalities

3 + ∣∣v′∣∣p + ∣∣v′∗
∣∣p + |v∗|p ≤ C(p)

(
1 + |v|p + |v∗|p)

(39)

and(
1 + |v|p)|v − v∗| ≤ (

1 + |v|p + |v∗|p)|v − v∗| ≤ C(p)
(
1 + |v|p+1)(

1 + |v∗|p+1)
to see that the drift of 〈1 + |v|p,�11

t 〉 due to uncoupling transitions from V01 is no
greater than

C(p)
〈
1 + |v|p+1,�01

t−
〉
dp+1(t).

We use (39) and the inequalities

1 + |v|p ≤ 1 + |v|p + |v∗|p ≤ (
1 + |v|p)(

1 + |v∗|p)
to see that the drift of 〈1 + |v|p,�11

t 〉 due to uncoupling transitions from V10 is no
greater than

C(p)κ|v1 − v2|〈1 + |v|p,�10
t− ◦ p−1

11

〉
m̄p(t)

while the drift of 〈1 + |v|p,�11
t 〉 due to uncoupling transitions from V00 is no

greater than

C(p)κ|v1 − v2|〈1 + |v|p,�00
t− ◦ p−1

01

〉
dp(t).

Finally, by (19) and (20), the drift of 〈1 + |v|p,�11
t 〉 due to branching in V11 is no

greater than

C(p)
〈
1 + |v|p,�11

t−
〉
m̄p+1(t).

Set

Ep+2(t) = C(p) exp
{∫ t

0
C(p)m̄p+2(s) ds

}
,

where C(p) < ∞ remains to be chosen. By Lemma 4.5, we can choose C(p) so
that

E(0,v1,v2)

〈
1 + |v|p+1,�01

t

〉 ≤ E(0,v1,v2)

〈
1 + |v|p+1,�11

t

〉
≤ κt

(
1 + |v1|p+1 + |v2|p+1)

Ep+2(t)|v1 − v2|.
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By Lemma 6.2, we can choose C(p) so that, moreover,

E(0,v1,v2)

〈
1 + |v|p,�10

t ◦ p−1
11

〉
≤ E(0,v1)

〈
1 + |v|p, �̂11

t

〉
≤ (

1 + |v1|p+1)
Ep+2(t)

∫ t

0
dp+1(s) ds.

By Proposition 4.1, we can choose C(p) so that, moreover,

E(0,v1,v2)

〈
1 + |v|p,�00

t ◦ p−1
01

〉 ≤ E(0,v1)

〈
1 + |v|p,�11

t

〉 ≤ (
1 + |v1|p)

Ep+2(t).

Set g(t) = E(0,v1,v2)〈1 + |v|p,�11
t 〉. The three estimates just obtained give us con-

trol of the expected drift of 〈1 + |v|p,�11
t 〉, so we obtain a constant C(p) < ∞

such that

g(t) ≤ C(p)κ
(
1 + |v1|p+1 + |v2|p+1)|v1 − v2|Ep+2(t)

∫ t

0
dp+1(s) ds

+ C(p)

∫ t

0
m̄p+1(s)g(s) ds,

which gives the claimed inequality by Gronwall’s lemma. �

PROOF OF PROPOSITION 6.1. It will suffice to consider the case where s = 0.
Set f

j
0 = E

j
0t f . We use the coupling of linearized Kac processes for environments

(ρ1
t )t≥0 and (ρ2

t )t≥0 described above. By Lemma 6.2,∣∣f 1
0 (v) − f 2

0 (v)
∣∣

= ∣∣E(0,v)

〈
f, �̃1

t − �̃2
t

〉∣∣ ≤ E(0,v)

〈|f |, �̂1
t + �̂2

t

〉 ≤ E(0,v)

〈
1 + |v|p, �̂1

t + �̂2
t

〉
(40)

≤ C(p)
(
1 + |v|p+1)

exp
{∫ t

0
C(p)m̄p+2(s) ds

}∫ t

0
dp+1(s) ds.

Assume now that f ∈ F(p). Then∣∣f (v1) − f (v2)
∣∣ ≤ p

(
1 + |v1|p + |v2|p)|v1 − v2|

for all v1, v2 ∈ Rd . On the other hand, if g satisfies this inequality, together with
|g(v)| ≤ 1 + |v|p , then ‖g‖(p) ≤ 3p. We now use the coupling of four linearized
Kac processes for the two environments and two starting points v1 and v2. For j =
1,2, the measure �

j0,∗
t is supported on pairs (u1, u2) with |u1 − u2| ≤ |v1 − v2|.

So 〈
f ◦ p1 − f ◦ p2,�

j0,∗
t

〉 ≤ p|v1 − v2|〈1 + |u1|p + |u2|p,�
j0
t

〉
≤ p|v1 − v2|〈1 + |v|p, �̂

j1
t + �̂

j2
t

〉
.
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By Lemmas 6.2 and 6.3,(
f 1

0 − f 2
0
)
(v1) − (

f 1
0 − f 2

0
)
(v2)

= E(0,v1,v2)

〈
f, �̃11

t − �̃12
t − �̃21

t + �̃22
t

〉
= E(0,v1,v2)

(〈
f,�

11,∗
t − �

12,∗
t − �

21,∗
t + �

22,∗
t

〉
+ 〈

f ◦ p1 − f2 ◦ p2,�
10,∗
t − �

20,∗
t

〉)
≤ E(0,v1,v2)

(〈
1 + |v|p,�11

t + �12
t + �21

t + �22
t

〉
+ p|v1 − v2|〈1 + |v|p, �̂11

t + �̂12
t + �̂21

t + �̂22
t

〉)
≤ C(p)κ

(
1 + |v1|p+1 + |v2|p+1)

× |v1 − v2| exp
{∫ t

0
C(p)m̄p+2(s) ds

}∫ t

0
dp+1(s) ds.

Here, there are no terms in �
0k,∗
t for k = 0,1,2 because these are the empirical dis-

tributions of particles, or pairs of particles, with unbroken environment coupling,
which cancel completely in the considered integral. On combining this estimate
with (40), we deduce that

∥∥f 1
0 − f 2

0
∥∥
(p+1) ≤ 3C(p)κ exp

{∫ t

0
C(p)m̄p+2(s) ds

}∫ t

0
dp+1(s) ds. �

7. Maximal inequalities for stochastic convolutions. The key formula for
our analysis is shown in Proposition 4.2. For all t ≥ 0 and all functions f in our
weighted Lipschitz class F , we have

〈
f,μN

t − μN ′
t

〉 = 〈
f0t ,μ

N
0 − μN ′

0
〉 + ∫ t

0

〈
fst , dMN

s

〉 − ∫ t

0

〈
fst , dMN ′

s

〉
,

where

fst (v) = Estf (v) = E(s,v)〈f, �̃t 〉
and where (�∗

t )t≥s is the linearized Kac process in environment ((μN
t + μN ′

t )/

2)t≥0 starting from v at time s.
The notion of stochastic convolution has been extensively studied in connection

with infinite-dimensional stochastic evolution equations; see, for example, [3, 7].
The operator

f �→
∫ t

0

〈
Estf, dMN

s

〉
shares some features with stochastic convolutions, namely that EstEtu = Esu for
s ≤ t ≤ u and that good estimates rely on exploiting martingale properties of the in-
tegrator. In this section, we prove a maximal inequality for this operator in Wasser-
stein norms, in the case where the environment ((μN

t + μN ′
t )/2)t≥0 is replaced by
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a nonrandom process (ρt )t≥0. The proof of Proposition 9.2 below uses some of the
same ideas in a simpler context.

We will use the following inequality for a function f on Rd which is Lipschitz
of constant 1. For B = [0,2−k]d , we have∣∣f (v) − 〈f 〉B

∣∣ ≤ 2−kcd, v ∈ B,(41)

where 〈f 〉B is the average value of f on B and where cd = E|X|, with X uniformly
distributed on [0,1]d . To see this, set Y = 2−kX, and note that |f (v) − f (Y )| ≤
|v − Y | ≤ |Y | so |f (v) − 〈f 〉B | = |E(f (v) − f (Y ))| ≤ E|Y | = 2−kE|X|. By a
similar calculation, we have also∣∣〈f 〉B − 〈f 〉2B

∣∣ ≤ 2−kcd .(42)

It is the scaling properties of inequalities (41) and (42) which will be critical for
our argument, rather than the value of the constant cd .

Let (ρt )t≥0 be a nonrandom process7 satisfying (17). Write, as above, mp(t) =
〈1 + |v|p,ρt 〉, and set

m∗(p) = sup
t≥0

mp(t).

Then, by Proposition 4.1, for all s ≥ 0 and all v0 ∈ Rd , and for the linearized Kac
process (�∗

t )t≥s in environment (ρt )t≥0 starting from v0 at time s, we have

E(s,v0)

〈
1 + |v|p,�t

〉 ≤ (
1 + |v0|p)

ec(p)m∗(p+1)(t−s).

Thus, whenever m∗(p + 1) < ∞, we can define, for s ≤ t and f ∈ F(p),

fst (v) = Estf (v) = E(s,v)〈f, �̃t 〉.

PROPOSITION 7.1. For all d ≥ 3, p ∈ [2,∞) and all δ ∈ (0,1], there is a
constant C(d, δ,p) < ∞ such that, for all T ∈ [0,∞), we have∥∥∥∥sup

t≤T

sup
f ∈F(p)

∫ t

0

〈
fst , dMN

s

〉∥∥∥∥
2

(43)

≤ CκN−1/deCm∗(p+3+δ)T

(
E

∫ T

0

〈|v|2p+5+2δ,μN
s

〉
ds

)1/2

.

The same inequality holds for d = 2 if we replace N−1/d by N−1/2 logN .

Here we have written ‖ · ‖2 for the norm in L2(P). This estimate will be applied
in the next section, using the moment estimates derived in Section 3 to control

7We will in fact use only the case where (ρt )t≥0 is constant.
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the right-hand side. We will use also the following comparison estimate for two
nonrandom processes (ρ1

t )t≥0 and (ρ2
t )t≥0 satisfying (17). Fix p ∈ [2,∞). Write

m̄∗(p) = sup
t≥0

〈
1 + |v|p,ρ1

t + ρ2
t

〉
.

We assume that m̄∗(p + 1) < ∞. For j = 1,2 and f ∈ F(p), define for s, t ≥ 0
with s ≤ t

f
j
st (v) = E

j
stf (v) = E(s,v)

〈
f, �̃

j
t

〉
,

where (�
j,∗
t )t≥s is a linearized Kac process in environment (ρ

j
t )t≥0 starting

from v.

PROPOSITION 7.2. For all d ≥ 3, p ∈ [2,∞) and all δ ∈ (0,1], there is a
constant C(d, δ,p) < ∞ such that, for all T ∈ [0,∞), we have∥∥∥∥sup

t≤T

sup
f ∈F(p)

∫ t

0

〈
f 1

st − f 2
st , dMN

s

〉∥∥∥∥
2

≤ CκN−1/dm̄∗(p + 2 + δ)(44)

× T eCm̄∗(p+3+δ)T

(
E

∫ T

0

〈|v|2p+5+2δ,μN
s

〉
ds

)1/2
.

The same inequality holds for d = 2 if we replace N−1/d by N−1/2 logN .

A small variation of the following proofs would allow the insertion of a factor
of d∗(p + 3 + δ) on the right in (44), where d∗(p) = supt≥0〈1 + |v|p, |ρ1

t − ρ2
t |〉,

at the cost of replacing p in all other terms on the right by p + 1. We omit details
as this variation is not needed for our main result.

PROOF OF PROPOSITION 7.1. Assume for now that d ≥ 3. It will suffice to
consider the case where N ≥ 22d . We first prove a simpler estimate, where the
function fst is replaced by fsT on the left-hand side. Set L = �log2 N/d�, and
note that L ≥ 2. For k ∈ Z, set Bk = (−2k,2k]d . Set A0 = B0, and for k ≥ 1, set
Ak = Bk \Bk−1. For k ≥ 1 and any integer � ≥ 2, there is a unique way to partition
Ak by a set Pk,� of 2�d − 2(�−1)d translates of Bk−�. Also, there is a unique way to
partition A0 by a set P0,� of 2�d translates of B−�. Fix p ∈ [2,∞) and f ∈ F(p).
Then, for all v, v′ ∈ Rd , we have∣∣f̂ (p)(v)

∣∣ = ∣∣f (v)/
(
1 + |v|p)∣∣ ≤ 1,

∣∣f̂ (p)(v) − f̂ (p)(v′)∣∣ ≤ ∣∣v − v′∣∣.
For B ∈ Pk,2, set aB = 〈f̂ (p)〉B , and note that |aB | ≤ 1. For � ≥ 3 and B ∈ Pk,�,
set aB = 〈f̂ (p)〉B − 〈f̂ (p)〉π(B), where π(B) is the unique element of Pk,�−1 con-
taining B , and note that |aB | ≤ 2k−�+1cd . Set c′

d = 4 ∨ (2cd), then |aB | ≤ 2k−�c′
d

for all B ∈ Pk,�, for all k ≥ 0 and all � ≥ 2. Fix δ ∈ (0,1], and for B ∈ Pk,�, set

hB(v) = 2(1+δ)k(1 + |v|p)
1B(v).
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Define a function gk , supported on Ak , by

f 1Ak
=

L∑
�=2

∑
B∈Pk,�

aB

(
1 + |v|p)

1B(v) + gk.

Fix K ∈ N, and set g = ∑K
k=0 gk + f 1Bc

K
. Note that ĝ

(p)
k = f̂ (p) − 〈f̂ (p)〉B on B

for all B ∈ Pk,L. For v ∈ Ak , we have |v| ≥ 2k−1, so

∣∣ĝ(p)
k (v)

∣∣ ≤ 2k+1−Lcd ≤ 2−L+2cd

(
1 + |v|).

For v ∈ Bc
K , we have |v| ≥ 2K−1, so |f̂ (p)(v)| ≤ 2−K+1|v|. Set c′′

d = (8cd) ∨ 4.
Then, for all v ∈ Rd , we have∣∣g(v)

∣∣ ≤ {
2−L+2cd

(
1+|v|)+2−K+1|v|}(1+|v|p) ≤ (

2−K +2−L)
c′′
d

(
1+|v|p+1)

.

Now

f =
L∑

�=2

K∑
k=0

∑
B∈Pk,�

2−(1+δ)kaBhB + g

so ∫ t

0

〈
fsT , dMN

s

〉
(45)

=
L∑

�=2

K∑
k=0

∑
B∈Pk,�

2−(1+δ)kaB

∫ t

0

〈
hB

sT , dMN
s

〉 + ∫ t

0

〈
gsT , dMN

s

〉
,

where hB
sT = EsT hB and gsT = EsT g. It will be convenient to set

E(p) = exp
{
c(p)m∗(p + 1)T

}
and

c(d, δ) = (
1 − 2−2δ)−1/2

c′
d, A = (

2−K + 2−L)
c′′
dE(p + 1).

Note that 2−(1+δ)k|aB | ≤ 2−�−δkc′
d for all B ∈ Pk,�, and Pk,� has cardinality at

most 2d�, so

K∑
k=0

∑
B∈Pk,�

(
2−(1+δ)kaB

)2 ≤ 2(d−2)�c(d, δ)2.

Also, by Proposition 4.1, for all s ∈ [0, T ], we have∣∣gsT (v)
∣∣ ≤ A

(
1 + |v|p+1)

.
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We use Cauchy–Schwarz in (45) to obtain

sup
t≤T

sup
f ∈F(p)

∫ t

0

〈
fsT , dMN

s

〉

≤
L∑

�=2

2(d/2−1)�c(d, δ)

(
K∑

k=0

∑
B∈Pk,�

sup
t≤T

∣∣∣∣
∫ t

0

〈
hB

sT , dMN
s

〉∣∣∣∣
2
)1/2

(46)

+ A

∫ T

0

〈
1 + |v|p+1,

∣∣dMN
s

∣∣〉.
Set

h(v) = (
1 + |v|p) K∑

k=0

2(1+δ)k1Ak
(v)

=
K∑

k=0

∑
B∈Pk,�

hB(v).

Note that 1∨|v| ≥ 2k−1 for all v ∈ Ak and all k. Set q = p+1+δ and A′ = 8E(q).
Then

h(v) ≤ 21+δ(1 ∨ |v|)1+δ(1 + |v|p) ≤ 8
(
1 + |v|q)

,

so by Proposition 4.1,

E(s,v)〈h,�T 〉 ≤ A′(1 + |v|q)
.

Note that |hB
sT (v)| ≤ E(s,v)〈hB,�T 〉, so

K∑
k=0

∑
B∈Pk,�

(
hB

sT (v)
)2 ≤ (

E(s,v)〈h,�T 〉)2 ≤ (
A′)2(

1 + |v|q)2
.

Hence, for some constant C(q) < ∞, we have

K∑
k=0

∑
B∈Pk,�

{
hB

sT

(
v′) + hB

sT

(
v′∗

) − hB
sT (v) − hB

sT (v∗)
}2

≤ 4
K∑

k=0

∑
B∈Pk,�

{
hB

sT

(
v′)2 + hB

sT

(
v′∗

)2 + hB
sT (v)2 + hB

sT (v∗)2}

≤ 4
(
A′)2

E(q)2{(
1 + ∣∣v′∣∣q)2 + (

1 + ∣∣v′∗
∣∣q)2 + (

1 + |v|q)2 + (
1 + |v∗|q)2}

≤ C(q)
(
A′)2(

1 + |v|2q + |v∗|2q)
.
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Then, by Doob’s L2-inequality,

K∑
k=0

∑
B∈Pk,�

E

(
sup
t≤T

∣∣∣∣
∫ t

0

〈
hB

sT , dMN
s

〉∣∣∣∣
2)

= 4

N

K∑
k=0

∑
B∈Pk,�

E

∫ T

0

∫ {
hB

sT

(
v′) + hB

sT

(
v′∗

) − hB
sT (v) − hB

sT (v∗)
}2

× B(v − v∗, dσ )μN
s−(dv)μN

s−(dv∗) ds

≤ C(q)(A′)2

N
E

∫ T

0

∫ {
1 + |v|2q + |v∗|2q}|v − v∗|μN

s−(dv)μN
s−(dv∗) ds

≤ C(q)(A′)2

N
E

∫ T

0

〈|v|2q+1,μN
s

〉
ds.

On the other hand, we have∫ T

0

〈
1 + |v|p+1,

∣∣dMN
s

∣∣〉

≤
∫ T

0

∫ {
4 + ∣∣v′∣∣p+1 + ∣∣v′∗

∣∣p+1 + |v|p+1 + |v∗|p+1}
× (m + m̄)(dv, dv∗, dσ, ds),

where the measures m and m̄ are as defined in Section 2. We split the integral using
m + m̄ = (m − m̄) + 2m̄ and use the L2-isometry for integrals with respect to the
compensated measure m − m̄ to obtain

E

(∣∣∣∣
∫ T

0

〈
1 + |v|p+1,

∣∣dMN
s

∣∣〉∣∣∣∣
2)

≤ C(p)E

∫ T

0

∫ {
1 + |v|p+1 + |v∗|p+1}2

dm̄

+ C(p)E

(∣∣∣∣
∫ T

0

∫ {
1 + |v|p+1 + |v∗|p+1}

dm̄

∣∣∣∣
2)

(47)

≤ C(p)E

∫ T

0

〈|v|2p+3,μN
s

〉
ds + C(p)E

∣∣∣∣
∫ T

0

〈|v|p+2,μN
s

〉
ds

∣∣∣∣
2

≤ C(p)(1 + T )E

∫ T

0

〈|v|2p+3,μN
s

〉
ds,

where the constant C(p) < ∞ varies from line to line. In the final inequality, we
dealt with the second term on the right by writing |v|p+2 = |v||v|p+1, applying
Cauchy–Schwarz and then using the fact that 〈1,μN

t 〉 = 〈|v|2,μN
t 〉 = 1. We take
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L2-norms in (46) to obtain∥∥∥∥sup
t≤T

sup
f ∈F(p)

∫ t

0

〈
fsT , dMN

s

〉∥∥∥∥
2

≤
(

L∑
�=2

2(d/2−1)�c(d, δ)A′
(

C(q)

N

)1/2

+ A
(
C(p)(1 + T )

)1/2
)

×
(
E

∫ T

0

〈|v|2q+1,μN
s

〉
ds

)1/2

.

Recall that A = (2−K + 2−L)c′′
dE(p + 1), A′ = 8E(q), L = �log2 N/d� and q =

p + 1 + δ. Note that 2(d/2−1)LN−1/2 ≤ N−1/d and 2−L ≤ 2N−1/d . Hence, on
letting K → ∞, we deduce that, for some constant C(d, δ,p) < ∞,∥∥∥∥sup

t≤T

sup
f ∈F(p)

∫ t

0

〈
fsT , dMN

s

〉∥∥∥∥
2

(48)

≤ CN−1/deCm∗(p+2+δ)T

(
E

∫ T

0

〈|v|2p+3+2δ,μN
s

〉
ds

)1/2

.

This is not the inequality (43) we seek because fsT rather than fst appears on the
right-hand side. However, it will prove to be a useful first step.

We now turn to the proof of (43). It will suffice to deal with the case where
T = 2−J0 for some J0 ∈ Z. Set τj (t) = 2−j�2j t�. Then, for all t ∈ (0, T ], we have
τJ0(t) = T so, for J ≥ J0 and s ∈ [0, t],

fst = fsT +
J∑

j=J0+1

(fsτj (t) − fsτj−1(t)) + (fst − fsτJ (t))

and hence ∥∥∥∥sup
t≤T

sup
f ∈F(p)

∫ t

0

〈
fst , dMN

s

〉∥∥∥∥
2

≤
∥∥∥∥sup
t≤T

sup
f ∈F(p)

∫ t

0

〈
fsT , dMN

s

〉∥∥∥∥
2

(49)

+
J∑

j=J0+1

∥∥∥∥sup
t≤T

sup
f ∈F(p)

∫ t

0

〈
fsτj (t) − fsτj−1(t), dMN

s

〉∥∥∥∥
2

+
∥∥∥∥sup
t≤T

sup
f ∈F(p)

∫ t

0

〈
fst − fsτJ (t), dMN

s

〉∥∥∥∥
2
.

Fix j ≥ J0 +1 and, for i = 0,1, . . . ,2jT , set ti = i2−j . Note that, for t ∈ (ti−1, ti],
we have

fsτj (t) − fsτj−1(t) =
{

fsti − fsti+1, if i is odd,

0, if i is even.
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Set f (i) = f − fti ti+1 . We can take s = ti , t = ti+1 and ρ1
r = ρr , ρ2

r = 0 for all r in
Proposition 6.1 to obtain ∥∥f (i)

∥∥
(p+1) ≤ A′′2−j ,

where

A′′ = C(p)κeC(p)m∗(p+2)T m∗(p + 1).

For s ∈ [0, ti], set f
(i)
s = Esti f

(i) = fsti − fsti+1 . Write

Xij = sup
t∈(ti−1,ti ]

sup
f ∈F(p)

∫ t

0

〈
f (i)

s , dMN
s

〉
and note that

sup
t≤T

sup
f ∈F(p)

∫ t

0

〈
fsτj (t) − fsτj−1(t), dMN

s

〉 ≤ sup
i≤2j T

Xij .

Set

A′′′ = CA′′N−1/deCm∗(p+3+δ)T

(
E

∫ T

0

〈|v|2p+5+2δ,μN
s

〉
ds

)1/2

,

where C is the constant C(d, δ,p + 1) from (48). We replace T by ti , p by p + 1
and f by f (i)/‖f (i)‖(p+1) in (48) to see that

‖Xij‖2 ≤ 2−jA′′′.

Then
J∑

j=J0+1

∥∥∥ sup
i≤2j T

Xij

∥∥∥
2
≤

J∑
j=J0+1

(
2jT

)1/22−jA′′′ ≤ 3T A′′′,(50)

so there is a constant C(d, δ,p) < ∞ such that

J∑
j=J0+1

∥∥∥∥sup
t≤T

sup
f ∈F(p)

∫ t

0

〈
fsτj (t) − fsτj−1(t), dMN

s

〉∥∥∥∥
2

(51)

≤ Cm∗(p + 1)T κN−1/deCm∗(p+3+δ)T

(
E

∫ T

0

〈|v|2p+5+2δ,μN
s

〉
ds

)1/2

.

Finally, we can take t = τJ (t), ρ1
r = ρr and ρ2

r = ρr1{r≤t} for all r in Proposi-
tion 6.1 to obtain

‖fst − fsτJ (t)‖(p+1) ≤ A′′2−J

for all s ≤ t ≤ T . Hence∫ t

0

〈
fst − fsτJ (t), dMN

s

〉 ≤ 2−J A′′E
∫ T

0

〈
1 + |v|p+1,

∣∣dMN
s

∣∣〉,
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so estimate (47) shows that, as J → ∞,∥∥∥∥sup
t≤T

sup
f ∈F(p)

∫ t

0

〈
fst − fsτJ (t), dMN

s

〉∥∥∥∥
2
→ 0.

Hence (43) follows from (48), (49) and (51). The proof is the same for d = 2
except that we get N−1/2 log2 N in place of N−1/d in (48) and (51). �

PROOF OF PROPOSITION 7.2. Fix p ∈ [2,∞) and f ∈ F(p). We follow the
preceding proof to obtain, for t ≤ T ,∫ t

0

〈
f̃sT , dMN

s

〉
(52)

=
L∑

�=2

K∑
k=0

∑
B∈Pk,�

2−(1+δ)kaB

∫ t

0

〈
h̃B

sT , dMN
s

〉 + ∫ t

0

〈
g̃sT , dMN

s

〉
,

where f̃sT = (E1
sT −E2

sT )f , h̃B
sT = (E1

sT −E2
sT )hB and g̃sT = (E1

sT −E2
sT )g. By

Proposition 6.1, we have ∣∣g̃sT (v)
∣∣ ≤ Ã

(
1 + |v|p+2)

,

where

Ã = (
2−K + 2−L)

c′′
dCT d∗(p + 2)eCm̄∗(p+3)T

and C = C(p + 1) < ∞. Note that∣∣h̃B
sT (v)

∣∣ = ∣∣E(s,v)

〈
hB, �̃1

T − �̃2
T

〉∣∣ ≤ E(s,v)

〈
hB, �̂1

T + �̂2
T

〉
,

so by Lemma 6.2,

K∑
k=0

∑
B∈Pk,�

(
h̃B

sT (v0)
)2 ≤ 64

(
E(s,v0)

〈
1 + |v|q, �̂1

T + �̂2
T

〉)2 ≤ (
Ã′)2(

1 + |v0|q+1)2
,

where

Ã′ = CT d∗(q + 1)eCm̄∗(q+2)T

and C = C(q + 1) < ∞. We continue to follow the steps of the preceding proof to
arrive at ∥∥∥∥sup

t≤T

sup
f ∈F(p)

∫ t

0

〈
f̃sT , dMN

s

〉∥∥∥∥
2

≤
(

L∑
�=2

2(d/2−1)�c(d, δ)Ã′
(

C

N

)1/2

+ Ã
(
C(1 + T )

)1/2
)

×
(
E

∫ T

0

〈|v|2q+3,μN
s

〉
ds

)1/2

.
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Replace Ã, Ã′, L and q by their values and let K → ∞ to deduce that, for some
constant C(d, δ,p) < ∞,∥∥∥∥sup

t≤T

sup
f ∈F(p)

∫ t

0

〈
f̃sT , dMN

s

〉∥∥∥∥
2

≤ CT d∗(p + 2 + δ)N−1/deCm̄∗(p+3+δ)T(53)

×
(
E

∫ T

0

〈|v|2p+5+2δ,μN
s

〉
ds

)1/2

.

Now ∥∥∥∥sup
t≤T

sup
f ∈F(p)

∫ t

0

〈
f̃st , dMN

s

〉∥∥∥∥
2

≤
∥∥∥∥sup
t≤T

sup
f ∈F(p)

∫ t

0

〈
f̃sT , dMN

s

〉∥∥∥∥
2

(54)

+
J∑

j=J0+1

∥∥∥∥sup
t≤T

sup
f ∈F(p)

∫ t

0

〈
f̃sτj (t) − f̃sτj−1(t), dMN

s

〉∥∥∥∥
2

+
∥∥∥∥sup
t≤T

sup
f ∈F(p)

∫ t

0

〈
f̃st − f̃sτJ (t), dMN

s

〉∥∥∥∥
2
,

and the final term tends to 0 as J → ∞. We consider the case where ρ1
t = ρt and

ρ2
t = 0 for all t , from which the general case follows by the triangle inequality.

Then f 2
st = f for all s and t , so f̃sτj (t) − f̃sτj−1(t) = fsτj (t) − fsτj−1(t). We then

use (53) for the first term on the right in (54), use (51) for the sum over j and let
J → ∞ to obtain the claimed estimate. �

8. Proof of Theorem 1.2. We seek to show that, for p > 8 and ε > 0, for
N ≤ N ′ and any two Kac processes (μN

t )t≥0 and (μN ′
t )t≥0 with collision kernel B ,

which are adapted to a common filtration (Ft )t≥0, with probability exceeding 1 −
ε, for all t ∈ [0, T ], we have

W
(
μN

t ,μN ′
t

) = sup
f ∈F

〈
f,μN

t − μN ′
t

〉 ≤ C
(
W

(
μN

0 ,μN ′
0

) + N−1/d)
for some constant C < ∞ depending only on B,d, ε, λ,p and T , where λ is an
upper bound for 〈|v|p,μN

0 〉 and 〈|v|p,μN ′
0 〉. Recall the representation formula of

Proposition 4.2. For all f ∈ F , we have

〈
f,μN

t − μN ′
t

〉 = 〈
f0t ,μ

N
0 − μN ′

0
〉 + ∫ t

0

〈
fst , dMN

s

〉 − ∫ t

0

〈
fst , dMN ′

s

〉
,

where MN is given by (4) and fst (v) = Estf (v) = E(s,v)〈f, �̃t 〉, with (�∗
t )t≥s a

linearized Kac process in environment ρt = (μN
t + μN ′

t )/2. We showed a suitable
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bound for 〈f0t ,μ
N
0 − μN ′

0 〉 in Section 5. We now show that the stochastic convo-
lution estimates just obtained allow us to control

∫ t
0 〈fst , dMN

s 〉 with rate N−1/d ,
notwithstanding the fact that the functions fst depend on the random environment
(ρr)r∈[s,t] and therefore are anticipating.

It will suffice to consider the case where p ∈ (8,9] and T = 2−J0 for some
J0 ∈ Z. Set δ = (p − 8)/6. Set σj (t) = 2−j�2j t�, and note that σJ0(t) = 0 for all

t < T . Set ρ
j
t = ρσj (t), and define

E
j
stf (v) = E(s,v)

〈
f, �̃

j
t

〉
,

where (�
j,∗
t )t≥s is a linearized Kac process in environment (ρ

j
t )t≥0 starting

from v. Then, for t ≤ T and J ≥ J0, we have∫ t

0

〈
Estf, dMN

s

〉 = ∫ t

0

〈
E

J0
st f, dMN

s

〉 + J∑
j=J0+1

∫ t

0

〈(
E

j
st − E

j−1
st

)
f, dMN

s

〉
(55)

+
∫ t

0

〈(
Est − EJ

st

)
f, dMN

s

〉
.

Note that ρ
J0
t = ρ0 for all t < T . Take p = 2 in Proposition 7.1 to see that, for

some constant C(d, δ) < ∞, we have∥∥∥∥sup
t≤T

sup
f ∈F

∫ t

0

〈
E

J0
st f, dMN

s

〉∥∥∥∥
2

(56)

≤ CκN−1/deC〈1+|v|5+δ,ρ0〉T
(
E

∫ T

0

〈
1 + |v|9+2δ,μN

s

〉
ds

)1/2

.

Fix j , and set ti = i2−j . Note that, for t ∈ [ti , ti+1),

ρ
j
t − ρ

j−1
t =

{
0, if i is even,

ρti − ρti−1, if i is odd.

We have∫ t

0

〈(
E

j
st − E

j−1
st

)
f, dMN

s

〉

=
�2j t�−1∑

i=0

∫ ti+1

ti

〈(
E

j
st − E

j−1
st

)
f, dMN

s

〉 + ∫ t

σj (t)

〈(
E

j
st − E

j−1
st

)
f, dMN

s

〉
.

For s ≤ ti+1 ≤ t , we have E
j
st = E

j
sti+1

E
j
ti+1t

so, for all f ∈ F ,∫ t

0

〈(
E

j
st − E

j−1
st

)
f, dMN

s

〉

≤
�2j t�−1∑

i=0

∥∥Ej
ti+1t

f − E
j−1
ti+1t

f
∥∥
(3) sup

f ∈F(3)

∫ ti+1

ti

〈
E

j
sti+1

f, dMN
s

〉
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+
�2j t�−1∑

i=0

∥∥Ej−1
ti+1t

f
∥∥ sup

f ∈F

∫ ti+1

ti

〈(
E

j
sti+1

− E
j−1
sti+1

)
f, dMN

s

〉

+
∫ t

σj (t)

〈(
E

j
st − E

j−1
st

)
f, dMN

s

〉
.

Fix A ≥ 1, and consider the event �0 = �1 ∩ �2 ∩ �3, where

�1 =
{

sup
t≤T

〈
1 + |v|5+δ, ρt

〉 ≤ A
}
,

�2 =
{∫ T

0

〈
1 + |v|3, ∣∣ρj

t − ρ
j−1
t

∣∣〉dt ≤ A2−j (1−δ) for all j ≥ J0 + 1
}
,

�3 =
{∫ T

0

〈
1 + |v|3, ∣∣ρJ

t − ρt

∣∣〉dt ≤ A2−J

}
.

By Proposition 3.1, there is an absolute constant C < ∞ such that

E
(
sup
t≤T

〈
1 + |v|5+δ, ρt

〉) ≤ Cλ(1 + T ), E
(〈

1 + |v|3, |ρt − ρs |〉) ≤ Cλ|t − s|
so

E

∫ T

0

〈
1 + |v|3, ∣∣ρj

t − ρ
j−1
t

∣∣〉dt ≤ CT λ2−j ,

E

∫ T

0

〈
1 + |v|3, ∣∣ρJ

t − ρt

∣∣〉dt ≤ CT λ2−J .

Hence

P(� \ �1) ≤ Cλ(1 + T )A−1, P(� \ �3) ≤ CλT A−1

and

P(� \ �2) ≤
∞∑

j=J0+1

CT λA−12−jδ = CT 1−δλA−1(
2δ − 1

)−1
.

Hence we can choose A(ε,λ,p,T ) < ∞ such that P(�0) ≥ 1 − ε/2. By Propo-
sition 6.1, there is an absolute constant C < ∞ such that, for f ∈ F and i ≤
σj (t) − 1,∥∥Ej

ti+1t
f − E

j−1
ti+1t

f
∥∥
(3)

≤ Cκ exp
{
C

∫ t

ti+1

〈
1 + |v|4, ρj

s + ρj−1
s

〉
ds

}∫ t

ti+1

〈
1 + |v|3, ∣∣ρj

s − ρj−1
s

∣∣〉ds.

Also, by Proposition 4.1,

∥∥Ej−1
ti+1t

f
∥∥ ≤ 3

(
1 + 6κ(t − ti+1)

)
exp

{
8

∫ t

ti+1

〈
1 + |v|3, ρj−1

s

〉
ds

}
.
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So, on �0, for some absolute constant C < ∞, we have

sup
t≤T

sup
f ∈F

∫ t

0

〈(
E

j
st − E

j−1
st

)
f, dMN

s

〉

≤ CAκeCAT
2j T −1∑

i=0

(
2−j (1−δ) sup

f ∈F(3)

∫ ti+1

ti

〈
E

j
sti+1

f, dMN
s

〉

+ sup
t∈[ti ,ti+1]

sup
f ∈F

∫ t

ti

〈(
E

j
st − E

j−1
st

)
f, dMN

s

〉)
.

Set Ft = σ {μN
s ,μN ′

s : s ∈ [0, t]}. We apply Propositions 7.1 and 7.2 conditionally
on Fti to obtain, for some constant C(d, δ) < ∞,∥∥∥∥ sup

f ∈F(3)

∫ t

ti

〈
E

j
stf, dMN

s

〉
1{〈1+|v|5+δ,ρti

〉≤A}
∥∥∥∥

2

≤ CκeCA2−j

N−1/d

(
E

∫ ti+1

ti

〈|v|9+2δ,μN
s

〉
ds

)1/2

and ∥∥∥∥ sup
t∈[ti ,ti+1]

sup
f ∈F

∫ t

ti

〈(
E

j
st − E

j−1
st

)
f, dMN

s

〉
1{〈1+|v|5+δ,ρti

〉≤A}
∥∥∥∥

2

≤ CA2−j κeCA2−j

N−1/d

(
E

∫ ti+1

ti

〈|v|9+2δ,μN
s

〉
ds

)1/2

.

By Proposition 3.1, there is a constant C(B,p) < ∞ such that

E

∫ ti+1

ti

〈|v|9+2δ,μN
s

〉
ds ≤

∫ ti+1

ti

Cλ
(
1 + tp−9−2δ)dt = Cλ

(
2−j + 2−4δj /(4δ)

)
.

Hence, for constants C(B,d,p) < ∞,∥∥∥∥sup
t≤T

sup
f ∈F

∫ t

0

〈(
E

j
st − E

j−1
st

)
f, dMN

s

〉
1�0

∥∥∥∥
2

≤ CA2λ1/2κ2eCAT 2jT
(
2−j (1−δ) + 2−j )(

2−j/2 + δ−1/22−2jδ)N−1/d(57)

≤ Aλ1/2κ2eCAT (
2−jδ + 2−j/2)

N−1/d .

Here, we absorbed 4δ−1/2CAT into eCAT in the second inequality by changing
the constant C. By Proposition 6.1, there is an absolute constant C < ∞ such that,
for all f ∈ F and s ≤ t ≤ T ,∣∣EJ

stf (v) − Estf (v)
∣∣

≤ Cκ
(
1 + |v|3)

exp
{
C

∫ T

0

〈
1 + |v|4, ρJ

t + ρt

〉
dt

}∫ t

s

〈
1 + |v|3, ∣∣ρJ

r − ρr

∣∣〉dr.
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So, on �0, we have∣∣EJ
stf (v) − Estf (v)

∣∣ ≤ CAκeCAT 2−J (
1 + |v|3)

,

and so as J → ∞,∥∥∥∥sup
t≤T

sup
f ∈F

∫ t

0

〈(
EJ

st − Est

)
f, dMN

s

〉
1�0

∥∥∥∥
2

(58)

≤ CAκeCAT 2−J

∥∥∥∥
∫ T

0

〈
1 + |v|3, ∣∣dMN

s

∣∣〉∥∥∥∥
2
→ 0.

Finally, we use estimates (56), (57) and (58) in (55) and let J → ∞ to obtain a
constant C(B,d, ε, λ,p,T ) < ∞ such that∥∥∥∥sup

t≤T

sup
f ∈F

∫ t

0

〈
Estf, dMN

s

〉
1�0

∥∥∥∥
2
≤ CN−1/d .

An analogous estimate holds for N ′, and Theorem 1.2 then follows by Chebyshev’s
inequality.

9. Properties of the distance function. Recall that W :S × S → [0,4] is
defined by

W(μ,ν) = sup
f ∈F

〈f,μ − ν〉,

where F is the set of functions f on Rd such that |f̂ (v)| ≤ 1 and |f̂ (v)− f̂ (v′)| ≤
|v − v′| for all v, v′, where f̂ (v) = f (v)/(1 + |v|2).

PROPOSITION 9.1. The metric space (S,W) is complete and separable.

PROOF. Write P for the set of Borel probability measures on Rd , and define
� :S → P by �(μ)(dv) = 1

2(1 + |v|2)μ(dv). Write W
ρ
1 for the Wasserstein-1

metric on P associated with the bounded metric ρ(v, v′) = |v − v′| ∧ 2 on Rd .
Then W(μ,ν) = 2W

ρ
1 (�(μ),�(ν)) for all μ,ν ∈ S . Now (P,W

ρ
1 ) is complete

and separable, and �(S) is closed in P under W
ρ
1 , so (S,W) is also complete and

separable. �

We will prove two approximation schemes for a measure μ in the Boltzmann
sphere S , by empirical distributions of systems of N particles. The first uses the
empirical distribution μN = 1

N

∑N
i=1 δVi

of a sample of N independent random
variables V1, . . . , VN with distribution μ. The convergence of μN to μ has been ex-
tensively investigated for standard Wasserstein distances; see [4] or [5]. We modify
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some of the simpler ideas from [5] to obtain estimates for the weighted Wasser-
stein distance W used in this paper. The sample empirical distribution μN is not,
however, a random variable in the Boltzmann sphere. Set

V̄N = 1

N

N∑
i=1

Vi, SN = 1

N

N∑
i=1

|Vi − V̄ |2, Ṽi = S
−1/2
N (Vi − V̄N ).

On the event {SN > 0}, define the rescaled empirical distribution μ̃N =
1
N

∑N
i=1 δ

Ṽi
. On the event {SN = 0}, we take μ̃N to be some arbitrary element

of SN . Then μ̃N is a random variable in SN . We will quantify the convergence
of μ̃N to μ in weighted Wasserstein distance, using the convergence of μN as an
intermediate step.

PROPOSITION 9.2. For all d ≥ 3 and all μ ∈ S , we have E(W(μN,μ)) → 0
as N → ∞. Set

β = β(p) =
{

(p − 2)/(p + d), if p ∈ (
2,3d/(d − 1)

)
,

1/d, if p ∈ [3d/(d − 1),∞).

For all p ∈ (2,∞) \ {3d/(d − 1)}, there is a constant C(d,p) < ∞ such that, for
all N ∈ N,

E
(
W

(
μN,μ

)) ≤ C
〈|v|p,μ

〉
N−β.(59)

For d = 2 and p ∈ (2,∞) \ {3d/(d − 1)}, or for d ≥ 3 and p = 3d/(d − 1), the
same estimate holds with an additional factor of log(N + 1) on the right-hand
side. In the case when both d = 2 and p = 6, the additional factor is squared.

PROPOSITION 9.3. The conclusions of Proposition 9.2 remain valid if μN is
replaced by μ̃N and β is replaced by β̃ = β ∧ ((p − 2)2/(3p − 4)). Moreover,
the constant C may be chosen so that, for all N ∈ N, there is an event �(1/4), of
probability exceeding 1 − C〈|v|p,μ〉N−(p/4)∧(p/2−1), such that

E
(〈|v|p, μ̃N 〉

1�(1/4)

) ≤ C
〈|v|p,μ

〉
.

It is simple to check that β̃ = β whenever d ≥ 2 and p ≥ 3. The following
example shows that the exponent β(p) cannot be improved for p ∈ (2,3d/(d −1))

and hence that the moment threshold p = 3d/(d −1) for convergence with optimal
rate N−1/d also cannot be improved. Fix p > 2 and q > d + p, and consider the
measure μ(dv) = c1{|v|>r}|v|−q dv where c and r are determined so that μ ∈ S .
Then 〈|v|p,μ〉 < ∞. Define

fN(v) = (
dist

(
v, suppμN ) ∧ 1

)(
1 + |v|2)

.

Then fN ∈ F , so

E
(
W

(
μ,μN )) ≥ E

(〈
fN,μ − μN 〉) = E

(〈fN,μ〉).
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There are constants a < ∞ and r0 ≥ r such that μ({u ∈ Rd : |u − v| ≥ 1}) ≥
e−a|v|−q

whenever |v| ≥ r0. Then dist(v, suppμN) ≥ 1 with probability at least
e−Na|v|−q

. Hence

E
(〈fN,μ〉) ≥ cσd−1

∫ ∞
r0

e−Nat−q

td+1−q dt

= cσd−1N
−1+(d+2)/q

∫ ∞
r0N

−1/q
e−as−q

sd+1−q ds.

Consider the limit q → p + d in the case p < 3d/(d − 1). Then 1 − (d + 2)/q →
(p − 2)/(p + d) < 1/d , so we have justified the claims made above.

PROOF OF PROPOSITION 9.2. The following estimate is known for the N -
sample empirical distribution μN

0 of a probability measure μ0 supported on B0 =
(−1,1]d . For all d ≥ 3, there is a constant C(d) < ∞ such that, for all N ∈ N, we
have

E
(
W1

(
μN

0 ,μ0
)) ≤ C(d)N−1/d .(60)

Here, W1 denotes the Wasserstein-1 distance for the Euclidean metric on Rd . For
completeness, and since it may be read as a warm-up for the proof of Proposi-
tion 7.1, we give a proof. Fix L ∈ N. For � = 0,1, . . . ,L − 1, we can partition B0
as a set P� of 2�d translates of (−2−�,2−�]d . Fix a function f on Rd with f (0) = 0
and |f (v) − f (v′)| ≤ |v − v′| for all v, v′ ∈ B0. Then we can write

f =
L−1∑
�=0

∑
B∈P�

aB1B + g,

where aB0 = 〈f 〉B0 and aB = 〈f 〉B − 〈f 〉π(B) for B ∈ P� and � ≥ 1. Here we have
written 〈f 〉B for the average of f over B and π(B) for the unique element of P�−1
containing B . By (41) and (42), we have |aB | ≤ 2−�+1cd for all B ∈ P� and all �,
and |g(v)| ≤ 2−L+2cd . So, by Cauchy–Schwarz,

〈
f,μN

0 − μ0
〉 = L−1∑

�=0

∑
B∈P�

aB

(
μN

0 (B) − μ0(B)
) + 〈

g,μN
0 − μ0

〉

≤ 2cd

L−1∑
�=0

2(d−2)�/2
( ∑

B∈P�

(
μN

0 (B) − μ0(B)
)2

)1/2

+ 8cd2−L.

The right-hand side does not depend on f , so it is an upper bound for W1(μ
N
0 ,μ0),

by duality. Note that var(μN
0 (B)) ≤ μ0(B)/N . Now take expectations and use

Cauchy–Schwarz again to obtain

E
(
W1

(
μN

0 ,μ0
)) ≤ 2cd

L−1∑
�=0

2(d−2)�/2N−1/2 + 8cd2−L.
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We optimize at L = �log2(N + 1)/d� to obtain (60). The same argument produces
N−1/2 log2(N + 1) on the right when d = 2.

Set Bk = 2kB0. Fix K ∈ N∪{∞}, and partition Rd as
⋃K

k=0 Ak , where A0 = B0,
Ak = Bk \ Bk−1 for 1 ≤ k < K , and AK = Rd \ (

⋃K−1
k=0 Ak). Set pk = μ(Ak) and

write μk for the conditional distribution of μ on Ak . Write Nk for the number of
elements of the sample falling in Ak and write μ

Nk

k for the empirical distribution
of this sub-sample. Set p̂k = Nk/N . Then

μ =
K∑

k=0

pkμk, μN =
K∑

k=0

p̂kμ
Nk

k .

Fix a function f on Rd such that |f̂ (v)| ≤ 1 and |f̂ (v) − f̂ (v′)| ≤ |v − v′| for all
v, v′, where f̂ (v) = f (v)/(1 + |v|2). Then, for all k and all v, v′ ∈ Bk , we have∣∣f (v)

∣∣ ≤ 1 + d22k,∣∣f (v) − f
(
v′)∣∣ ≤ (

2 + |v|2 + ∣∣v′∣∣2)∣∣v − v′∣∣ ≤ 2
(
1 + d22k)∣∣v − v′∣∣.

Hence

〈
f,μN − μ

〉 = K−1∑
k=0

p̂k

〈
f,μ

Nk

k − μk

〉 + (p̂k − pk)〈f,μk〉 + 〈
f, p̂Kμ

NK

K − pKμK

〉

≤
K−1∑
k=0

(
1 + d22k){2p̂kW1

(
μ

Nk

k ,μk

) + |p̂k − pk|}

+ 〈(
1 + |v|2)

1AK
, p̂Kμ

NK

K + pKμK

〉
.

Note the inequalities

E|p̂k − pk| ≤ (2pk) ∧ (pk/N)1/2 ≤ 2N−1/dp
1−1/d
k ,E

(
p̂

1−1/d
k

) ≤ p
1−1/d
k .

Estimate (60) scales from B0 to Bk to give, on the event {Nk ≥ 1},
E

(
W1

(
μ

Nk

k ,μk

)|Nk

) ≤ 2kC(d)N
−1/d
k .

Hence, on taking the supremum over f and then the expectation, we obtain

E
(
W

(
μN,μ

)) ≤
K−1∑
k=0

2k+2(
1 + d22k)C(d)N−1/dp

1−1/d
k + 2

〈(
1 + |v|2)

1AK
,μ

〉
.

Since μ ∈ S , the final term on the right is small for large K , so E(W(μN,μ)) → 0
as N → ∞. If 〈|v|p,μ〉 < ∞ for some p > 2, we can control the right-hand side
using the bounds

K−1∑
k=1

2p(k−1)pk ≤ 〈|v|p,μ
〉
,
〈(

1 + |v|2)
1AK

,μ
〉 ≤ 2−(K−1)(p−2)+1〈|v|p,μ

〉
.
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Finally, we optimize at K = �log2(N + 1)/(d + p)� when p < 3d/(d − 1) and
K = ∞ when p > 3d/(d − 1) to obtain the claimed estimate. �

PROOF OF PROPOSITION 9.3. Set QN = N−1 ∑N
i=1 |Vi |2. Fix δ ∈ (0,1/4],

and consider the event

�(δ) = {|QN − 1| ≤ δ and |V̄N | ≤ δ
}
.

Note that QN = SN + |V̄N |2. On �(δ), by some simple estimation, we have
|S−1/2

N − 1| ≤ 4δ, so |Ṽi − Vi | ≤ (4|Vi | + 2)δ. Hence, in particular, there is a con-
stant C(p) < ∞ such that

E
(〈|v|p, μ̃N 〉

1�(1/4)

) ≤ C(p)E
(〈|v|p,μN 〉) = C(p)

〈|v|p,μ
〉
.

Now, for all f ∈ F , we have

f (Ṽi)−f (Vi) ≤ (|Ṽi −Vi |∧1
)(

2+|Ṽi |2 +|Vi |2) ≤ 24
((

δ + δ|Vi |)∧1
)(

1+|Vi |2)
and so

〈
f, μ̃N − μN 〉 = 1

N

N∑
i=1

(
f (Ṽi) − f (Vi)

) ≤ 24

N

N∑
i=1

((
δ + δ|Vi |) ∧ 1

)(
1 + |Vi |2)

.

Hence

E
(
W

(
μ̃N ,μN )

1�(δ)

) ≤ 24
〈{
(δ + δ|v|) ∧ 1

}(
1 + |v|2)

μ
〉 → 0(61)

as δ → 0.
Since 〈v,μ〉 = 0 and 〈|v|2,μ〉 = 1, we have P(�\�(δ)) → 0 as N → ∞ for all

δ > 0 by the weak law of large numbers. For p ≥ 2, there is a constant C < ∞, de-
pending only on d and p, such that E(|V̄N |p/2)2 ≤ E(|V̄N |p) ≤ C〈|v|p,μ〉N−p/2.
Hence

P
(|V̄N | > δ

) ≤ C
〈|v|p,μ

〉
δ−p/2N−p/4.

For p ≥ 4, since 〈|v|2,μ〉 = 1, C may be chosen so that also E(|QN − 1|p/2) ≤
C〈|v|p,μ〉N−p/4 and so

P
(|QN − 1| > δ

) ≤ C
〈|v|p,μ

〉
δ−p/2N−p/4.

For p ∈ (2,4] we use a different estimate. Set R = √
δN and write Xi = |Vi |2 ∧ R

and X̄ = N−1 ∑N
i=1 Xi and x = E(X1). Then E(X2

1) ≤ 〈|v|p,μ〉R4−p and

|x − 1| ≤ E|X̄ − QN | ≤ 〈|v|21{|v|≥R},μ
〉 ≤ 〈|v|p,μ

〉
R2−p

so

P
(|QN − 1| > δ

) ≤ P
(|QN − X̄| > δ/3

) + P
(|X̄ − x| > δ/3

) + P
(|x − 1| > δ/3

)
≤ 12

〈|v|p,μ
〉
δ−p/2N−(p/2−1).
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Here, for the second inequality, we estimated the first term using Markov’s in-
equality, the second using Chebyshev and noted that the third term vanishes ex-
cept in cases where the final estimate exceeds 1. We combine these estimates to
see that there is a constant C < ∞, depending only on d and p, such that, for all
δ ∈ (0,1/4],

P
(
� \ �(δ)

) ≤ Cδ−p/2〈|v|p,μ
〉
N−(p/4)∧(p/2−1).(62)

Now, from (59), (61) and (62), for all p ∈ (2,∞)\ {3d/(d −1)}, all δ ∈ (0,1/4]
and all N ∈N, we have

E
(
W

(
μ̃N ,μ

)) ≤ E
(
W

(
μN,μ

)) +E
(
W

(
μ̃N ,μN )

1�(δ)

) + 4P
(
� \ �(δ)

)
≤ C

(
N−β + δ(p−2)∧1 + δ−p/2N−(p/4)∧(p/2−1))〈|v|p,μ

〉
.

Hence E(W(μ̃N,μ)) → 0 as N → ∞. Moreover, on optimizing over δ, the terms
δ(p−2)∧1 and δ−p/2N−(p/4)∧(p/2−1) can be absorbed in the term N−β , except pos-
sibly when p ∈ (2,3), and in that case we can take δ = (1/4)N−(p−2)/(3p−4) for
the desired estimate. �

10. Spatially homogeneous Boltzmann equation. Given an initial state μ0
in the Boltzmann sphere S , one can ask whether there exists a process (μt )t≥0 in
S such that, for all bounded measurable functions f of compact support in Rd and
all t ≥ 0,

〈f,μt 〉 = 〈f,μ0〉 +
∫ t

0

〈
f,Q(μs,μs)

〉
ds.(63)

Here Q is the Boltzmann operator, defined in equation (5). Such a process would
then be called a measure solution of the spatially homogeneous Boltzmann equa-
tion. While the existence and uniqueness (in law) of the Kac process is elemen-
tary, the existence and uniqueness of measure solutions is a hard question, but one
which, extending a long line of prior works, including [10, 14], has been positively
answered by Lu and Mouhot [11], Theorem 1.5.

After Kac [8], important contributions to understanding the behavior of versions
of the Kac process were made by McKean [12] and Tanaka [16, 17]. Sznitman [15]
gave the first proof for hard spheres that the Kac process converges weakly to solu-
tions of the Boltzmann equation. Mischler and Mouhot [13], Theorem 6.2, proved
a quantitative refinement of Sznitman’s result, using a Wasserstein distance on the
laws of k-samples from the empirical distribution. In recent work, Fournier and
Mischler [6] and Cortez and Fontbona [1] have proved Wasserstein estimates for
some other particle systems associated to the spatially homogeneous Boltzmann
equation.

Our consistency estimate allows a further strengthening of Sznitman’s result. In
the convergence theorem below, we obtain a pathwise estimate, expressed in terms
of a Wasserstein distance on the empirical distribution itself, and we are able to
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show, under suitable moment conditions, that the rate of convergence is the optimal
one for discrete approximations in Wasserstein distance. The convergence results
of both Sznitman and Mischler–Mouhot are expressed in terms of propagation of
chaos, while our estimate may be applied to any initial N -particle system. For
p ≥ 2, define

S(p) = {
μ ∈ S :

〈|v|p,μ
〉
< ∞}

,

and call a solution locally bounded in S(p) if 〈|v|p,μt 〉 is bounded on compact
time intervals. We know from [11], Theorem 1.5, that, for all μ0 ∈ S , there is a
unique solution (μt )t≥0 in S to (63). Sznitman’s theorem assumes μ0 ∈ S(3). The
convergence result of Mischler and Mouhot, which has good long-time properties,
assumes compactly supported initial data or at least an exponential moment.

THEOREM 10.1. Assume that the collision kernel B satisfies conditions (1)
and (2). Let μ0 ∈ S(p) for some p ∈ (2,∞). Then there exists a unique locally
bounded solution (μt )t≥0 to (63) in S(p) starting from μ0. Let ε ∈ (0,1], λ ≥
〈|v|p,μ0〉 and T ∈ [0,∞). Then there exists a constant C(B,d, ε, λ,p,T ) < ∞
with the following property. For all N ∈ N and any Kac process (μN

t )t≥0 in SN

with 〈|v|p,μN
0 〉 ≤ λ, with probability exceeding 1 − ε, for all t ∈ [0, T ], we have

W
(
μN

t ,μt

) ≤ C
(
W

(
μN

0 ,μ0
) + N−α)

,

where α(d,p) is given in Theorem 1.1. For p > 8 and d ≥ 3, we can take α = 1/d .
For p > 8 and d = 2 the estimate holds with N−α replaced by N−1/2 logN .

PROOF. We will prove the first assertion on existence and uniqueness for com-
pleteness, while noting, as discussed above, that a stronger statement is already
known. Let (Vi : i ∈ N) be a sequence of independent random variables in Rd of
distribution μ0. Write V̄N for the sample mean and SN for the sample variance of
V1, . . . , VN . For each N ∈ N, set

νN
0 = 1

N

N∑
i=1

δ
S

−1/2
N (Vi−V̄N )

on the event {SN > 0}, and set νN
0 equal to some arbitrary element of SN otherwise.

Conditioning on νN
0 , let (νN

t )t≥0 be a Kac process in SN starting from νN
0 . Choose

sequences (εk :k ∈ N) in (0,1] and (Tk :k ∈ N) in [0,∞) such that
∑

k εk < ∞ and
Tk → ∞. By Proposition 9.3 and Theorem 1.1, there exists an increasing sequence
(Nk :k ∈ N) in N such that, for all k ∈N, with probability exceeding 1 − εk ,〈|v|p, ν

Nk

0

〉 ≤ C
〈|v|p,μ0

〉
, W

(
ν

Nk

0 ,μ0
) ≤ C

〈|v|p,μ0
〉
εk

and then for all t ≤ Tk

W
(
ν

Nk
t , ν

Nk+1
t

) ≤ C
(
W

(
ν

Nk

0 , ν
Nk+1
0

) + εk

)
.(64)
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By Borel–Cantelli, almost surely, these inequalities hold for all sufficiently
large k, so the sequence ((ν

Nk
t )t≥0 :k ∈ N) is Cauchy in the Skorohod space

D([0,∞), (S,W)), and hence converges, with limit (νt )t≥0 say, since D([0,∞),

(S,W)) is complete.
By Fatou’s lemma and the moment estimate (14),

E
(
sup
s≤t

〈|v|p, νs

〉) ≤ lim inf
k

E
(
sup
s≤t

〈|v|p, νNk
s

〉
1{〈|v|p,ν

Nk
0 〉≤C〈|v|p,μ0〉}

)
< ∞,

so (νt )t≥0 is locally bounded in S(p) almost surely. Fix a function f on Rd satis-
fying |f (v)| ≤ 1 and |f (v) − f (v′)| ≤ |v − v′| for all v, v′ ∈ Rd . From (64), since
‖f ‖ ≤ 2, we see that 〈f, ν

Nk
t 〉 → 〈f, νt 〉0 uniformly on compact time intervals

almost surely. Consider the equation

〈
f, νN

t

〉 = 〈
f, νN

0
〉 + M

N,f
t +

∫ t

0

〈
f,Q

(
νN
s , νN

s

)〉
ds

with N = Nk in the limit k → ∞. Estimate (7) implies that M
Nk,f
t → 0 uniformly

on compact time intervals in probability. Moreover,〈
f,Q

(
ν

Nk
t , ν

Nk
t

)〉 − 〈
f,Q(νt , νt )

〉 = 〈
gt , ν

Nk
t − νt

〉
,

where

gt (v) =
∫
Rd×Sd−1

{
f

(
v′) + f

(
v′∗

) − f (v) − f (v∗)
}
B(v − v∗, dσ )

(
ν

Nk
t + νt

)
(dv∗)

and, by some straightforward estimation, ‖gt‖ ≤ max{16,12 + 8κ} for all t ≥ 0.
Hence, we can pass to the limit uniformly on compact time intervals in probability
to obtain

〈f, νt 〉 = 〈f,μ0〉 +
∫ t

0

〈
f,Q(νs, νs)

〉
ds

for all t ≥ 0, almost surely. A separability argument shows that almost surely, this
equation holds for all such functions f and all t ≥ 0. So, almost surely, (νt )t≥0 is
a solution, and in particular, a locally bounded solution in S(p) exists.

Now let (μt )t≥0 be any locally bounded solution in S(p) starting from μ0, and
let (μN

t )t≥0 be any Kac process in SN . Then

μN
t − μt = (

μN
0 − μ0

) + MN
t +

∫ t

0
2Q

(
ρs,μ

N
s − μs

)
ds,

where now ρt = (μt +μN
t )/2. The argument of Section 4 applies without essential

change to show that, for all t ≥ 0 and all functions ft on Rd , we have

〈
ft ,μ

N
t − μt

〉 = 〈
f0,μ

N
0 − μ0

〉 + ∫ t

0

〈
fs, dMN

s

〉
,

where fs(v) = E(s,v)〈ft , �̃t 〉) and where (�∗
t )t≥s is a linearized Kac process in

environment (ρt )t≥0. Next, the argument of Section 5 applies to show that, for all
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ε ∈ (0,1] and all T ∈ [0,∞), for all N ∈ N, with probability exceeding 1 − ε, for
all t ≤ T , we have

W
(
μN

t ,μt

) ≤ C
(
W

(
μN

0 ,μ0
) + N−α(d,p)),(65)

where C < ∞ depends only on B,d, ε, λ,p and T , where λ is an upper bound for
〈|v|p,μ0〉 and 〈|v|p,μN

0 〉. Convergence at rate N−1/d could be proved for p > 8
by checking that the arguments leading to the estimate for W(μN

t ,μN ′
t ) apply

also when (μN ′
t )t≥0 is replaced by (μt )t≥0. Alternatively, we can find N ′ so that

(N ′)−α(d,p) ≤ N−1/d and, by Proposition 9.3, W(νN ′
0 ,μ0) ≤ CN−1/d with proba-

bility exceeding 1 − ε. Then, by Theorem 1.1 and (65), with probability exceeding
1 − 3ε, for all t ≤ T , we have

W
(
μN

t ,μt

) ≤ W
(
μN

t , νN ′
t

) + W
(
νN ′
t ,μt

)
≤ C

(
W

(
μN

0 , νN ′
0

) + W
(
νN ′

0 ,μ0
) + N−1/d + (

N ′)−α(d,p))
≤ C

(
W

(
μN

0 ,μ0
) + 4N−1/d)

.

Finally, we can take μ
Nk
t = ν

Nk
t and let k → ∞ to see that μt = νt for all t ≥ 0, so

(νt )t≥0 is the only solution which is locally bounded in S(p). �

We can combine Theorem 10.1 with Proposition 9.3 to obtain the following
stochastic approximation for solutions to the spatially homogeneous Boltzmann
equation.

COROLLARY 10.2. Assume that the collision kernel B satisfies conditions
(1) and (2). Let μ0 ∈ S(p) for some p ∈ (2,∞), and let (μt )t≥0 be the unique
locally bounded solution to (63) in S(p) starting from μ0. Write μN

0 for the ran-
dom variable in SN constructed by sampling from μ0 as in Proposition 9.3, and
conditioning on μN

0 , let (μN
t )t≥0 be a Kac process starting from μN

0 . Then, for all
ε ∈ (0,1], all λ ≥ 〈|v|p,μ0〉 and all T ∈ [0,∞), there are constants α(d,p) > 0
and C(B,d, ε, λ,p,T ) < ∞, such that with probability exceeding 1 − ε, for all
t ≤ T ,

W
(
μN

t ,μt

) ≤ CN−α.

For p > 8, we can take α = 1/d when d ≥ 3, and the estimate holds with
N−1/2 logN in place of N−α when d = 2.

On the other hand, if one views the spatially homogeneous Boltzmann equation
as a means to compute approximations to the Kac process, the following estimate
provides a measure of accuracy for this procedure.

COROLLARY 10.3. Assume that the collision kernel B satisfies conditions (1)
and (2). Fix d ≥ 3, ε ∈ (0,1] and τ, T ∈ (0,∞) with τ ≤ T . There is a constant
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C < ∞, depending only on B , d , ε, τ and T , with the following property. Let
N ∈ N and let (μN

t )t≥0 be a Kac process in SN with collision kernel B . Denote
by (μt )t≥τ the solution to the spatially homogeneous Boltzmann equation with
collision kernel B starting from μN

τ at time τ . Then, with probability exceeding
1 − ε, for all t ∈ [τ, T ], we have W(μN

t ,μt ) ≤ CN−1/d . The same holds for d = 2
if we replace N−1/d by N−1/2 logN .

PROOF. Use (13) to find a constant λ(B, τ, ε) < ∞ such that 〈|v|9,μN
τ 〉 ≤ λ

with probability exceeding 1 − ε/2. Then apply Theorem 10.1 with ε/2 in place
of ε to find the desired constant C. �

APPENDIX

We state and prove a basic lemma on the time-evolution of signed measures,
which allows us to control the evolution of the total variation when the signed
measures are given by an integral over time. Let (E,E) be a measurable space.
Write M+ (resp., M) for the set of finite measures (resp., signed measures of finite
total variation) on (E,E). For μ ∈ M, write |μ| for the associated total variation
measure and ‖μ‖ for the total variation.

LEMMA A.1. Assume that (E,E) is separable. Let T ∈ (0,∞). Let μ0 ∈ M
and λ0 ∈ M+ be given, along with a measurable map t �→ νt : [0, T ] → M
such that νt is absolutely continuous with respect to λ0 for all t ∈ [0, T ] and∫ T

0 ‖νt‖dt < ∞. Set

μt = μ0 +
∫ t

0
νs ds.

Then there exists a measurable map σ : [0, T ] × E → {−1,0,1} such that, for all
t ∈ [0, T ], we have μt = σt |μt | and

|μt | = |μ0| +
∫ t

0
σsνs ds.

A version of the lemma, without the hypothesis of separability and for the
case where t �→ νt : [0, T ] → M is continuous in total variation, was stated by
Kolokoltsov in [9], Lemma A.1. The proof given in [9] contains a gap, which we
have not been able to fill. The case where (E,E) is Rd with its Borel σ -algebra
and where t �→ νt : [0, T ] → M is continuous in total variation, has been proved
by Lu and Mouhot [11], Lemma 5.1. We will use a substantially different argu-
ment, which allows us to replace this hypothesis of continuity with the existence
of a reference measure λ0.

PROOF OF LEMMA A.1. There exists an increasing sequence (En :n ∈ N) of
finite σ -algebras generating E . Write An for the partition of E generating En.
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Consider the finite measure λ = λ0 + |μ0| + ∫ T
0 |νt |dt on (E,E). By scaling we

reduce to the case where λ is a probability measure. For each t ∈ [0, T ], define
En-measurable functions αn

t and βn
t by on E by setting

αn
t (x) = μt(A)/λ(A), βn

t (x) = νt (A)/λ(A)

if x ∈ A for some A ∈ An with λ(A) > 0 and setting αn
t (x) = βn

t (x) = 0 if there is
no such A. Then, for all x ∈ E, the map t �→ βn

t (x) is integrable on [0, T ] and

αn
t (x) = αn

0 (x) +
∫ t

0
βn

s (x) ds.

For each t ∈ [0, T ], we have |μt | ≤ λ so |αn
t | ≤ 1 and αn

t λ = μt on En. Moreover,
the sequence (αn

t :n ∈ N) is a λ-martingale in the filtration (En :n ∈ N). So, by
the martingale convergence theorem, there exists α̃t ∈ L1(λ) such that αn

t → α̃t as
n → ∞, λ-almost everywhere and in L1(λ). Then α̃tλ = μt on

⋃
n En and hence

on E by uniqueness of extension.
For τ = {t0, . . . , tN } ⊆ [0, T ] with t0 < · · · < tN and any function (αt (x) : t ∈

[0, T ], x ∈ E), define a function |α|τ on E by

|α|τ = |α0| +
N−1∑
k=0

|αtk+1 − αtk |.

Then, for all A ∈ An, on A, we have

λ(A)
∣∣αn

∣∣
τ = |μ0|(A) +

N−1∑
k=0

|μtk+1 − μtk |(A) ≤ λ(A)

so |αn|τ ≤ 1 everywhere.
Fix E0 ∈ E with λ(E0) = 1 such that αn

t (x) → α̃t (x) as n → ∞ for all t ∈
[0, T ] ∩ (TQ) and all x ∈ E0. Write T for the set of finite subsets of [0, T ] ∩
(TQ). Then, for all x ∈ E0 and τ ∈ T , we have |α̃|τ (x) ≤ 1, so the map t �→
α̃t (x) : [0, T ] ∩ (TQ) → [−1,1] has total variation bounded by 1. Hence, for x ∈
E0, we can define a càdlàg map t �→ αt(x) : [0, T ] → [−1,1] by

αt(x) =
{

lim
s→t,s∈(t,T )∩(TQ)

α̃s(x), t ∈ [0, T ),

α̃T (x), t = T .

For x ∈ E \ E0, set αt(x) = 0 for all t ∈ [0, T ]. We have αT λ = α̃T λ = μT as we
showed above. For t ∈ [0, T ) and s ∈ (t, T ) ∩ (TQ), we have in the limit s → t

‖αtλ − μt‖ ≤ ‖αtλ − α̃sλ‖ + ‖μs − μt‖ ≤ 〈|αt − α̃s |, λ〉 + ∫ s

t
‖νr‖dr → 0

so αtλ = μt . Define σ : [0, T ] × E → {−1,0,1} by σt (x) = sgn(αt (x)). Then σ is
measurable and μt = σt |μt | for all t ∈ [0, T ].
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For any function ψ on [−1,1] with continuous bounded derivative, we have

ψ
(
αn

t (x)
) = ψ

(
αn

0 (x)
) +

∫ t

0
ψ ′(αn

s (x)
)
βn

s (x) ds

for all t ∈ [0, T ] and all x ∈ E. Since νt is absolutely continuous with respect to λ

for all t ∈ [0, T ], we have on En

ψ
(
αn

t

)
λ = ψ

(
αn

0
)
λ +

∫ t

0
ψ ′(αn

s

)
νs ds

for all t ∈ [0, T ]. Since νs(dx) ds is absolutely continuous with respect to
λ(dx) ds, we have αn

s (x) → αs(x) as n → ∞ almost everywhere for νs(dx) ds.
Hence, on letting n → ∞, we obtain on

⋃
n En

ψ(αt )λ = ψ(α0)λ +
∫ t

0
ψ ′(αs)νs ds

for all t ∈ [0, T ]. The identity then holds on E by uniqueness of extension. Set

ψk(x) =
√

x2 + 1/k. Then ψk(x) → |x| and ψ ′
k(x) → sgn(x) as k → ∞ for all

x ∈ [−1,1]. By dominated convergence, for all A ∈ E and all t ∈ [0, T ], we have〈
ψk(αt )1A,λ

〉 → 〈|αt |1A,λ
〉 = |μt |(A)

and ∫ t

0

〈
ψ ′

k(αs)1A, νs

〉
ds →

∫ t

0

〈
sgn(αs)1A, νs

〉
ds =

∫ t

0
〈σs1A, νs〉ds.

Hence, on taking ψ = ψk above and letting k → ∞, we obtain the desired identity.
�
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